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ABSTRACT

Connecting optimal transport and variational inference, we present a principled
and systematic framework for sampling and generative modelling centred around
divergences on path space. Our work culminates in the development of Controlled
Monte Carlo Diffusions for sampling and inference, a score-based annealing tech-
nique that crucially adapts both forward and backward dynamics in a diffusion
model. On the way, we clarify the relationship between the EM-algorithm and
iterative proportional fitting (IPF) for Schrödinger bridges, providing a conceptual
link between fields. Finally, we show that CMCD has a strong foundation in the
Jarzinsky and Crooks identities from statistical physics, and that it convincingly
outperforms competing approaches across a wide array of experiments.

1 INTRODUCTION

Optimal transport (Villani et al., 2009) and variational inference (Blei et al., 2017) have for a long
time been separate fields of research. In recent years, many fruitful connections have been established
(Liu et al., 2019), in particular based on dynamical formulations (Tzen & Raginsky, 2019a), and in
conjunction with time reversals (Huang et al., 2021a; Song et al., 2021). The goal of this paper is
twofold: In the first part, we enhance those relationships based on forward and reverse time diffusions,
and associated Girsanov transformations, arriving at a unifying framework for generative modeling
and sampling. In the second part, we build on this and develop a novel score-based scheme for
sampling from unnormalised densities. To set the stage, we recall a classical approach (Kingma &
Welling, 2014; Rezende & Mohamed, 2015) towards generating samples from a target distribution
µ(x), which is the goal both in generative modelling and sampling:

Generative processes, encoders and decoders. We consider methodologies which can be imple-
mented via the following generative process,

z ∼ ν(z), x|z ∼ pθ(x|z), (1)

transforming a sample z ∼ ν(z) into a sample x ∼
∫
pθ(x|z)ν(dz). Traditionally, ν(z) is a simple

auxiliary distribution, and the family of transitions pθ(x|z) is parameterised flexibly and in such a
way that sampling according to (1) is tractable. Then we can frame the tasks of generative modelling
and sampling as finding transition densities such that the marginal in x matches the target distribution,

µ(x) =

∫
pθ(x|z)ν(dz). (2)

To learn such a transition, it is helpful to introduce a reversed process
x ∼ µ(x), z|x ∼ qϕ(z|x), (3)

relying on an appropriately parameterised backward transition qϕ(z|x). We will say that (1) and (3)
are reversals of each other in the case when their joint distributions coincide, that is, when

qϕ(z|x)µ(x) = pθ(x|z)ν(z). (4)
To appreciate the significance of (3), notice that if (4) holds, then (2) is implied by integrating both
sides with respect to z. Building on this observation, it is natural to define the loss function

LD(ϕ, θ) := D
(
qϕ(z|x)µ(x)

∣∣∣∣pθ(x|z)ν(z)) , (5)
∗Equal contribution.
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where D is a divergence1 between distributions yet to be specified. Along the lines of Bengio et al.
(2021); Sohl-Dickstein et al. (2015); Wu et al. (2020); Liu et al. (b), we have now laid the foundations
for algorithmic approaches that aim at sampling from µ(x) by minimising LD(ϕ, θ):
Framework 1. Let D be an arbitrary divergence, and assume that LD(ϕ, θ) = 0. Then we have

µ(x)=

∫
pθ(x|z)ν(dz) and ν(z)=

∫
qϕ(z|x)µ(dx), (6)

that is, ν(z) is transformed into µ(x) by pθ(x|z), and µ(x) is transformed into ν(z) by qϕ(z|x).

The sampling problem. Let ν denote a probability density function on Rd of the form
ν(z) = ν̂(z)

Z , Z =
∫
Rd ν̂(z)dz, where ν̂ : Rd → R+can be differentiated and evaluated pointwise

but the normalizing constant Z is intractable. We are interested in both estimating Z and obtaining
approximate samples from ν given we can sample from a more tractable density µ. Framework
1 provides us with an objective to tackle the sampling problem as once LD(ϕ, θ) = 0, we can
generate samples from ν(z) via the variational distribution qϕ(z|x). Through variational inference
and optimal transport, we discuss relationships to classical methods as well as shortcomings:

KL-divergence, ELBO and variational inference. Choosing D = DKL in (5), variational inference
(VI) and latent variable model based approaches (Dempster et al., 1977; Blei et al., 2017; Kingma &
Welling, 2014) can elegantly be placed within Framework 1. Indeed, direct computation (see Appendix
B) shows that LDKL(ϕ, θ) = −Ex∼µ(x)[ELBOx(ϕ, θ)] + Ex∼µ(x)[lnµ(x)], so that minimising
LDKL

(ϕ, θ) is equivalent to maximising the expected evidence lower bound (ELBO), also known as
the negative free energy (Blei et al., 2017). This derivation is alternative to the standard approach via
maximum likelihood and convex duality (or Jensen’s inequality) (Kingma et al., 2021, Section 2.2),
and directly accomodates various modifications by replacing the DKL-divergence (see Appendix B).

Couplings, (optimal) transport and nonuniqueness. Assuming (4) holds, it is natural to define the
joint distribution π(x, z) := qϕ(z|x)µ(x) = pθ(x|z)ν(z), which is a coupling between µ(x) and
ν(z). Viewed from this angle, the set of minimisers of L(ϕ, θ) stands in one-to-one correspondence
with the set of couplings between µ(x) and ν(z), provided that the parameterisations are chosen
flexibly enough. Under the latter assumption, the objective in (5) admits an infinite number of
minimisers, rendering algorithmic approaches solely based on Framework 1 potentially unstable
and their output hard to interpret. In the language of optimal transport (Villani, 2003), minimising
L(ϕ, θ) enforces the marginal (‘transport’) constraints in (6) without a selection principle based on
an appropriate cost function (‘optimal’).

Methods such as VAEs (Kingma & Welling, 2014) parameterise pθ(x|z) and qϕ(z|x) with a re-
stricted family of distributions (such as Gaussians), thus restricting the set of couplings. Expectation
maximisation (EM) minimises L(ϕ, θ) in a component-wise fashion, resolving nonquniqueness in a
procedural manner (see Section 3.1). Common diffusion models fix either pθ(x|z) or qϕ(z|x), and
thus select a coupling (Section 2.2). In this paper, we argue that the full potential of diffusion models
can be unleashed by training the forward and backward processes at the same time, but appropriate
modifications that resolve the nonuniqueness inherent in Framework 1 need to be imposed. To
develop principled approaches towards this, we proceed as follows:

Outline and contributions. In Section 2 we recall hierarchical VAEs (Rezende et al., 2014) and,
following Tzen & Raginsky (2019a), proceed to the infinite-depth limit described by the SDEs in
(12). Readers more familiar with VI and discrete time might want to take the development in Section
2.1 as an explanation of (12); readers with background in stochastic analysis might take Framework
1′ as their starting point. In Proposition 2.2 we provide a generalised form of the Girsanov theorem
for forward-reverse time SDEs, crucially incorporating the choice of a reference process that allows
us to reason about sampling and generation in a systematic and principled way. We demonstrate
that a range of widely used approaches, such as score-based diffusions and path integral samplers,
among others, are special cases of our unifying framework (Section 2.2). Similarly in Section 3.1 we
unify optimal transport (OT) and VI under our framework by establishing a correspondence between
expectation-maximisation (EM) and iterative proportional fitting (IPF). Going further, we show that
this framework allows us to derive new methods:

In Section 3.2, we derive a novel score-based annealed flow technique, the Controlled Monte Carlo
Diffusion (CMCD) sampler, and show that it may be viewed as an infinitesimal analogue of the

1As usual, divergences are characterised by the requirement that D(α
∣∣∣∣β) ≥ 0, with equality iff α = β.
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method from Section 3.1. Finally, we connect CMCD to the foundational identities by Crooks and
Jarzynki in statistical physics, and show that it empirically outperforms a range of state-of-the-art
inference methods in sampling and estimating normalizing constants (Section 4).

2 FROM HIERARCHICAL VAES TO FORWARD-REVERSE TIME DIFFUSIONS

2.1 HIERARCHICAL VAES (REZENDE ET AL., 2014)

A particularly flexible choice of implicitly parameterising pθ(x|z) and qϕ(z|x) can be achieved via a
hierarchical model with intermediate latents: We identify x =: y0 and z =: yL with the ‘endpoints’
of the layered augmentation (y0,y1, . . . ,yL−1,yL) =: y0:L, and define

qϕ(yL, . . . ,y1|y0) :=

L∏
l=1

qϕl−1(yl|yl−1), pθ(y0, . . . ,yL−1|yL) :=
L∏
l=1

pθl(yl−1|yl), (7)

so that qϕ(z|x) and pθ(x|z) can be obtained from (7) by marginalising over the auxiliary variables
y1, . . . ,yL−1. Here, ϕ = (ϕ0, . . . , ϕL−1) and θ = (θ1, . . . , θL) refer to sets of parameters to be spec-
ified in more detail below. Further introducing notation, we write qµ,ϕ(y0:L) := qϕ(y1:L|y0)µ(y0)
as well as pν,θ(y0:L) := pθ(y0:L−1|yL)ν(yL) and think of those implied joint distributions as em-
anating from µ(x) = µ(y0) and ν(z) = ν(yL), respectively, moving ‘forwards’ or ‘backwards’
according to the specific choices for ϕ and θ. In the regime when L is large, the models in (7) are
very expressive, even if the intermediate transition kernels are parameterised in a simple manner. We
hence proceed by assuming Gaussian distributions,

qϕl−1(yl|yl−1)=N (yl|yl−1+δa
ϕ
l−1(yl−1), δσ

2I), pθl(yl−1|yl)=N (yl−1|yl+δbθl (yl), δσ2I), (8)

where σ > 0 controls the standard deviation, and δ > 0 is a small parameter, anticipating the limits
L→∞, δ → 0 to be taken in Section 2.2 below. The vector fields aϕl (yl) and bθl (yl) introduced in
(8) should be thought of as parameterised by ϕ and θ, but we will henceforth suppress this for brevity.

The models (7)-(8) could equivalently be defined via the Markov chains
yl+1 = yl + δal(yl) +

√
δσξl, y0 ∼ µ =⇒ y0:L ∼ qµ,ϕ(y0:L), (9a)

yl−1 = yl + δbl(yl) +
√
δσξl, yL ∼ ν =⇒ y0:L ∼ pν,θ(y0:L), (9b)

where (ξl)
L
l=1 is an iid sequence of standard Gaussian random variables. As indicated, the forward

process in (9a) may serve to define the distribution qµ,ϕ(y0:L), whilst the backward process in (9b)
induces pν,θ(y0:L). Note that the transition densities pθ(x|z) and qϕ(z|x) obtained as the marginals
of (7) will in general not be available in closed form. However, generalising slightly from Framework
1, we may set out to minimise the extended loss

Lext
D (ϕ, θ) = D(qµ,ϕ(y0:L)||pν,θ(y0:L)), (10)

where D refers to a divergence on the ‘discrete path space’ {y0:L}. Clearly, Lext
D (ϕ, θ) = 0 still

implies (6), but is no longer equivalent. More specifically, in the case when D = DKL, the data
processing inequality yields

DKL(q
µ,ϕ(y0:L)||pν,θ(y0:L)) ≥ DKL

(
qϕ(z|x)µ(x)

∣∣∣∣pθ(x|z)ν(z)) , (11)

so that Lext
DKL

(ϕ, θ) provides an upper bound for LDKL(ϕ, θ) as defined in (5).

2.2 DIFFUSION MODELS – HIERARCHICAL VAES IN THE INFINITE DEPTH LIMIT

Here we take inspiration from Section 2.1 and Tzen & Raginsky (2019a); Li et al. (2020); Huang et al.
(2021a) to investigate the L→∞ limit, using stochastic differential equations (SDEs). To this end,
we think of l = 0, . . . , L as discrete instances in a fixed time interval [0, T ], equidistant with time
step δ, that is, we set δ = TL−1. The discrete paths y0:L give rise to continuous paths (Yt)0≤t≤T ∈
C([0, T ];Rd) by setting Yδl = yl and linearly interpolating Yδl and Yδ(l+1). To complete the set-up,
we think of aϕ = (aϕ0 , . . . , a

ϕ
L−1) and bθ = (bθ1, . . . , b

θ
L) in (8) as arising from time-dependent vector

fields a, b ∈ C∞([0, T ]× Rd;Rd) via aϕl (yl) = atδ−1(Yδl) and bθl (yl) = btδ−1(Yδl).

Taking the limit δ → 0, while keeping T > 0 fixed, transforms the Markov chains in (9) into
continuous-time dynamics described by the SDEs (Tzen & Raginsky, 2019a)
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dYt = at(Yt) dt+ σ
−→
dWt, Y0 ∼ µ =⇒ (Yt)0≤t≤T ∼ Qµ,a ≡

−→
P µ,a, (12a)

dYt = bt(Yt) dt+ σ
←−
dWt, YT ∼ ν =⇒ (Yt)0≤t≤T ∼ Pν,b ≡

←−
P ν,b, (12b)

where
−→
d and

←−
d denote forward and backward Itô integration (see Appendix A for more details

and remarks on the notation), and (Wt)0≤t≤T is a standard Brownian motion. In complete analogy
with (9), the SDEs in (12) induce the distributions Qµ,a and Pν,b on the path space C([0, T ];Rd).
Relating back to the discussion in the introduction, note that we maintain the relations Y0 = x
and YT = z, and the transitions are parameterised by the vector fields a, b, in the sense that
pθ(x|z) = Pν,b

θ

0 (x|YT = z) = Pδz,b
θ

0 (x) and qϕ(z|x) = Qµ,a
ϕ

T (z|Y0 = x) = Qδx,a
ϕ

T (z).

The following well-known result (Anderson, 1982; Nelson, 1967) allows us to relate forward and
backward path measures via a local (score-matching) condition for the reversal relation in (4). 2

Proposition 2.1 (Nelson’s relation). For µ and a of sufficient regularity, denote the time-marginals
of the corresponding path measure by

−→
P µ,a
t =: ρµ,at . Then

−→
P µ,a =

←−
P ν,b if and only if

ν =
−→
P µ,a
T and bt = at − σ2∇ ln ρµ,at , for all t ∈ (0, T ]. (13)

Remark 1. A similarly clean characterisation of equality between forward and backward path
measures is not available for the discrete-time setting as presented in (9). In particular, Gaussianity of
the intermediate transitions is not preserved under time-reversal.
A recurring theme in this work and related literature is the interplay between the score-matching
condition in (13) and the global condition D(

−→
P µ,a|

←−
P ν,b) = 0, invoking Framework 1. To enable

calculations involving the latter, we will rely on the following result:

Proposition 2.2 (forward-backward Radon-Nikodym derivatives). Let
−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
be a

reference path measure (that is, Γ0, ΓT and γ± define diffusions as in (12) and are related as in
Proposition 2.1), absolutely continuous with respect to both

−→
P µ,a and

←−
P ν,b. Then,

−→
P µ,a-almost

surely, the corresponding Radon-Nikodym derivative (RND) can be expressed as follows,

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
dµ

dΓ0

)
(Y0)− ln

(
dν

dΓT

)
(YT ) (14a)

+ 1
σ2

∫ T

0

(
at − γ+t

)
(Yt)·

(−→
d Yt − 1

2

(
at + γ+t

)
(Yt) dt

)
(14b)

− 1
σ2

∫ T

0

(
bt − γ−t

)
(Yt)·

(←−
d Yt − 1

2

(
bt + γ−t

)
(Yt) dt

)
. (14c)

Proof. The proof relies on Girsanov’s theorem (Üstünel & Zakai, 2013), using the reference to relate
the forward and backward processes. For details, see Appendix E.
Remark 2 (Role of the reference process). According to Proposition 2.2, the Radon-Nikodym
derivative between

−→
P µ,a and

←−
P ν,b can be decomposed into boundary terms (14a), as well as forward

and backward path integrals (14b) and (14c). Since the left-hand side of (14a) does not depend on the
reference Γ0,T , γ±, the expressions in (14) are in principle equivalent for all choices of reference.
The freedom in Γ0,T and γ± allows us to ‘reweight’ between (14a), (14b) and (14c), or even cancel
terms. A canonical choice is the Lebesgue measure for Γ0 and ΓT , and γ± = 0, see Appendix C.1.
Remark 3 (Discretisation and conversion formulae). The distinction between forward and back-
ward integration in (14) is related to the time points at which the integrands

(
at − γ+t

)
(Yt) and(

bt − γ−t
)
(Yt) would be evaluated in discrete-time approximations, e.g.,∫ T

0

at(Yt)·
−→
d Yt ≈

∑
i

ati(Yti)·(Yti+1
− Yti),

∫ T

0

at(Yt)·
←−
d Yt≈

∑
i

ati+1
(Yti+1

)·(Yti+1
− Yti).

Alternatively, forward and backward integrals can be transformed into each other using the conversion∫ T

0

at(Yt) ·
−→
d Yt =

∫ T

0

at(Yt) ·
←−
d Yt − σ2

∫ T

0

(∇ · at)(Yt) dt. (15)

We refer to Kunita (2019) and Appendix A for further details. In passing, we note that (15) allows us
to eliminate the Hutchinson estimator (Hutchinson, 1989)from a variety of common score-matching
objectives, potentially reducing the variance of gradient estimators, see Appendix C.1.

2The global condition
−→
P µ,a=

←−
P ν,b is captured by the local condition (13) due to (12)’s Markovian nature.
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Framework 1 can be translated into the setting of (12), noting that (11) continues to hold with
appropriate modifications:
Framework 1′. For a divergenceD on path space, minimiseD(

−→
P µ,a|

←−
P ν,b). IfD(

−→
P µ,a|

←−
P ν,b) = 0,

then (12a) transports µ to ν, and (12b) transports ν to µ. 3

At optimality, D(
−→
P µ,a|

←−
P ν,b) = 0, Proposition 2.1 allows us to obtain the scores associated to the

learned diffusion via σ2∇ ln ρµ,at = at − bt. In this way, Framework 1′ is closely connected to (and
in some ways extends) score-matching ideas (Song & Ermon, 2019; Song et al., 2021). Indeed,
recent approaches towards generative modeling and sampling can be recovered from Framework 1′

by making specific choices for the divergence D, the parameterisations for a and b, as well as for the
reference diffusion

−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
in Proposition 2.2:

Score-based generative modeling: Letting µ be the target and fixing the forward drift at, and,
motivated by Proposition 2.1, parameterising the backward drift as bt = at − st, we recover the
SGM objectives in Hyvärinen & Dayan (2005); Song & Ermon (2019); Song et al. (2021) from
D = DKL; when

−→
P µ,a =

←−
P ν,b, the variable drift component st will represent the score σ2∇ ln ρµ,at .

Modifications can be obtained from the conversion formula (15), see Appendix C.2.

Score-based sampling – ergodic drift: In this setting, ν becomes the target and we fix bt to be
the drift of an ergodic (backward) process. Then choosing Γ0,T = µ, γ± = b allows us to recover
the approaches in Vargas et al. (2023a); Berner et al. (2022). Possible generalisations based on
Framework 1′ include IWAE-type objectives, see Appendix C.3.

Score-based sampling – Föllmer drift: Finally choosing bt(x) = x/t we recover Föllmer sampling
(Appendix C.3; Follmer, 1984; Vargas et al., 2023b; Zhang & Chen, 2022; Huang et al., 2021b).

3 LEARNING FORWARD AND BACKWARD TRANSITIONS SIMULTANEOUSLY

Recall from the introduction that complete flexibility in a and b will render the minima of
D(
−→
P µ,a|

←−
P ν,b) highly nonunique. Furthermore, the approaches surveyed at the end of the pre-

vious section circumvent this problem by fixing either
−→
P µ,a or

←−
P ν,b. However, to leverage the full

power of diffusion models, both
−→
P µ,a or

←−
P ν,b should be adapted to the problem at hand. In this

section, we explore models of this kind, by imposing additional constraints on a and b. We end this
section by presenting our new CMCD sampler connecting it to prior methodology within VI (Doucet
et al., 2022b; Geffner & Domke, 2023; Papamakarios et al., 2017) and OT where we can view CMCD
as an instance of entropy regularised OT in the infinite constraint limit (Bernton et al., 2019).

3.1 CONNECTION TO ENTROPIC OPTIMAL TRANSPORT

One way of selecting a particular transition between µ and ν is by imposing an entropic penalty, en-
couraging the dynamics to stay close to a prescribed, oftentimes physically or biologically motivated,
reference process. Using the notation employed in Framework 1, the static Schrödinger problem
(Schrödinger, 1931; Léonard, 2014a) is given by

π∗(x, z) ∈ argmin
π(x,z)

{
DKL(π(x, z)||r(x, z)) : πx(x) = µ(x), πz(z) = ν(z)

}
, (16)

where r(x, z) is the Schrödinger prior encoding additional domain-specific information. In an
analogous way, we can introduce a regulariser to the path-space approach of Framework 1’ to obtain
the dynamic Schrödinger problem

P∗∈ argmin
−→
P µ,aT = ν

E
Y ∼

−→P µ,a

[
1

2σ2

∫ T

0

∥at − ft∥2(Yt) dt

]
, (17)

that is, the driving vector field at determining P∗ should be chosen in such a way that (i), the
corresponding diffusion transitions from µ to ν, and (ii), among such diffusions, the vector field at
remains close to the prescribed vector field ft, in mean square sense. Under mild conditions, the
solutions to (16) and (17) exist and are unique. Further, the static and dynamic viewpoints are related
through a mixture-of-bridges construction (assuming that the conditionals r(z|x) correspond to the
transitions induced by ft), see (Léonard, 2014a, Section 2).

3Concurrently Richter & Berner (2024) propose an akin framework to ours.
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Iterative proportional fitting (IPF) and the EM algorithm. It is well known that approximate
solutions for π∗(x, z) and P∗ can be obtained using alternating DKL-projections, keeping one of the
marginals fixed in each iteration: Under mild conditions, the sequence defined by

π2n+1(x, z) = argmin
π(x,z)

{
DKL(π(x, z)||π2n(x, z)) : πx(x) = µ(x)

}
, (18a)

π2n+2(x, z) = argmin
π(x,z)

{
DKL(π(x, z)||π2n+1(x, z)) : πz(z) = ν(z)

}
, n ≥ 0, (18b)

with initialisation π0(x, z) = r(x, z), converges to π∗(x, z) as n→∞ (De Bortoli et al., 2021), and
this procedure is commonly referred to as iterative proportional fitting (IPF) (Fortet, 1940; Kullback,
1968; Ruschendorf, 1995) or Sinkhorn updates (Cuturi, 2013). IPF can straightforwardly be modified
to the path space setting of (17), and the resulting updates coincide with the Föllmer drift updates
discussed in Section C.3, see (Vargas et al., 2021a) and Appendix E.4.

To further demonstrate the coverage of our framework, we establish a connection between IPF and
expectation-maximisation (EM) (Dempster et al., 1977), originally devised for finding maximum
likelihood estimates in models with latent (or hidden) variables. According to Neal & Hinton (1998),
the EM-algorithm can be described in the setting from the introduction, and written in the form

θn+1 = argmin
θ
LDKL(ϕn, θ), ϕn+1 = argmin

ϕ
LDKL(ϕ, θn+1), (19)

with LDKL defined as in (5). If the initialisations are matched appropriately, the following result
establishes an exact correspondence between the IPF updates in (18) and the EM updates in (19):
Proposition 3.1 (EM ⇐⇒ IPF). Assume that the transition densities pθ(x|z) and qϕ(z|x) are
parameterised with perfect flexibility,4 and furthermore that the EM-scheme (19) is initialised at ϕ0
in such a way that qϕ0(z|x) = r(z|x). Then the IPF iterations in (18) agree with the EM iterations
in (19) for all n ≥ 1, in the sense that

πn(x, z) = qϕ(n−1)/2(z|x)µ(x), for n odd, πn(x, z) = pθn/2(x|z)ν(z), for n even. (20)

From the proof (Appenix E), it is clear that flexibility of parameterisations is crucial, and thus
EM ⇐⇒ IPF fails for classical VAEs, but holds up to a negligle error for the SDE-parameterisations
from Section 2.2, see also Liu et al. (b). Under this assumption, the key observation is that replacing
forward-DKL by reverse-DKL in one or both of (18a) and (18b) does not – in theory – change the
sequence of minimisers.

In practice favoring the EM objectives over IPF can offer an advantage as optimizing with respect
to forward-DKL and backward-DKL encourages moment-matching and mode-seeking behavior,
respectively, and so an alternating scheme as defined in (19) might present a suitable compromise
over optimizing a single direction of DKL’s, empirical exploration is left for future work.

Whilst EM and IPF might seem appealing for learning a sampler they both require sequentially
solving a series of minimization problems, which we can only solve approximately; this is not only
slow but also causes a sequential accumulation of errors arising from each iterate (Vargas et al.,
2021a; Fernandes et al., 2021). In order to address both issues we will present a novel approach
(CMCD) that similarly to IPF learns both the forward and backward processes whilst preserving the
desired uniqueness property. However, in contrast to IPF it does so in an end-to-end fashion and
performs updates simultaneously. As an alternative in Appendix E.5 we also discuss a regularised
IPF objective and leave further empirical exploration for future work.

3.2 SCORE-BASED ANNEALING: THE CONTROLLED MONTE CARLO DIFFUSION SAMPLER

In this section, we fix a prescribed curve of distributions (πt)t∈[0,T ], whose scores ∇ lnπt (and
unnormalised densities π̂t) are assumed to be available in tractable form; this is the scenario typically
encountered in annealed importance sampling (IS) and related approaches towards computing poste-
rior expectations (Neal, 2001; Reich, 2011; Heng et al., 2021; 2020; Arbel et al., 2021; Doucet et al.,
2022a). The Controlled Monte Carlo Diffusion sampler (CMCD) learns the vector field∇ϕt in

dYt=
(
σ2∇ lnπt(Yt)+∇ϕt(Yt)

)
dt+ σ

√
2
−→
dWt, Y0∼π0, (21)

4In precise terms, we assume that for any transition densities p(x|z) and q(z|x), there exist θ∗ and ϕ∗ such
that p(x|z) = pθ∗(x|z) and q(x|z) = qϕ∗(x|z).
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Algorithm 1 Controlled Monte Carlo Diffusions - Sampling and normalizing constant estimation

Require: π0, πT , πt, σ, K step-sizes ∆tk, network fϕ trained via minimising Eq 24
Y0 ∼ π0
lnW = − lnπ0(Y0)
for k = 0 to K − 1 do

Ytk+1
∼ N

(
Ytk+1

∣∣Ytk + (σ2∇ lnπtk + fϕtk)(Ytk)∆tk, 2σ
2∆tk

)
lnW = lnW + ln

N
(
Ytk

∣∣Ytk+1
+(σ2∇ lnπtk+1

−fϕtk+1
)(Ytk+1

)∆tk,2σ
2∆tk

)
N
(
Ytk+1

∣∣Ytk+(σ2∇ lnπtk+f
ϕ
tk

)(Ytk )∆tk,2σ
2∆tk

)
lnW = lnW + lnπT (YT )
return (Estimate of lnZ ≈ lnW ,Approximate sample YT )

so that (21) produces the interpolation from the prior π0 to the posterior πT , i.e.,
−→
P π0,σ

2∇ lnπ+∇ϕ
t =

πt, for all t ∈ [0, T ]. Note that if πt were constant in time (πt = π0), then ϕ = 0 would reduce (21)
to equilibrium overdamped Langevin dynamics, preserving π0. With πt varying in time, ∇ϕt can be
thought of as a control enabling transitions between neighbouring densities πt and πt+δt.

To obtain ∇ϕt we invoke Framework 1′, but restrict
←−
P πT ,b to retain uniqueness. Proposition 2.1

motivates the choice bt = (σ2∇ lnπt +∇ϕt)− 2σ2∇ lnπt = −σ2∇ lnπt +∇ϕt,5 leading to

LCMCD
D (ϕ) := D

(−→
P π0,σ

2∇ lnπ+∇ϕ,
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
, (22)

which is valid for any choice of divergence D. The additional score constraint bt = at − 2σ2∇ lnπt
restores uniqueness in Framework 1′ (see Appendix D for a proof):

Proposition 3.2 (Existence and uniqueness). Under mild conditions on (πt)t∈[0,T ], (22) admits a
(πt-a.e.) unique minimiser ϕ∗, up to additive constants, satisfying LCMCD(ϕ

∗) = 0.

Given the optimal vector field ∇ϕ∗t , we can produce samples from πT by simulating (21). Following
Zhang & Chen (2022); Vargas et al. (2023a),we can estimate Z in πT = π̂T /ZT unbiasedly via

Z = E

[
d
←−
P π̂T ,−σ2∇ lnπ+∇ϕ

d
−→
P π0,σ2∇ lnπ+∇ϕ

]
=

d
←−
P π̂T ,−σ2∇ lnπ+∇ϕ∗

d
−→
P π0,σ2∇ lnπ+∇ϕ∗

(Y ), (23)

where the expectation is taken with respect to (21), and is valid for any (possibly suboptimal) ∇ϕt.
The right-hand side, on the other hand, shows that optimality of∇ϕ∗t yields a zero-variance estimator
of Z, as the statement holds almost surely in Y , without taking the expectation. To give a broader
perspective, we give the following slight generalisation of a well-known result from statistical physics:

Proposition 3.3 (Controlled Crooks’ fluctuation theorem and Jarzynki’s equality). Following Jarzyn-
ski (1997); Chen et al. (2019), define work and free energy asWT (Y ) := −

∫ T
0
σ2∂t ln π̂t(Yt) dt,

Ft := −σ2 lnZt := σ2 ln(π̂t/πt). Then, we have the controlled Crooks’ identity,(
d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y )= exp

(
− 1
σ2 (FT−F0) +

1
σ2WT (Y )+ CϕT (Y )

)
,

where CϕT (Y ) := − 1
σ2

∫ T
0
∇ϕt(Yt) ·∇ lnπt(Yt) dt −

∫ T
0
∆ϕt(Yt)dt. By taking expectations and

ϕ = 0, this implies Jarzynski’s equality E−→P π0,σ2∇ lnπ [exp(− 1
σ2WT )] = ZT /Z0.

The proof uses Proposition 2.2 to compute the RND d
−→
P π0,σ

2∇ lnπ+∇ϕ/d
←−
P πT ,−σ2∇ lnπ+∇ϕ, followed

by applying Itô’s formula to t 7→lnπ̂t(Yt), see Appendix E.2. For ϕ = 0, we recover Crooks fluctuation
theorem (Crooks, 1999), but the additional control allows CMCD to suppress said fluctuations by
adjusting the interaction term CϕT (Y ). Indeed, prior works (Neal, 2001; Chopin, 2002; Vaikuntanathan
& Jarzynski, 2008; Hartmann et al., 2019; Zhang, 2021) have used the Jarzynski equality to estimate
Z via importance sampling, but this approach might suffer from high variance, see (Del Moral et al.,

5Note the additional factor of 2 in Nelson’s relation due to the noise scaling σ
√
2
−→
dWt in (21).
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2006), (Stoltz et al., 2010, Section 4.1.4). In contrast, the CMCD estimator version of (23) achieves
zero variance if trained to optimality (see Appendix E.1.1 for a convenient discretised version).
Finally, we would like to highlight that Zhong et al. (2023) concurrently proposes this generalisation
of Crook’s identity using different techniques in their sketch.

Our next result connects CMCD to Section 3.1, showing that minimising (22) can be viewed as jointly
solving an infinite number of Schrödinger problems on infinitesimal time intervals:
Proposition 3.4 (infinitesimal Schrödinger problems). The minimiser ϕ∗ can be characterised as
follows: For N ∈ N, partition the interval [0, T ] into N subintervals of length T/N , and on each
subinterval [(i− 1)T/N, iT/N ], solve the Schrödinger problem (17) with marginals µ = π(i−1)T/N ,
ν = πiT/N and prior drift ft = ∇ lnπt. Concatenate the solutions to obtain the drift∇ϕ(N), defined
on [0, T ]. Then,∇ϕ(N)→∇ϕ as N→∞ in the sense of L2([0, T ]× Rd, π) (proof in Appendix D.4)

Note the similarity of this interpretation to the sequential Schrödinger samplers of Bernton et al.
(2019). Making specific choices for D in 22, we establish further connections to other methods:

1. For D = DKL, direct computation (see Appendix D.1) based on Proposition 2.2 shows that

LCMCD
DKL

(ϕ)= E
Y ∼

−→
P π0,σ2∇ lnπ+∇ϕ

[
ln

(
d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y )

]

=E

[
σ2

∫ T

0

|∇ lnπt(Yt)|2dt+ 1
σ
√
2

∫ T

0

(
σ2∇ lnπt−∇ϕt

)
(Yt)·

←−
dWt − ln π̂T (YT )

]
+const.

≈E

[
ln
π0(Y0)

π̂(YT )

K−1∏
k=0

N (Ytk+1
|Ytk + (σ2∇ lnπtk +∇ lnϕtk)(Ytk)∆tk, 2σ

2∆tk)

N(Ytk |Ytk+1
+(σ2∇lnπtk+1

−∇lnϕtk+1
)(Ytk+1

)∆tk, 2σ2∆tk)

]
, (24)

the time-discretisation in the third line is derived in Appendix D.5. Our goal is then to numerically
minimize LCMCD

DKL
(ϕ)wrt to ϕ (for a numerical minimisation scheme see Algorithm 2). Note the first

line in (24) is akin to the optimal control type objectives of Föllmer and DDS samplers recalled at the
end of Section 2.2, see also (Berner et al., 2022). Setting ϕ = 0 in the third line recovers Unadjusted
Langevin Annealing (ULA), see, e.g., eq. (14) in (Thin et al., 2021) or eq. (21) in (Geffner & Domke,
2023); hence, we can view CMCD as a controlled version of ULA. Setting ϕ=0 only in the numerator
is akin to Monte Carlo Diffusion (MCD), see Algorithm 1 and eq. (34) in (Doucet et al., 2022a).
Finally, action matching (Neklyudov et al., 2023) can be recovered from D=DKL and Framework 1′

by choosing the reference
−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
in Proposition 2.2 appropriately, see Appendix C.4.

2. For the log-variance divergence DVar(Q,P)=Var
(
ln dQ

dP
)
, see Appendix B, we obtain

LCMCD
Var (ϕ)= Var

(
ln
πT (YT )

π0(Y0)
+

∫ T

0

∆ϕt(Yt) dt−σ
√
2

∫ T

0

∇ lnπt(Yt)◦dWt− σ2

∫ T

0

|∇ lnπt(Yt)|2dt

)
,

see Appendix D. Here, ◦dWt denotes Stratonovich integration, and the variance is taken with respect
to samples from (21). In the limit σ → 0, log-Var CMCD enforces an integrated version of the
instantaneous change of density formula ∂t lnπt(Yt) = −∆ϕt(Yt) for continuous-time normalising
flows of the form Ẏt = ∇ϕt(Yt), (Papamakarios et al., 2021, Section 4).
Remark 4 (Further related work). The task of learning the vector field∇ϕt so that (21) reproduces
(πt)t∈[0,T ] has been approached from various directions. Reich (2011); Heng et al. (2021); Reich
(2022); Vaikuntanathan & Jarzynski (2008) explore methodologies that exploit the characterisation
of ∇ϕt in terms of the elliptic PDE (50) in Appendix D.3. Arbel et al. (2021) propose to leverage
normalising flows sequentially to minimise KL divergences between implied neighboring densities.
In an appropriate limiting regime, they recover the SDE (21), see Remark 9. These approaches
approximate∇ϕt sequentially in time, whilst CMCD learns (∇ϕt)t∈[0,T ] ‘all-at-once’.

4 EXPERIMENTS

We now empirically demonstrate the performance of the proposed CMCD sampler (24) in both
underdamped (detailed in Appendix D) and overdamped (CMCD (OD)), Appendix D.6) formulations
on a series of sampling benchmarks. We first replicate the benchmarks from Geffner & Domke (2023)
on 6 standard target benchmark distributions. Following the experimental methodology in Geffner &
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Figure 1: Figure panes a) and b) report ELBOs across methods and targets following the experimental
setup in Geffner & Domke (2023), the (OD) and (UD) columns group over and under-damped
methods seperately. Figure c) reports IS lnZ estimates and sample quality (where available) using
eOT. Higher ELBO and lnZ denote better estimates, lowerWγ

2 signifies better sample quality.

Domke (2023), we compare against two underdamped baselines, Unadjusted Langevin Annealing
(ULA) (Wu et al., 2020; Thin et al., 2021) and Monte Carlo Diffusion (MCD) (Doucet et al., 2022b);
and two overdamped baselines, Uncorrected Hamiltonian Annealing (UHA) (Geffner & Domke,
2021; Zhang et al., 2021) and Langevin Diffusion Variational Inference (LDVI) (Geffner & Domke,
2023). Furthermore, we include comparisons of lnZ estimation on two datasets with known partition
function, the funnel and gmm, and compare against baselines from Vargas et al. (2023a), PIS (Barr
et al., 2020; Vargas et al., 2023b; Zhang & Chen, 2022), DDS (Vargas et al., 2023a), and Sequential
Monte Carlo Sampler (SMC) (Del Moral et al., 2006; Zhou et al., 2016).

We report the mean ELBO achieved by each method over 30 seeds of sampling, for Euler discretisation
steps K ∈ {8, 16, 32, 64, 128, 256}, comparing the underdamped and overdamped baselines to their
respective CMCD counterparts in Figure 1. We see that both overdamped and underdamped CMCD
consistently outperform all baseline methods, especially at low K, and in fact, across most targets
overdamped CMCD outperforms the underdamped baselines. Figure 1 also reports lnZ for two
target distributions with known Z, comparing against PIS, DDS, and SMC. Again, CMCD recovers
the log-partition more consistently, even at low K. Finally, as another measure of sample quality, we
report the entropy-regularised OT distance (Wγ

2 ) between obtained samples and samples from the
target for funnel and gmm. Hyperparameter tuning and other experimental details can be found in
Appendix F and we provide a GitHub repository to reproduce our results 6.

5 DISCUSSION

Overall we have successfully introduced a novel variational framework bridging VI and transport
using modern advances in diffusion models and processes. In particular, we have shown that many
existing diffusion-based methods for generative modelling and sampling can be viewed as special
instances of our proposed framework. Building on this, we have developed novel objectives for
dynamic entropy regularised transports (based on a relationship between the EM and IPF algorithms)
and annealed flows (with connections to fluctuation theorems due to Crook and Jarzynski, rooted in
statistical physics). Finally, we have explored the CMCD inference scheme obtaining state-of-the-art
results across a suite of challenging inference benchmarks. We believe this experimental success is
partly due to our approach striking a balance between parametrising a flexible family of distributions
whilst being constrained enough such that learning the sampler is not overly expensive (Tzen &
Raginsky, 2019b; Vargas et al., 2023c). Future directions can explore optimal schemes for the
annealed flow πt (Goshtasbpour et al., 2023) and alternate divergences (Nüsken & Richter, 2021;
Richter & Berner, 2024; Midgley et al., 2022).

6https://github.com/shreyaspadhy/CMCD
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Hans Föllmer. Time reversal on Wiener space. In Stochastic Processes—Mathematics and Physics:
Proceedings of the 1st BiBoS-Symposium held in Bielefeld, West Germany, September 10–15, 1984,
pp. 119–129. Springer, 2006b.
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José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. arXiv preprint
arXiv:2208.01893, 2022.

Annie Millet, David Nualart, and Marta Sanz. Integration by parts and time reversal for diffusion
processes. The Annals of Probability, pp. 208–238, 1989.

Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log gaussian cox
processes. Scandinavian journal of statistics, 25(3):451–482, 1998.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. Learning in graphical models, pp. 355–368, 1998.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learning
stochastic dynamics from samples. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
25858–25889. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
neklyudov23a.html.

Edward Nelson. Dynamical theories of Brownian motion, volume 3. Princeton university press, 1967.
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A Süleyman Üstünel and Moshe Zakai. Transformation of measure on Wiener space. Springer
Science & Business Media, 2013.

Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations:
Improving convergence by reducing dissipation. Physical Review Letters, 100(19):190601, 2008.

Francisco Vargas. Machine-learning approaches for the empirical Schrödinger bridge problem.
Technical report, University of Cambridge, Computer Laboratory, 2021.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021a.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger
bridges via maximum likelihood. Entropy, 23(9), 2021b. ISSN 1099-4300. doi: 10.3390/
e23091134. URL https://www.mdpi.com/1099-4300/23/9/1134.

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=8pvnfTAbu1f.

Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D Lawrence, and Nikolas
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A STOCHASTIC ANALYSIS FOR BACKWARD PROCESSES

In this appendix, we briefly discuss background in stochastic analysis relevant to the SDEs in (12),
here repeated for convenience:

dYt = at(Yt) dt+ σ
−→
dWt, Y0 ∼ µ, (25a)

dYt = bt(Yt) dt+ σ
←−
dWt, YT ∼ ν. (25b)

Recall that the forward Itô differential
−→
d in (25a) is far more commonly denoted simply7 by d, and

theory for the forward SDE (25a) is widely known (Karatzas et al., 1991; Øksendal, 2003). In contrast,
reverse-time SDEs of the form (25b) are less common and there are fewer textbook accounts of their
interactions with forward SDEs. We highlight Kunita (2019) for an in-depth treatment, and alert the
reader to the fact that ‘backward stochastic differential equations’ as discussed in Zhang (2017); Chen
et al. (2022), for instance, are largely unrelated. We therefore refer to (25b) as a ‘reverse-time’ SDE.

7...but in this paper we stick to the notation
−→
d to emphasise the symmetry of the setting.
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Remark 5 (Notation). We deliberately depart from some of the notation employed in the recent
literature (see, for instance, Huang et al. (2021a); Liu et al. (b)) by using Yt in both (25a) and (25b),
and not introducing an auxiliary process capturing the reverse-time dynamics. From a technical
perspective, this is justified since (Yt)0≤t≤T merely represents a generic element in path space, and
full information is encoded in the path measures Qµ,a ≡

−→
P µ,a and Pν,b ≡

←−
P ν,b. Importantly, placing

(25a) and (25b) on an equal footing seems essential for a convenient formulation of Proposition 2.2.
Slightly departing from the VAE-inspired notation from Section 2.1, we equivalently refer to these
path measures by

−→
P µ,a and

←−
P ν,b, highlighting the symmetry of the setting in (25).

Intuitively, (25) can be viewed as continuous time limits of the Markov chains defined in (9), or, in
other words, the Markov chains (9) are the Euler-Maruyama discretisations for (25), see Kloeden
et al. (1992, Section 9.1). Throughout, we impose the following:
Assumption A.1 (Smoothness and linear growth of vector fields). All (time-dependent) vector fields
in this paper belong to the set

U :=

{
a ∈ C∞([0, T ]×Rd;Rd) : there exists a constant C > 0

such that ∥at(x)− at(y)∥ ≤ C∥x− y∥, for all t ∈ [0, T ], x,y ∈ Rd
}
.

The preceding assumption guarantees existence and uniqueness for (25a) and (25b), and it allows
us to use Girsanov’s theorem in the proof of Proposition 2.2 (Novikov’s condition can be shown
to be satisfied, see Øksendal (2003, Section 8.6)). Furthermore, Assumption A.1 is sufficient to
conclude Nelson’s relation (Proposition 2.1), see Haussmann & Pardoux (1985); Millet et al. (1989);
Föllmer (2006b) and the discussion in Russo & Vallois (1996). Having said all that, it is possible
to substantially weaken Assumption A.1 with more technical effort. Moreover, we can replace the
constant σ > 0 by σ : [0, T ]× Rd → Rd×d throughout, assuming sufficient regularity, growth and
invertibility properties, and amending the formulas accordingly.

The precise meaning of (25) is given by the integrated formulations

Yt = Y0 +

∫ t

0

as(Ys) ds+

∫ t

0

σ
−→
dWs, Y0 ∼ µ, (27a)

Yt = YT −
∫ T

t

bs(Ys) ds−
∫ T

t

σ
←−
dWs, YT ∼ ν, (27b)

where the forward and backward integrals need defining. Roughly speaking, we have∫ t1

t0

Xs ·
−→
dZs = lim

‘∆t→0′

∑
i

Xti · (Zti+1
−Zti), (28a)∫ t1

t0

Xs ·
←−
dZs = lim

‘∆t→0′

∑
i

Xti+1
· (Zti+1

−Zti), (28b)

see Remark 3, for ‘appropriate’ processes (Xt)0≤t≤T and (Zt)0≤t≤T , and where the limit ∆t→ 0
of vanishing step sizes needs careful analysis (see Remark 6 below). The most salient difference
between (25a) and (25b) is the fact that Xti is replaced by Xti+1

in (28b).

Remark 6 (Convergence of the limits in (28)). If we only assume that X,Z ∈ C([t0, t1];Rd),
possibly pathwise, that is, deterministically, then the limits in (28) might not exist, or when they do,
their values might depends on the specific sequence of mesh refinements. The following approaches
are available to make the definitions (28) rigorous:

1. Itô calculus (see, for example, Revuz & Yor (2013, Chapter 9)) uses adaptedness and
semimartingale properties for the forward integral in (28a), but note that the definition is not
pathwise (that is, the limit (28a) is defined up to a set of measure zero). For the backward
integrals in (28b) and, importantly for us, in (64), it can then be shown that the relevant
processes are (continuous) reverse-time martingales (see Kunita (2019) for a discussion of
the corresponding filtrations). The latter property is guaranteed under Assumption A.1, see
the discussion around Theorem 2.3 in Russo & Vallois (1996).
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2. Föllmer’s ‘Itô calculus without probabilities’ (Föllmer, 2006a) is convenient, since it allows
to us to perform calculations using (25) and Proposition 2.2 without introducing filtrations
and related stochastic machinery. The caveat is that the results may in principle depend on
the sequence of mesh refinements, but under Assumption A.1, those differences only appear
on a set of measure zero, see Russo & Vallois (1995); Föllmer & Protter (2000).

3. Similarly, the integrals in (28) can be defined in a pathwise fashion using rough path
techniques, see Friz & Hairer (2020, Section 5.4).

For the current paper, the following conversion formulas are crucial,∫ t

0

Xs ·
←−
dZs −

∫ t

0

Xs ·
−→
dZs = ⟨X,Z⟩t, (29a)∫ t

0

Xs ·
←−
dZs +

∫ t

0

Xs ·
−→
dZs = 2

∫ t

0

Xs ◦Zs, (29b)

where ⟨X,Z⟩ is the quadratic variation process (if defined, see Russo & Vallois (1995); see in
particular equations (3) and (4) therein), and ◦ denotes Stratonovich integration. For solutions to (25),
we obtain (15) from (29a). In particular, we can often trade backward integrals for divergence terms
(see Appendix C.1), using the (backward) martingale properties

E
[∫ t

0

ft(Yt) ·
−→
dWt

]
= 0, if (Yt)0≤t≤T solves (25a), (30a)

E

[∫ T

t

ft(Yt) ·
←−
dWt

]
= 0, if (Yt)0≤t≤T solves (25b). (30b)

B VARIATIONAL INFERENCE AND DIVERGENCES

Various concepts well-known in the variational inference community have direct counterparts in the
diffusion setting. In this appendix we review a few that are directly relevant to this paper.

Maximum likelihood. Framework 1 with D = DKL leads via direct calculations to

LDKL
(ϕ, θ) = −Ex∼µ(x)

=ELBOx(ϕ,θ)︷ ︸︸ ︷[∫
ln
pθ(x|z)ν(z)
qϕ(z|x)

qϕ(dz|x)
]
+

∫
lnµ(x)µ(dx), (31)

so that maximising Ex∼µ(x)[ELBOx(ϕ, θ)] is equivalent to minimising LDKL
(ϕ, θ).

However, the traditional approach (Blei et al., 2017; Kingma et al., 2019) towards the evidence lower
bound (ELBO) in (31) is via maximum likelihood in latent variable models. Using the notation and
set-up from the introduction, one can show using Jensen’s inequality (or dual representations of the
KL divergence), that

ln

(∫
pθ(x, z) dz

)
= ln pθ(x) ≥ ELBOx(ϕ, θ), (32)

with equality if and only if qϕ(z|x) = pθ(z|x). The bound in (32) motivates maximising the
(tractable) right-hand side, performing model selection (according to Bayesian evidence) and posterior
approximation (in terms of the variational family qϕ(z|x)) at the same time. The calculation in (31)
shows that this objective can equivalently be derived from Framework 1 and connected to the KL
divergence between the joint distributions qϕ(x, z) and pθ(x, z).

Reparameterisation trick (Kingma & Welling, 2014; Rezende et al., 2014). For optimising
ELBOx(ϕ, θ), it is crucial to select efficient low-variance gradient estimators. In this context, it
has been observed that reparameterising z ∼ qϕ(z|x) in the form z = g(ϵ, ϕ,x), see Kingma et al.
(2019, Section 2.4.1), substantially stabilises the training procedure. Here, ϵ is an auxiliary random
variable with tractable ‘base distribution’ that is independent of ϕ and x, and g is a deterministic
function (transforming ϵ into z), parameterised by ϕ and x. We would like to point out that many
(although not all, see below) objectives in diffusion modelling are already reparameterised, since the
SDEs (12) transform the ‘auxiliary’ variables (Wt)0≤t≤T into (Yt)0≤t≤T . With this viewpoint, the
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vector field at corresponds to the parameter ϕ, (Wt)0≤t≤T corresponds to ϵ, and g corresponds to
the solution map associated to the SDE (12a), sometimes referred to as the Itô map. In this sense, the
objectives (74), (39) and (40) are reparameterised, but LCMCD

Var from Section 3.2 is not if the gradients
are detached as in (Nüsken & Richter, 2021; Richter et al., 2020; Richter & Berner, 2024). We
mention in passing that sticking the landing (Roeder et al., 2017) offers a further variance reduction
close to optimality, and that the same method can be employed for diffusion objectives, see Vargas
et al. (2023b); Xu et al. (2021).

Reinforce gradient estimators. As an alternative to the KL-divergence, Nüsken & Richter (2021)
investigated the family of log-variance divergences

Du
Var(q||p) = Varx∼u

(
ln

dq

dp
(x)

)
, (33)

parameterised by an auxiliary distribution u, in order to connect variational inference to backward
stochastic differential equations (Zhang, 2017). The fact that gradients of (33) do not have to be
taken with respect to x (see Remark (Nüsken & Richter, 2021; Richter et al., 2020)) reduces the
computational cost and provides additional flexibility in the choice of u, but the gradient estimates
potentially suffer from higher variance since the reparameterisation trick is not available. The latter
drawback is alleviated somewhat by the fact that particular choices of u can be linked to control
variate enhanced reinforce gradient estimators (Richter et al., 2020) that are particularly useful when
reparameterisation is not available (such as in discrete models). We note that the same divergence has
also been used as a variational inference objective in El Moselhy & Marzouk (2012).

Importance weighted autoencoders (IWAE). Burda et al. (2015) have developed a multi-sample
version of ELBOx(ϕ, θ) that achieves a tighter lower bound on the marginal log-likelihood in (32).
To develop similar objectives in a diffusion setting, we observe that for each K ≥ 1,

D
(K)
KL (q||p) = E

x1,...,xK
iid∼ q

[
ln

(
1

K

K∑
i=1

dq

dp
(xi)

)]
(34)

defines a generalised KL divergence8 that reproduces the IWAE lower bound as per Framework 1,
in the sense of equation (31). To the best of our knowledge, the precise formulation in (34) is new,
but similar to the previous works Hernandez-Lobato et al. (2016); Li & Turner (2016); Daudel et al.
(2022). We exhibit an example of (34) applied in a diffusion context in Section C.3, see Remark 7.

C CONNECTIONS TO PREVIOUS WORK

C.1 DISCUSSION OF EQUIVALENT EXPRESSIONS FOR DKL(
−→
P µ,a||

←−
P ν,b)

Notice that we can realise samples from
←−
P ν,b both via the reverse-time SDE in (12b) or via its time

reversal given by the following forward SDE (Nelson, 1967; Anderson, 1982; Haussmann & Pardoux,
1985):

dŶt =
(
bT−t(Ŷt)− σ2∇ ln←−ρ ν,bT−t(Ŷt)

)
dt+ σ

−→
dWt, Ŷ0 ∼ ν, (35)

using Ŷt := ŶT−t. This allows us to obtain an expression for DKL(
−→
P µ,a|

←−
P ν,b) via Girsanov’s

theorem:

DKL(
−→
P µ,a||

←−
P ν,b) = DKL(

←−ρ ν,b0 ||ν) + E

[
1

2σ2

∫ T

0

∣∣∣∣∣∣at(Yt)− (bt(Yt)− σ2∇ ln←−ρ ν,bt (Yt)
) ∣∣∣∣∣∣2dt] .

(36)

However there are several terms here that we cannot estimate or realise in a tractable manner, one
being the score∇ ln←−ρ ν,bt and the other being sampling from the distribution←−ρ ν,b0 . 9

8Indeed, by Jensen’s inequality, we have that D(K+1)
KL (q||p) ≥ D

(K)
KL (q||p), so that in particular q ̸= p

implies D(K)
KL (q||p) > 0.

9When Ŷt is an OU process and µ is Gaussian we are in the traditional DDPM setting (Song et al., 2021) and
these two quantities admit the classical tractable score matching approximations
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In order to circumvent the score term, the authors Vargas et al. (2021b); Chen et al. (2022) use
the Fokker-Plank (FPK) equation and integration by parts, respectively, trading of the score with a
divergence term, whilst Huang et al. (2021a) use a variant of the Feynman Kac formula to arrive at an
equivalent solution. From Proposition 2.2, we can avoid the divergence entirely and replace it by a
backwards integral (making use of the conversion formula (15) and the fact that the ensuing forward
integral is zero in expectation). As hinted at in Remark 3, this replacement might have favourable
variance-reducing properties, but numerical evidence would be necessary.

C.2 SCORE-BASED GENERATIVE MODELING

Generative modeling is concerned with the scenario where µ(x) can be sampled from (but its density
is unknown), and the goal is to learn a backward diffusion as in (12b) that allows us to generate
further samples from µ(x), see Song et al. (2021). We may fix a reference forward drift at, and,
motivated by Proposition 2.1, parameterise the backward drift as bt = at − st, so that in the case
when

−→
P µ,a =

←−
P ν,b, the variable drift component st will represent the score σ2∇ ln ρµ,at . When the

diffusion associated to at is ergodic and T is large,
−→
P µ,a =

←−
P ν,b requires that ν(z) is close to the

corresponding invariant measure. Choosing γ−t = at, and, for simplicity σ = 1, direct calculations
using Proposition 2.2 show that

LISM(s) := DKL(
−→
P µ,a||

←−
P ν,a−s) = E

Y ∼
−→
P µ,a

[
1
2

∫ T

0

s2t (Yt) dt+

∫ T

0

(∇ · st)(Yt) dt

]
+ const.

(37)

recovers the implicit score matching objective (Hyvärinen & Dayan, 2005), up to a constant that does
not depend on st.

Proof. We start by noticing that the contributions in (14a) and (14b) do not depend on st, and can
therefore be absorbed in the constant in (37) Notice that the precise forms of Γ0, ΓT and γ+ are left
unspecified or unknown, but this does not affect the argument. We find

DKL(
−→
P µ,a||

←−
P ν,a−s) = E

Y ∼
−→P µ,a

[∫ T

0

st(Yt) ·
(←−
d Yt − 1

2 (2at − st) (Yt) dt
)]

+ const.

= E

[∫ T

0

st(Yt) ·
(
σ
←−
dWt +

1
2st(Yt) dt

)]
+ const.

= E

[
1
2

∫ T

0

s2t (Yt) dt+

∫ T

0

(∇ · st)(Yt) dt

]
+ const.,

where in the first line we use Proposition 2.2 together with bt = at − st and γ−t = at, and to proceed
to the second line we substitute

←−
d Yt using the SDE in (12a). The last equality follows from the

conversion formula between forward and backward Itô integrals, see (15), and the fact that forward
integrals with respect to Brownian motion have zero (forward) expectation, see (30a).

Notice that the nonuniqueness in Framework 1′ has been circumvented by fixing the forward drift at;
indeed LISM is convex in s, confirming Note that using integration by parts, LISM is equivalent to
denoising score matching (Song et al., 2020; 2021):

DKL(
−→
P µ,a||

←−
P ν,a−s) = E

Y ∼
−→P µ,a

[
1

2σ2

∫ T

0

∥∥∥st(Yt)−∇ ln ρµ,at|0 (Yt|Y0)
∥∥∥2 dt

]
+ const.. (38)

Framework 1′ accommodates modifications of (37); in particular the divergence term in (37) can be
replaced by a backward integral, see Appendix C.1 and Remark 3. Note that the settings discussed in
this section are also akin to the formulations in Kingma et al. (2021); Huang et al. (2021a).

Finally, it is worth highlighting that this setting is not limited to ergodic models and can in fact
accommodate finite time models in the exact same fashion as the Föllmer drift is used for sampling
(Section C.3) by using a Doob’s transform (Rogers & Williams, 2000) based SDE for

−→
P µ,a as

opposed to the classical VP-SDE see Example 2.4 in Ye et al. (2022).
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C.3 SCORE-BASED SAMPLING

Consider the setting when ν(z) is a target distribution that can be evaluated pointwise up to a
normalisation constant. In order to construct a diffusion process that transports an appropriate
auxiliary distribution µ(x) to ν(z), one approach is to fix a drift bt in the backward diffusion
(12b), and then learn the corresponding forward diffusion (12a) by minimising a 7→ D(

−→
P µ,a|

←−
P ν,b).

Tractability of this objective requires that µ :=
←−
P ν,b

0 be known explicitly, at least approximately. In
the following we review possible choices.

The Föllmer drift. Choosing bt(x) = x/t, one can show using Doob’s transform (Rogers &
Williams, 2000, Theorem 40.3(iii)), that

←−
P ν,b

0 (x) = δ(x), for any terminal distribution ν(z). Hence,
minimising a 7→ DKL(

−→
P δ0,a|

←−
P ν,b) leads to a tractable objective. In particular consider the choice

Γ0 = δ0, γ+ = 0, corresponding to a standard Brownian motion, then it follows that γ− = x
t ,

ΓT = N (0, Tσ2) and thus via Proposition 2.2:

DKL(
−→
P δ0,a|

←−
P ν,b) = E

Y ∼
−→P µ,a

[
1

σ2

∫ T

0

a2(Yt) dt+ln

(
dN (0, Tσ2)

dν

)
(YT )

]
+ const., (39)

in accordance with (Dai Pra, 1991; Vargas et al., 2023b; Zhang & Chen, 2022). For further details,
see Follmer (1984); Vargas et al. (2023b); Zhang & Chen (2022); Huang et al. (2021b). As hinted at
in Appendix B, replacing DKL in (39) by the log-variance divergence (33) leads to an objective that
directly links to BSDEs, see (Nüsken & Richter, 2021, Section 3.2).

Ergodic diffusions. Vargas et al. (2023a); Berner et al. (2022) fix a backward drift bt that induces
an ergodic backward diffusion, so that for large T , the marginal at initial time

←−
P ν,b
t=0 is close to

the corresponding invariant distribution, and in particular (almost) independent of ν(z).10 Defining
µ :=

←−
P ν,b
t=0, Vargas et al. (2023a); Berner et al. (2022) set out to minimise the denoising diffusion

sampler loss LDDS(f) := DKL(
−→
P µ,b+σ2f |

←−
P ν,b). Choosing the reference process to be Γ0,T = µ,

γ± = b (that is, the reference process is at stationarity, with invariant measure µ(z)), direct calculation
based on (14) shows that

LDDS(f) = E
Y ∼

−→
P µ,b+σ2f

[
σ2

∫ T

0

f2(Yt) dt+ln

(
dΓT
dν

)
(YT )

]
, (40)

Remark 7 (IWAE-objective). In line with (34), we may also consider the multi-sample objective

L(K)
DDS(f) := D

(K)
KL (
−→
P µ,b+σ2f |

←−
P ν,b)

= E
Y 1,...,Y Kiid∼

−→P µ,b+σ2f

[
ln

(
1
K

K∑
i=1

exp

(
σ2

∫ T

0

f2(Y i
t ) dt+ln

(
dΓT
dν

)
(Y i

T )

))]

Proof. We start by noticing that the choice γ−t = bt cancels the terms in (14c), and the choice Γ0 = µ
cancels the first term in (14a). Using at = bt + σ2ft, we therefore obtain

LDDS(f) = DKL(
−→
P µ,b+σ2f |

←−
P ν,b) (41a)

= E

[
σ2

∫ T

0

ft(Yt) ·
(
(bt + ft)(Yt) dt− 1

2 (2bt + ft)(Yt) dt
)
+ ln

(
dΓT
dν

)
(YT )

]

= E

[
σ2

∫ T

0

f2t (Yt) dt+ ln

(
dΓT
dν

)
(YT )

]
. (41b)

As is implicit in Berner et al. (2022), it is also possible to choose γ± = 0 for the reference process,
with Γ0 = ΓT = Leb, the Lebesgue measure on Rd. We notice in passing that although the Lebesgue

10Vargas et al. (2023a) chose a (time-inhomoegenous) backward Ornstein-Uhlenbeck process, so that
←−
P ν,b

t=0

is close to a Gaussian, but generalisations are straightforward.
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measure is not normalisable, it is invariant under Brownian motion (the forward and backward drifts
are both zero), and the arguments can be made rigorous by a limiting argument (take Gaussians
with diverging variances), or by using the techniques in Léonard (2014a, Appendix A.1). By similar
calculations as above, we obtain

LDDS(f) = E

[
σ2

∫ T

0

f2t (Yt) dt− 1
σ

∫ T

0

bt(Yt) ·
←−
dWt + lnµ(Y0)− ln ν(YT )

]
(42a)

= E

[
σ2

∫ T

0

f2t (Yt) dt−
∫ T

0

(∇ · bt)(Yt) dt− ln ν(YT )

]
+ const., (42b)

where we overload notation and denote the Lebesgue densities of µ and ν with the same letters. In
the second line we have used the conversion formula in (15), together with the fact that the forward
Itô integrals are forward martingales (Kunita, 2019), and therefore have zero expectation. Comparing
(40) and (42b), we notice the additional divergence term, due to the fact that the choice γ− = 0 does
not cancel the terms in (64). See also the discussion in Appendix C.1.

Finally we note that whilst the work in Berner et al. (2022) focuses on exploring a VP-SDE-based
approach which is ergodic, their overarching framework generalises beyond ergodic settings, notice
this objective is akin to the KL expressions in Vargas (2021, Proposition 1) and Liu et al. (a,
Proposition 9).

C.4 ACTION MATCHING (NEKLYUDOV ET AL., 2023)

Similar to our approach in Section 3.2, Neklyudov et al. (2023) fix a curve of distributions (πt)t∈[0,T ].
In contrast to us, they assume that samples from πt are available, for each t ∈ [0, T ] (but scores and
unnormalised densities are not). Still, we can use Framework 1′ to rederive their objective:

Akin to the proof of Proposition 3.2, under mild conditions on (πt)t∈[0,T ], there exists a unique vector
field∇ϕ∗t that satisfies the Fokker-Planck equation

∂tπt +∇ · (πt∇ϕ∗t ) = σ2

2 ∆πt. (43)

We can now use the reference process
−→
P π0,∇ϕ∗

(that is, Γ0 = π0, γ+t = ∇ϕ∗t , ΓT = πT , γ−t =
∇ϕ∗t − σ2∇ lnπt) to compute the objective

ψ 7→ DKL(
−→
P π0,∇ψ||

←−
P πT ,∇ψ−σ2∇ lnπ),

relying on the same calculational techniques as in Sections C.2 and C.3 (the particular choice of
reference process cancels the terms in (14a)). Notice that the parameterisation in this objective
constrains the target diffusion to have time-marginals πt, just as in Section 3.2. By direct calculation,
we obtain (up to a factor of 2/σ2) the action-gap in equation (5) in Neklyudov et al. (2023). Indeed,
we see that

DKL(
−→
P π0,∇ψ||

←−
P πT ,∇ψ−σ2∇ lnπ) = E−→

P π0,∇ψ

[
ln

(
d
−→
P π0,∇ψ

d
←−
P∇ψ−σ2∇ lnπ

)]

= E

[
1
σ2

∫ T

0

(∇ψt −∇ϕ∗t )
2
(Yt) dt− 1

σ

∫ T

0

(∇ψt −∇ϕ∗t )(Yt) ·
←−
dWt

−
∫ T

0

∇ lnπt(Yt) · (∇ψt −∇ϕ∗t )(Yt) dt

]

= E

[
1
σ2

∫ T

0

(∇ψt −∇ϕ∗t )
2
(Yt) dt

]
,
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where in the last line we have used the conversion formula (15) together with (30a) to compute

E

[
1
σ

∫ T

0

(∇ψt −∇ϕ∗t )(Yt) ·
←−
dWt

]
= E

[∫ T

0

(∇ · (∇ψt −∇ϕ∗t ))(Yt) dt

]

=

∫ T

0

∫
Rd
(∇ · (∇ψt −∇ϕ∗t ))(x)πt(dx) dt = −

∫ T

0

∫
Rd
(∇ψt −∇ϕ∗t )(x) · ∇ lnπt(x)πt(dx) dt

= E

[∫ T

0

∇ lnπt(Yt) · (∇ψt −∇ϕ∗t )(Yt) dt

]

and cancel the two last terms in the penultimate line.

D CONTROLLED MONTE CARLO DIFFUSIONS (SECTION 3.2)

D.1 DERIVATION OF LCMCD
DKL

The proof uses Proposition 2.2, choosing Γ0 = ΓT to be the Lebesgue measure, with γ+ = γ− = 0
(but notice that σ in (14) needs to be replaced by σ

√
2 due to the scaling in (21)). We compute

LCMCD
DKL

(ϕ) = E
Y ∼

−→
P π0,σ2∇ lnπ+∇ϕ

[
ln

(
d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y )

]
=E [lnπ0(Y0)− lnπT (YT )]

+ E

[
1

2σ2

∫ T

0

(σ2∇ lnπt +∇ϕt)(Yt) ·
(−→
d Yt − 1

2 (σ
2∇ lnπt +∇ϕt)(Yt) dt

)]

− E

[
1

2σ2

∫ T

0

(−σ2∇ lnπt +∇ϕt)(Yt) ·
(←−
d Yt − 1

2 (−σ
2∇ lnπt +∇ϕt)(Yt) dt

)]
=E [lnπ0(Y0)− lnπT (YT )]

+ E

[
1

2σ2

∫ T

0

(σ2∇ lnπt +∇ϕt)(Yt) ·
−→
d Yt

]
− E

[
1

2σ2

∫ T

0

(−σ2∇ lnπt +∇ϕt)(Yt) ·
←−
d Yt

]

− 1
σ2E

[∫ T

0

(σ2∇ lnπt · ∇ϕt)(Yt) dt

]
=E [lnπ0(Y0)− lnπT (YT )]

+ E

[
σ2

∫ T

0

|∇ lnπt(Yt)|2dt+ 1
σ
√
2

∫ T

0

(
σ2∇ lnπt −∇ϕt

)
(Yt) ·

←−
dWt

]
,

where in the last equality we have inserted the dynamics (21) and used the martingale property (30a).
Notice that the expectation of the backward integral is not zero, see Appendix A.

D.2 DERIVATION OF LCMCD
Var

In this section, we first verify the expression for LCMCD
Var in Section 3.2, using Proposition 2.2, and

choosing Γ0 = ΓT to be the Lebesgue measure, γ+ = γ− = 0. We recall that although the Lebesgue
measure in not normalisable, the arguments can be made rigorous using the techniques in Léonard
(2014a, Appendix A).
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The Radon-Nikodym derivative (RND) along (21) reads(
ln

d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y ) = (lnπ0)(Y0)− (lnπT )(YT )

+ 1
2σ2

∫ T

0

(σ2∇lnπt+∇ϕt)(Yt)
(
(σ2∇lnπt+∇ϕt)(Yt) dt+

√
2σ
−→
dWt− 1

2 (σ
2∇lnπt+∇ϕt)(Yt) dt

)
− 1

2σ2

∫ T

0

(−σ2∇lnπt+∇ϕt)(Yt)
(
(σ2∇lnπt+∇ϕt)(Yt) dt+

√
2σ
←−
dWt− 1

2(∇ϕt−σ
2∇ lnπt)(Yt) dt

)
= (lnπ0)(Y0)− (lnπT )(YT ) + σ2

∫ T

0

|∇ lnπt(Yt)|2 dt

+ σ√
2

(∫ T

0

∇ lnπt(Yt) ·
−→
dWt +

∫ T

0

∇ lnπt(Yt) ·
←−
dWt

)

+ 1
σ
√
2

(∫ T

0

∇ϕ(Yt) ·
−→
dWt −

∫ T

0

∇ϕ(Yt) ·
←−
dWt

)
.

Using (29b), we obtain

σ√
2

(∫ T

0

∇ lnπt(Yt) ·
−→
dWt +

∫ T

0

∇ lnπt(Yt) ·
←−
dWt

)
=
√
2σ

∫ T

0

∇ lnπt(Yt) ◦ dWt.

Furthermore, from (15) we see that

1
σ
√
2

(∫ T

0

∇ϕ(Yt) ·
−→
dWt −

∫ T

0

∇ϕ(Yt) ·
←−
dWt

)
= −

∫ T

0

∆ϕt(Yt) dt, (47)

from which the claim follows.

Remark 8 (Estimating LCMCD
Var without second derivatives). Using (47), we can equivalently write

the RND as (
ln

d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y ) = lnπT (YT )− lnπ0(Y0)

− 1
σ
√
2

(∫ T

0

∇ϕ(Yt) ·
−→
dWt −

∫ T

0

∇ϕ(Yt) ·
←−
dWt

)

−σ
√
2

∫ T

0

∇ lnπt(Yt)◦dWt− σ2

∫ T

0

|∇ lnπt(Yt)|2 dt,

so that LCMCD
Var can be estimated without the need to evaluate ∆ϕ. Note that the identity (47) is

similar to a finite difference approximation of ∆ϕ along the process Yt.

D.3 EXISTENCE AND UNIQUENESS OF THE DRIFT

Before proceeding to the proof of Propostion 3.2, we state the following assumption on the curve of
distributions (πt)t∈[0,T ]:

Assumption D.1. Assume that π ∈ C∞([0, T ]× Rd;R), and that for all t ∈ [0, T ]

1. the time derivative ∂tπt is square-integrable, that is, ∂tπt(t, ·) ∈ L2(Rd),

2. πt satisfies a Poincaré inequality, that is, there exists a constant Ct > 0 such that

Varπt(f) ≤ Ct
∫
Rd
|∇f |2dπt, (49)

for all f ∈ C1
b (Rd).
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Note that at the boundary ∂[0, T ] = {0, T}, we agree to denote by ∂tπt the ‘inward-pointing
derivative’ and interpret C∞([0, T ] × Rd;R) in that way. We remark that the Poincaré inequality
(49) is satisfied under relatively mild conditions on the tails of πt (for instance, Gaussian tails) and
control of its derivatives, see, e.g., Bakry et al. (2014, Chapter 4). Under Assumption D.1, we can
prove Proposition 3.2 as follows:

Proof of Proposition 3.2. The Fokker-Planck equation associated to (21) is given by

∂tπt +∇ · (πt∇ϕt) = 0. (50)

The operator ϕ 7→ −∇ · (πt∇ϕ) is essentially self-adjoint in L2(Rd), and, by (49) coercive on
L2
0(Rd) := {f ∈ L2(Rd) :

∫
fdx = 0}. Therefore, there exists a unique solution ϕ∗t ∈ L2

0(Rd) to
(50), for any t ∈ [0, T ]. This solution is smooth by elliptic regularity. By Proposition 2.1 and our
general framework, any minimiser ϕ̃ of (22) necessarily satisfies (50) as well. We then obtain

∇ · (πt∇(ϕt − ϕ̃t)) = 0.

Multiplying this equation by ϕt − ϕ̃t, integrating, and integrating by parts shows that
∫
∥∇(ϕ −

ϕ̃)∥2 dπt = 0, proving the claim.

Remark 9 (Relation to previous work). Note we can carry out a change of variables to equation (50),

∂t lnπt = −π−1
t (∇πt · ∇ϕt + πt∆ϕ) = −∇ lnπt · ∇ϕ−∆ϕ,

yielding the PDE

∂t lnπt +∇ lnπt · ∇ϕ+∆ϕ = 0,

which when considered in terms of the unnormalised flow π̂t = Ztπt coincides with PDE in
Vaikuntanathan & Jarzynski (2008); Arbel et al. (2021):

∂t ln π̂t +∇ ln π̂t · ∇ϕ+∆ϕ− Eπt [∂t ln π̂t] = 0.

In particular, we note that the Markov chain proposed in Arbel et al. (2021) converges to our proposed
parameterisation in equation (21) (see equation (12) in Arbel et al. (2021)).

D.4 INFINITESIMAL SCHRÖDINGER BRIDGES (PROOF OF PROPOSITION 3.4)

Throughout this proof, we assume that the Schrödinger problems on the intervals [iT/N, (i+1)T/N ],
i = 0, . . . , N − 1 admit unique solutions, with drifts of regularity specified in Assumption A.1, see
(Léonard, 2014a, Proposition 2.5) for sufficient conditions. We also work under Assumption D.1, so
that the drift∇ϕ∗ exists and is unique by Proposition 3.2.

Given the interpolation (πt)t∈[0,T ], we define the constraint sets

MN (π) :=

{
a ∈ UN :

−→
P π0,∇ lnπ+a
ti = πti at times ti =

iT
N , i = 0, . . . , N

}
, (51)

as well as

M∞(π) :=

{
a ∈ U :

−→
P π0,∇ lnπ+a
t = πt for all t ∈ [0, T ]

}
. (52a)

In (51), the set UN is given by

UN :=

{
a ∈ C([0, T ]×Rd;Rd) : a ∈ C∞([ iTN ,

(i+1)T
N ]× Rd;Rd), for all i = 0, . . . , N − 1,

∃L > 0 such that ∥at(x)− at(y)∥ ≤ L∥x− y∥, for all t ∈ [0, T ], x,y ∈ Rd
}
,

and we recall that U has been defined in Assumption A.1.
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Algorithm 2 Controlled Monte Carlo Diffusions - Training

Require: π0, πT , πt, σ, K step-sizes ∆tk, network fϕ
for i in epochs do

lnWT ,YT ∼ Algorithm 1(π0, πT , πt, σ, {∆tk}k, fϕ)
Gradient descent step∇ϕ − lnWT

return fϕ

By the construction in Proposition 3.4, the drift∇ϕ(N) can be characterised by

∇ϕ(N) ∈ argmin
a∈MN (π)

E
Y ∼

−→P π0,∇ lnπ+a

[
1

2σ2

∫ T

0

∥at(Y )∥2 dt

]
(54a)

= argmin
a∈MN (π)

DKL(
−→
P π0,∇ lnπ+a|

−→
P π0,∇ lnπ), (54b)

where the second line follows from Girsanov’s theorem, see the proof of Proposition 2.2.

We now claim that the CMCD drift ∇ϕ∗, by definition the minimiser in (22), can be characterised in
a similar way by

∇ϕ∗ ∈ argmin
a∈M∞(π)

E
Y ∼

−→P π0,∇ lnπ+a

[
1

2σ2

∫ T

0

∥at(Y )∥2 dt

]
(55a)

= argmin
a∈M∞(π)

DKL(
−→
P π0,∇ lnπ+a|

−→
P π0,∇ lnπ). (55b)

Indeed, the constraint
−→
P π0,∇ lnπ+a
t = πt for all t ∈ [0, T ] implies that a satisfies the Fokker-Planck

equation ∂tπt +∇ · (πtat) = 0. By the Helmholtz decomposition (Figalli & Glaudo, 2021, Section
2.5.4), minimisers of at 7→

∫
a2tdπt are of gradient form, thus (55a) holds.

Comparing (54) and (55a), it is plausible to infer the convergence ∇ϕ(N) → ∇ϕ∗, as the marginal
constraints at the discrete time points 0, 1/T, 2/T, ..., T become dense and approach the continuous-
time constraint in (52).

To make this more precise, we note that sinceM∞(π) ⊂MN (π) for all N ∈ N, we have that

DKL(
−→
P π0,∇ lnπ+∇ϕ(N)

|
−→
P π0,∇ lnπ) ≤ DKL(

−→
P π0,∇ lnπ+∇ϕ∗

|
−→
P π0,∇ lnπ), (56)

for all N ∈ N. Since DKL(·|
−→
P π0,∇ lnπ) has weakly compact sublevel sets (Dupuis & Ellis, 2011,

Lemma 1.4.3), we can extract a subsequence
−→
P π0,∇ lnπ+∇ϕ(Nk)

that converges weakly towards a
path measure P̃ ∈ P(C([0, T ];Rd)). To show that indeed P̃ =

−→
P π0,∇ lnπ+∇ϕ∗

, it is sufficient to note
that by the constraints in (51) those measures necessarily have the same finite-dimensional marginals,
and to combine this observation with the continuity statement of Theorem 2.7.3 in Billingsley
(2013), as well as the uniqueness from Proposition 3.2. The convergence of the drifts in the sense
of L2([0, T ] × Rd;Rd) now follows from the lower semicontinuity of DKL in combination with
Girsanov’s theorem.

D.5 DISCRETISATION AND OBJECTIVE

In the setting of CMCD with KL divergence we can use the EM approximations to the RND presented
in Proposition E.1 to express the objective as:

LCMCD
DKL

(ϕ)≈E

[
ln
π0(Y0)

π̂(YT )

K−1∏
k=0

N (Ytk+1
|Ytk + (σ2∇ lnπtk +∇ lnϕtk)(Ytk)∆tk, 2σ

2∆tk)

N(Ytk |Ytk+1
+(σ2∇lnπtk+1

−∇ lnϕtk+1
)(Ytk+1

)∆tk, 2σ2∆tk)

]
,

(57)

where the expectation is taken wrt to the EM approximation of the SDE in (21), that is:

Ytk+1
∼ N (Ytk + (σ2∇ lnπtk +∇ lnϕtk)(Ytk)∆tk, 2σ

2∆tk). (58)
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Algorithm 3 Forward transition Ftk(Ztk+1
,Ytk+1

|Ztk ,Ytk)
Require: Ztk , Ytk , step-size ∆tk

Re-sample momentum Y ′
tk
∼ N (Ytk(1− σ∆tk) +∇ϕtk(Ytk ,Ztk)∆tk, 2σ∆tkI)

UpdateY ′′
tk

= Y ′
tk

+ ∆tk
2 ∇ lnπtk(Ztk)

UpdateZtk+1
= Ztk +∆tkY

′′
tk

UpdateYtk+1
= Y ′′

tk
+ ∆tk

2 ∇ lnπtk(Ztk+1
)

 Leapfrog step
Φ(Ztk ,Y

′
tk
)

return (Ztk+1
,Ytk+1

)

Algorithm 4 Backward transition Btk(Ztk ,Ytk |Ztk+1
,Ytk+1

)

Require: Ztk+1
, Ytk+1

, step-size ∆tk
UpdateY ′′

tk
= Ytk+1

− ∆tk
2 ∇ lnπtk(Ztk)

UpdateZtk = Ztk+1
−∆tkY

′′
tk

UpdateY ′
tk

= Y ′′
tk
− ∆tk

2 ∇ lnπtk(Ztk+1
)

 Inverse leapfrog
Φ−1(Ztk+1

,Ytk+1
)

Re-sample momentum Ytk ∼ N
(
Y ′
tk
(1− σ∆tk)−∇ϕtk(Y ′

tk
,Ztk)∆tk, 2σ∆tkI

)
return (Ztk ,Ytk)

D.6 UNDERDAMPED LANGEVIN DYNAMICS

In this section, we motivate the underdamped generalisation of CMCD which is used across our
experiments. This parameterisation is inspired by the underlying theory for the overdamped approach,
and we leave a rigorous extension of those foundations for future work. However, we have found this
heuristic parameterisation to perform very well empirically.

Following Geffner & Domke (2023) we parametrise as:

Y0,Z0 ∼ N (0, I)⊗π0,
dZt = Ytdt,

dYt=
(
σ2∇ lnπt(Zt)− σ2Yt +∇ϕt(Yt,Zt)

)
dt+ σ

√
2
−→
dWt. (59)

and it’s time reversal as:

YT ,ZT ∼ N (0, I)⊗πT ,
dZt = Ytdt,

dYt=
(
−σ2∇ lnπt(Zt)+ σ2Yt +∇ϕt(Yt,Zt)

)
dt+ σ

√
2
←−
dWt. (60)

D.6.1 TIME DISCRTEISATION AND OBJECTIVE

To discretise the above processes we follow the exact same discretisation scheme carried out in
Geffner & Domke (2023), however in this case we have to adapt the forward discretisation scheme
to include the non-linear drift when carrying out the momentum re-sample step, specific details for
this scheme can be found in Algorithms 3 and 4. This discretisation in turn allows us to compute the
discrete RND between these two processes which we require for Framework 1′.

Now via Propostion 1 in (Geffner & Domke, 2023) it follows that

π0(Y0,Z0)

πT (YT ,ZT )

K−1∏
k=0

Ftk(Ztk+1
,Ytk+1

|Ztk ,Ytk)
Btk(Ztk ,Ytk |Ztk+1

,Ytk+1
)

=
π0(Y0,Z0)

πT (YT ,ZT )

K−1∏
k=0

N
(
Y ′
tk
| Ytk(1− σ∆tk) +∇ϕtk(Ytk ,Ztk)∆tk, 2σ∆tkI

)
N
(
Ytk | Y ′

tk
(1− σ∆tk)−∇ϕtk(Y ′

tk
,Ztk)∆tk, 2σ∆tkI

) (61)

then we can use the above discrete time RND to approximate the KL divergence between SDEs (59)
and (60) yielding our objective for the under dampened setting:
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LCMCD−UD
DKL

(ϕ)≈E

[
ln
π0(Y0,Z0)

πT (YT ,ZT )

K−1∏
k=0

N
(
Y ′
tk
|Ytk(1− σ∆tk) +∇ϕtk(Ytk ,Ztk)∆tk, 2σ∆tkI

)
N
(
Ytk|Y ′

tk
(1− σ∆tk)−∇ϕtk(Y ′

tk
,Ztk)∆tk, 2σ∆tkI

)]
(62)

Where the expectation is taken with respect to the discrete-time process in Algorithm 3.

E PROOFS

E.1 PROOF OF PROPOSITION 2.2 (FORWARD-BACKWARD RADON-NIKODYM DERIVATIVES)

Proof. We begin with the forward Radon-Nikodym derivative

ln

(
d
−→
P µ,a

d
−→
P ν,b

)
(Y ) = ln

(
dµ

dν

)
(Y0) +

1
σ2

∫ T

0

(at − bt)(Yt) ·
−→
d Yt +

1
2σ2

∫ T

0

(
b2t − a2t

)
(Yt) dt,

(63)
following from Girsanov’s theorem (see, for instance, Nüsken & Richter (2021, Lemma A.1) and
substitute σu = a − b). To compute the backward Radon-Nikodym derivative, we temporarily
introduce the time-reversal operatorR, acting as (RY )t := YT−t on paths11, and as (Ra)t(y) :=
aT−t(y) on vector fields. We then observe that

ln

(
d
←−
P µ,Ra

d
←−
P ν,Rb

)
(RY ) = ln

(
d
−→
P µ,a

d
−→
P ν,b

)
(Y ),

for instance by comparing the discrete-time processes in (9a) and (9b). Equivalently,

ln

(
d
←−
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
d
−→
P µ,Ra

d
−→
P ν,Rb

)
(RY ),

sinceR2 is the identity. Building on (63), the backward Radon-Nikodym derivative therefore reads

ln

(
d
←−
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
dµ

dν

)
((RY )0) +

1
σ2

∫ T

0

((Ra)t − (Rb)t)(RYt) ·
−→
d (RY )t

+ 1
2σ2

∫ T

0

(
(Rb)2t − (Ra)2t

)
((RY )t) dt,

= ln

(
dµ

dν

)
(YT ) +

1
σ2

∫ T

0

(at − bt)(Yt) ·
←−
d Yt +

1
2σ2

∫ T

0

(
b2t − a2t

)
(Yt) dt,

(64)

where the integrals have been transformed using the substitution t 7→ T − t. The result in (14) now
follows by writing

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
d
−→
P µ,a

d
−→
P Γ0,γ+

)
(Y ) + ln

(
d
←−
P ΓT ,γ

−

d
←−
P ν,b

)
(Y ),

using the assumption
−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
, and inserting (63) as well as (64).

E.1.1 DISCRETISATION AND CONNECTION TO DNFS (DIFFUSION NORMALISING FLOWS)

In this section we derive the main discretisation formula used in our implementations for the forward-
backwards Radon-Nikodym derivative (RND).

11Although pathwise definitions should be treated with care (because Itô integrals are defined only up to a set
of measure zero), the arguments can be made rigorous using the machinery referred to in Appendix A.
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Proposition E.1. Letting Γ0 = ΓT = Leb and γ± = 0, we have that the RND in (14) is given by

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) = lnµ(Y0)− ln ν(YT ) +

1
σ2

∫ T

0

at(Yt) ·
−→
d Yt − 1

2σ2

∫ T

0

||at(Yt)||2 dt

− 1
σ2

∫ T

0

bt(Yt) ·
←−
d Yt +

1
2σ2

∫ T

0

||bt(Yt)|||2 dt,
−→
P µ,a-almost surely,

and admits the following discrete-time approximation up to constant terms in at and bt (following
Remark 3),

ln

d̂
−→
P µ,a

d
←−
P ν,b

(Y )=−ln ν(YT )+
K−1∑
i=0

1
2σ2(ti+1−ti+1)

||Yti−Yti+1
+ bti+1

(Yti+1
)(ti+1− ti+1)||2+const,

when using the Euler-Maruyama discretisation:

Yti+1
= Yti + ati(Yti)(ti+1 − ti) +

√
(ti+1 − ti)σξ, ξ ∼ N (0, I).

Proof. The first part follows by direct computation.

From here on, we will use the notation fti = fti(Yti) for brevity. Following Remark 3 we have that

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) ≈ lnµ(Y0)− ln ν(YT )

+ 1
σ2

K−1∑
i=0

ati · (Yti+1
− Yti)− 1

2σ2

K−1∑
i=0

||ati ||2 (ti+1 − ti)

− 1
σ2

K−1∑
i=0

bti+1
· (Yti+1

− Yti) +
1

2σ2

K−1∑
i=0

||bti+1
|||2 (ti+1 − ti).

Adding and subtracting ||Yti+1 − Yti ||2/(σ2(ti+1 − ti)) allows us to complete the square in each
sum, resulting in:

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) ≈ lnµ(Y0)− ln ν(YT )−

K−1∑
i=0

1
2σ2(ti+1−ti) ||Yti+1

− Yti − ati(ti+1 − ti)||2

+

K−1∑
i=0

1
2σ2(ti+1−ti) ||Yti − Yti+1

+ bti+1
(ti+1 − ti)||2. (67)

Now notice that under the Euler-Maruyama discretisation ||Yti+1
− Yti − ati(ti+1 − ti)||2 =

(ti+1 − ti)σ2||ξ||2 where ξ ∼ N (0, I) does not depend on at or bt; in particular when using DKL

for the divergence we have that E−→P µ,aEM

||Yti+1 − Yti − ati(ti+1 − ti)||2 = σ2 and thus:

ln

 d̂
−→
P µ,a

d
←−
P ν,b

 (Y ) ∝ lnµ(Y0)− ln ν(YT ) +

K−1∑
i=0

1
2σ2(ti+1−ti) ||Yti − Yti+1

+ bti+1
(ti+1 − ti)||2.

(68)

Notice that in expectation (for computing DKL), equation (68) matches equation (15) in Zhang
& Chen (2021) and thus provides a theoretical backing to the objective used in Zhang & Chen
(2021). Resolving the term E−→P µ,aEM

||Yti+1
− Yti − ati(ti+1 − ti)||2 analytically may offer a variance

reduction similar to the analytic calculations in Sohl-Dickstein et al. (2015, Equation 14) and the
Rao-Blackwelizations of DKL in Ho et al. (2020).
Remark 10. The time discretised RND in equation (67) can be expressed as the
ratio of the transition densities corresponding to two discrete-time Markov chains
µ(y0)q

a(y1:K |y0)/p
b(y0:K−1|yK)ν(yK) with y0:K ∼ qa(y1:K |y0)µ(y0). As a result con-

sidering ν(x) = ν̂(x)/Z and the IS estimator Ẑ = pb(y0:K−1|yK)ν̂(yK)/µ(y0)q
a(y1:K |y0) it

follows that Eqa(y1:K |y0)µ(y0)[ln Ẑ] is an ELBO of Ẑ (e.g. Eqa(y1:K |y0)µ(y0)[ln Ẑ] ≤ lnZ).
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Whilst superficially simple, Remark 10 guarantees that normalizing constant estimators arising from
our discretisation do not overestimate the true normalizing constant. This result is beneficial in
practice as it allows us to compare estimators possessing this property by selecting the one with
the largest value. As highlighted in Vargas et al. (2023a) many SDE discretisations can result in
estimators that do not yield an ELBO: for example, the estimators used in Berner et al. (2022) can
result in overestimating the normalising constant. Note similar remarks have been established in the
context of free energy computation and the Jarzynski equality see Stoltz et al. (2010, Remark 4.5).

E.2 PROOF OF PROPOSITION 3.3 (CONTROLLED CROOKS’ FLUCTUATION THEOREM AND THE
JARZINKY EQUALITY)

Proof. Following the computations in Appendix D.1 and using the formulae (29), we compute

ln

(
d
−→
P µ,σ2∇ lnπ+∇ϕ

d
←−
P ν,−σ2∇ lnπ+∇ϕ

)
(Y ) = lnµ(Y0)− ln ν(YT )

+

∫ T

0

∇ lnπt(Yt) ◦ dYt − 1
σ2

∫ T

0

∇ϕt(Yt) · ∇ lnπt(Yt) dt−
∫ T

0

∆ϕ(Yt) dt.

Then via Itô’s lemma applied to the unnormalised annealed log target ln π̂t = lnπt − lnZt we have

ln π̂T (YT )− ln π̂0(Y0)−
∫ T

0

∂t ln π̂t(Yt) dt =

∫ T

0

∇ ln π̂t(Yt) ◦ dYt =
∫ T

0

∇ lnπt(Yt) ◦ dYt,

thus we arrive at

ln

(
d
−→
P µ,σ2∇ lnπ+∇ϕ

d
←−
P ν,−σ2∇ lnπ+∇ϕ

)
(Y ) = lnµ(Y0)− ln ν(YT ) + ln π̂T (YT )− ln π̂0(Y0)

−
∫ T

0

∂t ln π̂t(Yt) dt− 1
σ2

∫ T

0

∇ϕt(Yt) · ∇ lnπt(Yt) dt−
∫ T

0

∆ϕt(Yt) dt.,

for arbitrary initial and final densities µ and ν. Crooks’ generalised fluctuation theorem (Crooks,
1999) now follows from taking ϕ = 0, and the controlled version in Proposition 3.3 follows from
µ = π0 and ν = πT . Finally notice that:

1 = E−→P µ,σ2∇ lnπ

( d
−→
P µ,σ2∇ lnπ

d
←−
P ν,−σ2∇ lnπ

)−1


= E−→P µ,σ2∇ lnπ

[
exp

(
− lnµ(Y0) + ln ν(YT )− ln π̂T (YT ) + ln π̂0(Y0) +

∫ T

0

∂t ln π̂t(Yt) dt

)]
,

which implies the Jarzynski equality when considering the boundaries µ = π0 and ν = πT , resulting
in:

E−→P π0,σ2∇ lnπ

[
exp

(∫ T

0

∂t ln π̂t(Yt) dt

)]
= e−(lnZ0−lnZT ).

We want to highlight that in (Vaikuntanathan & Jarzynski, 2008, Equations 10-14) ; we can see a
similar formulation to our proposed generalised Crooks’ fluctuation theorem, that said Vaikuntanathan
& Jarzynski (2008) seems to pose this as a conjecture providing no rigorous proof. Furthermore,
unlike our work, they do not formulate this result through SDEs, which we believe we are the first
to do. In short, our work and concurrently Zhong et al. (2023) are the first to provide a rigorous
treatment in establishing the escorted version of Crooks’ fluctuation theorem.

E.3 PROOF OF PROPOSITION 3.1: EM ⇐⇒ IPF

In applications, IPF is faced with the following challenges:

30



Published as a conference paper at ICLR 2024

1. The sequential nature of IPF, coupled with the need for each iteration to undergo compre-
hensive training as outlined in Section C.3, results in significant computational demands.

2. The reference distribution r(x, z) (or the reference vector field ft) enters the iterations in
(18) only through the initialisation. As a consequence, numerical errors accumulate, and
it is often observed that the Schrödinger prior is ‘forgotten’ as IPF proceeds (Vargas et al.,
2021a; Fernandes et al., 2021; Shi et al., 2023).

Thus to address these challenges this section will focus on establishing the connection between EM
and IPF which in turn will provide us with a family of algorithms that circumvent the sequential
nature of IPF, further bridging variational inference and entropic optimal transport.

Proof. The proof proceeds by induction.

To begin with, the update formula in (18a) implies that

π1(x, z) = argmin
π(x,z)

{DKL(π(x, z)||r(x, z)) : πx(x) = µ(x)} ,

recalling the initialisation π(x, z) = r(x, z). To take account of the marginal constraint, we may
write π(x, z) = µ(x)π(z|x) and vary over the conditionals π(z|x). By the chain rule for DKL, we
see that

DKL(µ(x)π(z|x)||r(x, z)) = DKL(µ(x)||r(x)) + Ex∼µ(x)[DKL(π(z|x)||r(z|x))], (70)

which is minimised at π(z|x) = r(z|x). From this, it follows that π1(x, z) = µ(x)r(z|x) for the
first IPF iterate. By assumption, the EM iteration is initialised in such a way that qϕ0(z|x) = r(z|x),
so that indeed π1(x, z) = qϕ0(z|x)µ(x).
The induction step is split (depending on whether n is odd or even):

1.) First assume that the first line of (20) holds for a fixed odd n ≥ 1. Our aim is to show that this
implies that

πn+1(x, z) = pθ(n+1)/2(x|z)ν(z), (71)
that is, the second line of (20) with n replaced by n+ 1. From (18b), we see that

πn+1(x, z) = argmin
π(x,z)

{DKL(π(x, z)||πn(x, z)) : πz(z) = ν(z)} .

Again, we enforce the marginal constraint by setting π(x, z) = π(z|x)ν(z) and proceed as in (70)
to obtain πn+1(x, z) = πn(x|z)ν(z). The statement in (71) is therefore equivalent to πn(x|z) =
pθ(n+1)/2(x|z). To show this, we observe from the EM-scheme in (19) that

θ(n+1)/2 = argmin
θ
LDKL

(ϕ(n−1)/2, θ).

In combination with the second line of (20) and the definition of LD(ϕ, θ) in (5), we obtain

θ(n+1)/2 = argmin
θ

DKL(π
n(x, z)||pθ(x|z)ν(z)) = argmin

θ
Ez∼πnz (z)

[
DKL(π

n(x|z)||pθ(x|z))
]
,

where the second equality follows from the chain rule for DKL as in (70). Since by assumption the
parameterisation of pθ(x|z) is flexible, we indeed conclude that πn(x|z) = pθ(n+1)/2(x|z).
2.) Assume now that the second line of (20) holds for a fixed even n ≥ 2. We need to show that the
first line holds with n replaced by n+ 1, that is,

πn+1(x, z) = qϕn/2(z|x)µ(x).
Using similar arguments as before, we see that πn+1(x, z) = πn(x|z)µ(x), so that it is left to show
that πn(x|z) = qϕn/2(z|x). Along the same lines as in 1.), we obtain

ϕn/2 = argmin
ϕ

LDKL(ϕ, θn/2) = argmin
ϕ

DKL(q
ϕ(z|x)µ(x)||πn(x, z))

= argmin
ϕ

Ex∼µ(x)
[
qϕ(z|x)||πn(z|x)

]
.

Again, this allows us to conclude, since the parameterisation in qϕ(z|x) is assumed to be flexible
enough to allow for qϕn/2(z|x) = πn(x|z).
The proof for the path space IPF scheme is verbatim the same after adjusting the notation. For
completeness, we consider a drift-wise version below.
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Remark 11 (Extension to f -divergences). The proof does not make use of specific properties of
DKL, other than that it satisfies the chain rule. As a consequence, the statement of Proposition 3.1
straightforwardly extends to other divergences with this property, in particular to f -divergences, see
Proposition 6 in (Baudoin, 2002).

E.4 DRIFT BASED EM

As remarked in the previous subsection, the proof of the equivalence between IPF and EM in path
space follows the exact same lines, replacing the chain rule of DKL with the (slightly more general)
disintegration theorem (Léonard, 2014b). In this section, we provide a direct extension to the control
setting, yielding yet another IPF-type algorithm and motivating certain design choices for the family
of methods we study.

Corollary E.2 (Path space EM). For the initialisation ϕ0 = 0 the alternating scheme

θn+1 = argmin
θ

DKL(
−→
P µ,f+σ2∇ϕn ,

←−
P ν,f+σ2∇θ),

ϕn+1 = argmin
ϕ

DKL(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θn+1) (73)

agrees with the path space IPF iterations in (Bernton et al., 2019; Vargas et al., 2021a; De Bortoli
et al., 2021).

Proof. For brevity let LFB(ϕ, θ) := DKL(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ). Additionally, we parameterise

the forwards and backwards SDEs with respective path distributions
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ as:

dYt= ft(Yt) dt+ σ2∇ϕt(Yt) dt+ σ
−→
dWt, Y0∼µ,

dYt = ft(Yt) dt+ σ2∇θt(Yt) dt+ σ
←−
dWt, YT ∼ ν.

The proof will proceed quite similarly, so instead we will consider just the inductive step for the odd
half bridge:

θn = argmin
θ
LFB(ϕn−1, θ).

We can show via the DKL chain rule and the disintegration theorem (Léonard, 2014b) that the above
is minimised when θ satisfies

←−
P ν,f+σ2∇θ =

−→
P µ,f+σ2∇ϕn−1 dν

dρ
µ,f+σ2∇ϕn−1
T

which corresponds to

∇θn = σ2∇ϕn−1−σ2∇ ln ρ
µ,f+σ2∇ϕn−1

t following Observation 1 in Vargas et al. (2021a). Similarly
as per Proposition 3.1 the results will follow for the even half bridges.

EM initialisation: The above corollary provides us with convergence guarantees when performing
coordinate descent on DKL(

−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ) subject to initialising ϕ0 = 0. n practice, this

indicates that the way of initialising ϕ has a major impact on which bridge we converge to.

Thus as a rule of thumb we propose initialising ϕ0 = 0 such that we initialise at the Schrödinger prior:
then one may carry out joint updates as an alternate heuristic, we call this approach DNF (EM Init),
as it is effectively a clever initialisation of DNF inspired by the relationship between IPF and EM.

E.5 HJB-REGULARIZERS

As per Section 3.1, IPF resolves the nonquniqueness in minimising LD(ϕ, θ) by performing the
coordinate-wise updates (19) starting from an initialisation informed by the Schrödinger prior. On
the basis of this observation, the joint updates (ϕn+1, θn+1)← (ϕn, θn)− h∇ϕ,θLD(ϕ, θ) suggest
themselves, in the spirit of VAEs (Kingma et al., 2019) and as already proposed in this setting by
Neal & Hinton (1998). However, as is clear from the introduction, the limit limn→∞(ϕn, θn), can
merely be expected to respect the marginals in (6), and no optimality in the sense of (17) is expected.
As a remedy, we present the following result:
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Proposition E.3. For λ > 0, a divergence D on path space, and ϕ, ψ ∈ C1,2([0, T ]× Rd;R), let

LSchr(ϕ, θ) := D(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ) + λReg(ϕ), (74)

where Reg(ϕ) = 0 if and only if the HJB-equation ∂tϕ + f · ∇ϕ + σ2

2 ∆ϕ + σ2

2 |∇ϕ|
2 = 0 holds.

Then LSchr(ϕ, θ) = 0 implies that the drift at := σ2∇ϕt solves (17).

The proof rests on an optimal control reformulation of the Schrödinger problem (see Appendix E),
identifying the HJB-equation as the missing link that renders joint minimisation of (74) theoretically
sound for solving (17). The loss in (74) has two important benefits compared to standard IPF. First, it
circumvents the need for the sequential updates used in IPF, thereby simplifying and speeding up
the optimisation procedure. Second, it enforces the Schrödinger prior drift f directly, rather than
recursively via eq. (18a), (18b). This prevents the prior from being forgotten, as is usually the case in
regular IPF. In Appendix E.5, we detail possible constructions of Reg(ϕ), discuss relationships to
previous work, and evaluate the performance of the suggested approach in numerical experiments.

This result can be found in Chen et al. (2021, Proposition 5.1), for instance, but since it is relevant to
the connections pointed out in Remark 13 below, we present an independent proof:
Proposition E.4 (Mean-field game formulation). Assume that ϕ∈C1,2([0, T ]×Rd;R) satisfies the
conditions:

1. The forward SDE

dYt= ft(Yt) dt+ σ2∇ϕt(Yt) dt+ σ
−→
dWt, Y0∼µ (75)

admits a unique strong solution on [0, T ], satisfying moreover the terminal constraint
YT ∼ ν.

2. The Hamilton-Jacobi-Bellmann (HJB) equation

∂tϕ+ f · ∇ϕ+
σ2

2
∆ϕ+ σ2

2 |∇ϕ|
2 = 0 (76)

holds for all (t, x) ∈ [0, T ]× Rd.

Then a = σ2∇ϕ provides the unique solution to the dynamical Schrödinger problem as posed in (17).

Proof. We denote the path measures associated to the SDE

dYt = ft(Yt) dt+ σ dWt (77)

by P and the SDE (75) by Pϕ, respectively. According to Girsanov’s theorem, the Radon-Nikodym
derivative satisfies

dPϕ

dP
= exp

(
σ

∫ T

0

∇ϕt(Yt) · dWt − σ2

2

∫ T

0

|∇ϕt|2(Yt) dt

)
, (78)

provided that the marginals agree at initial time, P0 = Pϕ0 . Along solutions of (77), we have by Itô’s
formula

ϕT (YT )−ϕ0(Y0) =

∫ T

0

∂tϕt(Yt) dt+

∫ T

0

(ft · ∇ϕt)(Yt) dt+ σ2

2

∫ T

0

∆ϕt(Yt) dt+ σ

∫ T

0

∇ϕt(Yt)·dWt

= −σ
2

2

∫ T

0

|∇ϕt|2(Yt) dt+ σ

∫ T

0

∇ϕt(Yt) · dWt = ln

(
dPϕ

dP

)
, (79)

where we have used the HJB-equation (76) in the second line. Combining this with (78), we see that

dPϕ

dP
(Y ) = exp (−ϕ0(Y0)) exp (ϕT (YT )) . (80)

The claim now follows, since the unique solution to the Schrödinger problem is characterised by
the product-form expression in (80, see Léonard (2014a, Section 2), together with the marginal
constraints Pϕ0 = µ and PϕT = ν, which are satisfied by assumption.
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Remark 12 (Summarised relationship to previous work). For λ = 0, coordinate-wise updates of
LSchr(ϕ, θ) recover the IPF updates from De Bortoli et al. (2021); Vargas et al. (2021a) according
to Corollary 3.1. Note that LSchr is an unconstrained objective, in contrast to (17); previous works
(Koshizuka & Sato, 2023; Zhang & Katsoulakis, 2023) have suggested incorporating the marginal
constraints softly by adding penalising terms to the running cost in (17). Those approaches require a
limiting argument (from an algorithmic standpoint, adaptive tuning of a weight parameter) to recover
the solution to (17). In contrast, the conclusion of Proposition E.3 holds for arbitrary λ > 0. Shi et al.
(2023); Peluchetti (2023) suggest an algorithm involving reciprocal projections onto the reciprocal
class associated to ft. From Clark (1991); Thieullen (2002); Rœlly (2013), the HJB-equation (76) is a
local characteristic (Reg(ϕ) = 0 forces (75) to be in the reciprocal class); hence Reg(ϕ) in (74) plays
a similar role as the reciprocal projection (Shi et al., 2023, Definition 3), see Remark 13. Liu et al.
(a) suggest an iterative IPF-like scheme involving a temporal difference term (Sutton & Barto, 2018,
Chapter 6). As in Nüsken & Richter (2023), this is a an HJB-regulariser in the sense of Proposition
E.3, see Remark 13. Finally, Albergo et al. (2023, Theorem 5.3) and Gushchin et al. (2022) develop
saddle-point objectives for (17).

Remark 13 (Connection to reciprocal classes (Shi et al., 2023; Peluchetti, 2023) and TD learning
(Liu et al., a)). The calculation in equation (79) makes the relationship between the HJB equation
(76) and reciprocal classes manifest (since reciprocal classes can essentially be defined through the
relationship (80), see Léonard et al. (2014); Rœlly (2013)). Moreover, equation (79) showcases the
relationship between TD learning (Sutton & Barto, 2018, Chapter 6) as suggested in Liu et al. (a) and
HJB regularisation. Indeed,

RegBSDE(ϕ) := Var

(
ϕT (YT )− ϕ0(Y0) +

σ2

2

∫ T

0

|∇ϕt|2(Yt) dt− σ
∫ T

0

∇ϕt(Yt) · dWt

)
,

(81)
where the variance is taken with respect to the path measure induced by (77), is a valid HJB-regulariser
in the sense of Proposition E.3. The equivalence between RegBSDE(ϕ) = 0 and the HJB equation (76)
follows from the theory of backward stochastic differential equations (BSDEs)12, see, for example,
the proof of Proposition 3.4 in Nüsken & Richter (2023) and the discussion in Nüsken & Richter
(2021, Section 3.2).

In the following, we present an analogue of Proposition E.4 involving the backward drift (Chen et al.,
2019):

Proposition E.5. Assume that θ ∈ C1,2([0, T ]× Rd;R) satisfies the following two conditions:

1. The backward SDE

dYt = ft(Yt) dt+ σ2∇θt(Yt) dt+ σ
←−
dWt, YT ∼ ν (82)

admits a unique strong solution on [0, T ], satisfying moreover the initial constraint Y0 ∼ µ.

2. The Hamilton-Jacobi-Bellmann (HJB) equation

∂tθ + f · ∇θ − σ2

2
∆θ + σ2

2 |∇θ|
2 −∇ · f = 0 (83)

holds for all (t, x) ∈ [0, T ]× Rd.

Assuming furthermore that the solution to (82) admits a smooth positive density ρ, we have that
at = ∇θt + σ2∇ ln ρt provides the unique solution to the Schrödinger problem as posed in (17).

Remark 14. As opposed to Chen et al. (2016, equation (41)), the HJB-equation (83) does not involve
the time reversal of the Schrödinger prior; the form of the HJB equations is not uniquely determined.
On the other hand, (83) contains the divergence term∇ · f , which discourages us from enforcing this
constraint in the same way as (76). An akin result can be found in Liu et al. (a) stated in terms of
BSDEs.

12... not to be confused with reverse-time SDEs as in (12).
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Proof of Corollary E.5. Using the forward-backward Radon-Nikodym derivative in (14), we compute

ln

(
d
−→
P µ,f

d
←−
P ν,f+σ2∇ψ

)
(Y )=ln

(
dµ

dLeb

)
−ln

(
dν

dLeb

)
+ σ

∫ T

0

ft(Yt) · dWt − σ
∫ T

0

ft(Yt)·
←−
dWt

− σ
∫ T

0

∇θt(Yt) ·
←−
dWt +

σ2

2

∫ T

0

|∇θt|2(Yt) dt

= ln

(
dµ

dLeb

)
−ln

(
dν

dLeb

)
− σ
∫ T

0

(∇ · ft)(Yt) dt− σ
∫ T

0

∇θt(Yt) ·
←−
dWt +

σ2

2

∫ T

0

|∇θt|2(Yt) dt.

Here we have chosen −→γ =←−γ = 0, and Γ0 = ΓT = Leb. The initial measure for the Schrödinger
prior is µ, but the argument is unaffected by this choice (as the solution is independent of this). We
now use the (backward) Itô formula along the Schrödinger prior,

θt(YT )−θ0(Y0)=

∫ T

0

∂tθt(Yt) dt+

∫ T

0

∇θt(Wt)·
←−
dWt+

∫ T

0

∇θt(Yt)·ft(Yt) dt− 1
2

∫ T

0

∆θt(Yt) dt.

Using the HJB-equation (83), we see that

ln

(
d
−→
P µ,f

d
←−
P ν,f+σ2∇θ

)
(Y ) = ln

(
dµ

dLeb

)
− ln

(
dν

dLeb

)
− θt(YT ) + θ0(Y0), (84)

and we can conclude as in the proof of Proposition E.4.

F CMCD EXPERIMENTS

In this section, we will cover further details pertaining to our experimental setup.

F.1 ELBO EXPERIMENTS AND COMPARISON TO GEFFNER & DOMKE (2023)

We compare our underdamped and overdamped CMCD variants against 5 datasets from Geffner &
Domke (2023), which we describe in further detail below.

• log sonar (d = 61) and log ionosphere (d = 35) are Bayesian logistic regression
models: x ∼ N (0, σ2

wI), yi ∼ Bernoulli(sigmoid(x⊤ui)) with posteriors conditioned on
the sonar and ionosphere datasets respectively.

• brownian (d = 32) corresponds to the time discretisation of a Brownian motion:

αinn ∼ LogNormal(0, 2),

αobs ∼ LogNormal(0, 2),

x1 ∼ N (0, αinn),

xi ∼ N (xi−1, αinn), i = 2, . . . 20,

yi ∼ N (xi, αobs), i = 1, . . . 30.

inference is performed over the variables αinn, αobs and {xi}30i=1 given the observations
{yi}10i=1 ∪ {yi}30i=20.

• lorenz (d = 90) is the discretisation of a highly stiff 3-dimensional SDE that models
atmospheric convection:

x1 ∼ N ( loc = 0, scale = 1)
y1 ∼ N ( loc = 0, scale = 1)
z1 ∼ N ( loc = 0, scale = 1)
xi ∼ N ( loc = 10 (yi−1 − xi−1) , scale = αinn ) i = 2, . . . , 30
yi ∼ N ( loc = xi−1 (28− zi−1)− yi−1) , scale = αinn ) i = 2, . . . , 30
zi ∼ N

(
loc = xi−1yi−1 − 8

3zi−1, scale = αinn
)

i = 2, . . . , 30,
oi ∼ N ( loc = xi, scale = 1) i = 2, . . . , 30

where αinn = 0.1 (determined by the discretization step-size used for the original SDE).
The goal is to do inference over xi, yi, zi for i = 1, . . . , 30, given observed values oi for
i ∈ {1, . . . , 10} ∪ {20, . . . , 30}.
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• seeds (d = 26) is a random effect regression model trained on the seeds dataset:

τ ∼ Gamma(0.01, 0.01)

a0 ∼ N (0, 10)

a1 ∼ N (0, 10)

a2 ∼ N (0, 10)

a12 ∼ N (0, 10)

bi ∼ N
(
0,

1√
τ

)
i = 1, . . . , 21

logitsi = a0 + a1xi + a2yi + a12xiyi + b1

i = 1, . . . , 21

ri ∼ Binomial (logitsi, Ni)

i = 1, . . . , 21.

The goal is to do inference over the variables τ, a0, a1, a2, a12 and bi for i = 1, . . . , 21,
given observed values for xi, yi and Ni.

For all target distributions, we follow the hyperparameter setup from Geffner & Domke (2023)
from their code repository13 for all baseline methods (ULA, MCD, UHA, and LDVI) as well as
our overdamped and underdamped variants. We first pretrain the source distribution to a mean-field
Gaussian distribution trained for 150, 000 steps with ADAM and a learning rate of 10−2. We then
train for 150000 iterations with a batch size of 5, tuning learning rate between [10−5, 10−4, 10−3]
picking the best one based on mean ELBO after training. For all methods, during training the
mean-field source distribution is continued to be trained, as well as the discretisation step size and
ϵ = δtσ. For the underdamped methods we also train the damping coefficient γ, and for methods
involving a score network, i.e. MCD, LDVI, CMCD and CMCD (UD), we train the networks which
are chosen to be fully-connected residual networks with layer sizes of [20, 20]. In order to report the
mean ELBO after training, we obtain 500 samples with 30 seeds and report an averaged value over
them.

F.2 lnZ , SAMPLE QUALITY EXPERIMENTS AND COMPARISON TO (ZHANG & CHEN, 2022;
VARGAS ET AL., 2023A)

Furthermore, we also include comparisons to a large-dimensional target distribution and two standard
distributions with known lnZ replicated from Vargas et al. (2023a), which we summarise below.

• lgcp (d = 1600) is a high-dimensional Log Gaussian Cox process popular in spatial
statistics (Møller et al., 1998). Using a d =M×M = 1600 grid, we obtain the unnormalised
target density N (x;µ,K)

∏
i∈[1:M ]2 exp (xiyi − a exp (xi)).

• funnel (d = 10) is a challenging distribution given by πT (x1:10 =
N (x1; 0, σ

2
f )N (x2:10; 0, exp(x1)I), with σ2

f = 9 (Neal, 2003).

• gmm (d = 2) is a two-dimensional Gaussian mixture model with three modes, given by the
following target distribution

πT (x) =
1

3
N
(
x;

[
3
0

]
,

[
0.7 0
0 0.05

])
+

1

3
N
(
x;

[
−2.5
0

]
,

[
0.7 0
0 0.05

])
+N

(
x;

[
2
3

]
,

[
1 0.95

0.95 1

])
For these target distributions, we follow the hyperparameter setup from Vargas et al. (2023a) from
their code repository14for the baseline methods of DDS and PIS, and replicate them as closely as

13https://github.com/tomsons22/LDVI
14https://github.com/franciscovargas/denoising_diffusion_samplers
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Embedding Layer

Concatenate MLP Block (2) Output

Figure 2: Architecture from (Geffner & Domke, 2023) used across experiments for our CMCD drift
network. Softplus activations are used.

possible for CMCD. Unlike the previous, we don’t pretrain the mean-field Gaussian source distribution
N (0, σ2

initI). We select the optimal learning rate in [10−3, 10−4, 10−5], the optimal standard deviation
of the source distribution σinit in [1, 2, 3, 4, 5] and the optimal α in [0.1, 0.5, 1, 1.5, 2]. Instead of
training ϵ = δtσ, we sweep over an optimal value in [10−2, 10−1, 1]. The models are trained with a
batch size of 300 for 11000 steps, where we keep the source distribution parameters fixed, as well
as ϵ. For evaluation, we use 30 seeds with a batch size of 2000, and report average performance
over the seeds. DDS and PIS use a 128-dimensional positional embedding, along with an additional
network for the time parameters, however MCMD uses a regular score network. In order to make
exact comparisons, we select differing network architecture sizes that result in an equivalent number
of parameters for funnel and gmm. For lgcp, due to the high dimensionality of the dataset,
we choose a small network for CMCD. We summarise these below. For gmm and funnel, it is
possible to sample from the target distribution, and we report an OT-regularised distance (Wγ

2 ) with a
regularisation γ = 10−2. Similar to the mean ELBO, we draw 2000 samples from the models and
the targets, and averageWγ

2 over 30 seeds. We use the Python Optimal Transport15 library’s default
implementation of entropy-regularised distance. Results for comparisons to DNF can be found in
Table 5.

Table 1: Network Sizes for comparison. Note that CMCD has less parameters for the despite the
Funnel target despite the larger drift due to the PIS and DDS networks having an additional grad
network.

GMM LGCP FUNNEL

DDS [10, 10] [64, 64] [64, 64]
PIS [10, 10] [64, 64] [64, 64]
CMCD [38, 38] [64, 64] [110, 110]

F.3 COMPARISONS WITH THE LOG-VARIANCE LOSS - MODE COLLAPSE FAILURE MODE

Here, we report performance using the log-variance divergence-based loss (Nüsken & Richter, 2021)
introduced at the end of Section 3.2,

LCMCD
Var (ϕ)≈Var

[
ln
π0(Y0)

π̂(YT )

K−1∏
k=0

N (Ytk+1
|Ytk + (∇ lnπtk +∇ lnϕtk)(Ytk)∆tk, 2σ

2∆tk)

N(Ytk |Ytk+1
+(∇lnπtk+1

−∇lnϕtk+1
)(Ytk+1

)∆tk, 2σ2∆tk)

]
,

(24)

A careful reader will note this loss simply consists of replacing the expectation in the KL loss with
a variance. A major computational advantage of this loss is that the measure that the expectations
are taken with respect to can be any measure and is not restricted to the forward or backward SDEs
like in KL (Richter & Berner, 2024; Richter et al., 2020; Nüsken & Richter, 2021), this allows us to
detach the samples and thus accommodating for a much more computational objective.

which we find performs quite well compared to our default loss function, especially for multimodal
target distributions. We consider the very multi-modal mixture of Gaussian target distribution from
Midgley et al. (2022), and report the ELBO and lnZ numbers in the table below. For this experiment,
we use a batch size of 2000 and train neural networks with a size [130, 130] for 150k iterations.

15https://pythonot.github.io/

37

https://pythonot.github.io/


Published as a conference paper at ICLR 2024

Table 2: ELBO and lnZ on 40-GMM

ELBO lnZ W2

log-variance LOSS -1.279 ± 0.096 -0.065 ± 0.101 0.0143 ± 0.001
KL LOSS -2.286 ± 0.1109 -0.244 ± 0.3309 0.0441 ± 0.012

Figure 3: (left) 2000 samples drawn from the CMCD algorithm trained with the default loss function,
and (right) 2000 samples drawn from the algorithm trained with the log-variance divergence-based
loss. We can see that the default loss function misses many modes in the target distribution, whereas
the log-variance loss has not missed any modes. We report final results after sweeping over ∆tk
and learning rates for both methods, picking the one with the lowest training loss. We highlight that
concurrent work by Richter & Berner (2024) explores the log variance divergence in more detail and
proposes an akin general framework for diffusion-based sampling.
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Variance loss, ∆tk = 0.1

Variance loss, ∆tk = 0.65

Default loss, ∆tk = 0.1

Default loss, ∆tk = 0.65

Figure 4: Plots showing training loss curves for the log-variance loss and the default loss for different
values of ∆tk . We find that a low value of ∆tk = 0.1 is needed in order to obtain a low training loss
for the default loss, whereas the log-variance loss is much more robust to different values of ∆tk .
The x-axis reports an evaluation every 150 steps of training

F.4 SPECIFICATION AND TUNING: SMC, AFT, AND NF-VI

We adopted the implementations16 provided by the studies in Arbel et al. (2021); Matthews et al.
(2022) and initialized them with default hyperparameters before fine-tuning.

16https://github.com/google-deepmind/annealed_flow_transport
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Sequential Monte Carlo (SMC). For SMC, we utilized 2000 particles sampled from a zero-mean
unit Gaussian distribution, implementing re-sampling if the effective sample size (ESS) fell below
0.3. We employed Hamiltonian Monte-Carlo (HMC) for particle mutation, executing one Markov
Chain Monte Carlo (MCMC) step after each annealing step. The number of leapfrog steps was fixed
at 10, and an extensive grid search over different step sizes was conducted, consistent with Arbel
et al. (2021). This search spanned four different step sizes, contingent on the temperature, resulting
in a grid search over 256 parameters. The finalized values are presented in Table 3. For SMC, K is
defined by the number of temperatures.

Furthermore, we report the results for SMC in Table 3 for the tuned hyperparameters used for
each target. Please note that we were able to obtain similar lnZ values as in Vargas et al. (2023a)
suggesting SMC was well-tuned. Finally, for each result, we report the mean and standard deviations
across 30 different seeds, results can be seen in Table 3.

Annealed Flow Transport Monte Carlo (AFT). We maintained a similar setup to SMC, with a
few adjustments: using 500 particles for training and 2000 for evaluation to accommodate the added
complexity from the normalizing flows. We also decreased the number of temperatures and increased
the number of MCMC steps to mitigate memory requirements from the flows. K is defined as the
number of temperatures×MCMC steps, with the latter fixed at 4, resulting in a maximum of 64 flows
trained simultaneously. Inverse autoregressive flows (IAFs) were employed in all experiments except
for lgcp, using a neural network with one hidden layer whose dimension matches the problem’s
dimensionality. For lgcp, a diagonal affine flow was used due to memory constraints arising from the
high dimensionality. AFT flows were trained for 300 iterations until convergence.

Variational Inference with Normalizing Flows (VI-NF). We utilized the same flows as for AFT.
In this case, K denotes the number of flows to stack. The flows were trained over a total of 2000
iterations with a batch size of 500. For some targets

Table 3: Tuned MCMC Step Sizes.

GMM LGCP LORENZ BROWNIAN LOG SONAR LOG IONOSPHERE SEEDS FUNNEL

∆t [0.5, 0.5, 0.5, 0.3] [0.3, 0.3, 0.2, 0.2] [0.01, 0.01, 0.008, 0.01] [0.2, 0.2, 0.05, 0.05] [0.2, 0.05, 0.2, 0.2] [0.1, 0.2, 0.2, 0.2] [0.2, 0.1, 0.05, 0.01] [0.05, 0.2, 0.2, 0.05]

Table 4: SMC Results. ELBO and lnZ values for a different number of steps K and experiments.

lnZ GMM LGCP LORENZ BROWNIAN LOG SONAR LOG IONOSPHERE SEEDS FUNNEL

K = 8 −0.536± 0.042 −364.074± 7.797 −87502.352± 4004.495 −63.32± 8.016 −178.589± 2.784 −204.594± 3.049 −108.676± 1.221 −1.013± 0.116
K = 16 −0.255± 0.034 −135.207± 4.665 −42148.287± 1047.478 −28.714± 3.71 −137.691± 1.656 −149.107± 1.088 −88.068± 0.467 −0.65± 0.1
K = 32 −0.119± 0.017 86.106± 5.989 −19288.267± 834.52 −12.23± 2.212 −120.557± 0.613 −127.964± 0.394 −79.89± 0.273 −0.408± 0.17
K = 64 −0.059± 0.015 269.566± 7.832 −8894.525± 119.723 −4.76± 1.042 −113.835± 0.167 −118.812± 0.192 −76.275± 0.189 −0.359± 0.087
K = 128 −0.029± 0.009 390.33± 5.427 −5419.678± 90.362 −1.675± 0.442 −110.901± 0.094 −114.827± 0.307 −74.774± 0.097 −0.255± 0.108
K = 256 −0.013± 0.006 477.162± 4.998 −3745.218± 68.342 −0.131± 0.22 −109.562± 0.072 −113.123± 0.172 −74.049± 0.088 −0.211± 0.074

ELBO

K = 8 0.002± 0.066 −236.087± 9.623 −56122.917± 5402.094 −10.147± 3.427 −117.499± 4.049 −123.772± 3.689 −75.183± 1.447 −0.417± 0.236
K = 16 −0.003± 0.037 −23.219± 7.756 −27397.2± 1987.523 −3.924± 2.114 −110.707± 1.823 −113.476± 1.361 −73.524± 0.543 −0.322± 0.184
K = 32 0.003± 0.018 174.797± 7.241 −12110.983± 1204.2 −0.426± 1.415 −108.574± 0.547 −112.048± 0.519 −73.459± 0.29 −0.215± 0.222
K = 64 0.001± 0.015 332.187± 9.025 −5360.819± 306.407 0.884± 0.778 −108.424± 0.154 −111.715± 0.184 −73.375± 0.214 −0.267± 0.101
K = 128 0.001± 0.009 430.838± 6.441 −3624.167± 168.119 1.008± 0.27 −108.395± 0.087 −111.603± 0.298 −73.436± 0.095 −0.2± 0.124
K = 256 0.002± 0.006 453.395± 4.43 −2811.161± 106.68 1.142± 0.125 −108.368± 0.071 −111.611± 0.171 −73.413± 0.087 −0.181± 0.081

F.5 FURTHER ABLATION WITH NF-STYLE METHODS AND AFT

We further run both flow models (AFT and NFVI) on all possible target distributions (subject to
OOM errors). Results can be found in Table 6.

F.6 WALLCLOCK TIMES FOR lnZ CALCULATION

In order to calculate the average wall-clock time for lnZ calculation, we calculate the time it takes to
draw 30 seeds of 2000 samples each from the methods below, and use these samples to calculate the
mean and standard deviation of lnZ across 30 seeds.

F.7 TRAINING TIME COMPARISONS TO SMC

In this section, we explore a total time comparison between our approach CMCD and SMC.
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Table 5: lnZ comparison. lnZ values for a different number of steps K, experiments and methods.
Not all methods could be evaluated on every K/experiment combination due to numerical instabilities
or out-of-memory (OOM) problems.

Dataset Method K = 8 K = 16 K = 32 K = 64 K = 128 K = 256

funnel CMCD -0.3037 ± 0.1507 -0.223 ± 0.1041 -0.1805 ± 0.0773 -0.1085 ± 0.1143 -0.0573 ± 0.0444 -0.01928 ± 0.0641
log ionosphere VI-DNF -0.3768 ± 0.2157 -0.3517 ± 0.1627 -0.2919 ± 0.0999 -0.6941 ± 0.6841 -0.1947 ± 0.1325 -0.2124 ± 0.0637

VI-NF -0.206± 0.079 -0.206± 0.082 -0.206± 0.087 -0.194± 0.101 -0.182± 0.097 -0.197± 0.099
AFT -0.875± 0.543 -0.395± 0.351 -0.348± 0.192 -0.271± 0.227 -0.235± 0.139 -0.196± 0.111

gmm CMCD -0.1358 ± 0.0839 -0.01331 ± 0.1292 0.0095 ± 0.0495 0.00736 ± 0.0477 -0.0004 ± 0.0368 -0.0081 ± 0.0520
VI-DNF -0.3676 ± 0.6314 -0.258 ± 0.412 -0.4983 ± 0.3878 -0.4449 ± 0.5379 -0.4652 ± 0.3223 -0.204 ± 0.6381
VI-NF -0.355± 0.698 -0.455± 0.258 -0.064± 0.138 -0.054± 0.15 -0.066± 0.188 -0.045± 0.177
AFT -0.336± 0.372 -0.006± 0.082 0.02± 0.068 -0.016± 0.042 -0.003± 0.029 0.001± 0.026

lgcp CMCD 491.059 ± 3.553 498.147 ± 2.624 502.705 ± 2.482 506.045 ± 1.761 508.165 ± 1.553 509.43 ± 1.242
VI-DNF 424.733 ± 5.858 424.719 ± 5.855 424.714 ± 5.861 424.719 ± 5.860 424.7 ± 5.869 424.705 ± 5.896
AFT 126.651± 5.764 344.145± 23.95 191.613± 173.873 420.259± 91.43 480.126± 33.059 491.028± 8.057

Table 6: ELBO comparison. ELBO values for a different number of steps K, experiments and
methods. Not all methods could be evaluated on every K/experiment combination due to numerical
instabilities or out-of-memory (OOM) problems.

Dataset Method K = 8 K = 16 K = 32 K = 64 K = 128 K = 256

seeds CMCD −74.501± 0.049 −74.327± 0.065 −74.142± 0.05 −73.967± 0.038 −73.8± 0.032 −73.684± 0.033
VI-NF −73.563± 0.013 −73.547± 0.012 −73.574± 0.012 −73.58± 0.014 −73.621± 0.014 −73.675± 0.014
AFT −147.457± 24.808 −116.134± 8.157 −99.032± 6.321 −87.436± 1.53 −79.847± 0.419 −76.364± 0.188
CRAFT −146.973± 1.531 −94.2± 0.505 −80.985± 0.344 −76.555± 0.175 −74.979± 0.143 −74.225± 0.133

log ionosphere CMCD −113.211± 0.089 −112.643± 0.062 −112.643± 0.062 −112.22± 0.046 −111.98± 0.04 −111.925± 0.046
VI-NF −111.903± 0.022 −111.902± 0.022 −111.892± 0.017 −111.881± 0.017 OOM OOM
AFT −168.174± 21.249 −138.733± 8.374 −123.013± 3.771 −118.644± 0.891 −116.497± 0.495 −114.905± 0.781

log sonar CMCD −112.274± 0.124 −110.904± 0.111 −110.459± 0.106 −109.503± 0.075 −109.608± 0.066 −109.25± 0.052
VI-NF −109.353± 0.035 −109.346± 0.031 −109.441± 0.035 −109.94± 0.044 −109.711± 0.039 OOM
AFT −203.249± 12.506 −148.357± 8.096 −129.772± 3.057 −121.653± 2.505 −114.911± 0.331 −112.021± 0.182

lgcp CMCD 469.475± 0.259 479.246± 0.237 486.739± 0.249 492.745± 0.239 497.074± 0.267 499.708± 0.236
AFT 75.896± 0.863 265.005± 34.254 62.898± 200.991 340.687± 126.853 417.916± 50.35 424.705± 12.416

lorenz CMCD −1180.797± 0.184 −1180.797± 0.184 −1176.514± 0.154 −1174.309± 0.148 −1172.453± 0.153 −1170.826± 0.15
VI-NF −1499.102± 0.84 −1471.798± 0.582 −1439.648± 0.274 −1433.536± 0.316 OOM OOM

brownian CMCD −0.753± 0.075 −0.209± 0.059 0.153± 0.045 0.376± 0.038 0.578± 0.046 0.722± 0.032
VI-NF 0.733± 0.019 0.797± 0.018 0.816± 0.018 OOM OOM OOM

As both methods are quite inherently different it is not immediately obvious how to carry out an
insightful comparison. In order to do so we chose the LGCP which is our most numerically intense
target and we phrase the following question:

“For how long do we have to train CMCD to outperform the best-run SMC”

For this, we look at our Figure 1 pane c) and we can see that at K = 8 CMCD already outperforms
SMC at K = 256 with 2000 particles. So we choose these two approaches to compare to. In Table 9
is a brief comparison of total time calculations, note we have included tuning time for SMC which is
akin to our training time as without tuning SMCs hyperparameters ELBOs and ln Z estimations were
much worse. We can observe that the total runtime for training and sampling CMCD to reach a better
lnZ value does not exceed the time required to tune SMC.

G REGULARISED IPF-TYPE EXPERIMENTS

For the purpose of completeness in this section, we empirically explore the regularised IPF-type ob-
jectives proposed in the main text. We explore a series of low-scale generative modelling experiments

Method Average Time (s) Min Time (s) Max Time (s)

CMCD (OD) 9.665 5.592 21.475
ULA 9.204 4.673 20.721
UHA 9.427 5.588 20.263
MCD 9.204 4.673 20.721

Table 7: Wallclock times for evaluation in seconds.
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Mode ULA MCD CMCD DDS / PIS

Sampling O(K · (d+G(d))) O(K · (d+G(d))) O(K · (d+G(d) +N(d))) O(K · (N2 +G(d) +N1(d)))
ELBO O(K · (d+G(d))) O(K · (d+G(d) +N(d))) O(K · (d+G(d) +N(d))) O(K · (N2 +G(d) +N1(d)))

Table 8: Sampling and loss calculation complexity across SDE based methods, K represents the
number of integration steps, G(d) represents the cost of evaluating the score of the target and N(d)
for evaluating the drift/score networks both quantities are dimension dependant. PIS and DDS have
an additional grad network cost N2 which is dimension independant.

Method Train + Sample Time (min) ln Z ELBO

CMCD 33.12± 0.12 491.059± 3.553 469.475± 0.2589
SMC 62.62± 0.10 477.162± 4.998 453.395± 4.4300

Table 9: Training+ Tuning + Sampling time comparisons for CMCD and SMC at comparable ln Z
estimates.

where the goal is to retain generative modelling performance whilst improving the quality of the
bridge itself (i.e. solving the SBP problem better).

Across our experiments, we use DKL and let Γ0 = ΓT = Leb, which can be simplified to the
forward-backwards KL objective used in DNF (Zhang et al., 2014), see Appendix E.1.1. We use the
Adam optimiser (Kingma & Ba, 2015) trained on 50,000 samples and batches of size 5000 following
Zhang & Chen (2021). For the generative modelling tasks we use 30 time steps and train for 100
epochs whilst for the double well we train all experiments for 17 epochs (early stopping via the
validation set) and 60 discretisation steps. Finally note we typically compare our approach with
λ > 0 to DNF (λ = 0), with DNF initialised at the reference process, which we call DNF (EM Init),
see Appendix E.4 for further details.

G.1 2D TOY TARGETS – GENERATIVE MODELLING

Here we consider the suite of standard 2D toy targets for generative modelling explored in Zhang &
Chen (2021) In contrast to Zhang & Chen (2021) we consider the SDE dYt = −σ2Yt dt+σ

√
2 dWt

as the Schrödinger prior across methods. We parametrise DNF and our proposed approach with
the same architectures for a fair comparison. Furthermore, we incorporate the drift of the above
Schrödinger prior into DNF via parameterising the forward drift as in (75), partly motivated by
Corollary E.2.

In order to assess the quality of the bridge we consider three different error metrics.
Firstly we estimate DKL between the Schrödinger prior and the learned forward process (i.e.
E
Y ∼

−→P µ,a

[
1

2σ2

∫ T
0
∥at − ft∥2(Yt) dt

]
). Secondly, we evaluate DKL(

−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ) to ob-

tain a proxy error between the learned and target marginals. Finally, we estimate the cross entropy
between

−→
P µ,a
T and ν to assess how well the constraint at time T is met.

In Table 10 we observe that similar values of DKL are attained across both approaches in the tree,
sierpinski, and checkerboard datatsets whilst achieving significantly lower values of the SBP loss
across all training sets, and for tree, swirl and checkerboard validation datasets. At the same time, we
can see that the cross-entropy errors are effectively the same across both approaches. Overall we can
conclude that on the empirical measures over which we train our approach, we obtain a much better
fit for the target Schrödinger bridge, and on the validation results we can see that we generalise to 3/5
datasets in improving the bridge quality whilst preserving the marginals to a similar quality.

G.2 DOUBLE WELL – RARE EVENT

In this task we consider the double well potential explored in (Vargas et al., 2021b; Hartmann et al.,
2013) where the Schrödinger prior is specified via the following overdamped Langevin dynamics
dYt = −∇YtU(Yt) dt + σ dWt. The potential U(y) typically models a landscape for which it is
difficult to transport µ into ν.
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(a) λ = 2 (b) λ = 0 (EM Init) (c) λ = 0 (Random Init) (d) DNF (No Prior)

Figure 5: (a) our proposed regularised objective, (b) λ set to 0 but using clever EM motivated
initialisation, (c) λ set to 0 with random initialisation of the forward drift, (d) for reference DNF with
ft = 0 (uninformative Schrödinger prior).

This is a notably challenging task as we are trying to sample a rare event and as noted by Vargas et al.
(2021a) many runs would result in collapsing into one path rather than bifurcating. In Figure 5 we
can observe how our proposed regularised approach (5a) is able to successfully transport particles
across the well whilst respecting the potential, whilst both variants of DNF using the EM-Init for ϕ
(5b) and random init (5c) fail to respect the prior as nicely and do not bifurcate, with the random init
in particular sampling quite inconsistent trajectories. Finally for reference we train a DNF model
with ft = 0 and ϕ (5d) initialised at random to illustrate the significance of the initialisation of ϕ.

G.2.1 DOUBLE WELL POTENTIAL

We used the following potential (Vargas et al., 2021a):

U

((
x

y

))
=

5

2
(x2 − 1)2 + y2 +

1

δ
exp

(
−x

2 + y2

δ

)
, (85)

with δ = 0.35, furthermore, we used the boundary distributions:

µ ∼ N
((
−1
0

)
,

(
0.0125 0

0 0.15

))
, ν ∼ N

((
1
0

)
,

(
0.0125 0

0 0.15

))
.

The Schrödinger prior is given by:

dYt = −∇YtU(Yt) dt+ σ dWt, (86)

with σ = 0.4. The terminal time is T = 1. Furthermore, we employ the same exponential
discretisation scheme as in the generative modelling experiments.

Target Method KL SBP Loss PINN Loss Cross Ent

Val Train Val Train Val Train Val Train

tree λ = 0.5 1.67±0.02 1.40±0.01 47.84±1.58 42.31±1.52 0.06±0.00 0.05±0.00 2.87±0.01 2.80±0.01
DNF (EM Init) 1.63±0.02 1.39±0.01 55.33±1.79 49.60±1.68 1.74±0.04 1.64±0.04 2.88±0.01 2.80±0.01

olympics λ = 0.5 2.95±0.06 0.12±0.01 39.30±0.90 25.24±0.62 0.26±0.01 0.10±0.00 2.49±0.01 2.77±0.02
DNF (EM Init) 2.70±0.05 0.02±0.01 40.20±0.77 38.30±1.53 1.64±0.04 2.05±0.08 2.54±0.01 2.77±0.02

sierpinski λ = 0.5 2.31±0.01 2.20±0.01 28.54±1.49 26.67±0.90 0.04±0.00 0.03±0.00 2.82±0.01 2.83±0.01
DNF (EM Init) 2.30±0.01 2.20±0.00 30.87±1.93 29.53±1.18 7.25±0.14 7.22±0.14 2.80±0.01 2.82±0.02

swirl λ = 0.5 15.67±0.29 1.95±0.03 121.81±1.94 40.24±1.74 1.01±0.03 0.14±0.00 2.97±0.01 2.69±0.02
DNF (EM Init) 13.77±0.38 1.92±0.04 151.67±3.68 67.55±1.86 5.89±0.15 2.63±0.08 2.95±0.02 2.74±0.03

checkerboard λ = 0.5 4.79±0.01 4.70±0.01 34.47±0.80 33.70±0.91 0.03±0.00 0.02±0.00 2.82±0.00 2.81±0.01
DNF (EM Init) 4.78±0.01 4.70±0.02 39.76±0.83 39.20±1.10 3.66±0.07 3.68±0.06 2.81±0.01 2.81±0.02

Table 10: Generative Modelling Results comparing DNF (Zhang & Chen, 2021) (λ = 0) to our PINN
regualirsed approach with λ = 0.5. We observe that PINN regularisation obtains similar KL and
Cross entropy losses to DNF whilst achieving lower distances to the prior.

G.3 IMPLEMENTATION DETAILS

G.3.1 NEURAL NETWORK PARAMETERISATIONS

Following Zhang & Chen (2021) and the recent success in score generative modelling we choose the
following parameterisations:

at(x) = ft(x) + σ2∇ϕ(t,x), (87a)

bt(x) = ft(x) + σ2∇ϕ(t,x)− σ2sθ(t,x), (87b)
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Figure 6: Generated samples trained by our approach (λ = 0.5) left and DNF (λ = 0) right.
Qualitatively we can observe that both learned models have similarly matched marginals.

where sθ is a score network (Song et al., 2021; De Bortoli et al., 2021; Zhang & Chen, 2021) and
ϕ(t,x) is a neural network potential. We adapt the architectures proposed in Onken et al. (2021);
Koshizuka & Sato (2023) to general activation functions. Note that these architectures allow for
fast computation of ∆ϕ comparable to that of Hutchinson’s trace estimator (Grathwohl et al., 2019;
Hutchinson, 1989).

Finally, we remark that the parametrisation in (87b) allows us to learn the score of the learned SDE
and thus seamlessly adapt our approach to using the probability flow ODE (Song et al., 2021) at
inference time.

G.3.2 PINN LOSS

For the PINN loss across all tasks, we sample the trajectories from Y ϕ
0:T ∼

−→
P µ,∇ϕ and thus employ

the same discretisation as used in the KL loss. However, we detach the trajectories Y detach(ϕ)
0:T before

calculating the gradient updates in a similar fashion to Nüsken & Richter (2021).
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