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Abstract

Developing function-specific protein sequences remains a critical challenge in drug
discovery and protein design. Existing methods, such as structure-based models and
protein-text models, face limitations due to inherent biases in structural predictions,
the need for extensive fine-tuning, and difficulties in zero-shot generalization to
novel functional tasks. To overcome these challenges, we propose ProtDiff, a novel
protein sequence diffusion model conditioned on function tokens. While previous
works rely on multimodal inputs or fine-tuning, ProtDiff employs a masked diffu-
sion language model (MDLM) formulation with classifier-free guidance to generate
protein sequences in a zero-shot manner using a predefined function token vocabu-
lary. During the reverse diffusion process, ProtDiff uses a transformer backbone
to iteratively reconstruct the sequences, enabling precise functional adaptations
while maintaining stability. By training on diverse protein-function pairs from the
InterPro database and incorporating classifier-free diffusion guidance, ProtDiff
achieves state-of-the-art performance in both functional adaptation and de novo
sequence generation tasks. Our evaluation demonstrates that ProtDiff generates
novel, stable protein sequences that adhere to specific functional constraints, per-
forming comparably to autoregressive models with higher parameter counts. These
results suggest that ProtDiff not only advances the field of protein design but also
opens new pathways for explainable and targeted protein generation, particularly
in drug discovery applications.

1 Introduction

Protein design plays a crucial role in drug development, but manual approaches can take years. AI
tools have emerged to accelerate this process by generating de novo proteins from existing datasets
[24]. There are different protein models, including structure-based models that predict protein
structures from sequences [3, 20, 37, 1], aiding in rational design through structural interactions
[28]. However, these models have limitations due to structural prediction biases and lack of large-



scale validation [6]. Protein language models have shown promise in design tasks, relying only on
sequences rather than structures [7]. These models, built on transformer architectures [36], analyze
proteins similarly to language in NLP models.

Despite their success, protein language models face challenges in specific tasks. They are often trained
using a general task, such as masked language modeling [11]. Base protein language models require
extensive fine-tuning for specific property/binding prediction, which necessitates large datasets. In
addition, predictions are difficult to validate and optimize due to a lack of interpretability. Prior
attempts to bridge text instructions and protein sequences for zero-shot conditional generation have
struggled (see Appendix B). Instead, conditioning on function tokens from a predefined vocabulary
offers a more promising approach by decreasing the complexity of the instruction space. Earlier
methods used transformers with additive embeddings but relied on additional modalities like structure
and pLDDT metrics [20], limiting their applicability [15].

Diffusion models offer an alternative for function-conditioned protein generation, simulating discrete
mutations and achieving robust results with smaller models. Classifier-free guidance enables training
based on function tokens without needing high-performance predictors. Recently, the masked diffu-
sion language model formulation (MDLM) [32] has greatly improved sequence diffusion performance
by imposing constraints on the reverse diffusion process. We introduce ProtDiff, a sequence diffusion
model conditioned on function tokens. The model uses the MDLM method, progressively masking
tokens during forward diffusion and procedurally reconstructing them in the reverse process. ProtDiff
trains a transformer backbone model that accepts both function token and sequence embeddings on the
MDLM task, using classifier-free guidance for training and sampling. Evaluations of the model show
that ProtDiff performs better in functional adaptation and stable de novo sequence generation when
compared to a conditioned transformer model and performs similarly to other function-conditioned
zero-shot sequence generators with higher parameter counts.

2 Results

In this section, we provide a detailed overview of evaluations done on the proposed ProtDiff algorithm
and other relevant baseline models (described in E.3). In addition, we show that ProtDiff generates
sequences unique to the original function data while maintaining protein stability and synthesizability
(evaluation formulations defined in Appendix E).

The ProtDiff model was trained using parameters and methods explained in Appendix D. A 1000-
timestep diffusion process with a 6-layer backbone model and a model dimension of 128 was used
for evaluations (see Table 2).

During the evaluation of the model, we create a generated set of proteins using ProtDiff to evaluate
using metric learning benchmarks described in E.2. This generated set consists of 10,000 proteins.
There are 2,000 proteins of 5 different categories. The first category involves conditioning on a
single function token, the second category includes sequences conditioned on two tokens, and so on
until 5-token-conditioned sequences are reached1. We use this generated dataset to evaluate function
matching scores, evaluate de novo generation scores, and show embedding map comparisons across
training and generated datasets.

We compare sequence understanding between training, validation, and generated sets. Sequence
understanding is determined based on cross-entropy loss on the token level between the original

15 tokens is the mean amount of function tokens within the training dataset, which is why we chose this
value when creating our generated dataset
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Figure 1: A comparison of cross-entropy losses between ground truth and reconstructed inputs in
each of the train, validation an d generated sets show that ProtDiff can generalize to a wide set of
proteins. This loss was calculated by taking a random sample of 100 sequences from each of the sets

and diffusion-reconstructed outputs. We find that ProtDiff performs best when reconstructing the
training set. Validation metrics show similar performance to training reconstruction loss outputs,
albeit slightly higher. Generated set reconstruction shows the highest loss value of all categories, but
does not exceed the loss of the training and validation sets greatly. This implies that the generated set
is within the bounds of the valid protein distribution, but extends beyond the training set distribution.

2.1 Function Matching

In this section, we compare function-matching scores (formulated in E.2.1) between ProtDiff, ESM3,
and a vanilla autoregressive model2. We include two metrics: a protein language model-based
contrastive evaluation (see Equation 11) and a conditional centroid-based contrastive evaluation (see
Equation 12).

Evaluations show that ProtDiff’s generations perform better than a vanilla autoregressive predictor in
both formulations of the function adaptation task. In addition, ProtDiff shows the best performance at
2-token conditional tasks, decreasing as the number of conditional tokens increases. This occurs due
to a natural increase in distribution complexity as more conditional variables are included.

ProtDiff shows worse performance than ESM3 in most tasks, with the exception of 2-token functional
adaptation and single-token pLM-based function adaptation. This occurs due to ESM3’s higher
parameter count (1.4B parameters), which leads to correspondingly higher expressibility. In addition,
ESM3 has been trained on more data samples, allowing it to have more accurate predictions. However,
ProtDiff shows performance close to ESM3 despite the parameter count difference. This most likely
occurs due to ESM3’s reliance on more than just a sequence and function track (structure, pLDDT).

2.2 De Novo Generation

Finally, we evaluate ProtDiff on its ability to generate de novo proteins (formulated in E.2.2). In
Table 1, we show that ProtDiff’s generated dataset has high de novo scores. This shows that the
model generates many sequences that are separate from the original training distribution. In addition,
ProtDiff shows the highest performance in stable de novo sequence generation in 1 to 4-token settings.
In contrast, ESM3 has higher raw de novo scores, but performs slightly worse in stable de novo scores.

2The autoregressive model is of the same architecture and tokenization method as the backbone model
leveraged in ProtDiff. We include this to show the advantage of the diffusion process over raw autoregressive
generation
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Table 1: Table of function adaptation and de novo generation scores for ProtDiff, ESM3, and raw
autoregressive model. PLM Scores denote the function annotation scores based on a protein language
model backbone (ESM2-8M), while contrastive score shows the contrastive parameterization of the
evaluation objective. Both raw de novo and stable de novo scores are included. This shows the
estimated distance between training set embeddings and generated set values, while regularized scores
dampen this with a stability score. Evaluations are shown for each number of tokens in the generated
set (Note: Contrastive Score is converted to percentage using the following: (1− distance) ∗ 100%
and distance is clamped to a maximum value of 1)

MODEL NAME TASK NAME 1 TOKEN 2 TOKEN 3 TOKEN 4 TOKEN 5 TOKEN

ESM3 PLM SCORE 92.9% 91.8% 90.2% 87.2% 84.4%
CONTRASTIVE SCORE 93.3% 92.1% 91.1% 86.6% 85.2%

RAW De Novo 1.484 1.739 1.923 2.326 2.722
STABLE De Novo 0.903 0.812 0.725 0.433 0.355

AUTOREGRESSIVE PLM SCORE 89.9% 90.2% 89.0% 85.9% 85.2%
CONTRASTIVE SCORE 91.1% 90.4% 89.9% 84.7% 82.5%

RAW De Novo 1.302 1.335 1.527 1.593 1.734
STABLE De Novo 0.705 0.522 0.459 0.198 0.131

PROTDIFF PLM SCORE 93.1% 92.0% 90.0% 87.2% 83.2%
CONTRASTIVE SCORE 92.8% 92.7% 90.9% 85.2% 84.6%

RAW De Novo 1.413 1.778 1.804 1.928 2.576
STABLE De Novo 0.964 0.839 0.727 0.481 0.343

This shows that ProtDiff is able to generate more stable sequences while generalizing to the de novo
sequence space. ProtDiff also performs better than a vanilla autoregressive model on nearly all de
novo generation benchmarks

3 Conclusions & Future Work

Function-conditional protein generation is important for explainable and stable protein generation.
Previous methods, which tune on language-based inputs, do not perform as well in zero-shot function-
based generation. As an alternative, we propose ProtDiff as a conditional diffusion model that can
generalize to combinatorial sets of function tokens. ProtDiff’s masked diffusion language modeling
objective along with classifier-free guidance allows for the integration of the transformer architecture
as a backbone model. ProtDiff is able to generate stable de novo in simple function spaces as well as
proper functional adaptation of proteins.

In future works, we aim to increase ProtDiff’s model depth to determine its range of protein represen-
tation properties. In addition, we plan to apply ProtDiff to directed evolution for protein optimization
as well as function and target-conditioned binder design.
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A Background

In this section, we provide an overview of architectures [17] and modifications used in ProtDiff,
including transformer-based protein language models and discrete masked diffusion models.

A.1 Discrete Diffusion

While initial diffusion models were formulated as continuous probability distribution learners through
Gaussian diffusion [31], a general framework for diffusion models on discrete datasets, D3PM, was
introduced [2]. Unlike the Gaussian forward diffusion used in continuous DDPMs, D3PM uses
time-dependent transition matrices Qt, where each entry in the matrix denotes a transition probability
from one discrete state to another corresponding state. Forward transition state propagation is defined
by the following rule:

q(xt|xt−1) = Cat(xt; p = xt−1Qt) (1)

This rule can be summarized into a single computation across a range of timesteps:

Qt =

t∏
i=1

Qi (2)

q(xt|x0) = Cat(xt; p = x0Qt) (3)

Many parameterization methods for Qt have been proposed. The simplest transition matrix formu-
lation is a uniform matrix across the categorical distribution. Other methods leverage a discretized
Gaussian distribution. In addition, absorbing state transition matrices are inspired by masked language
modeling methods, gradually transitioning all values to an all-encompassing state, such as a <MASK>
token.

The reverse diffusion process is parameterized to model the posterior of the forward diffusion
process at the relevant timestep. This backbone model leverages an evidence-based lower bound loss
formulation [41] to improve the reverse diffusion model over time. In contrast to continuous diffusion
models, which estimate the noise added during the forward process, discrete diffusion models predict
the reconstructed output and compare it to the original output accordingly.

A.2 Masked Diffusion Language Models

D3PMs proposed a general forward diffusion process that can be applied to many types of discrete
data (e.g. discrete-color images, text). However, the general discrete diffusion formulation can be
altered to increase inductive bias and simplify loss calculations for masked sequence data.

Masked Diffusion Language Models (MDLMs) [32] leverage the absorbing-state forward diffusion
process along with specific reverse diffusion parameterization rules to simplify the computation of
the loss function and increase model accuracy.

The absorbing state diffusion process is defined as a distribution parameterized by a time-conditioned
noise schedule αt that determines the probability of replacing a token with a mask token m at each
timestep (similar to the beta parameter schedule in DDPMs).3

3Noise schedules are selected such that all tokens will be masked by the end of all timesteps of the forward
diffusion process
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Figure 2: A full diagram of both the forward and reverse diffusion processes within the modified
MDLM architecture used for protein-conditional training. This method starts with a full protein
sequence and relevant function annotations. The sequence is corrupted through an absorbing state
diffusion process with masking probability based on a noise schedule. The reverse process is
parameterized by a conditional language model that integrate function tokens. SUBS parameterization
constraints are leveraged to simplify loss calculations

q(zt, x) = Cat(zt;αtx+ (1− αt)m) (4)

This forward diffusion process ensures that tokens that are masked are not unmasked during the
diffusion process.

The reverse diffusion process4 p(zs|zt) is parameterized by a categorical distribution that enforces
specific constraints on the unmasking of tokens.

pθ(zs|zt, x) =


Cat(zs; zt) zt ̸= m

Cat

(
zs;

(1− as)m+ (as − at)x

1− at

)
zt = m

(5)

Where x is defined by a time-conditioned backbone model that reconstructs the original input from
the masked version:

x = xθ(zt, t) (6)

This parameterization (SUBS) adds restrictions on the original discrete diffusion formulation specific
to absorbing state diffusion methods. The reverse diffusion process prevents tokens unchanged by the
forward diffusion process from being altered5 and prevents masked tokens from staying masked at
the end of the reverse diffusion process6.

The SUBS parameterization allows for the use of the modified NELBO loss function, a Rao-
Blackwellized form of the original D3PM loss that eliminates the reconstruction loss term.

4matching the estimated forward diffusion posterior
5Logit probabilities are altered after backbone model execution to enforce this constraint
6This is done by setting the probability of selecting the <MASK> token to 0 in the logits’ softmax formulation

after the backbone model generates an output
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Eq,t

[
− log pθ(x|zt(0)) + T

[
at − as
1− at

log⟨xθ(zt, t), x⟩
]]

(7)

Masked Diffusion Language Models’ simplified parameterizations have shown high performance in
language modeling tasks, but have not been applied to protein language modeling. Discrete diffusion
models mimic the natural discrete mutations of proteins and can lead to more robust outputs with
smaller backbone models compared to a raw autoregressive approach. Due to the increased inductive
bias and affinity towards backbone models with lower parameter counts, we leverage a masked
diffusion language model for function-conditional generation.

A.3 Protein Language Models

Diffusion models require a robust backbone algorithm to effectively model the reverse diffusion
process across timesteps, capturing relevant features within data samples. Transformer models
[36], known for their high performance in sequence modeling, have been particularly successful
in protein sequence analysis [7]. Protein language models (pLMs), which are transformer models
extensively trained on protein sequences, have been applied to tasks such as function prediction
[22] and interaction prediction [19], [8], [10]. PLMs are trained extensively on protein sequences in
a semi-supervised representation learning manner. The most common training method is masked
language modeling [11], where a percentage7 of tokens are replaced with either a mask token (80%),
a random token (10%), or unaltered (10%). The model slowly learns protein representations by
predicting these masked tokens.

While many studies augment these models with auxiliary information like structure integration
[35], MSA data [27], and post-translational modifications (PTMs) [30], we opt for a sequence-
only approach. This choice simplifies the conditional loss bound and avoids the complications of
incorporating extra conditional information in addition to function tokens [18].

B Previous Work

In this section, we provide an overview of current methods for functional-conditional protein genera-
tion.

B.1 Protein Language Model Augmentation

Protein language model augmentation methods alter vanilla language model architectures to in-
clude multimodal adapters. These multimodal adapters integrate text instructions or function token
information into a protein sequence’s latent representation within the language model.

Methods such as FAPM [40] integrate functional annotations through a querying transformer ar-
chitecture [23]. This architecture trains an auxiliary transformer [36] and a set of input queries,
which interact with protein function data in text format to extract relevant data. The extracted query
information is passed to a base protein language model architecture [13]. This architecture can be
fine-tuned to detect specific molecular or biological processes [38].

Other methods attempt to directly bridge text and protein modalities. Protein-to-text architectures
have been proposed to integrate high-level protein information into large language models. Methods

7While most methods choose 20% as a masking ratio, alternate methods have shown high performance at
higher masking ratios, nearing 50% [39]
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such as ProtT3 [26] propose to integrate protein information by passing hidden states from a protein
language model into a cross-modal projection architecture. This information is then added to the
language sequence to integrate protein information. Alternate methods leverage text-to-protein
architectures [25], which involve projecting text embeddings into a shared embedding space [5] to
decode into a protein. While these architectures are highly innovative, they still show low levels of
generalization to varied function descriptions in a zero-shot manner.

B.2 Sequence Modification/Augmentation

Alternate methods of function conditional generation involve modifying the sequence input to a
language model. Methods such as ZymCTRL [29] leverage control tags [21] to describe differ-
ent functions. These control tags are defined such that similar functions are tokenized similarly.
ZymCTRL has shown generalization to de novo protein sequences based on control tags.

Other methods integrate function embeddings on a token level. ESM3 [15] uses a tokenization
method that adds token embeddings from multiple tracks, including sequence, structure, and function.
Functional embeddings are created by extracting unigrams and bigrams from InterPro annotations.
While ESM3 shows the most fine-grained function information integration, it does not perform well
if all 3 main tracks are not present (sequence, structure, and function).

B.3 Protein Terminology Fine-Tuning

While most methods involve a protein language model as a main backbone, other methods leverage
large natural language models [9]. These methods fine-tune language models on protein terminology
and protein sequence datasets. Datasets such as Mol-Instructions [14] have been used to fine-tune
medium-sized language models, such as LLaMA-3-8B [12]. These models have shown generaliza-
tion to general protein terminology but not to protein sequence representations due to the lack of
expressibility of fine-tuning methods and the lack of varied large-scale protein + text instruction
data8.

C Methods

In this section, we provide an overview of the ProtDiff architecture and alterations from previous
models and components used.

C.1 Diffusion Process

The diffusion process used in this model is based on the masked diffusion language model (MDLM)
formulation. The original masked diffusion process leveraged small language models9 as backbone
models. Subquadratic models were also evaluated10. Similarly, we train a small transformer model
from scratch on protein sequences with the ability to accept conditional function information.11

8In addition, text and protein instruction data is very difficult to synthesize at scale due to the wide range of
possible tasks

9The original language-based MDLM formulation uses BERT-base
10DiMamba [33] was used as a backbone during training
11In contrast to using a pretrained model, we train a model from scratch to closely fit the requirements of the

MDLM process and create support for function tokens during conditional training
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The reverse diffusion process is altered to account for function conditional information during training.
We use the discrete-time diffusion configuration with a total of 1000 timesteps12 and implement a
log-linear noise schedule13 to parameterize the forward process14.

While the initial masked diffusion language model formulation includes time conditioning in back-
bone models, it has shown little model improvement. This is because time conditioning is implicitly
integrated based on the proportion of masked tokens at each timestep. Therefore, we do not inte-
grate time conditioning in our diffusion process and allow the model to implicitly learn timestep
embeddings.

Figure 3: Data flow diagram through transformer pLM backbone model with function token inte-
gration. Function tokens are first added as placeholders in the original sequence with a <SEP> token
between both modalities. The empty function tokens are then populated with embeddings from the
function embedding table and projection. The aggregated embeddings are passed as input to the
backbone model.

C.2 Diffusion Backbone Model

For the backbone model of the diffusion process, we leverage a transformer-based protein language
model architecture. Previous works leverage pre-trained transformer models for masked diffusion
language modeling [32]. However, we train a backbone model from scratch with the diffusion process
to natively learn function token integration into the embeddings (see Figure 3).

Each transformer block consists of a multi-head self-attention block15 [4] followed by a residual add
[16] and RMSNorm [42] operation. Rotary positional embeddings [34] are used during the attention
process to encode relative positional information. After this, an MLP layer with an expansion ratio of
4 and another residual + norm block is added.

12Smaller model variations leverage 250 and 500 total timesteps
13log-linear noise schedule is parameterized as the following: at = log(1− βt)
14MDLM proposes a linear, log-linear, and polynomial-based noise schedule. Through short preliminary

experiments, we determined that the log-linear noise formulation was most performant for the proposed task
15biases were not used on Q, K, V, and output projections in the attention process. model dimension dmodel

was also scaled down to dattn to decrease computational requirements of the attention process

13



Algorithm 1 MDLM Training with Classifier-Free Guidance
Require: xθ: model, puncond: probability of unconditional training, pdata: data distribution, T:
maximum timesteps, L: diffusion loss
repeat
(x0, c) = pdata(x|c)
c← ∅ with probability puncond
t = U(1, T )
at = noise(t)
zt = Cat(zt; atx+ (1− at)m)
z0 = p(z0|zt) = SUBS(xθ(zt, t, c))
L = L(z0, x0)
xθ ← AdamW(L, lr)

until converged

C.3 Function Embeddings

The proposed diffusion method conditions on functional information to provide a form of control
and explainability to generated proteins. Functional tokens are extracted from InterPro functional
annotations, where each unique unigram and bigram (excluding stopwords) is added to a global
vocabulary16. This method was chosen instead of using InterPro annotations as tokens directly to
allow more fine-grained generations and higher capacity for de novo protein generation without being
restricted by existing protein families/groups that the full InterPro annotations are based on.17

To integrate functional information conditional to the current sequence, we add a set of empty function
tokens at the start of each sequence passed to the transformer. This creates two regions separated by a
<SEP> token: function tokens and sequence tokens. The empty function tokens are then populated
with embeddings from an embedding table and MLP projection specific to function tokens (see Figure
3). This allows for the generation of compatible coembeddings between sequence and function18.

While many conditional diffusion models opt for cross-attention within backbone models, we use a
token-level integration due to the simplicity of implementation while still being able to generalize to
the de novo protein space [29].19

To encourage proper use of function token embeddings, we implement a classifier-free diffusion
guidance method. During training, we sample a fixed probability of conditionality puncond. Based
on this probability, we either provide relevant function tokens or leave empty function tokens in the
sequence input (see Algorithm 1).

During inference, we use classifier-free guidance-based sampling along with the masked diffusion
language model formulation. Classifier-free guidance sampling uses the following rule to modify the
output such that it accounts for conditional and unconditional objectives during training:20

x̃t = (1 + w)xθ(zt, c)− wxθ(zt, c) (8)

16total vocab size: 58641
17This method of extraction is analogous to the function tokenization method proposed in ESM3. This is used

to allow direct comparisons to ESM3 as a baseline model during evaluations
18function embeddings are added to the empty function token embedding to allow the sequence embedding

table to separate functional and sequential embedding spaces accurately
19function tokens are added only during the reverse diffusion process and not included in the forward diffusion

methods or in loss function calculations.
20a value of 0.5 is used for w in all conditional sampling procedures
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Table 2: Table of backbone model configurations that underwent training, fine-tuning, and evaluation
processes with comparison to baseline models with similar parameters

dmodel nlayers dattn pcond T

64 3 32 0.25 250
64 3 64 0.25 500

128 6 64 0.25 500
128 6 128 0.25 1000

This rule is modified from the original sampling rule, which uses a noise model ϵθ (based on
continuous diffusion model settings). However, masked diffusion language models are instead
parameterized to predict the reconstructed output xθ specific to the timestep.

D Training Method

D.1 Training Dataset

Most protein language models train on open protein databases using the masked language modeling
framework. However, ProtDiff requires functional annotations. We train ProtDiff on a subset of the
InterPro database, which contains proteins along with relevant function annotations. We extract data
from the InterPro database using its public API, and preprocess it using the following techniques.

1. We extract all InterPro annotations using a script that accesses each entry from the API

2. We remove stopwords from the annotations and extract relevant, repeated unigrams and
bigrams as a vocabulary of function tokens21

3. We extract a set of proteins and their InterPro annotations from the InterPro API, and match
the relevant annotations to their keywords

4. We pre-tokenize all sequences and function tokens based on index in a provided vocabulary
file22

We extracted a dataset of 80,000 proteins23 of variable length. During batched training, we pad
sequences to a predefined maximum length24 and pad function token sections to the length of the
sequence with the most function tokens. In addition, we ensure a diversity of all InterPro annotations
during extraction by looping through each InterPro annotation to extract from, extracting auxiliary
annotations along with the specified token.

D.2 Model Dimensions

A total of 4 models were trained with various model dimensions and diffusion parameters. We train at
model dimensions of 64 and 128 and attention dimensions of 32, 64, or 128 depending on the overall

21We use the same function tokens as ESM3 to allow for easy comparison to a provided pre-trained model
during evaluation steps

22This is done to avoid tokenization re-computation delay across training runs
23See computational constraints
24A maximum length of 1024 is used for all models, with larger proteins being truncated to save computational

resources
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model size25. We also train with a different number of layers depending on the model dimension and
leverage an increasing amount of timesteps based on the model dimension.

We train the specified models with the same data loader seed to prevent invalid comparisons between
models. While we do train all models on the full dataset and the same number of gradient steps,
evaluations provided are based on the backbone model with a dimension of 128 and 1000 timesteps,
as it shows the best performance of all 4 backbone models in the diffusion formulation.

D.3 Loss, Optimizers, Schedulers

We leverage the NELBO loss proposed in [32], which equates to an average of masked language
modeling losses per token.26 During training, we use a gradient clip value of 1.0.

We use the Adam optimizer without weight decay and beta values of (0.9, 0.999).

The original MDLM implementation uses a warmup scheduler that starts from a learning rate of 0
and increases across 2500 gradient steps. ProtDiff leverages the same scheduler during its training
loop.

D.4 Hyperparameter Selection

We swept through the following learning rates during our training process: 1e-3, 8e-4, 3e-4, 1e-4,
3e-5,1e-5. A learning rate of 3e-4 performed best for all model sizes.

We train our model on a physical batch size of 8 along with gradient accumulation across every 4
iterations. A maximum sequence length cap of 1024 was used to prevent memory overflows on large
sequences27. Both padding and truncation were used to achieve this overall sequence length, leading
to a total of 32768 logical amino acid tokens being processed per gradient step (excluding function
tokens).

D.4.1 Computational Constraints

ProtDiff was trained in a distributed data-parallel (DDP) fashion across two NVIDIA T4 GPUs. Each
batch was split across versions of models on each GPU28.

E Evaluation Methods

Function-conditional protein generative modeling in the sequence space does not have any prominent
benchmarks with reference to a predefined set of non-sequential function tokens. In this section, we
propose two evaluation methods for these models and denote a list of compatible baseline models
that we compare to. In addition, we propose a function prediction model and a stability prediction
model to be used during the benchmarking process as a control across all models.

25We choose attention dimensions at half the original model size and the full original model size for both
dmodel configurations

26While the loss function simplifies to a cross-entropy formulation, we leverage the original implementation,
which was generalized to a D3PM loss formulation

2710.12% of sequences exceed this maximum length
28GPU compute was provided by Kaggle’s notebook services
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E.1 Evaluation Dataset

The evaluation dataset for ProtDiff and other baseline models is generated in a combinatorial fashion.
Each data item consists of a set of specific function keyword tokens sampled randomly from the
list of function tokens. The total size of the evaluation dataset is 10,000 items. This includes five
categories of function token lists, each having respectively 1, 2, 3, 4, and 5 tokens per sample.

Multiple function token list sizes test the model’s ability to generalize to specific conditional distribu-
tions within the full protein space. While it is easier for the model to generalize to 1-token conditional
distributions, specific higher-token distributions require more constraints and test the model’s ability
to generate fine-grained proteins with many required features.

E.2 Benchmarks

In this section, we propose a set of benchmarks for evaluating the ProtDiff algorithm and other
baseline models. This consists of a 2-part formulation to evaluate both function conformation and
stable unique protein generation.

E.2.1 Function Matching Score

The function matching score measures the accuracy of conditional protein generation based on
integrated function token information. Higher function-matching scores show higher performance
in generating sequences within the specified function-conditional distribution based on information
supplied to the backbone model.

Many generations from protein generative models do not have robust ground-truth function data to
evaluate the function matching score. Instead, we develop a contrastive learning-based evaluation
objective that integrates positive and negative conditional class information. Both positive and
negative function token scores are leveraged in this manner to prevent protein functional side effects
while prioritizing important functional attributes

The positive function matching score is computed using the following, given a scoring model mθ and
a set of P positive function tokens from the function token set F such that P ⊂ F .

Lpos(x, P |P ⊂ F ) =
1

|P |

P∑
p

[mθ(x, p)]
2 (9)

The negative function matching score is computed using the following equation given the above
model and a set of N negative function tokens. This is modified from the positive function matching
score to exclude the squaring term, such that functional side effects are not penalized as severely as
positive function matching scores. This allows room for error in the case that related function tokens
are not considered in the input list of tokens.

Lneg(x,N |N = F \ P ) =
1

|N |

N∑
n

mθ(x, n) (10)

The function matching score is a sum of these individual positive and negative scores.

Lfm = Lpos − Lneg (11)
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The scoring model mθ takes a protein sequence and a function token label as input and outputs a
similarity score, such that lower scores signal higher similarity to the relevant function token. This
formulates the evaluation task as a metric distance computation in a shared log-embedding space.

We use two parameterizations of the mθ evaluation model. One is a protein language model29

fine-tuned on function token classification given a protein input. The fine-tuning process is done
through Low-Rank Adaptation (LoRA) on the same dataset used for training ProtDiff.

In addition, we parameterize mθ as the distance from a set of conditional clusters. The centroid cf
for each function token f is computed as the average embedding30 of all sequences with the function
token present in the training data.

mθ(x, t) = ∥x− cf∥2 (12)

We provide results using both parameterizations of the function adaptation model to ensure generation
validity occurs due to the data itself without being influenced by errors/drawbacks within a fine-tuned
protein language model.

E.2.2 Stable De Novo Generation Score

In addition to the function matching score, we compute a de novo generation score based on the
deviation from previously seen protein inputs during training. This score determines a model’s ability
to generalize to the protein space external to the existing set of proteins31. This dataset is computed
using embeddings from a protein language model32.

Our proposed method of de novo generation evaluation is based on a set of k reference points from
the training dataset. These reference points are computed as centroids of each cluster found in the
embedding space of the training dataset. We compute k different clusters using a K-Means Clustering
(KMC) algorithm and leverage these values as reference points.

The de novo generation score is computed as the average Euclidean distance between the generated
protein and each reference point. Higher scores in this category determine higher deviation from the
known protein embedding space, and ability to generate sequences in unexplored protein spaces.

Given a set of reference points R such that |R| = k, we compute the de novo generation score as the
following:

Ldn(x,R) =
1

|R|

R∑
r

∥x− r∥2 (13)

The de novo generation score is clamped at a specified upper value l and normalized to a mean of 0
and standard deviation of 1. This method uses a standard scaler between 0 and the upper bound value
across all raw de novo generation scores.

We balance this score with the protein stability score, which determines the feasibility and synthesiz-
ability of a protein. The protein stability score is determined by a fine-tuned protein language model

29We leverage ESM-2-8M as a classification model due to ease of fine-tuning and evaluation efficiency
30Using ESM2-8M with average pooling
31We formulate this as the proteins seen during training
32ESM-2-8M is used for the de novo generation scoring algorithm
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sθ that predicts the normalized33 ∆Tm value of a protein. The protein language model is fine-tuned
on data from FireProtDB, given the sequence as input, as a regressor on output ∆Tm values.

The protein stability score acts as a regulator of the de novo generation score, encouraging explorations
separate from the existing protein space while still enforcing constraints on protein feasibility. These
scores are combined using a simple addition to create the stable de novo generation score.

Lsdn(x,R) = min

(
1

l|R|

R∑
r

∥x− r∥2 , 1

)
− sθ(x) (14)

Note: All datasets used for fine-tuning of evaluation models are public datasets and relevant licenses
were taken into account. In addition, we make all evaluation datasets and models public for evaluations
of future protein generative models.

E.3 Baseline Models

Many current function-conditional protein generators are not defined by the set of fine-grained
function tokens used in ProtDiff. However, ESM3 is compatible with these function tokens. We
leverage a pre-trained version of ESM3 as a baseline generative model to compare to34.

In addition, we train a vanilla autoregressive model with function tokens as a baseline to compare to
ProtDiff. The autoregressive model has the same architecture as ProtDiff’s backbone model, allowing
for a comparison between raw autoregressive and diffusion-based conditional generation.

33Score is normalized using Sigmoid to place between 0 and 1
34ESM3 (1.4B parameters) has a much higher parameter count than ProtDiff (9M parameters), which can lead

to result imbalances. This occurred due to limitations in training infrastructure

19


	Introduction
	Results
	Function Matching
	De Novo Generation

	Conclusions & Future Work
	Background
	Discrete Diffusion
	Masked Diffusion Language Models
	Protein Language Models

	Previous Work
	Protein Language Model Augmentation
	Sequence Modification/Augmentation
	Protein Terminology Fine-Tuning

	Methods
	Diffusion Process
	Diffusion Backbone Model
	Function Embeddings

	Training Method
	Training Dataset
	Model Dimensions
	Loss, Optimizers, Schedulers
	Hyperparameter Selection
	Computational Constraints


	Evaluation Methods
	Evaluation Dataset
	Benchmarks
	Function Matching Score
	Stable De Novo Generation Score

	Baseline Models


