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Abstract

As the typical retraining paradigm is unac-001
ceptably time- and resource-consuming, re-002
searchers are turning to model editing in order003
to seek an effective, consecutive, and batch-004
supportive way to edit the model behavior di-005
rectly. Despite all these practical expectations,006
existing model editing methods fail to realize007
all of them. Furthermore, the memory demands008
for such succession-supportive model editing009
approaches tend to be prohibitive, frequently010
necessitating an external memory that grows in-011
crementally over time. To cope with these chal-012
lenges, we propose COMEBA-HK, a model013
editing method that is both consecutive and014
batch-supportive. COMEBA-HK is memory-015
friendly as it only needs a small amount of it016
to store several hook layers whose size remains017
unchanged over time. Experimental results018
demonstrate the superiority of our method over019
other batch-supportive model editing meth-020
ods under both single-round and consecutive021
batch editing scenarios. Extensive analyses of022
COMEBA-HK have been conducted to verify023
the stability of our method over 1) the number024
of consecutive steps and 2) the number of edit-025
ing instances. Our code will be released via026
https://github.com/anonymous.027

1 Introduction028

Large Language Models (LLMs) (Chung et al.,029

2022; OpenAI, 2023; Black et al., 2022; Touvron030

et al., 2023) have been demonstrated to be capable031

of recalling factual knowledge about the real world032

(Brown et al., 2020; Petroni et al., 2020). Neverthe-033

less, researchers also reveal that LLMs often fail034

to recall the most up-to-date knowledge or infor-035

mation and some specialized knowledge if they are036

not periodically updated (Liska et al., 2022; Agar-037

wal and Nenkova, 2022; Lazaridou et al., 2021).038

Despite the fact that fresh and customizable knowl-039

edge is highly desired in many areas, such as text040

generation, question-answering, reasoning, etc.,041

updating the model via retraining is both time- 042

and resource-consuming. Additionally, researchers 043

have uncovered that well-trained LLMs do make 044

mistakes. One popular sort of mistake is called hal- 045

lucination (Tonmoy et al., 2024), which means that 046

LLMs generate text based on "hallucinated" fake 047

knowledge. Although many researchers have tried 048

to mitigate this issue (Qiu et al., 2023; Mündler 049

et al., 2023; Kang et al., 2023; Varshney et al., 050

2023), the strategy to fix this bug remains unclear. 051

Therefore, researchers have started to seek an effi- 052

cient approach that could edit LLMs in a customiz- 053

able, cost-effective way. 054

To this end, recent years have witnessed many ef- 055

forts in investigating the model-editing techniques 056

to bypass the retraining paradigm and edit the 057

LLMs directly (Meng et al., 2022; Hartvigsen et al., 058

2022; Li et al., 2023; Mitchell et al., 2022a,b). Ac- 059

cordingly, several new datasets (e.g., ZsRE (Levy 060

et al., 2017) and COUNTERFACT (Meng et al., 061

2023)) and corresponding metrics (e.g., reliabil- 062

ity, generality, locality, portability (Yao et al., 063

2023)) are proposed to facilitate the development 064

in this field. However, these methods either re- 065

quire extra expensive training of a meta-network 066

(Mitchell et al., 2022a), or a classifier (Mitchell 067

et al., 2022b), which causes time and resources 068

overhead, or demands an external memory of ex- 069

plicit edit instances for reference (Mitchell et al., 070

2022b; Hartvigsen et al., 2022), which inevitably 071

escalates the memory requirement. Further, most 072

of the methods proposed so far are only targeted 073

for single-round editing, where the model is rolled 074

back to the initial state after each edit step. This 075

deviates from the application scenario in reality 076

since most users anticipate an editing approach that 077

is succession-supportive and batch-supportive, i.e., 078

a method that advocates consecutive batch editing. 079

In light of these issues, we propose a novel 080

method, named COMEBA-HK, which performs 081

COnsecutive Model Editing with BAtch along- 082
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side HooK layers. Specifically, COMEBA-HK083

supports consecutive batch editing and utilizes the084

hook layers to separate weight change from the085

original model weight. COMEBA-HK does not086

need any training or large explicit external memory087

that stores editing instances. It only needs a tiny088

amount of memory to collect the optimized weight089

in the hook layer. To achieve this, we propose090

a new transformer memory updating mechanism091

that supports consecutive batch editing settings and092

design a simple yet effective local editing scope093

identification technique used in the hook layer that094

can accurately detect the inputs in the local editing095

scope. We demonstrate the effectiveness of our096

method via extensive experiments on ZsRE and097

COUNTERFACT datasets using two popular au-098

toregressive language models, GPT2-XL and GPT-099

J (6B). Both the single-round batch settings and100

consecutive batch settings are included, with the101

number of consecutive batch editing instances rang-102

ing from 1k to 10k. An analysis of the editing scope103

identification has also been conducted to validate104

the method. Beyond all these, we implement com-105

prehensive ablation studies to verify the validity of106

each component and discuss the optimal hyperpa-107

rameter settings in the method.108

2 Preliminaries of Model Editing109

As defined by Yao et al. (2023), the task of model110

editing is to efficiently modify an initial base model111

fθ into an edited model fθ′ whose responses to a112

particular set of input instances Xt are adjusted113

as desired without affecting the responses of the114

model to other instances. The intended edit de-115

scriptor is denoted as (xt, yt), where xt ∈ Xt and116

fθ(xt) ̸= yt. The post-edit model fθ′ is supposed117

to produce the expected output to an intended edit118

instance xt, while preserving the original output to119

other instances:120

fθ′(x) =

{
yt if x ∈ Xt

fθ(x) if x /∈ Xt
. (1)121

In particular, there are three standard criteria for122

model editing, namely Reliability, Generality, and123

Locality (Yao et al., 2023; Mitchell et al., 2022a,b).124

Suppose the prediction of the original model to125

the statement “What is the native language of Joe126

Biden?" is “French", and the expected post-edit127

model prediction is “English". To verify the Re-128

liability, we use the same original statement as129

input and then assess whether the post-edit model130

predicts “English" as desired. For Generality, a 131

rephrased statement “What is the native language 132

of Joe Biden?" could be inputted into the edited 133

model to assess whether the output of the model 134

remains as “English". Locality suggests that the 135

model output of an irrelevant statement like “What 136

is the native language of Donald Trump?" should 137

remain unaffected, which means that the post-edit 138

model should output whatever the initial model 139

output to this statement. 140

The current problem settings of model editing 141

can be generally categorized into three groups (Yao 142

et al., 2023): 143

1) Single instance Editing evaluates the post-edit 144

model performance when only one single knowl- 145

edge update is performed: 146

θ′ ← argmin
θ

(∥ fθ(xt)− yt ∥) . (2) 147

2) Batch Editing evaluates the post-edit model per- 148

formance in a more realistic scenario where multi- 149

ple knowledge pieces are modified simultaneously: 150

θ′ ← argmin
θ

∑n

t=1
(∥ fθ(xt)− yt ∥) . (3) 151

where n ≤| Xt | is the batch size and it varies 152

for different methods (Meng et al., 2023; Mitchell 153

et al., 2022a,b; Meng et al., 2022). 154

3) Sequential Editing requires every single edit to 155

be performed successively, and evaluation has to 156

be conducted after a series of knowledge updates 157

(Hartvigsen et al., 2022): 158

θ′ ← argmin
θ

∑|Xt|

t=1
(∥ fθ(xt)− yt ∥) . (4) 159

In this work, we investigate a new and more 160

practical problem setting for model editing, namely 161

Consecutive Batch Editing, which aims at exe- 162

cuting the editing in a consecutive and batch-edits- 163

supportive way. 164

θ′ ← argmin
θ

⌈|Xt|/n⌉∑
s=0

min((s+1)×n,|Xt|)∑
t=s×n

(∥ fθ(xt)− yt ∥) ,

(5) 165

where s represents the consecutive editing step. 166

3 Method 167

We first discuss our method under the single-layer 168

consecutive batch editing setting. Explicitly, we 169

first discuss the process of extending the single- 170

layer updating mechanism in MEMIT (Meng et al., 171
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2023) from a scenario of single-round batch editing172

to consecutive batch editing. Then, we describe the173

motivation, definition, and application of the hook174

layer and the local editing scope identification oper-175

ation employed in the hook layer. The practicality176

of the operation is also clarified. Finally, the mo-177

tivation and procedure for broadening the method178

from single to multi-layer cases are discussed.179

3.1 Single-Layer Consecutive Batch Editing180

3.1.1 Batch Editing Menchanism181

Meng et al. (2023) demonstrate an effective single-182

layer editing method using minimal squared er-183

ror. Although it supports multiple edits on a single184

round, the updates do not account for scenarios185

involving consecutive updates. In this section, we186

extend this approach to include consecutive sce-187

narios. Strang (2022) suggests Eq.6 can be opti-188

mized if we can find a W0 that satisfies Eq.7, where189

K0 = [k1|k2|...|kn] and V0 = [v1|v2|...|vn] are set190

of key-value pairs we want to store into the layer.191

W0 = argmin
W

∑n

i=1
∥Wki − vi∥2 (6)192

W0K0K
T
0 = V0K

T
0 . (7)193

Thanks to the well-conducted pre-training proce-194

dure for most of the available transformer-based195

LLMs, we can assume that the pre-training weight196

W0 satisfies Eq.7, i.e., serves as the optimal solu-197

tion for Eq.6.198

Unlike Meng et al. (2023), we define a succes-199

sive mass-editing objective:200

W1 = argmin
W

(
∑r

i=1
∥Wki − vi∥2

+
∑r+u

i=r+1
∥Wki − vi∥2)

(8)201

W1[K1K2][K1K2 ]
T = [V1 V2][K1K2]

T , (9)202

where K1 = [k1|k2| . . . |kr](r ≥ n) and V1 =203

[v1|v2| . . . |vr] is the set of key-value pairs that have204

been updated and K2 = [kr+1|kr+2|...|kr+u] and205

V2 = [vr+1|vr+2|...|vr+u] is the set of key-values206

that are going to be edited. Therefore, the objective207

(Eq.8) indicates that we want an optimal W1 that208

successfully updates the new associations while209

maintaining the old key-value pairs.210

Further expanding Eq.9:211

(W1 +∆)(K1K
T
1 +K2K

T
2 ) = (V1K

T
1 + V2K

T
2 )

(10)
212

W1K1K
T
1 +∆K1K

T
1 +W1K2K

T
2

+∆K2K
T
2 = V1K

T
1 + V2K

T
2

(11)213

WprojWfcAttention hlhl-1

Whook

Pl

Ol

#

# 𝑴𝒍 = 𝑷𝒍 − 𝑶𝒍

𝒁𝒍 = Τ(𝑴𝒍 − 𝝁) 𝝈

𝒉𝒊
𝒍 = ൝

𝑶𝒊
𝒍, 𝒁𝒊

𝒍 ≥ 𝜶

𝑷𝒊
𝒍, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

൝

𝒉𝒍 = 𝑶𝒍

Forward pass:
Validated hook 
layer

Editing: 
Temporary hook 
layer

𝒉𝒍−𝟏, 𝒉𝒍, 𝑷𝒍, 𝑶𝒍 ∈ 𝑹𝒎×𝒏

𝒌𝒊, 𝒗𝒊, 𝒉𝒊
𝒍 ∈ 𝑹𝒎

𝑴𝒍, 𝒁𝒍 ∈ 𝑹𝒏

∆𝒉𝒐𝒐𝒌= (𝒗𝒊 − 𝒉𝒊
𝒍)𝒌𝒊

𝑻𝑪𝒂𝒄𝒄𝒖

Hook layer
𝒌𝒊 𝒗𝒊

Figure 1: Single layer update with hook layer (residual
connections are omitted). ∥ . ∥ means calculate the
L2-norm over the keys or values dimension.

In a real consecutive editing scenario, r increases 214

and starts with n, and each batch-editing iteration 215

is optimized through the objective (Eq.8). Hence, 216

we can conclude that W1K1K
T
1 = V1K

T
1 . Sub- 217

tracting it from Eq.11, we get: 218

∆K1K
T
1 +W1K2K

T
2 +∆K2K

T
2 = V2K

T
2

(12)
219

∆ = RKT
2 C

−1
accu , (13) 220

where R = (V2 − W1K2) is the residual error 221

evaluated on the most recent updated weights (Note 222

that W1 = W0 if and only if r = n) and Caccu = 223

(K1K
T
1 +K2K

T
2 ) the accumulation sum of editing 224

keys’ outer product. Note that K1K
T
1 is computed 225

via: 226

K1K
T
1 = K0K

T
0 +K ′K ′T , (14) 227

where K0 is the set of pre-training keys that have 228

been contained in the pre-training weight, K ′ = 229

[kn+1|kn+2|...|kr] denotes the updated keys pro- 230

ceeding to current editing step. We follow (Meng 231

et al., 2023) to model K0K
T
0 as the uncentered 232

covariance of some randomly sampled inputs: 233

K0K
T
0 = λE[kkT ] . (15) 234

Note that the λ represents a factor that balances 235

the pre-trained and the whole updated associations. 236

We follow the definitions and applications of keys 237

and values in (Meng et al., 2023, 2022), where keys 238

are the activations at the last token of the subject 239

and values are gradient-descent optimized vectors 240

that maximize the model’s prediction for the target 241

object (Fig.1). 242

3.1.2 Hook Layer 243

Yao et al. (2023) demonstrated that those editing 244

methods that directly modify the model parameter 245
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in place struggle with sequential editing. Specif-246

ically, the locality decreases drastically when the247

number of iterations increases. Meanwhile, those248

methods that freeze the model parameters show249

more stable performance over iterations. This indi-250

cates that it might be helpful to separate the editing251

change from the model itself. However, directly ap-252

plying an external memory (Mitchell et al., 2022b;253

Hartvigsen et al., 2022) that grows over time for a254

consecutive batch editing scenario is too memory-255

costly. Therefore, we aim to seek an approach that256

could store associations without regularly increas-257

ing external memory while preserving the original258

model parameters.259

In light of these motivations, we introduce the260

hook layer (Fig.1), which takes the original model261

layer weights as the weight initialization and is re-262

sponsible for all editing weight alteration in the263

whole editing process of COMEBA-HK. It is simi-264

lar to the forward hook function defined in popular265

ML libraries like PyTorch, which adjusts the origi-266

nal forward layer output based on predefined crite-267

ria. Theoretically, the hook layer can be hung on268

any target linear layer in the transformer. Neverthe-269

less, we mainly focus on the critical path identified270

in (Meng et al., 2023, 2022) as they are verified to271

be crucial for fact association storage in the autore-272

gressive language model.273

As shown in Fig.1, there are generally two sorts274

of hook layers in this work, namely, the Tempo-275

rary hook layer and the Validated hook layer.276

The temporary hook layer is temporarily applied277

during the editing process. It replaces the original278

output with the output from the hook layer so that279

the residual concerning the hook layer weights is280

computed instead of the original layer weights. The281

hook layer weights are then updated (Eq.13) using282

the calculated residual and the accumulated sum283

of the keys’ outer product. Validated hook layers284

are employed after each batch editing step at the285

layer, and they inherit the updated weights from the286

temporary hook layer. We describe the operation287

conducted by it in the section 3.1.3.288

3.1.3 Local Editing Scope Identification289

Outlier Detection Given the original outputs pro-290

duced by the model layer weights and the edited291

outputs generated by hook layer weights, we need292

to decide when and which part of the original out-293

puts to swap over. The ideal solution is only to294

switch those parts of outputs whose keys have295

been updated to the hook layer weights and leave296

other parts unchanged. To this end, we first de- 297

tect the output parts that have their keys updated. 298

Suppose ki ∈ K1, vi ∈ V1 is an association 299

that has been updated to W1, and kj /∈ K1 is 300

a key that is not included in the updated associ- 301

ations. We show empirically in section 4.4 that 302

∥ W1ki −W0ki ∥≫∥ W1kj −W0kj ∥ holds. 303

This implies that when the hook layer with updated 304

weight Wh receives an input K̂ ∈ Rm×n (batch di- 305

mension is ignored for simplicity) that contains an 306

edited key ki ∈ K̂ ∩K1, ki ∈ Rm, then we should 307

have ∥ Whki −W0ki ∥≫∥ Whkj −W0kj ∥ 308

for all kj ∈ K̂ − K̂ ∩ K1, which means that 309

∥ Whki −W0ki ∥ would be outliers among {∥ 310

Whkx −W0kx ∥: ∀kx ∈ K̂}. Hence, detecting 311

outputs of the updated keys can be transferred to 312

detecting the outliers in the L2-norm distribution of 313

inputs. We used the standardization to find the out- 314

liers (Fig.1), which applies the standardization tech- 315

nique to L2-norm vectors of inputs and determines 316

outliers via a predefined threshold α. Concretely, 317

for the inputs K̂, we first compute the L2-norm 318

vector M l ∈ Rn: 319

P l = W0K̂ Ol = WhK̂ (16) 320

M l =∥ (Ol − P l) ∥ . (17) 321

Note that ∥ . ∥ here means computing the L2-norm 322

for each vector over the keys’ dimension. Then, 323

we standardize M l to get the z-score vector Z l and 324

select the swap location by comparing it with α. 325

The details of choosing α are discussed in the next 326

paragraph. Specifically, we do: 327

hli =

{
Ol

i if Z l
i ≥ α,

P l
i ortherwise.

(18) 328

where i is the index over keys’s dimension. 329

Threshold α Determination We denote Zx = 330

max((M l − µ)/σ) as the maximum z-score of an 331

input K̂. Since the Zx varies for different instances 332

(section 4.4) and is likely to shift as the consecutive 333

editing steps grow, it is unreasonable to set α as a 334

fixed real number. Therefore, we determine the α 335

dynamically during the editing process: 336

αs =

{
αz if s = 1,

min(αc, αs−1) otherwise
, (19) 337

where s ≥ 1. Specifically, the α is first initialized 338

to a pre-selected value αz . At each consecutive 339

editing step s, for the batch of inputs in this step, 340
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Figure 2: Multiple layer update with hook layer (Atten-
tion module and the first FFN are omitted).

we calculate Zx for each single instance and select341

the minimum Zx in the batch (i.e., the supremum)342

as the candidate αc. The αs is finally determined to343

be the minimum between the candidate αc and the344

previous value αs−1. In practice, we set αz = 2.2.345

3.2 Multiple-layer Consecutive Batch Editing346

Given the designed single-layer editing procedure,347

there exists a risk that the single-layer hook fails to348

detect the updated keys. Suppose ki is an updated349

key; failure to detect ki indicates that the output350

corresponds to ki at this single layer would be the351

same as the original output Wprojki, which con-352

sequently leads to the failure of edition to ki. To353

tackle this issue, one potential solution is to apply354

the hook to multiple model layers rather than a355

single model layer because the latter layer grasps356

the chance to capture the edited keys missed by357

proceeding layers. Furthermore, (Zhu et al., 2020)358

showcased that minimizing the magnitude of pa-359

rameter change is helpful for improving the robust-360

ness of the model. Thus, we expand our work to361

multiple layers (Fig.2).362

We first find the desired object vector vi fol-363

lowing a similar procedure in (Meng et al., 2023).364

However, the optimization is not based on the orig-365

inal model, but the model hung with the validated366

hook that inherits the most recently updated hook367

weights from the previous editing step. After vi is368

found, the hook weight is updated at each layer.369

At each batch editing step, all the hook layers370

are initialized to temporary hook layers, which sub-371

stitute the entire original output to output from372

hook layers. The purpose of doing this is to ensure373

that the residual regarding the hook layer weights374

rather than the original model weights are calcu-375

lated. Then, the residual is distributed evenly to376

each layer, and the alteration ∆l to the parameter377

at each layer is found in a layer-increasing itera-378

tive manner with keys, and residuals recomputed379

at each iteration (Fig.2). The reason for the re- 380

computation of keys and residuals is that the layer- 381

increasing alteration approach will affect the keys 382

and residuals in the latter layer. For each layer, 383

once the hook layer weight is updated, the hook 384

layer is changed from a temporary hook layer to a 385

validated hook layer to facilitate the computation of 386

the keys and residuals in the latter layer. After the 387

whole editing process is completed, the validated 388

hook layers with the ultimately updated weights are 389

hung on the model to shape the final edited model. 390

4 Experiments 391

4.1 Experiment Setups 392

Datasets & Evaluation Metrics We use the 393

ZsRE (Levy et al., 2017) and COUNTERFACT 394

(Meng et al., 2023) datasets with the split provided 395

in EasyEdit1 for evaluation. We employ three popu- 396

lar editing evaluation metrics defined in (Yao et al., 397

2023; Huang et al., 2023; Cao et al., 2021), i.e., 398

Reliability, Generality, and Locality, as well as the 399

average scores over the three metrics. Further de- 400

tails are provided in Appendix A. 401

Baselines & Implementation Details For base- 402

lines, we adopt several batch-supportive edit- 403

ing methods, including LoRA (Hu et al., 2022), 404

SERAC (Mitchell et al., 2022b), MEND (Mitchell 405

et al., 2022a), MEMIT (Meng et al., 2023) and 406

fine-tuning with specific layer (FT-L) technique 407

used in (Meng et al., 2022; Yao et al., 2023), which 408

only fine-tune a specific layer identified by Rome 409

(Meng et al., 2022) instead of all layers to ensure a 410

fair comparison. We also include a small variation 411

of FT-L called FT-M and a sequential supportive 412

editing method GRACE (Hartvigsen et al., 2022). 413

We choose large autoregressive language models 414

GPT2-XL and GPT-J (6B) as our base models. 415

For all consecutive editing experiments, the eval- 416

uation is conducted after the corresponding entire 417

consecutive steps are finished. For example, in 418

Fig.4, we conduct experiments for sample sizes 419

200, 400, 600, 800, and 1000, so the evaluation 420

is triggered right after the first 200, 400, 600, etc, 421

samples are edited to the model. Unless specified, 422

the batch size2 for consecutive editing is selected 423

to be 10. Further details of the baselines and imple- 424

mentation are given in the Appendix B. 425

1https://github.com/zjunlp/EasyEdit/tree/main
2Since GRACE (Hartvigsen et al., 2022) does not support

batch editing, we set the batch size to 1 for GRACE.
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Method Model ZsRE COUNTERFACT

Reliability Generality Locality Average Reliability Generality Locality Average

FT-L (Meng et al., 2022)

GPT2-XL

16.85 16.34 71.55 34.91 0.27 0.34 85.18 28.60
FT-M 17.95 17.32 71.26 35.51 0.36 0.42 82.81 27.86
LoRA (Hu et al., 2022) 30.10 29.08 80.54 46.57 5.64 3.46 69.45 26.18
MEND (Mitchell et al., 2022a) 2.16 2.11 20.34 8.20 0.13 0.03 4.22 1.46
SERAC (Mitchell et al., 2022b) 98.64 48.12 35.68 60.81 17.88 14.55 82.25 38.23
MEMIT (Meng et al., 2023) 61.19 49.97 97.51 69.56 81.01 27.67 95.80 68.16
COMEBA-HK 82.21 66.61 99.40 82.74 88.28 40.38 97.66 75.44

FT-L (Meng et al., 2022)

GPT-J

22.57 21.77 99.19 47.84 0.37 0.34 99.57 33.43
FT-M 99.96 80.31 43.35 74.54 99.99 35.29 17.04 50.77
LoRA (Hu et al., 2022) 99.97 83.20 17.64 66.93 99.87 53.10 2.50 51.82
SERAC (Mitchell et al., 2022b) 87.46 63.64 77.35 76.15 16.67 15.93 99.99 44.20
MEMIT (Meng et al., 2023) 93.40 70.45 96.47 86.77 99.57 42.29 95.25 79.04
COMEBA-HK 97.59 72.41 99.10 89.70 87.94 42.76 98.17 76.29

Table 1: Single round batch editing results. The best two average scores are highlighted.

Method Model ZsRE COUNTERFACT

Reliability Generality Locality Average Reliability Generality Locality Average

FT-L (Meng et al., 2022)

GPT2-XL

3.79 2.48 6.60 4.29 1.00 1.00 6.00 2.67
FT-M 8.92 8.41 6.22 7.85 4.00 3.50 5.50 4.33
LoRA (Hu et al., 2022) 0.96 1.29 0.03 0.76 0.50 0.02 0.50 0.34
MEND (Mitchell et al., 2022a) 20.95 18.29 93.69 47.01 0.01 0.00 0.08 0.03
SERAC (Mitchell et al., 2022b) 100 36.03 35.95 57.33 15.41 12.96 81.00 36.46
GRACE (Hartvigsen et al., 2022) 100 0.04 100 66.68 100 0.40 100 66.80
MEMIT (Meng et al., 2023) 34.88 32.96 70.74 46.19 56.00 37.00 31.00 41.33
COMEBA-HK 66.91 56.11 97.23 73.42 86.00 38.00 59.00 61.00

FT-L (Meng et al., 2022)

GPT-J

23.53 21.70 55.27 33.5 2.00 2.00 72.00 25.33
FT-M 64.33 55.63 17.59 45.85 25.50 5.00 2.00 10.83
LoRA (Hu et al., 2022) 1.43 1.39 0.02 0.95 0.50 0.50 0.10 0.37
SERAC (Mitchell et al., 2022b) 86.91 55.36 79.07 73.78 18.49 14.56 98.89 43.98
GRACE (Hartvigsen et al., 2022) 100 0.04 100 66.68 100 0.50 100 66.83
MEMIT (Meng et al., 2023) 63.36 48.90 74.80 62.35 75.00 45.00 42.00 54.00
COMEBA-HK 79.89 61.29 96.52 79.23 95.00 41.00 80.00 72.00

Table 2: Consecutive batch editing results.

4.2 Evaluation on Single-round Batch Editing426

We first test the effectiveness of our method under427

basic single-round batch editing settings with batch428

size 30, i.e., the model is rolled back to the initial429

state after each batch editing. Both MEMIT and430

COMEBA-HK need to set the parameter λ, the bal-431

ance factor between pre-trained and newly updated432

associations. According to (Meng et al., 2023),433

higher λ helps preserve the original model behav-434

ior (locality) but could harm reliability and gener-435

ality, and the best overall performance is found at436

around λ = 104. However, with the intent to ver-437

ify whether our method comprehensively improves438

the editing, that is, could accept lower λ to assign439

higher weight for new associations while not sacri-440

ficing the locality, we deliberately set λ = 5× 103441

for COMEBA-HK and keep it as the optimized442

value for MEMIT, which are 2×104 and 1.5×104443

for GPT2-XL and GPT-J respectively.444

The evaluation results are shown in Table 1. For 445

GPT2-XL, our method has the best result in almost 446

every metric. Specifically, despite the relatively 447

low λ, our method overwhelms other baselines in 448

generality metrics while maintaining a better lo- 449

cality. This indicates that lowering λ or, in other 450

words, increasing the weight of the new associa- 451

tions does not sacrifice the locality in COMEBA- 452

HK. The improvement in GPT-J is less compared 453

with that in GPT2-XL. However, our method still 454

has the best average score for the ZsRE dataset and 455

a comparable average score with the best in the 456

COUNTERFACT dataset. 457

4.3 Evaluation on Consecutive Batch Editing 458

We evaluate our method’s capability on 1k samples 459

from both datasets for consecutive batch editing, 460

i.e., there is no roll-back. The evaluation is con- 461

ducted after the end of the whole consecutive batch 462

editing process. We set λ to 15, 000 as the scenario 463
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Figure 3: Difference between the z-score entry to the
updated key Zl

key and average of Zl.

now is consecutive batch editing.464

Results in Table 2 show that most of the methods465

suffer from a great performance drop contrasted to466

editing in a single round. Although our method’s467

performance experiences a decrease as well, it sur-468

passes other methods in 100 consecutive steps with469

an even larger improvement margin for almost all470

the metrics compared to the single-round batch edit-471

ing. This demonstrates that our method does not472

depend on simple regurgitation of the editing sam-473

ples nor rely heavily on the trade-offs of lowering474

the balancing factor λ to increase the reliability and475

locality. An interesting point is that the GRACE476

performs perfectly in reliability and locality but477

poorly in generality. As expected, GRACE is supe-478

rior in reliability since it maintains a codebook to479

memorize the encountered editing instances. How-480

ever, its inferiority in generality indicates that it481

suffers from the problem of regurgitation.482

We extend the consecutive steps to 10k to ex-483

plore the limit of our method. Results can be found484

in Fig.6. Surprisingly, the locality experiences a485

great fall from 1k to 2k steps but remains steady486

from 200 to 1k editing steps, which proves that the487

hook layer stably obstructs the out-scope samples.488

Reliability and generality consistently fall as the489

consecutive steps grow, indicating that there is still490

room for improvement in this field.491

4.4 Validation of Local Editing Scope492

Given an updated hook layer with the weight Wh,493

the original model weight W0, an updated key ki,494

and an out-of-scope key kj , we conduct experi-495

ments to verify whether ∥ Whki −W0ki ∥≫∥496

Whkj −W0kj ∥ holds. We select 100 samples497

from the COUNTERFACT dataset to edit GPT2-498

XL using COMEBA-HK, then apply the edited499

model to these 100 samples and record the z-score500

to the L2-norm of the difference vector between501

the last hook layer response and original model502

response of the updated key (the last subject to-503

ken), namely, z-score of ∥ Whki −W0ki ∥. Both504
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0.40

0.45

0.50

0.55

0.60
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200 400 600 800 1000
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COMEBA w/o HK COMEBA-HK MEMIT

Figure 4: Ablation study for update mechanism and
hook layers.

reliability and generality prompts are included for 505

comprehensiveness. 506

The result is shown in Fig.3. Almost all the z- 507

scores of the responses from updated keys exhibit a 508

great margin from the mean value, with the lowest 509

around 1.5 in reliability samples and 2 in gener- 510

ality samples. This not only validates our editing 511

scope identification (section 3.1.3) technique but 512

also cleans a possible doubt about the undesired 513

block of generality instances in the hook layer. In 514

addition, the discriminative z-score could also en- 515

sure the preciseness of the swapping, which can 516

improve the locality. 517

4.5 Detailed Analysis and Discussions 518

Ablation Study of Update mechanism and Hook 519

layers The effectiveness of the derived consecu- 520

tive updating mechanism and the hook layers are 521

discussed in this part. We run three cases using 522

GPT2-XL, namely, MEMIT (no consecutive updat- 523

ing mechanism, no hook layers), COMEBA with- 524

out hook (COMEBA w/o HK), and COMEBA-HK 525

for consecutive batch editing on 1k samples from 526

both ZsRE and COUNTERFACT datasets. 527

The results are demonstrated in Fig.4. In almost 528

all metrics of the two datasets except the generality 529

of COUNTERFACT, the COMEBA w/o the hook 530

performs better than the vanilla MEMIT, and the 531

margin tends to increase as the consecutive steps as- 532

cend. This certifies the effectiveness of our derived 533

consecutive updating mechanism in consecutive 534

batch editing scenarios. For the ZsRE dataset, the 535

method with hook layers considerably outperforms 536

the one without hook in the locality without sacrific- 537

ing reliability and generality. This verifies that the 538

hook layer can efficiently and accurately block the 539

out-scope instances from the input without fraudu- 540
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Figure 6: Extension on the best three values of λ.

lently missing in-scope instances. For the COUN-541

TERFACT dataset, the reliability of COMEBA-HK542

is consistently higher than the other two, and the543

generality surpasses that of MEMIT after 80 edit-544

ing steps. It seems that the hook layer causes some545

side effects in the locality of COUNTERFACT, but546

this circumstance is not found in the ZsRE dataset.547

It is worth noting that COMEBA-HK shows the548

most stable performance as the number of consec-549

utive editing steps grows, demonstrating the great550

potential of our method for consecutive editing.551

Effect of the Balance Factor λ We test the ef-552

fect of different λ, the balance factor between pre-553

training and newly updated associations. We first554

evaluate the COMEBA-HK with different λ on555

1k samples from ZsRE (Fig.5). It seems that a556

small value of λ = 1, 000 would cause signifi-557

cant damage to all three metrics, especially the558

reliability and generality, since they experience a559

great drop as the consecutive steps increase. This560

may result from the overly high magnitude of the561

weight change caused by the low value of λ, which562

severely distorts the previously updated associa-563

tions. Meanwhile, a too-high value of λ = 20, 000564

also seems not to be a good choice, which gives rise565

to an overly small magnitude of the weight change566

so that it fails to deliver the new optimized values567

for keys. The cases of λ = 5000, 10000, 15000568

do not show an apparent difference, so we extend569

further the sample size to 10k (Fig.6).570

Extended results show that 5000 is not a good571

choice for large-consecutive editing steps, though572

it performs no worse than the other two in early 1k573

samples. The case of λ = 15, 000 ranks first in reli-574

ability and generality. Although it performs worse 575

in locality compared to λ = 10, 000, the margin 576

between them gradually narrows as the consecutive 577

steps rise. Overall, we conclude that 15,000 would 578

be a reasonable selection. 579

More Analyses Other detailed analyses of hy- 580

perparameters and inference time of the proposed 581

method are presented in Appendix C 582

5 Related Work 583

Recent years have witnessed prosperous develop- 584

ment in the field of model editing. According to 585

(Yao et al., 2023), the proposed methods so far can 586

be generally classified into two groups, i.e., modify 587

the model’s weight or not. 588

The methods that do not directly alter the model 589

weights generally follow two directions: they ei- 590

ther employ an external memory or introduce ad- 591

ditional adjustable parameters. Methods like T- 592

Patcher (Huang et al., 2023) and CaliNET (Dong 593

et al., 2022) apply new neurons that are respon- 594

sible for specific mistakes in the last layer of the 595

FFN model. Grace (Hartvigsen et al., 2022) in- 596

troduces a timely adjusted code book to edit the 597

model’s behavior. Another group of methods like 598

(Mitchell et al., 2022b) integrates an explicit ex- 599

ternal memory as edit descriptors to help editing 600

scope recognition. 601

Those directly altering the model’s weight ei- 602

ther train a hyper-network to predict the change re- 603

quired by the edits (Mitchell et al., 2022a; De Cao 604

et al., 2021) or first locate corresponding parame- 605

ters that are responsible for specific knowledge and 606

then edit the located parameters (Meng et al., 2023, 607

2022; Li et al., 2023; Dai et al., 2022). 608

6 Conclusion 609

This work introduces a novel model editing method, 610

COMEBA-HK, which advocates the more practical 611

consecutive batch model editing. COMEBA-HK 612

uses an expanded editing mechanism to support 613

consecutive editing and newly proposed hook lay- 614

ers to identify the editing scope. Compared to ex- 615

isting model editing methods, COMEBA-HK does 616

not require large external memory nor extra training 617

for meta-networks or classifiers. Instead, it adopts 618

hook layers whose size remains fixed over time for 619

storing associations. Comprehensive experiments 620

are conducted to verify the method’s effectiveness 621

over single-round and consecutive batch editing. 622
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Limitations623

Several aspects remain to be further investigated.624

Other types of tasks Notably, model editing625

techniques could be applied to various types of626

tasks. Specifically, besides factual knowledge edit-627

ing, it can be applied to erase hallucinations, biases,628

privacy information, etc. However, the concentra-629

tion of this paper is to explore the practicability630

of expanding the model editing application sce-631

nario to consecutive batch editing and investigate632

the potential bottleneck of corresponding methods633

under this scenario. Therefore, our experiment fo-634

cuses on varying the scale of editing samples in635

factual knowledge editing tasks, as it is a relatively636

well-studied and universal evaluation task in model637

editing.638

Model scale and architecture Due to the lim-639

ited computational resources, we cannot verify our640

method’s effectiveness in larger LLMs such as641

Llama-2 (Touvron et al., 2023), and GPT-NEOX-642

20B (Black et al., 2022). We focus on the decoder-643

only autoregressive models and do not include644

encoder-decoder structure models, as the autore-645

gressive structures are the mainstream architecture646

nowadays (OpenAI, 2023; Touvron et al., 2023).647

Further, as stated by Yao et al. (2023), the weight648

matrix in some models like OPT-13B (Zhang et al.,649

2022) is not invertible. However, such an issue650

can be relieved by adding a term βI to the Eq.14,651

where β is a scalar expected to be small and I is652

the identity matrix.653

The shrink of α As more and more associations654

are integrated into the hook layer, the dynamically655

determined hyperparameter α will gradually shrink,656

meaning that an increasing number of vector entries657

in the original layer output will be swapped by658

the output from the hook layer, which is likely659

to lead the drop in locality. Nevertheless, such a660

problem can be alleviated by the newly designed661

updated mechanism (Eq.13), which considers both662

previously updated and newly updated keys.663
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A Experiment Details 916

All baselines are implemented using the EasyEdit 917

(Yao et al., 2023; Zhang et al., 2024; Wang et al., 918

2023; Cheng et al., 2023; Mao et al., 2023; Zhang 919

et al., 2023) library. 920

Evaluation Metrics We employ three popular 921

editing evaluation metrics defined in (Yao et al., 922

2023; Huang et al., 2023; Cao et al., 2021), i.e., 923

reliability, generality, and locality. Given an initial 924

base model fθ, a post-edit model fθ′ , and a set of 925

edit instances {(xt, yt)}, the reliability is computed 926

as the average accuracy of the edit cases: 927

E(xt,yt)∈{(xt,yt)}{argmaxy fθ′(y|xt) = yt} .
(20) 928

The editing should also edit the equivalent neigh- 929

bor of the instance N(xt, yt) (e.g. rephrased de- 930

scriptions). This metric is named generality and is 931

evaluated by the average accuracy on the neighbors 932

of the edit cases: 933

E(x′
t,y

′
t)∈{N(xt,yt)}{argmaxy fθ′(y|x′t) = y′t} .

(21) 934

Despite the editing, those instances that are irrel- 935

evant to the edit cases {O(xt, yt)} should not be 936

affected. This evaluation is called locality (also 937

known as specificity) and is measured by the pro- 938

portion of unchanged predictions between the ini- 939

tial model and the post-edit model: 940

E(x′
t,y

′
t)∈{O(xt,yt)}{fθ′(x

′
t) = fθ(x

′
t)} . (22) 941

Datasets ZsRE is a question-answering dataset 942

that uses back-translation to generate equivalent 943

neighborhoods. It is initially used in factual knowl- 944

edge evaluation and later adopted in model editing 945

by (Mitchell et al., 2022a). COUNTERFACT is 946
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"subject": "Barbara Legrand",
"src": "What  is Barbara Legrand's position on the field while 
playing football?",
"pred": "midfielder",
"rephrase": "What is Barbara Legrand's position on the field 
during the football match?",
"alt": "defender",
"answers": ["goalkeeper"],
"loc": "nq question: who played donna in 2 pints of lager",
"loc_ans": "Natalie Casey",
"cond": "midfielder >> defender || What  is Barbara Legrand's 
position on the field while playing football?"

Figure 7: A sample from ZsRE dataset.

"case_id": 0,
"prompt": "The mother tongue of Danielle Darrieux is",
"target_new": "English",
"subject": "Danielle Darrieux",
"ground_truth": "French",
"rephrase_prompt": "Where Danielle Darrieux is from, people 
speak the language of",
"locality_prompt": "Michel Rocard is a native speaker of",
"locality_ground_truth": "French"

Figure 8: A sample from COUNTERFACT dataset.

a challenging dataset focusing on counterfactual947

information with a low prediction score compared948

to correct facts. It builds out-of-scope data by re-949

placing the subject entity with a similar description950

that shares the same predicate.951

Fig.7 shows an example from the ZsRE dataset.952

Each record in ZsRE contains the subject string,953

the factual prompt used for testing reliability, the954

rephrase prompt used for generality evaluation, and955

the locality prompt used for evaluating the locality.956

Note that what the locality demands the post-edit957

model does is not to predict the ground truth but958

whatever the initial base model predicts. Similarly,959

the fact, rephrase, and locality prompts of each960

record in COUNTERFACT are applied to the eval-961

uation of the three metrics respectively (Fig.8).962

B Baselines and Implementation Details963

Fine-tuning We implemented two fine-tuning964

methods in the experiments. For FT-L, we fol-965

low the procedure in (Meng et al., 2023, 2022) and966

fine-tune the mlpproj parameter from layer 0 for967

GPT2-XL and layer 21 for GPT-J since they are968

found to have the optimal performance. FT-M3 is a969

small variation of FT-L, and it uses a different loss970

computation procedure to optimize the parameters.971

For both models, we conduct 25 optimization steps972

using Adam optimizer (Kingma and Ba, 2015) and973

3https://github.com/zjunlp/EasyEdit/blob/main/
hparams/FT/gpt2-xl.yaml

use learning rate 5e−4. All other parameters of 974

both models follow default settings. 975

LoRA Hu et al. (2022) proposed a parameter- 976

efficient fine-tuning method that decomposes the 977

update gradient matrix into two small rank-n matri- 978

ces, which reduces the required memory for LLM 979

training to a large extent. In all experiments, we set 980

the learning rate and the rank number to 1e−3 and 981

8, respectively. The α was chosen to be 32, and the 982

dropout rate was 0.1. The number of update steps 983

is 30 for GPT2-XL and 50 for GPT-J. 984

MEND MEND (Mitchell et al., 2022a) conducts 985

the editing by manipulating the language models’ 986

gradient. It trains a meta-network that employs a 987

rank-1 decomposition of the model gradients and 988

predicts a new rank-1 update to the corresponding 989

model weights. In this work, we train two meta- 990

networks using corresponding training split in the 991

ZsRE and COUNTERFACT datasets for GPT2- 992

XL following the default hyperparameter settings. 993

Due to the large required computation resource 994

for training GPT-J (6B) meta-network, we do not 995

perform training for GPT-J. 996

SERAC Mitchell et al. (2022b) designed a 997

memory-augmented editing method, which re- 998

quires an external cache to store explicit editing 999

cases. It also adopts a scope classifier that deter- 1000

mines whether an input sample falls in the editing 1001

scope and a small counterfactual model for edit- 1002

ing the in-scope cases. For both GPT2-XL and 1003

GPT-J, we train two separate models for the two 1004

datasets, respectively. Following the original paper, 1005

we apply distilbert-base-cased (Sanh et al., 2019) 1006

for the scope classifier across all models. For the 1007

small counterfactual model, we employ GPT2 for 1008

GPT2-XL and gpt-j-tiny-random4 for GPT-J. All 1009

hyperparameters follow default settings. 1010

MEMIT MEMIT (Meng et al., 2023) treats the 1011

feedforward layer of transform as a linear asso- 1012

ciative memory and uses a minimum square error 1013

optimization to add new key-value associations to 1014

layer weights. We follow the original paper to edit 1015

the layers in the identified critical path and set the 1016

balance factor λ to the optimal value found in the 1017

original work. Other parameters for the two models 1018

are all set based on configurations in (Meng et al., 1019

2023, 2022). 1020

4https://huggingface.co/anton-l/gpt-j-tiny-random

12

https://github.com/zjunlp/EasyEdit/blob/main/hparams/FT/gpt2-xl.yaml
https://github.com/zjunlp/EasyEdit/blob/main/hparams/FT/gpt2-xl.yaml


200 400 600 800 1000

0.550

0.575

0.600

0.625

0.650

0.675

ZsRE Reliability

200 400 600 800 1000
0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
ZsRE Generality

200 400 600 800 1000
0.88

0.90

0.92

0.94

0.96

0.98 ZsRE Locality

200 400 600 800 1000

0.60

0.65

0.70

0.75

0.80

0.85

0.90
COUNTERFACT Reliability

200 400 600 800 10000.20

0.25

0.30

0.35

0.40

COUNTERFACT Generality

200 400 600 800 1000

0.60

0.62

0.64

0.66

0.68

0.70

0.72
COUNTERFACT Locality

All layers Three layers One layer

Figure 9: Performance comparisons on the different
number of editing layers. Layers are selected from the
critical path identified in (Meng et al., 2023).

GRACE Hartvigsen et al. (2022) proposed an1021

editing method that preserves the original model1022

parameters and adopts a codebook maintained by1023

adding, splitting, and expanding keys over time1024

to store relevant edits. We follow the optimized1025

settings in the original paper and set the value opti-1026

mizing learning rate to 1. The number of iterations1027

for optimizing the values is 100, and the initial ε1028

value is chosen to be 1. The codebook is employed1029

at layers 35 and 25, respectively.1030

COMEBA-HK COMEBA-HK expands the up-1031

date mechanism in MEMIT to consecutive cases1032

and applies hook layers to separate the weight1033

change from the original model layer. For both1034

models, we set λ = 15, 000, αz = 2.2 for consec-1035

utive batch editing. Unless specified, we evaluate1036

our method on full critical path layers identified in1037

(Meng et al., 2023). We employ the same proce-1038

dure in MEMIT (Meng et al., 2023) to compute the1039

updating keys and the target values, except that the1040

most recently updated model during the process of1041

consecutive editing is applied for relevant compu-1042

tations. We applied "torch.float16" for the GPT-J1043

model for all experiments.1044

C Detailed analysis and discussions1045

Effect of the Number of Editing Layers To in-1046

vestigate the necessity of applying the hook layer1047

onto multiple transformer layers, we conduct the1048

consecutive batch editing experiment on the ZsRE1049

dataset for GPT2-XL (Fig.9). As the effect of1050

choosing different layers has already been stud-1051

ied in (Meng et al., 2023), we focus only on the1052

effect of the number of layers. We selected the1053

last one, three, and all layers from the critical path1054
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Figure 10: Performance comparisons on different αz .

identified in (Meng et al., 2023; Yao et al., 2023), 1055

respectively. 1056

As shown in Fig.9, the one-layer case signifi- 1057

cantly underperforms the other two cases in most 1058

of the metrics for the two datasets, which directly 1059

certifies the necessity of the expansion. In ZsRE, 1060

the difference between the performance for one 1061

layer and multiple layers tends to enlarge in reli- 1062

ability and generality as the consecutive editing 1063

steps increase. This may serve as evidence of our 1064

assumption in section 3.2, which mentions that the 1065

latter hook layer may capture the in-scope instances 1066

missed in former hook layers. Additionally, the all- 1067

layer case has slightly better generality than the 1068

three-layer case, and they do not show a remark- 1069

able difference in locality and reliability. A similar 1070

situation could be found in the reliability and gen- 1071

erality of the COUNTERFACT with an interesting 1072

exception in the locality, where an adverse perfor- 1073

mance order of the cases is shown. Nevertheless, 1074

the margin of the locality fall is not that manifest 1075

in contrast with the advancement in reliability and 1076

generality. 1077

Effect of the Initial Threshold αz αz is the ini- 1078

tialization value of α used in the identification of 1079

local editing scope (section 3.1.3). We study its in- 1080

fluence in this part. According to Fig.10, although 1081

the αz = 1 case ranks the highest in the first 60 1082

editing steps in generality, it consistently performs 1083

the worst in locality, indicating that it fails to in- 1084

tercept many out-scope inputs. This implies that 1 1085

may be too low for the initialization. Other cases do 1086

not show noticeable differences in the three metrics 1087

since αz is just the initial value and α is determined 1088

dynamically. It seems that overly low αz would 1089

damage the hook layer’s capacity to discriminate 1090

in-scope and out-scope samples. Considering the 1091

unpredictable consecutive steps that our method 1092

may be applied, we select a relatively low value 1093

between 2 and 3, namely, αz = 2.2. 1094

To verify the significance of the dynamical deter- 1095

mination process, we also test the fix α case. We 1096
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Figure 11: Performance comparisons on different edit-
ing batch sizes.

Model Type Inference Time (s)

GPT2-XL
Pre-edit 0.1187
Post-edit 0.1297

GPT-J
Pre-edit 0.0762
Post-edit 0.0863

Table 3: Inference time analysis.

chose the value of 3, the standard threshold used in1097

standardization to detect outliers. The results reveal1098

a dramatic decline in reliability and generality and1099

perfect fulfillment in the locality, indicating that1100

almost all instances are indiscriminately obstructed1101

by the hook layers regardless of the editing scope.1102

Besides, choosing an optimal fixed α before edit-1103

ing is practically unrealistic. Therefore, it would1104

be more reasonable to decide α dynamically.1105

Effect of Editing Batch Size Does the batch size1106

parameter affect the performance of our method?1107

We investigate the effect of batch size by conduct-1108

ing single-round editing on 1k samples from ZsRE.1109

We tested batch sizes 10, 100, and 1000 (Fig.11).1110

The results show that while the three metrics1111

decrease as the batch size rises, the margin could1112

be negligible, denoting that our method possesses1113

the mass-editing capacity.1114

Inference Time Analysis As our method will in-1115

troduce new hook layers to the model, we conduct1116

an experiment to investigate its influence on the1117

model inference. We run GPT2-XL on NVIDIA1118

Titan GPU and GPT-J on NVIDIA A6000. Table1119

3 shows the running result for the corresponding1120

pre-edit and post-edit models. The hook layers’1121

employment does not seem to delay the model in-1122

ference too much. This may result from the fact1123

that the hook layers are only introduced for the1124

small proportion of layers in the critical path, and1125

the computation implemented in the hook layers is1126

relatively simple.1127
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