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Abstract

Machine learning models are susceptible to a class of attacks known as adversarial
poisoning where an adversary can maliciously manipulate training data to hinder
model performance or, more concerningly, insert backdoors to exploit at inference
time. Many methods have been proposed to defend against adversarial poisoning by
either identifying the poisoned samples to facilitate removal or developing poison
agnostic training algorithms. Although effective, these proposed approaches can
have unintended consequences on other aspects of model performance, such as
worsening performance on certain data sub-populations, thus inducing a classifi-
cation bias. In this work, we evaluate several adversarial poisoning defenses. In
addition to traditional security metrics, i.e., robustness to poisoned samples, we
propose a new metric to measure the potential undesirable discrimination of sub-
populations resulting from using these defenses. Our investigation highlights that
many of the evaluated defenses trade decision fairness to achieve higher adversarial
poisoning robustness. Given these results, we recommend our proposed metric to
be part of standard evaluations of machine learning defenses.

1 Introduction

Machine learning (ML) is used in numerous critical applications including healthcare, finance, and
the Internet-of-Things. However, the sensitivity of these applications also motivates a need to develop
secureML algorithms to avoid safety and security incidents. In particular, adversarial poisoning
attacks on machine learning has received significant attention [18]. In a poisoning attack, an attacker
modifies a portion of the training data to influence and/or degrade the performance of the trained
model. Often, the goal is to encode a backdoor in a few training samples, which the attacker can later
trigger at inference time. Despite the presence of poisoned training samples, the overall performance
on benign (i.e., non-trigger) inputs is often satisfactory, thus avoiding suspicion the model has been
poisoned. However, when a sample appears containing a backdoor trigger (e.g., image patch), the
desired erroneous behavior occurs (e.g., a targeted misclassification of a malicious input).
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To mitigate the effect of adversarial poisoning, a variety of defense techniques have been proposed:
flagging the data that is “suspicious” [3}[21], segmenting training data using model ensembles [[1524],
abstaining from predicting [23]], or by manipulating the training data before feeding it to the training
process to neutralize potential malicious modifications [4} |9, 26l 27]. An ideal defense would fully
mitigate or remove the effect of poisoning without any undesirable side-effects.

The side-effects of adversarial poisoning defenses have not been studied by prior works. Prior work
primarily focused on reducing the poisoning attack success rate, while maintaining accuracy on
benign samples. Although both of these metrics are useful in evaluating the quality of a prospective
defense, they do not provide a complete picture of the final “defended” model’s behavior. For
example, we discovered most filtering defenses remove a consistent fraction of the training data
regardless of whether the removed samples are poisonous or not. In general, as poisoned samples are
a small subset of the training data containing a unique set of features, i.e. the trigger, we hypothesize
that prior defenses appeared effective as they (possibly unintentionally) mitigated the influence of
outlier features. However, outliers are frequently under-represented benign sub-populations that
occur naturally in the data and can be harmed by outlier mitigation techniques, which may result
in potential decision bias against benign sample. Typically, a sub-population within a class may
include samples collected under specific conditions (e.g., a winter storm or lightening), a particularly
under-represented sample (e.g., very uncommon type of airplane), or an under-represented minority
(e.g., women). An example of benign sub-populations within a class is shown in Appendix [A.1]

In this paper, we study the side-effects of existing poisoning defenses and show many defenses are
non-ideal as they negatively affect the decision fairness of the defended model on under-represented
benign sub-populations. We benchmark existing defenses against dirty and clean label poisoning
attacks using traditional security metrics and a new metric that measures the side-effects of prospective
defenses on the model’s decision. Borrowing from fairness literature, we use the Statistical Parity
Difference (SPD) [3l], to measure the effect a defense has on minority sub-populations in the data
(e.g., images collected with poor visibility in a driving dataset). Our extensive experimental results
shed new light on the effects that existing poisoning defenses have on decision fairness.

2 Background: Poisoning Attacks and Defenses

2.1 Poisoning Attacks

Poisoning attacks manipulate a small percentage of the data used during training to achieve some
adversarial goal, often backdoor injection. They can be broadly classified into dirty label and clean
label attacks. In dirty label attacks [10} [16], the adversary’s goal is to induce a misclassification into
a target class through use of a backdoor trigger. The adversary generates a trigger (e.g. image patch)
and poisons a percentage of the training data by adding the trigger, X;, C X, as well as modifying
the labels of those samples, Y, C Y, to the target class. At inference time, the adversary adds the
trigger to induce the backdoor behavior, targeted misclassification. The attack is designed so that
when the backdoor is not present, the model behaves normally.

In contrast to dirty label attacks, clean label attacks do not modify the labels and rely on more
inconspicuous modifications. As poisoned inputs appear consistent with their labels, human inspection
is unlikely to detect the attack. A large variety of clean label attacks have been proposed in literature
[19]. Two distinct attacks are the original Clean Label Backdoor Attack (CLBD) [22] and Witches’
Brew (also known as Gradient Matching) [[7]. These attacks often solve optimization problems to
generate poison images close to the original without changing the labels which inject the backdoor
to the model if used for training. For example, a crafted cat image still looks like a cat to a human,
but the model sees the image as if it is a truck in terms of features or training gradients. Turner et
al. leverage a GAN and adversarial example approach to generate poison images while ensuring the
perturbation is bounded. In Witches’ Brew, the attacker chooses one or few images in the test data as
trigger images and aims to make the model classify them as the target class(es). This attack applies
bounded perturbations to the poison data by aligning the training gradient of the poison data with the
correct labels, and that of the trigger samples with the target labels, using a surrogate model.



2.2 Poisoning Defenses

To mitigate poisoning attacks, multiple defenses have been proposed recently. We provide a high-level
overview of the specific defenses that we evaluate in Section 4.

Activation Defense [3] is a filtering-based defense, which analyzes the training set and filters out
samples that are deemed “too different" with respect to the rest of the data. After training, the training
data is passed again through the model and the last layer activations are recorded and clustered.
Samples associated with either small clusters or isolated clusters are removed from the training set.
In our evaluation, potentially poisonous data was marked based on the smallest activation cluster(s).

Spectral Signatures [21] is a filtering-based defense where the activations of the network for each
training sample are analyzed using singular value decomposition (SVD). Samples with unusual SVD
are removed from the training set. This defense has an additional hyperparameter to define how much
poison is expected to be in the training data. In our evaluation, we use the best case scenario where
the expected poisoning hyperparameter exactly matches the true poisoning percentage.

Deep Partition Aggregation (DPA) [[15] is an ensemble-based defense that creates multiple weak
classifiers and performs inference by voting. The training samples are split in k disjoint partitions
Py, ..., P, and each partition P; is used to train a different model to create an ensemble. During
inference, the models are ensembled and a prediction is made based on a majority vote.

Finite Aggregation [24]] is an extension of DPA and includes two hyper-parameters to guide the
ensembling process, k and d. They are defined as the inverse sensitivity and the spreading factor,
respectively. First, the defense partitions the training dataset into kd disjoint partitions. Then, each
data partition is assigned to d of the kd submodels in the partition. The kd submodels models are
trained on their assigned partitions. During inference, a prediction is made based on a majority vote.

Inverse Self-Paced Learning (ISPL) [13] is a filtering defense that relies on identifying “compatible
or homogeneous sets" in the training data. The defense defines the notion of “self-expanding sets" and
propose an iterative approach, which results in groups of homogeneous sets, i.e. all of the samples
in the set belong to either the primary or noisy distribution. In their scenario, the noisy distribution,
which is assumed to be the minority, contains the poisoned data. Once the data has been segmented,
they train a model on each partition and use each model to classify data from all of the other partitions.
Using a majority voting scheme based on the misclassification rate on the other partitions, the primary
and poison distributions can be identified.

Adversarial Training [17] was originally used as a defense against evasion attacks, but has been
examined in some works as a poisoning defense (e.g. Geiping et al. [8] used it as a baseline defense).
In this defense, adversarial inputs are generated on-the-fly using a known evasion attack so as to
improve the model’s generalization performance on the adversarial distribution. In our evaluation, we
use the Projected Gradient Descent (PGD) attack, as is traditional, with the same hyperparemeters
used by Geiping et al. [8]] for consistency.

Data Augmentation techniques such as Mixup [27]], Cutout [4], and CutMix [26] use synthetically
created data to improve the model’s generalization. Maxup [9] applies a set of these data augmen-
tation techniques multiple times and selects the worst-case input for training to further improve
generalization. As existing poisoning attacks relied on precise and sometimes large input manipula-
tions, random data augmentation can introduce variability that the attacks are not prepared to address.
Borgnia et al. [2]] propose this approach, using Maxup with Cutout, as a poisoning defense.

3 Metrics to Evaluate Poisoning Defenses

Security and Accuracy Metrics: Traditionally, defenses are evaluated by measuring their perfor-
mance in terms of the clean accuracy and final attack success rate. The clean accuracy (also known
as benign accuracy) is the accuracy of the model evaluated on the test set with no poisoned samples.
The attack success rate is the percentage of poisoned samples in the test set that were successfully
misclassified. We use both of these metrics in our evaluations.

Model Quality Metric: In this paper, we introduce a new metric to help determine what effect
various defenses have on different benign sub-populations in the dataset. Ideally, applying a defense
should not result in a model that incorrectly predicts benign inputs coming from sub-populations.
Samples in these sub-populations are typically uncommon or “difficult” to predict.



We utilize the statistical parity difference (SPD) [5] to determine how a particular defense treats benign
samples from different sub-populations. Let us denote a feature set by X, the corresponding label set
by Y and the cardinality by |-|. Given aclass y € Y, two populations within this class Py := (X1,Y7)
and P, := (X5, Y3) consisting of solely benign data samples and a model M : X — Y trained with
a defense, the corresponding SPD for this given class y € Y can be computed as follows:

_ HE@yePu:M@)=y} _ {@yeP:M(z)=y}|
SPD = 7] - 7] O

We interpret the above metric based on the range of the value following standard conventions [[1]:

e |SPD| < 0.1: An acceptable range, where none of the populations is disproportionately
misclassified compared to the other. We refer to this as a fair outcome.

e |SPD| > 0.1: An unfair outcome where the evaluated model is biased towards P; (if
SPD > 0.1)or P, Gf SPD < —0.1).

Ideally, applying a defense should not disproportionately reduce the model performance for a
particular benign population. Hence, an |SPD| < 0.1 is desirable. Clearly, applying a defense
should not exacerbate the misclassification rate of these types of benign sub-populations.

There are multiple ways to identify benign subpopulations and some of them are dependent on the
use case and dataset at hand. We highlight a method to identify this subpopulations in the following
section, but note that there are many more ways to perform this task. One way to preform this task
is to segment benign samples using contextual data collection information such as the time of the
day when samples where collected or lightning conditions in a way that one benign subpopulation
contains all daytime observations while the other night time samples. Other potential ways to segment
samples include using sensitive attributes as defined in the fairness literature [1]], e.g., younger vs.
older, or by selecting samples that are not well represented in the training set.

4 Benchmarking of Poisoning Defenses

4.1 Experimental Setup

We evaluate the seven popular defenses presented in Section [2]under multiple poisoning attacks. We
also use a modified combination defense where we apply both Data Augmentation and Adversarial
Training (D.A. + A.T.), which is expected to mitigate the drop in clean accuracy when doing
adversarial training alone. Specifically, we apply CutMix to augment the data and perform adversarial
training on a fraction of the data; for our experiments we choose 75% as the hyperparameter. We test
against a dirty-label backdoor attack [[10] (DLBD) and a clean-label backdoor attack [22] (CLBD).
Under both attacks, only samples from one of the classes (the target class) are poisoned. To fully
understand the effect that an adversary may have over the model, we vary the percentage of poison
for each defense. For DLBD, we use 0%, 1%, 5%, 10%, 20%, and 30% poison. For CLBD, we use
0%, 20%, 50%, and 80% poison. Note that this poison is only applied to the target class. In addition,
for both types of attacks, we used two different triggers: a bullet hole and a peace sign. For more
information on the triggers used in our experiments, refer to Appendix[A.3] We present the results
where the defenses are evaluated using the MicronNet model [25] trained on the GTSRB dataset [12].
All experiments were run using the Armory framework [20].

We only present the evaluations using the default hyperparameters for each defense as described in
Section 2] For additional evaluations using different hyperparameters refer to Appendix [A.4] To
further test generalizability, we also evaluate these defenses using the CIFAR-10 dataset [14] against
the DLBD [10] and Witches’ Brew [[7] attacks. Refer to Appendix[A.5]for these results.

Baselines: We compare the performance of these defenses to a variety of baselines to understand
their effect on the security and fairness metrics. As baselines, we use the following models.
1. Undefended: This defense mimics the scenario where a model is poisoned and no corrective
measure is applied, creating a worst case scenario.

2. Perfect filter: This is an oracle filtering defense that fully removes the poisoned data from
the training set. This is the best case scenario.



3. Random filter: This baseline randomly removes a percentage of the data, allowing us to
determine how simply removing some data compares with popular defenses. We include
this baseline given that our preliminary experimental results suggest that popular filtering
defenses remove around 10% of the training data regardless of whether benign or poisonous.

Sub-population Generation: To determine different sub-populations within the benign training
data, we make use of an explanatory model called BEAN regularization [6]. Then, given a test set,
for each sample within a class, the explanatory model predicts whether the input sample belongs to
a well-represented group (population 1) or out-of-distribution group (population 2). This labeling
process is performed on each class in the dataset and fed to the SPD metric previously defined in ().
For more information on the BEAN model and why we choose this, refer to Appendix [A.2}

4.2 Experimental Results

We now present the results for the three baselines and eight defenses we evaluated. Every baseline
or defense, except Finite Aggregation, was evaluated for a total of three trialsﬂ We report the average
metrics among all trials.

Security Assessment: We first evaluate the clean accuracy and attack success rate for the defenses
and baselines. In Figure[I] we report these metrics across the varying poisoning percentages for the
two attacks using the bullet holes and peace sign triggers. We omit 0% poison for the attack success
rate plots. We also include tables showing the exact numbers in Appendix [A.6]
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Figure 1: The clean accuracy (top) and attack success rate (bottom) for the baselines and defenses
across varied poison. Each model is evaluated against the DLBD and CLBD attacks using the bullet
hole and peace sign triggers on the GTSRB dataset.

We first notice that there is no clear correlation between poison percentage and clean accuracy for
either attack type or trigger. We do observe, however, that most of the defenses have lower clean
accuracy than the baselines. Particularly, Adversarial Training and the D.A. + A.T. combo tend to
have the lowest clean accuracy. This is consistent with the fact that training on adversarial examples
usually hurts the model performance [17]]. Data Augmentation is an exception where it often performs

'For Finite Aggregation, we only ran one trial as it requires training a large number of models (e.g., with the
default parameters of £ = 50, d = 10, 500 models MicronNet models need to be trained), requiring 3 days to
run a single experiment using a 32GB V100 GPU under GTSRB.



even better than the baselines. Most of the defenses have similar accuracy for both DLBD and CLBD;
the exception is Activation Defense which performs worse against CLBD.

For the attack success rate, we observe that in DLBD, nearly all of the defenses are more robust than
the Undefended and Random Filter baselines. This does not extend to CLBD as many of the defenses
are actually less robust than the Undefended baseline. We also notice that the choice of trigger can
affect some of the defenses such as ISPL for CLBD, with the peace sign being a more nefarious
trigger. DPA and Finite Aggregation consistently offer very high levels of robustness for both attacks,
and even outperform the Perfect Filter baseline during CLBD.

Fairness Assessment: We visualize the resulting SPD metric of the models using heatmaps by aggre-
gating the fairness of classes across different models for scenarios with different poison percentages.
To generate this heatmap, for each model and poison percentage, we first categorize the resulting SPD
values associating with each class into SPD intervals described in Section[3] The classes belonging
to SPD < —0.1 were considered as negative classes and SPD > 0.1, were considered as positive
classes and |SPD| < 0.1 were considered as fair classes. The counts of classes belonging to each of
these three categories were taken across different poison percentages and averaged for all trials. This
was performed individually for all defenses or models under consideration and were plotted against
each other. In Figure we visualize the number of classes where |SPD| < 0.1 across the varying
poisoning percentages and the percentage of classes for each of the three intervals averaged across all
poison percentages for the two attacks using the bullet holes and peace sign triggers.
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Figure 2: The number of classes within the acceptable |SPD| < 0.1 range across varied poison
(top) and the percentage of classes within each of the three SPD ranges averaged across all poison
percentages (bottom) for each baseline and defense. Each model is evaluated against the DLBD and
CLBD attacks using the bullet hole and peace sign triggers on the GTSRB dataset.

In the heatmaps for the class counts of the |[SPD| < 0.1 (top row of Figure IZI), darker blue reflects
that more classes fall into the acceptable range, and thus, the model is fairer over all. The different
baselines are also shown for relative comparison purposes in each row. We first notice that the poison
percentage does not have a large effect on the fairness as the class counts stay relatively consistent.
The baseline models are the most fair while the evaluated defenses tend to be less fair. Interestingly,
Activation Defense exhibits high levels of fairness during DLBD but the lowest fairness during CLBD.
However, we observe that all of the filtering and adversarial training-based defenses are always less
fair than the baselines and other defenses. Intuitively, this reflects the mechanics of the defenses,
which remove outliers or try to minimize the effect of minority data. In contrast, data Augmentation
consistently shows the highest fairness for both types of attacks.



In the heatmaps for the class percentages of the three intervals (bottom row of Figure[Z), we notice that
most defenses are not especially unfair as the majority of classes always lie within the |[SPD| < 0.1
range. The exceptions are Activation Defense and the D.A. + A.T. combo which in some cases drop
below 50% indicating they may be biased. We also observe that each baseline or defense tends to
be skewed towards the either the negative SPD < —0.1 or positive SPD > 0.1. The baselines and
Activation Defense tend to be skewed towards the positive range with the percentage of positive range
larger that the negative range, while the other defenses tend to be skewed towards negative range.
This pattern is consistent for both DLBD and CLBD and for both triggers. This shows that most of
the defenses are biased towards a specific sub-population regardless of the type of poisoning attacks.

5 Conclusion

Machine learning algorithms, although used for critical tasks, are susceptible to adversarial attacks.
Poisoning attacks, in particular, pose a large risk to these ML models. Many defenses have been
proposed to protect against poisoning attacks. Traditionally, these defenses have been evaluated
using attack success rate and benign accuracy. However, these metrics do not show the complete
way in which a defense may influence the model. To uncover potential side-effects of defenses, we
introduced the use of a fairness metric to understand how different sub-populations can be affected.

In our evaluations, we found that some defenses that produce robust models with a low attack success
rate can actually yield unfair and biased models with a low amount of classes in the acceptable
Statistical Parity Difference (SPD) range. This was particularly true for the filtering and adversarial
training defenses. Overall, our work highlights that creating robust models may have unintended
consequences on the final model quality and certain sub-populations. We encourage future evaluations
of adversarial defenses to use metrics outside of the traditional clean accuracy and attack success rate
such as SPD to measure additional qualities of the model including its resulting fairness.
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A Appendix

A.1 Sub-population Examples

Many adversarial poisoning defenses attempt to find poisoned samples by searching for sub-
populations that are different from the rest of the samples in the class. However, it is possible
for naturally occurring low-represented benign sub-populations to be falsely identified in this pro-
cess. In different samples, we observed difference in properties like brightness, contrast, blurriness,
zoom-in or zoom-out etc., can create a sub-population that may be potentially marked as poison. One
such example is Figure [3] where the difference in brightness can create a sub-population that may
potentially be marked as poison.

off
@~ . “ (b)

Figure 3: Sample images in the GTSRB dataset where sub-populations can naturally occur. Here,
the (a) speed limit and (b) pedestrian crossing signs appear to be different sub-populations due to
differences in brightness.

A.2 BEAN Regularization to Identify Sub-populations

As explained before, there are multiple ways to identify benign sub-populations. In our experiments,
we used the BEAN regularization explanatory model to determine the different sub-populations within
the training data. BEAN allows for semantic interpretability due to its layer-wise regularization
rules that are biologically motivated. By applying these learning constraints which adjust the weight
space (enforcing modularity) BEAN ultimately allows sparsifying connections to disentangle learned
concepts into distinct groups. Our qualitative tests reproduced this same behavior on multiple datasets
(including GTSRB and CIFAR-10) and architectures. While the original paper tests BEAN for
better generalization and zero-shot learning, in this study, we leveraged the trait of explanatory data
characterization in detecting out-of-distribution sub-populations within a single “learned" class of the
pretrained BEAN model. The pretrained BEAN model uses the same architecture as the undefended
model, but solely for the purpose of evaluating the defense model behavior on non-poisoned inputs
only.



A.3 Trigger Images

In our experiments, we evaluated the baselines and defenses against the dirty-label and clean-label
backdoor attacks using the bullet hole and peace sign triggers for the GTSRB dataset. We also ran
additional experiments on the CIFAR-10 dataset using the copyright and watermark triggers. We
generate poison samples by blending the trigger image with a portion of each target image ﬂ For
GTSRB, we position the trigger in the center of the image and use a blend factor of 0.6 for both
triggers. For CIFAR-10, we set the trigger image size equal to the original image and use a blend
factor of 0.18 for copyright and 1.0 for the watermark trigger. All of these are shown in Figure ]

@ ot
/‘V}; LLe
(a) (b)

Figure 4: Poisoning attack triggers for (a) the bullet hole and peace sign used for the GTSRB dataset
and (b) the copyright and watermark used for the CIFAR-10 dataset.

A.4 Alternative Hyperparameter Evaluations

In our evaluations, we used the default hyperparameters for all of the defenses based on their
respective paper. We now present results for the Activation Defense, Spectral Signatures, Data
Augmentation, Adversarial Training, and the Data Augmentation and Adversarial combination (D.A.
+ A.T.) defenses where we use alternative hyperparameters. For Activation Defense, there is an
optional exclusionary reconstruction phase [3] (we denote as this as ExRe); we now evaluate using
exclusionary reconstruction with a threshold of 1.0. For Spectral Signatures, we evaluated using
the best case scenario where the expected poison is the actual poison amount; now we use a fixed
30% poison for the dirty label attacks and fixed 20% poison for the clean label attacks. For Data
Augmentation, Borgnia et al. [2] used Maxup with Cutout; now we use the CutMix, a different data
augmentation method. For Adversarial Training, Geiping et al. [8]] used a 7-step PGD attack with
€ = 0.1 and a step size of 0.02; we now use a weakened PGD attack with the same hyperparamaters
that Madry et al. [[17] used, a 10-step PGD with ¢ = 0.03 and a step size of 0.007. For the D.A. + A.T.
combo, we originally adversarially perturbed 75% of the training samples; we now use a weakened
version where we only perturb 50% of the training samples.

Security Assessment: The clean accuracy and attack success rate for these alternative hyperparame-
ter defenses are shown in Figure[5] The undefended baseline and original hyperparameter variations
are also included as reference. We report these metrics across the varying poisoning percentages
for the two attack using the bullet holes and peace sign triggers. We omit 0% poison for the attack
success rate plots since there will never be a successful attack. We also include tables showing the
exact numbers in Appendix [A.6] We immediately notice that Activation Defense with exclusionary
reconstruction offers a significant improvement in clean accuracy compared to without but does not
change much in terms of attack success rate. We also observe that the choice of expected poison for
Spectral Signatures does not affect the clean accuracy but does have a significant effect on the attack
success rate. The choice of Data Augmentation method (Maxup or CutMix) does not have a very
large affect on the clean accuracy or attack success rate. For both Adversarial Training and the D.A. +
A.T., the weakened variant has a higher clean accuracy but also higher attack success rate.

Fairness Assessment: In Figure@ we report the number of classes in the acceptable |SPD| < 0.1
across the varying poisoning percentages and the percentage of classes for each of the three SPD
intervals averaged across all poison percentages for the two attacks using the bullet holes and
peace sign triggers. We immediately notice a large improvement in fairness for Activation Defense
with exclusionary reconstruction for CLBD. We also observe that the hyperparameters for Spectral
Signatures and the choice of Data Augmentation do not affect the fairness of the model as the SPD
remains very similar. For both Adversarial Training and the D.A. + A.T. combo, however, we notice

’Refer to https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/
art/attacks/poisoning/perturbations/image_perturbations.py|for the implementation details
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modified defenses across varied poison. Each model is evaluated against the DLBD and CLBD
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a large increase in fairness for the weakened variants. The same trend where the defense tends to
be skewed towards the either the negative SPD < —0.1 or positive SPD > (.1 remains consistent
regardless of the hyperparameters.

A.5 Alternative Dataset and Attack Evaluations

In addition to our experiments using the MicronNet model trained on the GTSRB dataset, we also use
a different model architecture and dataset to properly judge each defense’s generalizability. For each
of the baselines and defenses, except DPA and Finite Aggregation|’| we trained a ResNet-18 [[L1] on
the CIFAR-10 [14]]. Each model was trained for 100 epochs. We evaluate these defenses against the
dirty label backdoor [10] and Witches” Brew [7] attacks. We use the Adam optimizer for models
evaluated against the DLBD and the SGD optimizer for models evaluated against the Witches’ Brew
attack. The CIFAR-10 dataset uses the copyright and watermark triggers (see Appendix [A.3) for the
DLBD. The Witches’ Brew attack does not use a trigger and we use 0%, 1%, 5%, 10%, 20%, and
30% poison.

Security Assessment: In Figure[7] we report the clean accuracy and attack success rate across the
varying poisoning percentages for the two attacks (and triggers where applicable). We omit 0%
poison for the attack success rate plots since there will never be a successful attack. We also include
tables showing the exact numbers in Appendix [A.6] We immediately notice that nearly all of the
defenses have a lower clean accuracy than the baselines. Adversarial Training and the D.A. + A.T.
combo in particular perform extremely poorly, but this may be due to the choice of hyperparameters
for the PGD attack. For the attack success rate, the defenses perform better than the undefended
baseline for the DLBD. However, for the Witches’ Brew attack, all of the defenses perform worse
than the baseline. This may demonstrate that these defenses are brittle against this type of attack.
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Figure 7: The clean accuracy (top) and attack success rate (bottom) for the baselines and defenses
across varied poison. Each model is evaluated against the DLBD attack using the copyright and
watermark triggers and the Witches’ Brew attack on the CIFAR-10 dataset.

Fairness Assessment: The fairness class counts for the acceptable |[SPD| < 0.1 range and the
percent distribution for all three SPD ranges are shown in Figure [§] We observe that since the

3We omit DPA and Finite Aggregation for the CIFAR-10 results as these defenses were not compatible with
this combination of dataset and poisoning attacks.
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CIFAR-10 dataset tends to have balanced classes, the baselines and most of the defenses are very fair
and tend to exhibit no bias. Adversarial Training and the D.A. + A.T. combo show some form of bias,
but is still very low. This shows that against a balanced dataset, models tend to stay fair and do not
exhibit much bias against sub-populations. For this reason, we used the GTSRB dataset for our main
results as this dataset is unbalanced which is more realistic.
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Figure 8: The number of classes in the acceptable |SPD| < 0.1 range across varied poison (top) and
the percentage of classes within each of the three SPD ranges averaged across all poison percentages
(bottom) for each baseline and defense. Each model is evaluated against the DLBD attack using the
copyright and watermark triggers and the Witches” Brew attack on the CIFAR-10 dataset.

A.6 Results as Tables

For readability and accurate comparisons, we also include tables showing the exact numbers for the
clean accuracy and attack success rate plots of all the baselines and defenses in our three sets of
experiments.

Table[T]and Table 2] correspond to the top row and bottom rows of Figure[I] respectively. This is the
clean accuracy and attack success rates for the main set of baselines and defenses evaluated against
the DLBD and CLBD attacks using the bullet hole and peace sign triggers on the GTSRB dataset.

Table 3] and Table [d correspond to the top row and bottom rows of Figure 3] respectively. This is the
clean accuracy and attack success rates for the alternative hyperparameter defenses evaluated against
the DLBD and CLBD attacks using the bullet hole and peace sign triggers on the GTSRB dataset.

Table [5] and Table [f] correspond to the top row and bottom rows of Figure [7] respectively. This is
the clean accuracy and attack success rates for the alternative hyperparameter defenses evaluated
against the DLBD attack using the copyright and watemark triggers and Witches’ Brew attack on the
CIFAR-10 dataset.

13



Table 1: The clean accuracy for the main set of baselines and defenses evaluated on the GTSRB
dataset against the DLBD (top) and CLBD (bottom) attacks with bullet hole and peace sign triggers
across varying poison percentages. The best performing models are in bold.

DLBD Bullet Hole DLBD Peace Sign
Model 0% 1% 5% 10% 20%  30% 0% 1% 5% 10% 20%  30%
Undefended 0916 0940 0.935 0.941 0942 0939 | 0.928 0.941 0945 0941 0.925 0.942
Perfect Filter 0942 0919 0919 0932 0941 0942 | 0.943 0944 0.892 0921 0.942 0.940
Random Filter 0934 0903 0916 0.935 0915 0937 | 0905 0936 0925 0941 0.893 0.925
Activation Defense | 0.904 0929 0930 0.932 0911 0.906 | 0.933 0.880 0924 0933 0.933 0.920
DPA 0925 0922 0.922 0922 0922 0917 | 0.925 0922 0923 0.925 0.922 0.920
Finite Aggregation 0916 0916 0916 0915 0914 0910 | 0916 0916 0916 0916 0915 0914
Spectral Signatures | 0.947 0946 0918 0.946 0918 0.941 | 0.946 0947 0943 0915 0912 0.921
ISPL 0.878 0.874 0.910 0.905 0.885 0.895 | 0.896 0.879 0.879 0.877 0.884 0.877
Data Augmentation | 0.947 0.948 0.939 0.948 0.945 0.949 | 0.945 0947 0.947 0.939 0.946 0.949
Adversarial Training | 0.886 0.867 0.862 0.864 0.853 0.864 | 0.878 0.857 0.862 0.859 0.848 0.842
DA +AT. 0.884 0.875 0.846 0.849 0.830 0.840 | 0.867 0.848 0.844 0.848 0.839 0.848
CLBD Bullet Hole CLBD Peace Sign
Model 0%  20% 50%  80% 0% 20% 50% 80%
Undefended 0928 0929 0927 0925 0.928 0929 0927 0.925
Perfect Filter 0928 0927 0927 0928 | 0.928 0.927 0.927 0.928
Random Filter 0924 0924 0927 0927 | 0924 0924 0.927 0.927
Activation Defense | 0.866 0.875 0.859 0.860 | 0.866 0.875 0.859 0.860
DPA 0925 0922 0919 0915|0925 0.923 0.920 0912
Finite Aggregation 0916 0915 0913 0909 | 0916 0915 0913 0.909
Spectral Signatures | 0.946 0909 0912 00911 | 0.946 0913 0911 0.908
ISPL 0.878 0.889 0.891 0902 | 0.878 0.901 0.878 0.898
Data Augmentation | 0.947 0.951 0947 0.946 | 0.919 0.942 0.930 0.943
Adversarial Training | 0.864 0.862 0.858 0.860 | 0.861 0.865 0.854 0.871
DA +AT. 0.856 0.838 0.840 0.846 | 0.864 0.843 0.853 0.849

Table 2: The attack success rate for the main set of baselines and defenses evaluated on the GTSRB
dataset against the DLBD (top) and CLBD (bottom) attacks with the bullet hole and peace sign
triggers across varying poison percentages. The best performing models are in bold.

DLBD Bullet Hole DLBD Peace Sign

Model 1% 5% 10% 20% 30% 1% 5% 10% 20% 30%
Undefended 0.278 0.569 0.820 0910 0.940 | 0.744 0.953 0.983 0.967 0.998
Perfect Filter 0.103 0.094 0.092 0.135 0.135 | 0.137 0.045 0.072 0.228 0.120
Random Filter 0.134 0.568 0.745 0.800 0.936 | 0.668 0.753 0.979 0.738 0.998
Activation Defense | 0.289 0.691 0.815 0.838 0.830 | 0.497 0.886 0.977 0.985 0.988
DPA 0.128 0.163 0.200 0.364 0.492 | 0.056 0.138 0.310 0.547 0.701
Finite Aggregation 0.122 0.161 0.231 0.383 0.508 | 0.050 0.251 0.451 0.724 0.861
Spectral Signatures | 0.266 0.506 0.839 0.705 0.915 | 0.532 0.871 0.676 0.769 0.992
ISPL 0.068 0.088 0.106 0.167 0.247 | 0.096 0.073 0.081 0.311 0.461
Data Augmentation | 0.201 0.300 0.844 0.949 0.956 | 0.568 0.896 0.893 0.985 0.990
Adversarial Training | 0.119 0.157 0.142 0.243 0.263 | 0.194 0.178 0.358 0.339 0.479
D.A.+ AT 0.140 0229 0.275 0.418 0.600 | 0.272 0.346 0.447 0.583 0.754

CLBD Bullet Hole CLBD Peace Sign
Model 20% S50% 80% | 20% S50%  80%
Undefended 0.225 0.236 0.268 | 0.225 0.236 0.268
Perfect Filter 0.119 0.107 0.115 | 0.119 0.107 0.115
Random Filter 0.227 0247 0267 | 0.227 0.247 0.267
Activation Defense 0.248 0.283 0.261 | 0.248 0.283 0.261
DPA 0.122 0.106 0.107 | 0.085 0.083 0.079
Finite Aggregation 0.096 0.092 0.090 | 0.096 0.092 0.090
Spectral Signatures | 0.193  0.271 0.250 | 0.263 0.327 0.315
ISPL 0.159 0.194 0.170 | 0.329 0.264 0.290
Data Augmentation | 0.222 0.217 0.194 | 0.199 0.267 0.268
Adversarial Training | 0.142 0.271 0.275 | 0.203 0.218 0.229
D.A.+ A.T. 0.200 0219 0.251 | 0.202 0.247 0.289
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Table 3: The clean accuracy for the alternative hyperparameter defenses evaluated on the GTSRB
dataset against the DLBD (top) and CLBD (bottom) attacks with bullet hole and peace sign triggers
across varying poison percentages. The best performing models are in bold.

DLBD Bullet Hole DLBD Peace Sign
Model 0% 1% 5% 10% 20%  30% 0% 1% 5% 10% 20%  30%
Undefended 0916 0.940 00935 0.941 0942 0.939 | 0.928 0.941 0.945 0941 0.925 0942

Activation Defense (original) | 0.904 0.929 0.930 0.932 0911 0.906 | 0.933 0.880 0.924 0.933 0.933 0.920
Activation Defense (ExRe) 0914 0.953 0933 0.952 0950 0.953 | 0.954 0.953 0.952 0942 0.950 0.951
Spectral Signatures (original) | 0.947 0.946 0918 0946 0.918 0941 | 0946 0.947 0943 0915 0912 0921
Spectral Signatures (fixed) 0941 0943 0933 0.937 0917 0941 | 0.941 0875 0.929 0901 0941 0.921
Data Augmentation (maxup) 0.947 0948 0939 0948 0945 0949 | 0.945 0947 0.947 0939 0946 0.949
Data Augmentation (cutmix) 0944 0936 0937 0.943 0937 0936 | 0.947 0941 0.938 0.938 0941 0.938
Adversarial Training (original) | 0.886 0.867 0.862 0.864 0.853 0.864 | 0.878 0.857 0.862 0.859 0.848 0.842
Adversarial Training (weak) 0942 0940 0934 0.938 0928 0933 | 0.943 0938 0.936 0933 0939 0.929

D.A. + A.T. (original) 0.884 0.875 0.846 0.849 0.830 0.840 | 0.867 0.848 0.844 0.848 0.839 0.848
D.A. + A.T. (weak) 0.886 0.897 0.889 0.888 0.881 0.886 | 0.898 0.897 0.894 0.889 0.895 0.888
CLBD Bullet Hole CLBD Peace Sign
Model 0% 20% 50%  80% 0% 20% 50%  80%
Undefended 0928 0.929 0927 0.925 | 0928 0.929 0.927 0.925

Activation Defense (original) 0.866 0.875 0.859 0.860 | 0.866 0.875 0.859 0.860
Activation Defense (ExRe) 0.948 0952 0954 0.947 | 0.948 0.953 0.953 0.951
Spectral Signatures (original) 0.946 0909 0912 0911 | 0.946 0913 0911 0.908
Spectral Signatures (fixed) 0.940 0.899 0.902 0.901 | 0.940 0.903 0.901 0.898
Data Augmentation (maxup) 0.947 0.951 0947 0.946 | 0919 0.942 0930 0.943
Data Augmentation (cutmix) 0941 0931 0.946 0949 | 0.939 0945 0.948 0.947
Adversarial Training (original) | 0.864 0.862 0.858 0.860 | 0.861 0.865 0.854 0.871
Adversarial Training (weak) 0.943 0934 0.929 0946 | 0918 0.937 0941 0.944
D.A. + A.T. (original) 0.856 0.838 0.840 0.846 | 0.864 0.843 0.853 0.849
D.A. + A.T. (weak) 0.898 0.906 0.898 0.896 | 0.898 0.876 0.898 0.882

Table 4: The attack success rate for the alternative hyperparameter defenses evaluated on the GTSRB
dataset against the DLBD (top) and CLBD (bottom) attacks with the bullet hole and peace sign
triggers across varying poison percentages. The best performing models are in bold.

DLBD Bullet Hole DLBD Peace Sign
Model 1% 5% 10% 20% 30% 1% 5% 10% 20%  30%
Undefended 0.278 0.569 0.820 0.910 0.940 | 0.744 0953 0.983 0.967 0.998

Activation Defense (original) 0.289 0.691 0.815 0.838 0.830 | 0.497 0.886 0.977 0.985 0.988
Activation Defense (ExRe) 0.319 0.554 0.846 0.944 0.962 | 0.606 0.906 0.833 0.983 0.992
Spectral Signatures (original) | 0.266 0.506 0.839 0.705 0.915 | 0.532 0.871 0.676 0.769 0.992
Spectral Signatures (fixed) 0.268 0.562 0.819 0.823 0915 | 0270 0.774 0.756 0.983 0.992
Data Augmentation (maxup) 0.201 0.300 0.844 0.949 0.956 | 0.568 0.896 0.893 0.985 0.990
Data Augmentation (cutmix) 0.186 0.643 0.806 0.869 0.964 | 0.467 0.890 0.938 0.964 0.983
Adversarial Training (original) | 0.119 0.157 0.142 0.243 0.263 | 0.194 0.178 0.358 0.339 0.479
Adversarial Training (weak) 0.171 0.178 0.424 0421 0.468 | 0.207 0.686 0.925 0.979 0.997

D.A. + A.T. (original) 0.140 0.229 0275 0418 0.600 | 0.272 0346 0.447 0.583 0.754
D.A. + A.T. (weak) 0.165 0.151 0.254 0.350 0.467 | 0.188 0207 0.306 0.492 0.861
CLBD Bullet Hole CLBD Peace Sign
Model 20% 50% 80% | 20% 50%  80%
Undefended 0225 0.236 0.268 | 0.225 0.236 0.268

Activation Defense (original) 0.248 0.283 0.261 | 0.248 0.283 0.261
Activation Defense (ExRe) 0.225 0.221 0237 | 0.305 0.360 0.428
Spectral Signatures (original) 0.193 0.271 0.250 | 0.263 0.327 0.315
Spectral Signatures (fixed) 0.213 0.281 0.260 | 0.263 0.377 0.365
Data Augmentation (maxup) 0.222  0.217 0.194 | 0.199 0.267 0.268
Data Augmentation (cutmix) 0211 0.226 0.192 | 0.300 0.312 0.299
Adversarial Training (original) | 0.142 0.271 0.275 | 0.203 0.218 0.229
Adversarial Training (weak) 0.247 0.232  0.253 | 0.297 0.267 0.271
D.A. + A.T. (original) 0.200 0.219 0.251 | 0.202 0.247 0.289
D.A. + A.T. (weak) 0.264 0.243 0261 | 0.274 0.282 0.278
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Table 5: The clean-accuracy for the baselines and defenses evaluated on the CIFAR-10 dataset against
the DLBD attack with the copyright and watermark triggers (top) and Witches’ Brew attack (bottom)
across varying poison percentages. The best performing models are in bold.

\ DLBD Copyright \ DLBD Watermark
Model ‘ 0% 1% 5% 10% 20% 30% ‘ 0% 1% 5% 10% 20% 30%
Undefended 0.767 0.762 0.765 0.764 0.758 0.737 | 0.769 0.764 0.758 0.762 0.766 0.765
Perfect Filter 0.770 0.768 0.763 0.767 0.767 0.763 | 0.771 0.765 0.767 0.765 0.763 0.761
Random Filter 0.739 0.731 0.725 0.729 0.728 0.728 | 0.734 0.728 0.733 0.730 0.733 0.725

Activation Defense 0.716 0.722 0.708 0.697 0.727 0.711 | 0.731 0.721 0.708 0.718 0.704 0.516
Spectral Signatures | 0.682 0.644 0.680 0.692 0.674 0.686 | 0.703 0.690 0.492 0.672 0.687 0.689
ISPL 0.674 0.669 0.666 0.664 0.666 0.675 | 0.677 0.683 0.667 0.677 0.657 0.674
Data Augmentation | 0.748 0.742 0.745 0.741 0.747 0.728 | 0.756 0.745 0.749 0.751 0.729 0.740
Adversarial Training | 0.303 0.326 0.334 0.315 0.326 0.283 | 0.310 0.350 0.347 0.339 0.334 0.311

DA . +AT. 0.402 0408 0396 0.398 0.411 0406 | 0.380 0.342 0414 0373 0.391 0.391
‘ Witches’ Brew

Model ‘ 0% 10% 20% 30%

Undefended 0.637 0.634 0.632 0.627

Perfect Filter 0.771 0.738 0.731 0.716

Random Filter 0.734 0.710 0.703 0.701

Activation Defense 0.731 0.548 0.641 0.637
Spectral Signatures | 0.703  0.668 0.658 0.656
ISPL 0.710 0.711 0.694 0.690
Data Augmentation | 0.643 0.629 0.621 0.613
Adversarial Training | 0.280 0.270 0.260 0.254
DA +AT. 0.315 0.307 0.305 0.315

Table 6: The attack success rate for the baselines and defenses evaluated on the CIFAR-10 dataset
against the DLBD attack with the copyright and watermark triggers (top) and Witches’ Brew attack
(bottom) across varying poison percentages. The best performing models are in bold.

| DLBD Copyright | DLBD Watermark
Model | 1% 5% 10% 20% 30% | 1% 5% 10% 20% 30%
Undefended 0.228 0.624 0.777 0.866 0.879 | 0.340 0.764 0.869 0.939 0.947
Perfect Filter 0.051 0.094 0.081 0.067 0.081 | 0.033 0.025 0.026 0.030 0.027
Random Filter 0.238 0.623 0.713 0.847 0.881 | 0.258 0.703 0.812 0.907 0.944

Activation Defense | 0.249 0475 0.694 0.784 0.897 | 0.212 0.978 0.603 0.789 0.636
Spectral Signatures | 0.225 0.451 0.606 0.687 0.828 | 0.121 0.103 0.581 0.831 0.601
ISPL 0.041 0.060 0.091 0.215 0.646 | 0.027 0.034 0.082 0.284 0.602
Data Augmentation | 0.051 0.066 0.087 0.272 0.456 | 0.285 0.650 0.815 0.900 0.943
Adversarial Training | 0.014 0.011 0.015 0.040 0.133 | 0.043 0.372 0.668 0.114 0.424

D.A.+A.T. 0.026 0.028 0.023 0.069 0.093 | 0.010 0.470 0.119 0.742 0.764
| Witches’ Brew

Model \ 10% 20%  30%

Undefended 0.167 0.300 0.433

Perfect Filter 0.033 0.033 0.067

Random Filter 0.633 0.600 0.667

Activation Defense 0.400 0.667 0.733
Spectral Signatures | 0.700 0.733  0.600
ISPL 0.533  0.467 0.667
Data Augmentation | 0.467 0.567 0.600
Adversarial Training | 0.067 0.100  0.000
D.A.+ AT 0.033  0.033 0.000
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