
Scaling Automated Quantum Error Correction Discovery
with Reinforcement Learning

Jan Olle 1 Remmy Zen 1 Matteo Puviani 1 Florian Marauardt 1 2

Abstract
In the ongoing race towards experimental imple-
mentations of quantum error correction (QEC),
finding ways to automatically discover codes and
encoding strategies tailored to the qubit hardware
platform is emerging as a critical problem. Rein-
forcement learning (RL) has been identified as a
promising approach, but so far it has been severely
restricted in terms of scalability. In this work, we
significantly expand the power of RL approaches
to QEC code discovery. Explicitly, we train an
RL agent that automatically discovers both QEC
codes and their encoding circuits from scratch.
We show its effectiveness with up to 25 physical
qubits and distance 5 codes, while presenting a
roadmap to scale up to 100 qubits and distance 10
codes in the near future.

1. Introduction
Quantum error correction (Inguscio et al., 2007; Girvin,
2023) (QEC) protects quantum information by encoding the
state of a logical qubit into several physical qubits and is
crucial to ensure that quantum technologies such as quantum
communication or quantum computing can achieve their
groundbreaking potential.

The past few years have witnessed dramatic progress in
experimental realizations of QEC on different experimental
platforms (Krinner et al., 2022; Ryan-Anderson et al., 2021;
Postler et al., 2022; Cong et al., 2022; Acharya et al., 2023;
Sivak et al., 2023), including superconducting qubits, ion
traps, quantum dots, and neutral atoms. Given the strong
differences in all of these platforms, there is a strong need
for a flexible and efficient scheme to automatically discover

1Max Planck Institute for the Science of Light, Staudt-
straße 2, 91058 Erlangen, Germany 2Department of Physics,
Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße
5, 91058 Erlangen, Germany. Correspondence to: Jan Olle
<jan.olle@mpl.mpg.de>.

AI for science workshop of the 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR 235, 2024. Copyright
2024 by the author(s).

not only codes but also efficient encoding circuits, adapted
to the hardware at hand.

At the same time, Artificial Intelligence (AI) is transforming
scientific discovery (Wang et al., 2023). Within, Reinforce-
ment Learning (RL) is a promising artificial discovery tool
for QEC strategies. The task to solve is encoded in a re-
ward function, and the aim of RL training algorithms is to
maximize such a reward over time. RL can provide new
answers to difficult questions, in particular in fields where
optimization in a high-dimensional search space plays a
crucial role. For this reason, RL can be an efficient tool to
tackle the problem of QEC code construction and encoding.

In our work, we significantly expand the scaling capabilities
of RL for QEC code search by introducing two critical
components:

1. An efficiently computable and general RL reward based
on the Knill-Laflamme error correction conditions (de-
fined further below).

2. A highly parallelized custom-built Clifford circuit sim-
ulator (defined further below) that runs entirely on
modern AI chip accelerators such as GPUs or TPUs.

The main results that are enabled by this strategy are the
following:

1. Effortless discovery of codes and encoders with code
distances from 3 (found in tens of seconds) to 5 (found
in tens of minutes to a few hours) with up to 25 physical
qubits.

2. A scalable platform for artificial scientific discovery of
QEC strategies based on RL that potentially allows dis-
covery of distance 8-10 codes on a single GPU, while
offering further scaling opportunities on distributed
machines.

Some of the work presented in this paper can also be found
as part of the paper (Olle et al., 2024).

1

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

2. Related work
The first example of RL-based automated discovery of QEC
strategies (Fösel et al., 2018) did not rely on any human
knowledge of QEC concepts. While this allowed explo-
ration without any restrictions, it was limited to only small
qubit numbers (at most, 4 or 5). More recent works have
moved towards optimizing only certain QEC subtasks, in-
jecting substantial human knowledge (inductive biases). For
example, RL has been used for optimization of given QEC
codes (Nautrup et al., 2019), and to discover tensor network
codes (Mauron et al., 2023) or codes based on ”Quantum
Lego” parametrizations (Su et al., 2023; Cao & Lackey,
2022). Additionally, RL has been used to find efficient de-
coding processes (Andreasson et al., 2019; Sweke et al.,
2020; Colomer et al., 2020; Fitzek et al., 2020) and self-
correcting control protocols (Metz & Bukov, 2023).

In (Cao et al., 2022), the authors also set themselves the task
of finding both codes and their encoding circuits. However,
this was done using variational quantum circuits involv-
ing continuously parametrized gates, which leads to much
more costly numerical simulations and eventually only an
approximate QEC scheme. In fact, with that approach it
was not possible to scale to d = 5 codes due to prohibitive
computational costs. In contrast, our RL-based approach
does not rely on any human-provided circuit ansatz, can use
directly any given discrete gate set and is able to scale up
to d = 5 (and in principle even higher) codes, exploiting
highly efficient Clifford simulations.

3. Theoretical background
3.1. Stabilizer codes

The stabilizer formalism (Gottesman, 1997) provides a com-
pact description of quantum states and processes. The cen-
tral idea is to describe quantum states by listing the set of
operators of which that state is an eigenvector with eigen-
value +1. Such operators are said to stabilize the state.
Given n qubits, a state can be described by listing n opera-
tors. A particularly useful set of operators are Pauli strings,
which are composed of Kronecker products of the Pauli
matrices,

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1)

For example, IXY IZ (which is shorthand for I ⊗ X ⊗
Y ⊗ I ⊗ Z) is a Pauli string. The weight of a Pauli string
is the number of non-identity Pauli matrices inside it (e.g.
IXY IZ has weight 3). Pauli strings form a group under
matrix multiplication (Gottesman, 1997) and can be repre-
sented as binary arrays of size 2n (Aaronson & Gottesman,

2004). The latter property is where their usefulness resides:
instead of 2n complex-valued coefficients, 2n2 binary val-
ues suffice to represent quantum states.

Time evolution of stabilizer states are represented in terms of
Clifford gates. By definition, these are unitary processes that
map Pauli strings to Pauli strings. In contrast, non-Clifford
gates (which we don’t consider in this work) are also uni-
tary but map Pauli strings to superpositions of Pauli strings.
All Clifford gates can be generated by the Hadamard H ,
the Phase S and the CNOT gates (Aaronson & Gottesman,
2004) (see Appendix A for their definition).

The stabilizer formalism can also describe subspaces, which
are called codes. A code that encodes k logical qubits into
n physical qubits is a 2k-dimensional subspace (the code
space C) of the full 2n-dimensional Hilbert space. It is
completely specified by a set of n − k Pauli strings that
stabilize it. In fact, these n − k Pauli strings generate a
group denoted by SC = ⟨g1, g2, . . . , gn−k⟩, which is called
the stabilizer group of C. In order to describe such codes,
2n(n− k) bits are needed.

3.2. Error correction conditions

The fundamental theorem in QEC is a set of necessary and
sufficient conditions discovered by Knill and Laflamme (KL
conditions) in (Knill & Laflamme, 1997) that state that a
code C with associated stabilizer group SC can detect a set
of errors {Eµ} (which for our purposes will also be Pauli
strings) if and only if they anticommute,

{Eµ, gi} = 0 , (2)

for at least one gi, or the error itself is harmless, i.e.

Eµ ∈ SC . (3)

The smallest weight in {Eµ} for which any of the above
two conditions do not hold is called the distance of the code.
A quantum code that can correct up to weight-t errors must
have a distance of at least d = 2t+ 1. We follow standard
notation and write quantum codes of distance d that encode
k logical qubits into n physical qubits as [[n, k, d]].

3.3. Calderbank-Steane-Shor (CSS) codes

CSS codes (Steane, 1996; Calderbank & Shor, 1996), named
after A. R. Calderbank, P. Shor, and A. Steane, are a sub-
class of stabilizer codes with very useful properties. They
are defined by their stabilizer group generators being Pauli
strings containing either onlyX’s or only Z’s (apart from I).
Concretely, we write theX-type generators of a CSS code as
GX and the Z-type ones as GZ . For instance, a well-known
example of a CSS code is Steane’s [[7, 1, 3]] code, with gen-
eratorsGX = {IIIXXXX, IXXIIXX, XIXIXIX}
and GZ = {IIIZZZZ, IZZIIZZ, ZIZIZIZ}.

2

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

An advantage of working with CSS codes is that we can
make the binary representation of Pauli strings even more
compact. Specifically, we will never encounter a Pauli string
with a Y in it, and all Pauli strings will contain either only
X’s or only Z’s. Thus, it suffices to represent Pauli strings
with arrays of n bits. Possible ambiguities (e.g. both XX
and ZZ would be represented by (1, 1)) are avoided by
labelling which code generators are in GX and which ones
are in GZ . We can thus represent an [[n, k]] code with
n(n− k) bits, getting an improvement of a factor of 2 with
respect to generic stabilizer codes.

By construction, detection of X-type and Z-type errors in
CSS codes happen independently. This implies that Y -type
errors are identified when X and Z-type stabilizer measure-
ments fire simultaneously. This conveniently reduces the
number of error operators that have to be checked in the KL
conditions (2), (3) for an [[n, k, d]] code to

num ({Eµ} | CSS, [[n, k, d]]) =
d−1∑
w=0

(
n

w

)
, (4)

i.e. we have to choose in how many of the n positions of the
Pauli strings we place single-qubit errors with a budget of w.
In comparison with generic stabilizer codes, an exponential
factor 3w suppression from inside the sum is achieved.

3.4. Reinforcement Learning

Reinforcement Learning (RL) (Sutton et al., 1999; Sutton
& Barto, 2018) is designed to discover optimal action se-
quences in decision-making problems. The goal in any RL
task is encoded by choosing a suitable reward r, a quan-
tity that measures how well the task has been solved, and
consists of an agent (the entity making the decisions) inter-
acting with an environment (the physical system of interest
or a simulation of it). In each time step t, the environment’s
state st is observed. Based on this observation, the agent
takes an action at which then affects the current state of the
environment. For each action, the agent receives a reward rt,
and the goal of RL algorithms is to maximize the expected
cumulative reward (return), E [

∑
t rt]. A trajectory is a

sequence of state, action and reward triples that the agent
experiences from an initial state to a terminal state. The
agent’s behavior is defined by the policy πθ(at|st), which
denotes the probability of choosing action at given observa-
tion st, and that we parameterize by a neural network with
parameters θ.

Within RL, policy gradient methods (Sutton et al., 1999)
optimize the policy by maximizing the expected return with
respect to the parameters θ with gradient descent. One of the
most successful algorithms within policy gradient methods
is the actor-critic algorithm (Konda & Tsitsiklis, 1999). The
idea is to have two neural networks: an actor network that
acts as the agent and that defines the policy, and a critic

network, which measures how good was the action taken
by the agent. In this paper, we use a state-of-the-art policy-
gradient actor-critic method called Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), which improves
the efficiency and stability of policy gradient methods. We
include in Appendix B a review of the PPO algorithm with
implementation-specific details used in this work.

4. CSS code discovery with reinforcement
learning

The main objective of this work is to explore the scaling
limits of the automated discovery of QEC codes and their
encoding circuits using RL. We exclusively focus on CSS
codes due to their enhanced simulability with classical com-
puters. A scheme of our approach can be found in Fig. 1(a),
and the next subsections are dedicated to explaining its con-
stituent parts.

4.1. Encoding circuit

In order to encode the state of k logical qubits on n physical
qubits one must find a sequence of quantum gates that will
entangle the quantum information in such a way that QEC
is possible with respect to a target list of error operators. Ini-
tially, we imagine the first k qubits as the original containers
of our (yet unencoded) quantum information, which can be
in any state |ψ⟩ ∈ (C2)

⊗k. The remaining n− k qubits are
chosen to each be initialized in the state |0⟩, as shown in
Fig. 1(a). These will be turned into the corresponding logi-
cal state |ψ⟩L ∈ (C2)

⊗n via the application of a sequence
of Clifford gates on any of the n qubits. In the stabilizer
formalism, this means that initially the stabilizer generators
of the code subspace are

Zk+1, Zk+2, . . . , Zn . (5)

The search of stabilizer codes can be restricted to CSS codes
by constraining the circuit to be built from an initial layer of
Hadamard gates followed by CNOT gates thereafter, as seen
in Fig. 1(a). We give a proof of this statement in Appendix C,
but the main idea is thatX’s and Z’s never mix. The number
of Hadamard gates applied at the beginning is the cardinality
of GX (the set of code generators of the X kind), while the
cardinality of GZ (the set of code generators of the Z kind)
is n− k − num(H).

We could ask the RL agent to provide the full circuit (both
the Hadamards and the CNOT gates). However, we choose
a mixed human-AI strategy where we are the ones deciding
the content of the Hadamard layer and where the agent has
to discover a suitable encoding sequence of CNOT gates for
the particular list of errors under consideration. In this way,
we simplify the task of the agent as much as possible (see
Fig. 1(a) for an example).

3

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

…
…

|ψ1⟩

|ψk⟩
|0⟩
|0⟩

|0⟩ Ha
da

ma
rd

 l

ay
er

CNOT
block

Environment

Reward

Code
Generators

Apply gate

RL agent

H

H

H

Observation Action

|ψ⟩
H

H

H

Human-
designed

CX(1,0)

X0X1X2, X3X4, X5X6

Z1Z2, Z3Z4, Z5Z6

CSS code discovery

20 40 60 80 100
10-7

0.001

10

105

Number of physical qubits n

M
em
or
y
fra
ct
io
n
[A
10
0]

Region of opportunity

[[72,12,6]]
[[90,8,10]] of [14]

d=5
d=6

d=7
d=8d=10

Non-CSS, d=10

(a) (b)

(c)
[[72,12,6]]
[[90,8,10]]

of Bravyi
et al, 2024

Number of circuits

Co
m

pu
te

 ti
m

e
[m

s]

Ours (GPU)

Stim (CPU)

450x faster

Figure 1. (a) Code and encoding discovery with reinforcement learning: scheme of our framework. An initial layer of Hadmard gates is
chosen and the RL agent’s task is to find a suitable circuit of CNOTs that is able to correct a target list of errors (which enter through the
reward). We use PPO, which is an actor-critic methods with two neural networks. They both receive as observation a binary representation
of the code generators at that given point in time. The actions are discrete and correspond to applying a single CNOT gate (whose
possible control and target qubits are determined by the available qubit connectivity). In the present example, Steane’s [[7, 1, 3]] code is
rediscovered using a nearest-neighbor qubit connectivity. (b) Fast Clifford circuit simulator. We benchmark our custom-built Clifford
circuit simulator against STIM (Gidney, 2021) by simulating random Clifford circuits of 1000 gates on 49 qubits. Thanks to our vectorized
implementation, we are able to run many circuit in parallel, achieving a 450 times speedup with respect to STIM in this benchmark. (c)
Scaling CSS (defined in the text) code and encoding discovery to larger code parameters. We show the fraction of the 80 GB of GPU
memory needed (NVIDIA A100 GPU) to store all the error operators that are required to reward the agent. We also show for comparison
the memory load of stabilizer (non-CSS) code discovery for code distance d = 10. We identify a region of opportunity where our RL
strategy could outperform some of the qLDPC (defined in the text) codes found in (Bravyi et al., 2024) in the near future.

After applying each gate, the n− k code generators (5) are
updated. The agent then receives a representation of these
generators as input (as its observation) and suggests the next
gate (action) to apply. In this way, an encoding circuit is
built up step by step, taking into account the available gate
set and connectivity for the particular hardware platform.

4.2. Reward

In this work we use a scheme where the cumulative reward
(which RL optimizes) is maximized whenever all the Knill-
Laflamme conditions are fulfilled. This way, one can verify
that the circuit found by the agent has the desired error-

correcting capabilities. One implementation of this idea
uses what we call the (negative) weighted Knill-Laflamme
sum as an instantaneous reward, which we define as:

rt = −
∑
µ

λµKµ , (6)

where Kµ = 0 if the corresponding error operator Eµ sat-
isfies the KL conditions, and Kµ = 1 otherwise. Here λµ
are (positive) hyperparameters quantifying how dangerous
each error is (i.e. proportional to its occurrence probability
pµ). The reward (6) is zero if and only if all the chosen
errors can be detected, at which point we know that the en-
coding has been successful, and is negative otherwise. The

4

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

range of µ is determined by (4) upon a choice of target code
distance d. Finally, making the reward non-positive favors
short gate sequences. An important technical aspect is the
following. The second KL condition, Eq. (3), in principle
requires computing the entire stabilizer group SC of 2n−k

elements at every time step, which can be very costly. In
practice, almost all errors are always detected through the
first KL condition Eq. 2, meaning that generating only a
subgroup of SC is enough. More detailed aspects of our
implementation are explained in Appendix D.

4.3. Accelerated simulator of Clifford circuits

RL algorithms exploit guided trial-and-error loops until a
signal of a good strategy is picked up and convergence is
reached, so it is of paramount importance that simulations
of our RL environment are extremely fast. Thanks to the
Gottesman-Knill theorem, the Clifford circuits needed here
can be simulated efficiently on classical computers. Opti-
mized numerical implementations of Clifford circuits exist,
e.g. STIM (Gidney, 2021). However, in an RL application
we want to be able to run multiple circuits in parallel in an
efficient, vectorized way that is compatible with modern
machine learning frameworks. For that reason, we have
implemented our own special-purpose vectorized GPU Clif-
ford simulator. When compared to STIM, we find a ∼ 450×
speedup at simulating random Clifford circuits. In particu-
lar, we can simulate around 6000 random Clifford circuits
of 1000 gates each on 49 qubits in under a second (see
Fig. 1(b)).

We achieve such a performance by implementing the action
of Clifford gates as binary matrices. In practice, we only
need to implement the CNOT gate (H only decides the
splitting between GX and GZ). Here we show how to
implement a simple CNOT gate on a system of two qubits
for illustrative purposes. The CNOT transformation rules
are the following:

• XI → XX , ZI → ZI

IX → IX , IZ → ZZ

(7)

XI → XI , ZI → ZZ

• IX → XX , IZ → IZ

(8)

Crucially, exchange of control and target labels turns
an X transformation rule into a Z transformation rule. We
can thus use a single binary matrix per CNOT (we choose
the one that implements the X transformation rule) and
use the binary matrix representation of the CNOT with
exchanged control and target to transform Z-type
stabilizers.

A key aspect is that matrix multiplication happens from the
right, i.e. to update a Pauli string with binary representation

(P1)bin with a gate Gbin the order is (P1)bin ·Gbin. Having
this in mind, the binary matrix that implements the CNOT
rule (7) is

CNOT(0, 1)bin =

(
1 1
0 1

)
, (9)

while the binary matrix representation of (8) is

CNOT(1, 0)bin =

(
1 0
1 1

)
. (10)

In summary, Clifford gates are represented by (n, n) binary
matrices and updates in GX and GZ are implemented by
binary matrix multiplication.

The first KL condition, (2), requires checking anticommu-
tation relations between Pauli strings. Two Pauli strings P1

and P2 either commute or anticommute: they anticommute
if they overlay with an odd number of different Pauli matri-
ces and commute otherwise. In our case there is only one
option: the number of overlaying X and Z single Paulis
must be odd. This is computed by the binary dot product
between Pauli strings PX and PZ . If 1, they anticommute;
if 0, they commute.

In the end, we implement all the operations that are required
for both simulating the quantum circuits and to check the er-
ror correction conditions using binary linear algebra. These
are efficiently vectorizable operations using modern ma-
chine learning frameworks such as JAX (Bradbury et al.,
2018) and are extremely fast on a GPU.

4.4. Scaling limits

Before showing specific circuits and codes found with our
approach, we make some estimations on the practical scaling
limits of this strategy, which are summarized in Fig. 1(c).

The largest bottleneck is being able to store all error opera-
tors needed to compute the reward in the GPU memory (it
is always possible to use CPUs with larger memory at the
expenses of performance). We thus estimate the amount of
memory that would be needed to store all error operators for
some code parameters n and d (this calculation is indepen-
dent of k). We simply count the number of error operators
(4), times the amount of bits that have to be specified for
each of them. Every error operator is a binary array of size
n. Using a standard 8-bit representation for integers, every
error operator needs 8n bits of memory storage.

We show the results of this estimation in Fig. 1(c), consid-
ering what fraction of memory they would occupy in an
NVIDIA A100 GPU. The results shown in Fig. 1(c) indicate
that this approach can be extended to ∼ 100 physical qubits
(d = 6) and to approximately 40 physical qubits and d = 10
in a single GPU.

Moreover, we identify a region of opportunity that could

5

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

potentially lead to new codes surpassing the performance
of the recent quantum Low Density Parity Check (LDPC)
codes found in (Bravyi et al., 2024). Contrary to their strat-
egy, the kind of codes that we can find are not limited by a
particular anstaz beyond being CSS. We emphasize that not
only would we discover the code, but a hardware-efficient
encoding circuit would also be simultaneously discovered,
which is something currently lacking.

Exploring this region of opportunity is an equally exciting
and challenging endeavor, so we leave it for future work. In
this work, we will focus on smaller codes of up to distance-
5.

5. Reinforcement Learning Results
In this section we show quantum codes that we have found
with our RL approach. We have restricted the search to
weakly self-dual codes (meaning the Hadamard layer con-
tains num(H) = (n − k)/2 gates) for concreteness. We
have considered code distances from 3 to 5 and three sets
of qubit connectivities: nearest-neighbor, next-to-nearest-
neighbor and all-to-all. For each code distance we have
chosen three different target code parameters [[n, k, d]]. We
have always placed the initial Hadamard gates in alternating
qubit indices. Hyperparameters are explained in Appendix B
together with a range of hyperparameter values that we have
used for this work. All our experiments are open-sourced
and reproducible through our github repository (qdx). For
compactness, we summarize our results in the following
Table 1.

Code parameters NN-1 NN-2 All-to-All
[[7,1,3]] 3 + 15 3 + 10 3 + 9
[[9,1,3]] 4 + 19 4 + 11 4 + 10
[[11,3,3]] 4 + 38 4 + 23 4 + 16
[[13,1,4]] 6 + 38 6 + 26 6 + 18
[[16,2,4]] 7 + 65 7 + 37 7 + 24
[[20,6,4]] 7 + 141 7 + 75 7 + 37
[[19,1,5]] 9 + 98 9 + 61 9 + 31
[[22,2,5]] 10 + 123 10 + 78 10 + 37
[[25,1,5]] 12 + 117 12 + 70 12 + 37

Table 1. Discovered [[n, k, d]] codes and encoding circuits in dif-
ferent qubit connectivities: nearest-neighbor (NN-1), next-to-
nearest-neighbor (NN-2) and all-to-all. We break the encoding
circuit into Hadamard gates + CNOT gates. Here we report the
minimal circuit size found across 8 independently trained agents
(16 for d = 5).

5.1. Distance 3 codes

The smallest d = 3 CSS code is Steane code (Steane, 1996),
with code parameters [[7, 1, 3]]. It is a self-dual code (mean-
ing that GX = GZ) and thus requires an initial Hadamard

layer consisting of num(H) = (7 − 1)/2 = 4. With our
approach we are able to rediscover Steane’s code and pro-
vide encoding circuits in the three qubit connectivities that
we have considered. Each of them were found in around 20
seconds.

The smallest d = 3 surface code (Kitaev, 1997) has parame-
ters [[9, 1, 3]], so we target these code parameters next. The
process is again successful using between 20 seconds to 1
minute for each of the three connectivities.

Finally, we show an example with k > 1. By increasing the
physical qubit count by 2 we can encode 3 logical qubits, i.e.
we consider [[11, 3, 3]] last. There is a noticeable increase in
the number of gates that are needed in this case with respect
to the previous two, yet our approach is again successful.
The time needed now is approximately 1 minute, except for
the nearest-neighbor connectivity, where finding a solution
is more challenging due to the larger circuit sizes needed
and which takes close to 5 minutes.

We remark that the runtimes reported throughout the paper
correspond to training all 8 agents in parallel on a single
Quadro RTX 6000 GPU.

5.2. Distance 4 codes

The code parameters that we consider in this part are
[[13, 1, 4]], [[16, 2, 4]] and [[20, 6, 4]]. We have chosen these
to show variety in different numbers of logical qubits and
closeness to the d = 4 surface code (with parameters
[[16, 1, 4]]). In particular, we note how the number of gates
needed to encode [[20, 6, 4]] is much larger than the others.
This is due to wanting to encode many more logical qubits
than in the other examples.

A useful training strategy that we adopt here (and also for
larger code distances) is doing an initial pretraining with d =
3, keep the weights of the neural networks and then train
with d = 4. This strategy akin to curricular learning leads to
more successful learning runs. In particular, we observe that
the first few CNOT gates that the agent uses in the d = 3
task are sometimes kept when solving the d = 4 task (more
prominently in nearest-neighbor connectivity), thus making
this transfer learning quite effective. An example of this
behavior is shown for [[13, 1, 4]] in Fig. 2(a).

The compute time needed for solving these tasks are now
in the tens of minutes timescale rather than the tens of
seconds needed for d = 3. Further, we also observe that,
from the three connectivities considered, the next-to-nearest-
neighbor (NN-2 in Table 1) is the most effective at solving
this task. The other two connectivities come with two differ-
ent challenges: nearest-neighbor (NN-1 in Table 1) requires
longer sequences of gates (longer trajectories); agents with
all-to-all connectivity have access to more actions (O(n2))
and thus require more timesteps to find a solution. In addi-

6

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

Already found
at d=3 task

…
…

Human-designed

RL-discovered

(b)

(a)

Figure 2. CSS code and encoding discovery. (a) Example of cur-
ricular learning in [[13, 1, 4]] with nearest-neighbor connectivity.
Before targetting d = 4, an initial pretraining with d = 3 is done.
The agent discovers the subcircuit highlighted in blue that is then
reused to encode d = 4. (b) Bell condition in [[25, 1, 5]] with
next-to-nearest-neighbor connectivity. We consider starting from
just the initial Hadamard layer (Bell: False) or also providing the
first layer of CNOTs to start from neighboring Bell pairs (Bell:
True). The learning speeds up on average by providing the ini-
tial Bell pairs at the expenses of converging to longer encoding
sequences than by not using them. The results are averaged over 8
independently trained agents.

tion, transfer learning from a smaller code distance scenario
is not as effective for the latter.

5.3. Distance 5 codes

The largest code distance that we have tested with this ap-
proach is d = 5. Here the challenges encountered in the
previous d = 4 experiments persist and even accentuate.
Nevertheless, these are solved by the same curricular learn-
ing strategy presented above and by scaling both the number
of parameters of the neural networks and the number of
timesteps during which we train. For these reasons, the
tasks are now solved in 1-3 hours.

The codes that we target in this last section are [[19, 1, 5]],
[[22, 2, 5]] and [[25, 1, 5]]. The last one is compatible with
the d = 5 surface code.

An interesting persistent strategy that we have noticed is
that the agent first builds Bell pairs between adjacent qubits
(which are [[2, 0, 2]] codes) and then entangles these pairs
with each other to gradually build up a d = 5 code. We
thus consider an additional scenario where we initialize the
circuit with neighboring Bell pairs and ask the agent to
complete the encoding circuit. Correspondingly, in this last
part we train 16 agents: 8 with initial Bell pairs provided and
8 agents without. We show a comparison of these two cases
on [[25, 1, 5]] with next-to-nearest-neighbor connectivity in
Fig. 2(b). The Bell strategy leads to faster convergence
on average, and the agents that do not use it still learn to
prepare Bell pairs in the first few steps. However, using
the Bell strategy seems to lead to slightly longer encoding
circuits.

We remark that these code parameters are by no means the
upper limit of what is possible with our strategy. However,
we defer the exploration of systematic and effective scaling
strategies to future work.

6. Conclusions and Outlook
We have presented an efficient RL framework that is able to
simultaneously discover QEC codes and their encoding cir-
cuits from scratch, given a qubit connectivity, gate set, and
error operators. We have shown how to restrict the search of
codes to CSS codes, which are of interest for practical appli-
cations. We have been able to discover codes and circuits up
to 25 physical qubits and code distance 5, while presenting a
roadmap to scale this approach much further. This is thanks
to our formulation in terms of stabilizers, which serve both
as compact input to the agent as well as the basis for rapid
Clifford simulations, which we implemented in a vectorized
fashion using a modern machine-learning framework.

One of the limits of our approach is GPU memory. However,
this could be circumvented through different means. One
possibility could be to use a stochastic version of our reward,
where only a subset of the error operators are sampled at
each timestep. On the other hand, it is always possible to
trade performance by memory load by e.g. doing some
computations on CPUs. However, the tendency to train
very large AI models is thrusting both the development of
novel hardware with increased memory capabilities and
the integration of distributed computing options in modern
machine learning libraries. These developments makes us
envision scenarios where the framework presented in this
work could be scaled up straightforwardly to multiple GPU
machines. This makes us optimistic about the future of
AI-discovered QEC in the very near future.

7

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

References
QDX: AI-discovery of QEC codes with JAX. https:
//github.com/jolle-ag/qdx.

Aaronson, S. and Gottesman, D. Improved simulation of
stabilizer circuits. Phys. Rev. A, 2004. doi: 10.1103/
physreva.70.052328. URL https://doi.org/10.
1103%2Fphysreva.70.052328.

Acharya, R., Aleiner, I., Allen, R., Andersen, T. I.,
Ansmann, M., Arute, F., Arya, K., Asfaw, A., Ata-
laya, J., Babbush, R., et al. Suppressing quantum er-
rors by scaling a surface code logical qubit. Nature,
614(7949):676–681, February 2023. doi: 10.1038/
s41586-022-05434-1. URL https://doi.org/10.
1038/s41586-022-05434-1.

Andreasson, P., Johansson, J., Liljestrand, S., and Granath,
M. Quantum error correction for the toric code using
deep reinforcement learning. Quantum, 3:183, 2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., George Necula, A. P., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Bravyi, S., Cross, A. W., Gambetta, J. M., Maslov, D., Rall,
P., and Yoder, T. J. High-threshold and low-overhead
fault-tolerant quantum memory. Nature, 627(8005):778–
782, 2024.

Calderbank, A. R. and Shor, P. W. Good quan-
tum error-correcting codes exist. Phys. Rev. A, 54:
1098–1105, Aug 1996. doi: 10.1103/PhysRevA.54.
1098. URL https://link.aps.org/doi/10.
1103/PhysRevA.54.1098.

Cao, C. and Lackey, B. Quantum lego: Building quantum
error correction codes from tensor networks. PRX Quan-
tum, 3:020332, May 2022. doi: 10.1103/PRXQuantum.3.
020332. URL https://link.aps.org/doi/10.
1103/PRXQuantum.3.020332.

Cao, C., Zhang, C., Wu, Z., Grassl, M., and Zeng,
B. Quantum variational learning for quantum error-
correcting codes. Quantum, 2022. doi: 10.22331/
q-2022-10-06-828. URL https://doi.org/10.
22331%2Fq-2022-10-06-828.

Colomer, L. D., Skotiniotis, M., and Muñoz-Tapia, R. Rein-
forcement learning for optimal error correction of toric
codes. Physics Letters A, 384(17):126353, 2020.

Cong, I., Levine, H., Keesling, A., Bluvstein, D., Wang,
S.-T., and Lukin, M. D. Hardware-efficient, fault-tolerant
quantum computation with rydberg atoms. Physical Re-
view X, 12(2):021049, 2022.

Fitzek, D., Eliasson, M., Kockum, A. F., and Granath, M.
Deep q-learning decoder for depolarizing noise on the
toric code. Physical Review Research, 2(2):023230, 2020.

Fösel, T., Tighineanu, P., Weiss, T., and Marquardt, F. Re-
inforcement learning with neural networks for quantum
feedback. Phys. Rev. X, 2018. doi: 10.1103/PhysRevX.8.
031084. URL https://link.aps.org/doi/10.
1103/PhysRevX.8.031084.

Gidney, C. Stim: a fast stabilizer circuit simulator. Quan-
tum, 5:497, July 2021. ISSN 2521-327X. doi: 10.
22331/q-2021-07-06-497. URL https://doi.org/
10.22331/q-2021-07-06-497.

Girvin, S. M. Introduction to quantum error correc-
tion and fault tolerance. SciPost Physics Lecture
Notes, 2023. doi: 10.21468/scipostphyslectnotes.70.
URL https://doi.org/10.21468%
2Fscipostphyslectnotes.70.

Gottesman, D. Stabilizer codes and quantum error correc-
tion, 1997.

Inguscio, M., Ketterle, W., and Salomon, C. Proceedings
of the International School of Physics” Enrico Fermi.”,
volume 164. IOS press, 2007.

Kitaev, A. Y. Quantum computations: algorithms and error
correction. Russian Mathematical Surveys, 52(6):1191,
1997.

Knill, E. and Laflamme, R. Theory of quantum error-
correcting codes. Phys. Rev. A, 1997. doi: 10.1103/
PhysRevA.55.900. URL https://link.aps.org/
doi/10.1103/PhysRevA.55.900.

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Ad-
vances in neural information processing systems, 12,
1999.

Krinner, S., Lacroix, N., Remm, A., Di Paolo, A., Genois,
E., Leroux, C., Hellings, C., Lazar, S., Swiadek, F., Her-
rmann, J., et al. Realizing repeated quantum error correc-
tion in a distance-three surface code. Nature, 605(7911):
669–674, 2022.

Lu, C., Kuba, J., Letcher, A., Metz, L., de Witt, C. S., and
Foerster, J. Discovered policy optimisation. Advances
in Neural Information Processing Systems, pp. 16455–
16468, 2022.

Mauron, C., Farrelly, T., and Stace, T. M. Optimization
of tensor network codes with reinforcement learning.
arXiv:2305.11470, 2023.

Metz, F. and Bukov, M. Self-correcting quantum many-
body control using reinforcement learning with tensor

8

https://github.com/jolle-ag/qdx
https://github.com/jolle-ag/qdx
https://doi.org/10.1103%2Fphysreva.70.052328
https://doi.org/10.1103%2Fphysreva.70.052328
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
http://github.com/google/jax
https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://link.aps.org/doi/10.1103/PRXQuantum.3.020332
https://link.aps.org/doi/10.1103/PRXQuantum.3.020332
https://doi.org/10.22331%2Fq-2022-10-06-828
https://doi.org/10.22331%2Fq-2022-10-06-828
https://link.aps.org/doi/10.1103/PhysRevX.8.031084
https://link.aps.org/doi/10.1103/PhysRevX.8.031084
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.21468%2Fscipostphyslectnotes.70
https://doi.org/10.21468%2Fscipostphyslectnotes.70
https://link.aps.org/doi/10.1103/PhysRevA.55.900
https://link.aps.org/doi/10.1103/PhysRevA.55.900

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

networks. Nature Machine Intelligence, 5(7):780–791,
2023.

Nautrup, H. P., Delfosse, N., Dunjko, V., Briegel, H. J.,
and Friis, N. Optimizing quantum error correction codes
with reinforcement learning. Quantum, 2019. doi: 10.
22331/q-2019-12-16-215. URL https://doi.org/
10.22331%2Fq-2019-12-16-215.

Olle, J., Zen, R., Puviani, M., and Marquardt, F. Simulta-
neous discovery of quantum error correction codes and
encoders with a noise-aware reinforcement learning agent.
arXiv preprint arXiv:2311.04750, 2024.

Postler, L., Heuβen, S., Pogorelov, I., Rispler, M., Feldker,
T., Meth, M., Marciniak, C. D., Stricker, R., Ringbauer,
M., Blatt, R., et al. Demonstration of fault-tolerant univer-
sal quantum gate operations. Nature, 605(7911):675–680,
2022.

Ryan-Anderson, C., Bohnet, J. G., Lee, K., Gresh, D., Han-
kin, A., Gaebler, J., Francois, D., Chernoguzov, A., Luc-
chetti, D., Brown, N. C., et al. Realization of real-time
fault-tolerant quantum error correction. Physical Review
X, 11(4):041058, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

Sivak, V., Eickbusch, A., Royer, B., Singh, S., Tsioutsios,
I., Ganjam, S., Miano, A., Brock, B., Ding, A., Frunzio,
L., et al. Real-time quantum error correction beyond
break-even. Nature, 616(7955):50–55, 2023.

Steane, A. M. Simple quantum error-correcting codes.
Phys. Rev. A, 54:4741–4751, Dec 1996. doi: 10.
1103/PhysRevA.54.4741. URL https://link.aps.
org/doi/10.1103/PhysRevA.54.4741.

Su, V. P., Cao, C., Hu, H.-Y., Yanay, Y., Tahan, C., and
Swingle, B. Discovery of optimal quantum error correct-
ing codes via reinforcement learning, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Sweke, R., Kesselring, M. S., van Nieuwenburg, E. P., and
Eisert, J. Reinforcement learning decoders for fault-
tolerant quantum computation. Machine Learning: Sci-
ence and Technology, 2(2):025005, 2020.

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z.,
Chandak, P., Liu, S., Van Katwyk, P., Deac, A., et al.
Scientific discovery in the age of artificial intelligence.
Nature, 620(7972):47–60, 2023.

9

https://doi.org/10.22331%2Fq-2019-12-16-215
https://doi.org/10.22331%2Fq-2019-12-16-215
https://link.aps.org/doi/10.1103/PhysRevA.54.4741
https://link.aps.org/doi/10.1103/PhysRevA.54.4741

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

NU
M
_E
PO
CH
S

NUM_ENVS

[]n(n − k), h, h, nA

NUM_STEPS

Collect

[]n(n − k), h, h,1

ACTOR

VALUE

Update

…
NUM_MINIBATCHESMINI_BATCH

_SIZE

θ → θ′

UP
DA
TE
_E
PO
CH
Sx

Figure 3. Structure of the PPO algorithm used in this work, focusing on its structural and operational aspects. In the Collect phase, the
agent interacts with the environments to extract triples (observation, action, reward) that are then used in the Update phase to update the
parameters of the neural networks via gradient descent.

A. Clifford Gates
In this Appendix we explicitly define the Clifford gate generators: the Hadamard gate H , the phase gate S and the CNOT
gate. There are different equivalent ways to define them, but here we choose to give their definitions in terms of how they
transform Pauli strings (this corresponds to the Heisenberg picture definition).

Explicitly, the Hadamard gate rule is,

H ·X ·H† = Z , H · Z ·H† = X , (11)

where · denotes matrix multiplication and † denotes the self-adjoint operation.

The phase gate rule is,
S ·X · S† = Y , S · Z · S† = Z . (12)

Finally, the CNOT rule is,

CNOT(0, 1) ·XI · CNOT(0, 1)† = XX , CNOT(0, 1) · IX · CNOT(0, 1)† = IX , (13)

CNOT(0, 1) · ZI · CNOT(0, 1)† = ZI , CNOT(0, 1) · IZ · CNOT(0, 1)† = ZZ , (14)

CNOT(1, 0) ·XI · CNOT(1, 0)† = XI , CNOT(1, 0) · IX · CNOT(1, 0)† = XX , (15)

CNOT(1, 0) · ZI · CNOT(1, 0)† = ZZ , CNOT(1, 0) · IZ · CNOT(1, 0)† = IZ . (16)

B. Proximal Policy Optimization
We use the PPO implementation of (Lu et al., 2022), which we break down in more detail here (see also Fig. 3 and
Table 2 for a list of hyperparameters). In our implementation, the RL environment is vectorized, meaning that the
agent interacts with multiple different quantum circuits at the same time. The hyperparameter that determines this
number of RL environments is called NUM_ENVS. The learning algorithm consists of two processes: collect and update.
During collection, the agent interacts with the environments and a total of NUM_STEPS sequences of (observation, action,

10

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

reward) are collected per environment. Following the collection, the update process begins. Here, we have a total of
NUM_ENVS * NUM_STEPS individual steps that are shuffled and reshaped into NUM_MINIBATCHES minibatches (each
of size NUM_ENVS * NUM_STEPS // NUM_MINIBATCHES). These are used for updating the weights of the neural
networks through gradient descent, which happens a number UPDATE_EPOCHS times during every update process. The
whole collection-update cycle gets repeated NUM_EPOCHS times.

The neural networks that we have chosen are standard feedforward fully-connected neural networks with ReLU activation
functions and with identical architectures for both the actor and value networks, except for the output layer. In particular,
they both consist of an input layer of size n(n− k) given by the observation from the environment and consisting of all the
flattened code generators. This is followed by two hidden layers of size h (we have experimented with sizes 64 to 400)
and an output layer of size nA (number of actions) in the case of the actor network and of size 1 for the value network (see
Fig. 3). The number of actions nA is determined by the number of physical qubits and qubit connectivity.

Other hyperparameters that participate in the PPO implementation which we include for completeness (but that we refer
to (Schulman et al., 2017) for further explanations) are the discount factor γ, the generalized advantage estimator (GAE)
parameter λ, the actor loss clipping parameter ε, the entropy coefficient and the value function (VF) coefficient (see Table 2
for typical values that we have found to work well).

Regarding the optimizer itself, we use ADAM with a clipping in the norm of the gradient (MAX_GRAD_NORM) and some
initial learning rate (LR) that gets annealed (ANNEAL_LR) using a linear schedule as the training evolves, see Table 2 for
specific numerical values of these hyperparameters.

Hyperparameter Value
LR 5× 10−4 - 1× 10−3

NUM_ENVS 16-128
NUM_STEPS 32-190
NUM_EPOCHS 1000-10000
UPDATE_EPOCHS 4
NUM_MINIBATCHES 4-16
GAMMA 0.99
GAE_LAMBDA 0.95
CLIP_EPS 0.2
ENT_COEF 0.01-0.05
VF_COEF 0.5
MAX_GRAD_NORM 0.5
ANNEAL_LR True

Table 2. Hyperparameters that were used during training with some typical range of values that we have seen to lead to good performance
(see text for a description of each hyperparameter). We also include in our repository (qdx) specific values for all experiments reported in
Table 1.

C. Circuit structure of CSS codes
Here we give a proof of the claim that codes resulting from circuits with an initial block of Hadamard gates on a subset of
the qubits and followed by CNOT gates thereafter can only be CSS.

Let us label physical qubits with index 1 ≤ q ≤ n and target a CSS code with parameters [[n, k, d]]. Let’s assume for
simplicity that the initial block of Hadamard gates is applied to qubits k + 1, . . . , k + nH , with nH < n− k. The initial

11

Scaling Automated Quantum Error Correction Discovery with Reinforcement Learning

tableau of the would-be code reads

g1 = Xk+1 ,

g2 = Xk+2 ,

· · ·
gnH

= Xk+nH
,

gnH+1 = Zk+nH+1 ,

· · ·
gn−k = Zn . (17)

From this moment forward, only CNOT gates are allowed. Let’s start by considering what is the effect of a CNOT
gate with control qubit inside the H-block, i.e. control ∈ {k + 1, . . . , k + nH}. For whatever target qubit, what such
a CNOT does is populate the target position of the corresponding stabilizer gcontrol with an X. Subsequent CNOT gates
affecting those positions, either as control or target qubits, will either introduce additional X’s or simply do nothing. Since
X2 = I , the stabilizers g1, g2, . . . gnH

will only ever contain either X’s or 1’s. Similarly, the effect of CNOTs on stabilizers
gnH+1, . . . , gn−k is simply populating them with Z’s or I’s. Since the set of stabilizer generators can be clearly separated
into a subset built with only X’s and I’s and another one with only Z’s and I’s, such a tableau describes a CSS code.

D. Softness parameter
The second KL condition Eq. (3) requires checking whether any error operator Eµ ∈ SC . In principle, the full stabilizer
group of 2n−k elements must be built at every time step of our simulations. In practice, not many error operators end up
being in SC , which we leverage by introducing an integer softness parameter s, such that only a subgroup of SC is built.
More precisely, s = 0 means that this subgroup is empty, s = 1 means taking only the generators gi as the subgroup, s = 2
means taking the generators gi and all pairwise combinations of generators gigj , and so on for larger s.

Since X-type generators are independent from Z-type generators, so are their Stabilizer groups. Thus, at every timestep two
subgroups are generated: one for SX and another one for SZ .

12

