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ABSTRACT
Last-mile carriers increasingly incorporate electric vehicles (EVs)
into their delivery fleet to achieve sustainability goals. This goal
presents many challenges across multiple planning spaces includ-
ing but not limited to how to plan EV routes. In this paper, we
address the problem of predicting energy consumption of EVs for
Last-Mile delivery routes using deep learning. We demonstrate the
need to move away from thinking about range and we propose
using energy as the basic unit of analysis. We share a range of deep
learning solutions, beginning with a Feed Forward Neural Net-
work (NN) and Recurrent Neural Network (RNN) and demonstrate
significant accuracy improvements relative to pure physics-based
and distance-based approaches. Finally, we present Route Energy
Transformer (RET) a decoder-only Transformer model sized accord-
ing to Chinchilla scaling laws. RET yields a +217 Basis Points (bps)
improvement in Mean Absolute Percentage Error (MAPE) relative
to the Feed Forward NN and a +105 bps improvement relative to
the RNN.

CCS CONCEPTS
• Computing methodologies → Planning and scheduling;
Machine learning; • Applied computing→ Transportation.
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1 INTRODUCTION
Electrifying the last mile fleet is a key pillar of achieving sustain-
ability goals for many last-mile carriers [7, 24, 25]. The lifecycle
emissions of Electric Vehicles (EVs) are approximately 3x lower
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than the lifecycle emissions of Internal Combustion Engine (ICE)
vehicles [11].

But from a route planning perspective, introducing EVs in last
mile operations is not simply the substitution of traditional ICE ve-
hicles with EVs. For example, EVs are constrained by their limited
charging speed (measured in units of hours vs. minutes to refuel
a traditional ICE vehicle). In this paper we first highlight some of
the unique challenges to route planning with EVs, in particular, the
need to accurately estimate energy consumption for route planing.
Afterwards, we present specifics of two different deep learning
models we trained to estimate energy consumption, observing sig-
nificant benefits in comparison to benchmarks that rely on pure
distance and physics simulations. Next, we present improvements
on the baseline deep learning approaches that can be gained by
increasing the model’s capacity through Chinchilla scaling laws
[12] and the Transformer architecture [26] which we call RET. We
conclude with a discussion of additional ways to enhance energy
estimation for last mile routing.

2 PROBLEM STATEMENT: ELECTRIFYING A
LAST MILE FLEET IS ALL ABOUT ENERGY

The single most important takeaway before strategizing an EV-
based last mile operation is that the currency of EV is energy con-
sumption, not range. Concretely, it’s about whether an EV with a
given amount of energy in the battery can complete its route. Cer-
tainly, energy consumption is positively correlated with distance
traveled. However, in last mile routing there are many other factors
that influence energy consumption. For example, the amount of
energy used to complete the exact same route can vary by more
than 100% depending on the ambient temperature. Figure 1 visually
highlights this by showing the returning State of Charge (SOC)
(y-axis) for executed delivery routes with a certain distance (x-axis)
across a range of ambient temperature (color) for select EVs in
Europe. Observe, for example, how the returning SOC of routes at
the 0.5 normalized EV distance varied between 0% and 70% which
is highly correlated with temperature. Additional factors like to-
pography, stationary time, and acceleration profile also influence
energy consumption beyond the distance alone.

The realization that energy is the currency of EVs is somewhat of
a mental shift from how the general public refers to the capability
of EVs in terms of range. This is due to the difference between
the standard consumer EVs driving cycles and those of a delivery
route which consist of frequent start-and-stop on short segments,
including looking for parking. Additionally, delivery routes are
parked for a significant portion of the day while the driver is out
delivering, so Heating, Ventilation, and Air Conditioning (HVAC)
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Figure 1: Energy consumption (remaining Battery Capacity
%) vs. total route length (km). Each dot is one route. Color
represents ambient temperature (C◦).

consumption has a disproportional impact compared to consumers
driving their EVs.

The complexity of operating EVs lies in three challenges associ-
ated to energy [13].

First, EVs are constrained by their battery capacity due to the
limited charging speed, which is approximately two orders of mag-
nitude slower than a comparable ICE vehicles. While fast-charging
reduces the EV charging times significantly, it is often not a desir-
able option as it deteriorates the battery faster, and it imposes a
significantly increased load on the power budget at the Delivery
Stations (DSs).

Second, public charging infrastructure is limited and nascent.
Charging locations are scattered, often less available in areas where
routes have the highest risk of running out of energy, e.g., rural
areas, and do not support the required scale of the fleet of last-
mile carriers. Additionally, leveraging public charging on-road is
impractical given the charging speed of EVs and the associated
time-impact on routing.

Third, determining if a planned route is energy-feasible is not
straightforward due the large set of factors influencing consump-
tion such as weather, elevation, and others. Additionally, given the
limitations on charging infrastructure and speed, there are limited
recourse actions if a route turns infeasible. If an EV gets assigned
an energy-infeasible route, this will lead to a poor experience for
drivers, customers, and carrier.

Consequently, the available energy constraint imposes a produc-
tivity vs energy-risk trade-off. Fundamentally, adding an energy
constraint to route planning deteriorates productivity and route
quality metrics, as the feasible space of routes is reduced. However,
not posing this constraint leads to risk of range anxiety or lost pro-
ductivity (e.g., from vehicles needing to return before completing
their route). This all underscores the need for accurately estimating
energy consumption.

3 RELATEDWORK
Energy estimation traditionally has been done using physics models
([17]). In these cases, signals such as time, distance, HVAC usage, air

temperature, acceleration profiles, mechanical characteristics of the
car (rolling resistance, weight, aerodynamic, electrical efficiency,
etc.), physical characteristics of the road (slope, elevation gained,
etc.) are used to compute an estimate. In this paper, we distinguish
ourselves from this line of work because we have imperfect infor-
mation. For example, we cannot predict traffic with full accuracy,
and we can only use proxies for expected HVAC usage like pre-
dicted air temperature. Additionally, we do not have a fine-grained
characteristics of the route during planning, such as exact elevation
and slope.

There have been direct ML methods to predict energy, see [3, 18].
Themain differences for us are the available information at planning
and the latency requirements which rule out very large models. We
will talk more about this in Section 6.

This type of problem of predicting a series of energy estimates
can also be compared to time-series estimation framework [4, 10,
15, 22]: predicting the time-series based on the features and the
history of predicted energy.

4 MODELING ENERGY CONSUMPTIONWITH
DEEP LEARNING

Predicting the energy consumption of a route accurately is para-
mount for energy-aware route planning. In this section, we intro-
duce the features used to predict the energy consumption. Next,
we introduce two deep learning models, the first is a Feed Forward
NN which models each segment individually and the second is a
RNN which models the route as a sequence of segments.

4.1 Features.
EV energy consumption on a delivery route is influenced by a wide
range of factors with varying levels of influence. Broadly speaking,
these factors can be categorized into a few major buckets: 1) route
characteristics, e.g., number and sequence of stops; 2) path trav-
elled, e.g., elevation profile, road type, and distance; 3) environment,
e.g., weather conditions, and traffic; 4) vehicle, e.g., battery state of
health, weight, and powertrain efficiency; and 5) additional factors
like acceleration profile and HVAC usage. These categories jointly
inform derived features, such as travel time, which is dependent on
environmental factors (e.g., traffic), path travelled (distance), and
vehicle (acceleration capability). Table 1 captures the features we
included for training our deep learning models. We included fea-
tures primarily based on two main criteria: feature availability and
exploratory analysis of their impact to routes. For example, while
package weight is important based on physics, the weight of the
delivered packages on routes is insignificant relative to the weight
of the vehicle. Conversely, as discussed in Section 2 temperature is
an important physics-based feature that vary significantly across
routes and impact energy consumption.

4.2 Predicting individual segments with a Fully
Connected Model.

Routes consist of multiple sequential segments, i.e., travel from
stop A to stop B and associated delivery operations at stop B. Our
first deep learning model is a Fully Connect NN which predicts the
energy consumption of segments independently. After predictions
are made at the segment level, we then aggregate into route level.
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Table 1: Features included for training Deep Learningmodels

Feature Description
distance Planned travel distance (m)
speed_moving Average moving speed for the segment (m/s)
time_stationary Time spent parked and delivering

at the end of the segment (s)
air_temperature Air temperature at the start of the segment (C)
is_stem_int Binary indicator if a segment is stem,

i.e., traveling to or from the DS, or on-zone
vehicle_model One-hot encoding of vehicle make & model

The segment-level model is a NN with two fully-connected 32 unit
layers.

4.3 Predicting entire routes with a Recurrent
Neural Network.

While the Feed Forward NN would satisfy extremely tight latency
constraints, it ignores the fact that segments in a route are not
independent. They are executed by the same driver and vehicle, in
weather and traffic conditions that don’t vary rapidly from segment
to segment. Therefore, predicting the energy consumption of a route
can benefit from a route-level model, i.e., a model that considers all
segments within a route jointly. We developed a route-level model
that uses a RNNwith a Gated Recurrent Unit (GRU)-layer (Unidirec-
tional) to capture the correlations between segments. We consider
the route as a ROUTE LENGTH x NUMBER OF FEATURES matrix.
First, we use a feature embedding through a length 32 unit fully-
connected layer. Next, we pass each time-step through a GRU of
size 64 to keep the memory of the sequence of segments that jointly
construct the whole route, followed by an output embedding with
a 32 unit fully-connected layer. Lastly, we use a linear layer (a 32 x
1 matrix) to predict the output at every step. The output is a vector
of energy consumption for each segment, where each prediction
is influenced by the prediction for the other segments in the route.
Lastly, we sum up the consumption of the individual segments.

5 TRAINING A COMPUTE OPTIMAL
TRANSFORMER

We explore how much accuracy can be gained from using a larger
model and more fully utilizing our available training data. We use a
transformer architecture to test this idea as it is proven to be highly
performant and scalable across a wide variety of deep learning
domains beyond language including computer vision [6], speech
[9] and reinforcement learning [2].

We call this model RET which is a decoder-only transformer,
mostly consistent with GPT2 [21]. The primary differences between
RET and GPT2 are the following: 1) we replace word embeddings
with the hand-crafted feature representation of the features de-
scribed previously, 2) the output dimension is 1 for the predicted
energy consumption for each step in the route vs. the number of
vocabulary, and 3) the cross-entropy loss is replaced with mean
absolute error. But the biggest difference is that RET models are
significantly smaller than GPT2 due to the smaller dataset size.

Chinchilla scaling laws [12] demonstrate how to pick the optimal
model size and training data required for a given training compute
budget. They use three different approaches, which generally agree.
In Approach 2 the authors train dozens of models at different model
parameter and data sizes, varying them across 9 different compute
budgets. Then they fit a parabola on the loss for each compute
budget to identify the optimal number of parameters and tokens.
Finally, they demonstrate linear relationships between compute,
parameter count, and data size).

Figure 2: Data size vs. Parameter count for Chinchilla Opti-
mal Models. We predict that the Chinchilla optimal model
size is orders of magnitude larger than the Feed Forward NN
and the RNN.

Applying these results to our problem, we quickly identified that
our limiting factor is not training compute, but rather data quantity.
Using their published data [12] we fit a linear model to interpolate
the optimal number of model parameters 𝑁 , for the amount of data
𝐷 we have, yielding:

log10 (𝑁 ) = 0.51 log10 (𝐷) + 0.0617

Using imputation, we determine the optimal model size to be
3M parameters. This is visualized in Figure 2 along with the Feed
Forward NN and RNN.

In Chinchilla [12], optimality is defined as getting the most “bang
for buck”: maximizing model accuracy for the given compute bud-
get. However, for any optimization system the model’s inference
compute is also critical. Hence we also train two smaller models
(Table 2), to evaluate whether we can get some of the same benefits
of the larger transformer with reduced inference time.

6 MODELING RESULTS
We present a holistic evaluation of the modeling effort, including
overall MAPE, MAPE on a subset of Cold and Hot routes, and
inference speed.
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Table 2: RET variants. The 20k parameter version (RET-20k)
is chosen as a point of reference to the RNN model which
has the same number of parameters and the 300k version is
chosen as a middle-ground approach which combines some
benefit of the larger model with lower latency.

Model Blocks Dimension
RET-20k 1 32
RET-300k 3 96
RET-3M 6 192

6.1 Accuracy
We train models on 48M segments across North America and Eu-
rope. We evaluate the model using Mean Absolute Percentage Error
(MAPE) on 5M segments. Additionally, we evaluate the models on a
hold-out subset of several hundred routes that are particularly hot
(≥ 35°C ) and are particularly cold (≤ 0°C). We compare accuracy
with two baselines. The first baseline (Distance) is a simple linear
model which predicts energy consumption from the distance of
the route as a proxy for the ’range’ concept. The second baseline
(Physics) is an internal physics-based simulation. We report accu-
racy improvements relative to the Fully Connected NN in terms
of basis points (bps) of improvement in MAPE. Comparing the NN
model to the distance and physics baselines in Table 3, we observe
a sizable benefit of +1117 bps and +260 bps respectively. Moving
to the RNN, we observe an additional benefit of +112 bps on top
of the NN. This likely due to a combination two things: modeling
the sequence as opposed to independent segments, as well as an
overall larger model size.

Comparing to the NN, we observe a +217 bps performance in-
crease in MAPE from training the Chinchilla optimal RET-3M. Com-
paring to the RNN model we observe an additional +105 bps im-
provement. We also compare results on hold-out set for particularly
hot and cold routes. The hot and cold routes are particularly im-
portant because energy usage tends to be higher due to increased
HVAC usage. Additionally, cold weather may impact battery capac-
ity, increasing risk without proper estimates. For particularly hot
routes, this improvement grows astonishingly to +753 bps. Addi-
tionally, RET-3M performance is also demonstrated for cold routes
where we observe an improvement of 167 bps in MAPE %. This is
is noteworthy because cold routes were relatively lacking in the
training data.

6.2 Inference Speed
In order to realize the benefits of the larger models more compute
time is required. Even though these models are microscopic in re-
lation to modern Deep Learning models used for Language and
Vision, computational performance is noteworthy due to the fol-
lowing observation. As important as energy estimation is, it is only
a single input into computationally intensive downstream optimiza-
tion programs. For example, as a part of routing optimization for a
single delivery station, the energy estimation model might need to
be evaluate several orders of magnitude more routes than we end
up needing. Therefore, being cognizant of inference time is crucial
to ensure the model is feasible to use.

Table 3: MAPE results from model experimentation. Each
row represents the bps improvement relative to NN for one
model/training. Overall results are reported as well as results
for the subset hot and cold routes.

Model Relative
MAPE%

Relative
MAPE%

Cold ≤ 0°C

Relative
MAPE%

Hot ≥ 35°C
Distance -1117.8 -893.2 -1971.1
Physics -260.5 -276.5 500.4
NN 0.0 0.0 0.0
RNN 111.8 129.2 563.6

RET-20k 123.3 79.9 671.1
RET-300k 194.9 143.9 760.0
RET-3M 216.9 167.2 753.6

Table 4: Inference Speed Comparison. Each row represents
onemodel/training, and inference speed is reported on single
host for 10k routes.

Model CPU (s) GPU (s)
NN 0.107 0.242
RNN 2.422 0.406

RET-20k 0.857 0.013
RET-300k 7.133 0.671
RET-3M 27.373 2.572

To quantify the relative speed between the models, we mea-
sured the inference time on a single host: c6i.32xlarge for CPU and
p3.2xlarge for GPU. We used the same python framework we used
for training the models (Keras for NN and RNN and PyTorch for
RET). We report the average forward pass time across 5 forward
passes, after giving the models two warm-ups. Using this setup, we
make two observations. First, using the GPU speeds up runtime by
10x for the larger two models. Second, RET-20k is much faster than
RNN which is also 20k parameters, meaningful because RET-20k
and RNN models have a similar overall performance on MAPE.
Finally, while there is sub-linear growth in inference speed as the
model size grows, RET-3M is still 4x slower (CPU and GPU) than
RET-300k. This is meaningful since RET-300k approaches the same
MAPE overall and for cold routes, and in fact has a slight edge for
hot routes.

7 FINAL REMARKS
In this paper, we demonstrated the need to estimate energy con-
sumption for EV aware route planning. We also demonstrated the
benefit of a range of Deep Learning-based solutions to predict
energy consumption, including a compute-optimal Transformer
model, RET.

Beyond route planning. In this paper, we have argued there exists
a route quality vs route-risk trade-off due to the introduction of
limited battery capacity constraints in route planning. Since energy
consumption cannot be predicted with 100% accuracy, an explicit
decision has to be made about how conservative we define the
routing constraint. However, route planning is one of the last steps
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in a typical last-mile planning process. Upstream decisions such as
vehicle design, network topology, and vehicle scheduling can create
conditions where the battery capacity constraint only has limited
impact on the routing outcome. For example, in the presence of a
mixed battery-capacity fleet, smartly assigning delivery vehicles
with larger battery capacities to areas with higher consumption
routes limits the impact of the EV fleet on route quality. Additionally,
route planning is not the final step in a last-mile planning process.
Real-time, on-the-road support to keep drivers informed about
their remaining SOC and the anticipated feasibility of their route,
in light of weather or traffic changes, ensures we are able to adjust
routes as needed to minimize the impact on successful completion
of the route. For each of these planning processes in the end-to-
end last mile workflow, having accurate estimates of the required
energy of a set of (expected) routes is critical, and the applicability
and impact of models as introduced in this paper span beyond
traditional routing problems. This ensures that, in addition to the
societal benefits of EVs in achieving sustainability goals, EVs are
also the cost-optimal optimal choice for a last-mile carrier.

Future research. As part of future research, we strive to increase
model accuracy and reliability. One path forward is to explore what
we can leverage from the physics model. We know that the energy
consumption is determined by physical laws and can be computed
with 100% accuracy in a full-knowledge setting, i.e., knowing the
exact values for all relevant features such as air temperature, speed,
and elevation. One option would be to start with the physics predic-
tions and build a model that predicts the delta between the physics
model and the actual energy used explicitly forcing the model to
learn signals not currently captured by the physics model.

Another area for improvement is explicitly modeling the uncer-
tainty. There is a rich area of previous work that we could apply to
this problem [8]. We can look at conformal prediction [1, 16, 23],
quantile regression [14] and tools in deep learning with uncertainty
(TensorFlow Probability, Bayesian Neural Networks, Epistemic Neu-
ral Networks etc.) see [5, 19, 20]. Most methods for uncertainty rely
on ensembles, estimating a distribution and then doingMonte Carlo
sampling or creating a larger network to predict the distribution.
All these increase the inference time. This is an active area for
future work.
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A GLOSSARY
DS Delivery Station
EV Electric Vehicle
GRU Gated Recurrent Unit
HVAC Heating, Ventilation, and Air Conditioning
ICE Internal Combustion Engine
MAPE Mean Absolute Percentage Error
ML Machine Learning
NN Neural Network
RNN Recurrent Neural Network
RET Route Energy Transformer
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