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ABSTRACT

Vision-language-action models have gained significant attention for their ability
to model trajectories in robot learning. However, most existing models rely on
Transformer models with vanilla causal attention, which we find suboptimal for
processing segmented multi-modal sequences. Additionally, the autoregressive
generation approach falls short in generating multi-dimensional actions. In this
paper, we introduce Actra, an optimized Transformer architecture featuring tra-
jectory attention and learnable action queries, designed to efficiently process seg-
mented multi-modal trajectories in language-conditioned robot imitation learning.
Furthermore, we propose a contrastive dynamics learning objective to enhance
its understanding of environment dynamics and multi-modal alignment, comple-
menting the primary behavior cloning objective. Through extensive experiments
on three large-scale robot manipulation benchmarks, Actra exhibits substantial
performance improvements over state-of-the-art models.

1 INTRODUCTION

Vision-language-action models (VLAs) have emerged as integral components of recent develop-
ments in robot learning. Previous multi-modality models, exemplified by vision-language models
(VLMs), have demonstrated proficiency in handling both visual and textual inputs, successfully ad-
dressing a spectrum of tasks (Chen et al., 2023) such as visual question answering, image captioning,
and image retrieval. Distinctively, VLAs extend beyond the capabilities of VLMs by incorporating
the ability to execute actions based on multi-modal inputs. This unique capability empowers VLAs
to interpret language prompts, visually perceive their environment, and subsequently execute actions
to fulfill the specified tasks. The potential applications of VLAs in robotics are not confined to con-
trolled environments in traditional domains like manufacturing. They also prove their suitability for
everyday tasks such as room cleaning and cooking (Brohan et al., 2023b), thanks to their dexterity
and generalizability.

To accommodate multi-modal inputs, previous Transformer-based VLMs (Vaswani et al., 2017)
explored designing special self-attention schemes to better suit the unique properties of different
modalities, such as UniLM (Dong et al., 2019), M6 (Lin et al., 2021), BLIP-2 (Li et al., 2023a) and
Octo (Octo Model Team et al., 2023). Consider the task of image captioning as an example, causal
attention is not the best option to encode images because there is no clear causal relationship among
the image patches. Thus, these VLMs allow bidirectional self-attention for the image tokens while
maintaining causal attention for the text tokens.

VLAs predominantly build upon the pioneering foundations laid by Decision Transformer (Chen
et al., 2021) and Trajectory Transformer (Janner et al., 2021). These two works frame reinforcement
learning (RL) policies as sequence modeling problems, leveraging the expressive power of Trans-
former models. This paradigm has become a cornerstone across recent VLAs, but both models are
Transformer decoders based on causal attention. Subsequent approaches, such as Gato (Reed et al.,
2022) and RT-1 (Brohan et al., 2023b), also adopt Transformer decoders as their network backbone,
passing in different modalities as a single sequence. VIMA (Jiang et al., 2022) incorporates cross-
attention mechanisms to condition the policy with multi-modal prompts, but the decoder stack still
follows previous methods and uses causal attention.
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Figure 1: (a) Comparison of information flow in causal attention (left) and trajectory attention
(right). Each orange dot corresponds to an action dimension. The three action dimensions col-
lectively form an action “segment”. Each line represents an attention connection, facilitating infor-
mation flow from the input token (bottom) to the output token (top). In trajectory attention, tokens
can attend to not only the preceding tokens but also the subsequent tokens within the same segment,
as indicated by the green lines. (b) Attention matrices of the two attention types. The dark cells
represent masked attention, while the green-bordered cells also highlight the additional information
flow enabled by trajectory attention.

On the contrary, we have identified that multi-modal trajectories in robotics exhibit unique properties
better captured by a novel type of Transformer self-attention, as illustrated in Figure 1 & 2. Specifi-
cally, each language prompt, state, or action within a multi-modal trajectory can consist of multiple
tokens, referred to as a “segment” in this paper. For instance, robot systems usually make use of
several cameras, and as a result, a state is represented with a segment of tokens, each corresponding
to a camera. Similar to state tokens, tokens for action dimensions also lack causal relationships with
each other. Traditional causal attention hinders full information flow within a segment, as tokens
are restricted from attending to the subsequent tokens. To overcome this limitation, we introduce
trajectory attention, optimized for multi-modal trajectories. Trajectory attention possesses two key
characteristics: inter-segment attention is causal, and intra-segment attention is bidirectional. Since
a VLA model only needs to encode the language prompt and follow the corresponding instruction,
causal attention is also unnecessary for the prompt segment. Consequently, we advocate for pro-
cessing trajectories at the segment level, rather than merely at the token level.

To complement trajectory attention, we devise a segment-level decoding scheme that generates a
segment as a whole. Drawing inspiration from DETR’s object query (Carion et al., 2020), we pro-
pose employing action queries to more effectively extract information for action generation. Con-
cretely, we employ one learnable action query for each action dimension. Each action query ag-
gregates the most relevant information in the trajectory for its corresponding action dimension and
generates the most probable value for that dimension. Different action queries can execute this pro-
cedure in parallel, facilitating the simultaneous generation of all action dimensions. This represents a
substantial acceleration in action generation speed compared to earlier approaches that generate one
action dimension at a time, such as RT-2 (Brohan et al., 2023a). By combining trajectory attention
and action queries, we introduce an optimized Transformer architecture for multi-modal trajectories,
which we name Action-query-based Trajectory-attention Transformer, or Actra for short.

While training the policy network with the behavior cloning objective is a common practice in VLAs,
numerous prior approaches have also explored incorporating auxiliary objectives to further improve
performance. Dynamics learning methods (Li et al., 2024; Sun et al., 2023; Liu et al., 2022) encour-
age the model to understand how the environment responds to its actions. These methods typically
fall into two categories: forward dynamics prediction and inverse dynamics prediction. Forward
dynamics prediction aims to predict the next state given the current action, but it requires additional
state decoders, which increases model complexity. Conversely, inverse dynamics prediction seeks to
predict the action taken between two given consecutive states. Although conceptually distinct from
behavior cloning, the difference is nuanced in practice: inverse dynamics prediction reconstructs
actions using a masked modeling strategy, and behavior cloning also predicts actions, albeit in an
autoregressive manner.
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Figure 2: The architecture of Actra. Each square represents a token. A trajectory τ consists of
a prompt segment p1:4, state segments s1:2,t, action segments a1:3,t. For clarity, the trajectory is
a simplified example and does not reflect the actual specifications of Actra. In the Transformer,
vertical dashed lines divide the segments. Learnable action queries q1:3,t are inserted after each
state segment to extract information for action generation. Each token embedding (orange dot) in
the trajectory can attend to embeddings from all previous segments (horizontal arrows), as well
as all the embeddings in its own segment (gray lines). Notably, action queries, which contain no
trajectory information, are hidden from other tokens, but they can still attend to all preceding tokens.
In addition to its primary function of decoding actions, Actra can also encode the entire trajectory
by pooling the embeddings in the last segment (red box).

We propose a novel contrastive dynamics learning (CDL) method, where augmented positive tra-
jectories are contrasted with negative trajectories that mismatch states and actions from different
trajectories, as illustrated in Figure 3. During CDL training, the model is encouraged to determine
whether a trajectory correctly follows the dynamics of the environment. This capability is crucial
for the agent to understand the consequences of its actions and make more informed decisions. The
implementation of CDL requires only the addition of a simple classification head, consisting of a
pooling layer and a linear layer. Furthermore, CDL also serves as a unified representation learn-
ing approach for multi-modal trajectories. To accurately capture environment dynamics, the model
relies on effective vision, language, and action encoders to differentiate positive samples from neg-
ative ones, leveraging their multi-modal encoding capabilities. Several studies have demonstrated
the efficacy of contrastive learning in aligning different modalities (Radford et al., 2021; Jia et al.,
2021; Yuan et al., 2021; Yao et al., 2022). Since prompts, states, and actions represent three distinct
modalities of VLAs, CDL can also be viewed as a method for enhancing alignment across the vision,
language, and action modalities.

The three main contributions of this paper are:

• We introduce Actra, an optimized Transformer architecture featuring trajectory attention
and action query, designed to efficiently process multi-modal trajectories on the segment
level;

• We propose a contrastive dynamics learning objective to explicitly improve Actra’s under-
standing of environmental dynamics and enhance its multi-modal encoding capabilities,
complementing robot imitation learning;

• Extensive experimental results across three large-scale robot manipulation benchmarks
demonstrate that Actra significantly outperforms state-of-the-art vision-language-action
models, showcasing the effectiveness of our approach.

2 RELATED WORK

Vision-language-action Model. Vision-language-action models (VLAs) constitute a class of
multi-modal models designed to generate actions based on specified language prompts and perceived
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environment. Coined by RT-2 (Brohan et al., 2023a), VLAs have garnered increasing attention due
to their dexterity and generalizability in handling complex robotics tasks. Early attempts were based
on existing vision-language models (VLMs), exemplified by CLIPort (Shridhar et al., 2021) and
BC-Z (Jang et al., 2021). Gato (Reed et al., 2022) explored the use of a single Transformer model
(Vaswani et al., 2017) as the control policy for tasks spanning various domains, unifying multi-modal
inputs into a single sequence. RT-1 (Brohan et al., 2023b) stands as a dedicated robotics transformer
for robotics tasks. Our model is also a VLA but with an optimized Transformer architecture.

Multi-modal Transformer. Several VLMs, including UniLM (Dong et al., 2019), M6 (Lin et al.,
2021), and Octo (Octo Model Team et al., 2023) have endeavored to optimize Transformer’s self-
attention for vision-language inputs. Despite these efforts, adapting self-attention to the multi-modal
inputs of VLAs has been relatively unexplored. Gato (Reed et al., 2022) and RT-1 (Brohan et al.,
2023b) maintain causal attention in Transformer decoders. VIMA (Jiang et al., 2022) proposes
passing the prompt into the policy through cross-attention, but their Transformer decoder stack still
employs causal attention. To the best of our knowledge, Actra is the first VLA designed to accom-
modate multi-modal trajectories with a unique self-attention mechanism.

First introduced in DETR (Carion et al., 2020), learnable object queries have shown promising re-
sults in extracting information for object detection. BLIP-2 (Li et al., 2023a) used a similar strategy
to extract visual embeddings for vision-language tasks. In our approach, we employ learnable ac-
tion queries at the action-dimension level to extract information most relevant to individual action
dimensions.

Dynamics Learning & Multi-modal Contrastive Learning. Dynamics learning has long been
recognized as a powerful technique for improving the performance of robot learning models.
Dreamer (Hafner et al., 2020) was a pioneering work in this domain, inspiring several follow-up
methods, including Iso-Dream (Pan et al., 2022), TWM (Robine et al., 2023), and IRIS (Micheli
et al., 2023). Many recent dynamics learning approaches (Li et al., 2024; Sun et al., 2023; Liu et al.,
2022) can be classified into two categories: forward dynamics prediction and inverse dynamics pre-
diction. Most of these methods rely on generative models coupled with additional decoder modules,
such as video generators (Du et al., 2023). Our contrastive dynamics learning approach is based on
contrastive learning and only involves an encoding process.

A series of VLMs, CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), Florence (Yuan et al.,
2021), FILIP (Yao et al., 2022), has demonstrated the significance of contrastive learning in enhanc-
ing multi-modal interaction. However, in VLA models like R3M (Nair et al., 2022) and VIP (Ma
et al., 2023), where contrastive learning has been adopted, the primary emphasis remains on improv-
ing visual representations. In contrast, our proposed contrastive dynamics learning task explicitly
compels the model to align all three modalities—vision, language, and action—thereby enabling
more effective encoding of multi-modal inputs.

3 OUR METHOD

3.1 PRELIMINARIES

Markov Decision Process (MDP) comprise states (s) and actions (a) and it can be conditioned by
a language prompt (p). In the context of imitation learning, a multi-modal trajectory within the
language-conditioned MDP is denoted as τ = (p, st=1, at=1, . . . , st=T , at=T ). Each element in
the trajectory—p, st, or at—comprises a segment of tokens. For instance, a state st corresponds
to the segment s1:M,t = (s1,t, s2,t, . . . , sM,t), where each element is a token. Tokens in p are
standard NLP tokens. State tokens in st correspond to scene images or object images. Action
tokens in at contain SE(2) actions or 6D poses. Therefore, a trajectory at the token level is written
as τ = (p1:L, s1:M,t=1, a1:N,t=1, . . . , s1:M,t=T , a1:N,t=T ). The goal is to train a policy that can
generate an optimal action based on the past trajectory πθ(at|p, s≤t, a<t).

3.2 ACTRA

In natural language generation (NLG), language models such as GPT (Radford et al., 2019) employ
Transformer decoders as the backbone. To prevent tokens from having visibility into subsequent
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tokens, a causal attention mask is applied in the Transformer decoder. Prior VLA models (Chen
et al., 2021; Brohan et al., 2023b) have followed this trend for action generation. While causal
attention is well-suited for NLG, where language tokens are sequentially generated, it is not the
optimal attention mechanism for modeling multi-modal trajectories in robot learning.

Trajectory attention. Images of the state st from multiple cameras arrive simultaneously, lacking
causality among themselves. They are determined solely by the preceding action at−1 and the
environment. The same principle applies to actions: at is only dependent on previous states and
actions, and they are conditionally independent from each other. The action dimensions in an action
do not exhibit a clear causal order. For instance, in a 3D coordinate, it is uncertain whether a1,t
depends on a2,t or vice versa. Regarding the language prompt, as it is provided by the user, the
model’s job is to encode and understand it rather than generate the prompt, akin to BERT (Devlin
et al., 2019). Vanilla causal attention might impede information flow within each segment of a multi-
modal trajectory, prohibiting s1,t from attending to s2:M,t, and s2,t from attending to s3:M,t, and so
forth. This similarly holds for prompts and actions.

To address the issue, we propose an optimized Transformer self-attention mechanism for language-
conditioned multi-modal trajectories, termed trajectory attention. Trajectory attention exhibits two
key properties: the inter-segment connections are causal, and the intra-segment connections are
bidirectional. Its corresponding attention matrix is illustrated in Figure 9. Following the conven-
tion of the Transformer attention matrix, we designate the row index as the destination of self-
attention and the column index as the source. Consequently, the causal attention matrix has all
its lower triangle entries, (i, j) for i ≥ j, set to one, and the rest set to zero. Trajectory atten-
tion is achieved by unmasking the entries in the causal attention matrix corresponding to (pi, pj),
(si,t, sj,t) or (ai,t, aj,t) for i < j. When compared with the original causal attention, there are
L(L− 1)/2 + T

(
M(M − 1)/2 +N(N − 1)/2

)
additional entries joining the self-attention in ev-

ery Transformer layer, which explains the effectiveness of trajectory attention. As a result, Actra is
designed to process multi-modal trajectories at the segment level, which aligns well with the MDP
setting as it involves states and actions rather than individual tokens.

Action query. Adapting to the segment-level trajectory attention mechanism, we introduce a
segment-level decoding scheme based on learnable action queries. Most prior VLAs generate action
dimensions autoregressively, where each action dimension depends on its preceding token embed-
ding (Brohan et al., 2023a). However, this approach is suboptimal because the embedding of the
preceding token is highly dependent on its input and may lack the most relevant information for
the action dimension. For instance, when generating a1,t, its preceding token is sM,t. Although
the embedding of sM,t can aggregate information from the past trajectory through self-attention, it
is largely influenced by its corresponding input image and may not contain sufficient information
about a1,t. To overcome this limitation, we adopt learnable action queries q1:N for individual ac-
tion dimensions a1:N , inspired by DETR (Carion et al., 2020). Each action query qi is dedicated
to one action dimension ai and is shared across all timesteps: qi,t=1 = qi,t=2 = · · · = qi,t=T

for i ∈ {1 . . . N}. We argue that this approach can find more relevant information for each action
dimension because the action query qi can exclusively attend to information pertinent to ai,t. Since
action queries have no associated input token, their embeddings fully retain action dimension infor-
mation. Moreover, distinct from autoregressive generation, action queries can extract information
and generate all dimensions of an action segment in parallel. Therefore, the decoding procedure op-
erates at the segment level. This significantly speeds up action generation. As the action queries are
solely used for information extraction and do not hold any trajectory information, they are masked
out from the attention matrix, ensuring that other tokens cannot see them through the self-attention
mechanism.

Actra Combining trajectory attention and action query, we introduce a novel Transformer variant
named Actra. In Actra, all action tokens ai,t can fully attend to (p, st=1, at=1, . . . , st, at), and
all state tokens si,t can fully attend to (p, st=1, at=1, . . . , st). Consequently, their embeddings are
enhanced for multi-modal trajectories. Each action query qi,t aggregates this enriched information,
collecting more pertinent information for its corresponding action dimension. This makes Actra a
more suitable Transformer for action generation in multi-modal trajectories. The training process
utilizes standard behavioral cloning in robotic imitation learning, optimizing the objective LBC =

minθ
∑T

t=1 − log πθ(at|p, s≤t, a<t) on offline expert trajectories.
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Figure 3: Overview of contrastive dynamics learning. (a) In the anchor trajectory (blue arrow), the
object on the right is picked up and placed into the bin on the left. A slightly deviated trajectory
(green arrow) can still reach the desired destination, allowing for action perturbation to be used in
constructing positive samples. (b) Given the anchor, we construct a positive sample by applying
image augmentation and the proposed action perturbation. Negative samples are created by mis-
matching states and actions from other trajectories.

3.3 CONTRASTIVE DYNAMICS LEARNING

The primary behavior cloning objective is to train a model to predict the next action based on the
past trajectory. Dynamics learning encourages the model to learn how the environment transitions
from one state to another based on the agent’s actions, enabling it to generate more informed deci-
sions. Our contrastive dynamics learning (CDL) objective introduces minimal changes to the model
architecture, requiring only an additional classification head composed of a pooling and linear layer.
As illustrated in Figure 3b, we construct positive samples by augmenting the anchor trajectory us-
ing standard image augmentation and a novel action perturbation technique. Negative samples are
created by mismatching states and actions from different trajectories.

Concretely, we assume that the anchor trajectory is τ = (p, st=1, at=1, . . . , st=T , at=T ). To con-
struct a positive sample, τ+, we first apply standard computer vision data augmentation techniques
to state images, such as random cropping. Additionally, we introduce a novel approach for aug-
menting actions. The intuition is that a slightly deviated path can still lead the agent to the desired
destination, as shown in Figure 3a. To achieve this, we perturb the actions by adding a small amount
of random noise. By combining image augmentation and action perturbation, the positive sample is
an augmented version of the anchor trajectory.

Subsequently, we create negative trajectories that violate the correct environment dynamics.
Given different trajectories from the anchor, τ ′ = (p′, s′t=1, a

′
t=1, . . . , s

′
t=T , a

′
t=T ) and τ ′′ =

(p′′, s′′t=1, a
′′
t=1, . . . , s

′′
t=T , a

′′
t=T ), we mismatch their states and actions with those of the anchor

trajectory to construct negative samples: τ− = (p, s′t=1, at=1, . . . , st=T , a
′′
t=T ). These strong nega-

tives are constructed based on the following principles discovered during the development of CDL.
First, we refrain from inserting entirely random actions or states, as these have not appeared in the
dataset and can be easily identified as negatives. Second, instead of mismatching only the original
states and actions, we also use augmented ones. This prevents models from trivially identifying
positive samples by detecting the presence of image augmentation or action perturbation. Third,
we avoid merely shuffling states and actions along the time axis, as such negatives are also easily
recognizable. The overall CDL objective is to contrast the augmented positive trajectory τ+ against
various negative trajectories τ−.

In contrastive dynamics learning, Actra encodes the entire multi-modal trajectory into a sequence
of embeddings. Due to our trajectory attention mechanism, the action tokens at the final timestep
attend to the entire trajectory. Their token embeddings are then aggregated into a single trajectory
embedding using a simple classification head, consisting of a pooling layer (Li et al., 2023b) and
a linear layer, as shown in Figure 2. We denote this process as f(·). Finally, we employ the stan-
dard InfoNCE objective (van den Oord et al., 2018) in contrastive learning to train the model to
distinguish between embeddings of positive and negative trajectories:

LCDL(τ, τ
+, τ−) = − logE

[
exp(f(τ) · f(τ+))

exp(f(τ) · f(τ+)) +
∑
i

exp(f(τ) · f(τ−i ))

]
. (1)
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Table 1: Performance comparison of success rate (%) on the VIMA-Bench benchmark.

Configuration Generalization Levels
Model Attn Type Visual Token Params L1 L2 L3 L4 Overall
DT Self Attn Single Image 42.0M 47.69 46.92 43.33 12.50 37.61
Gato Self Attn Image Patches 42.0M 45.38 42.31 40.00 15.00 35.67
Flamingo Cross Attn Image Perceiver 42.4M 44.62 43.85 41.67 10.00 35.04
VIMA Cross Attn Object Tokens 42.4M 78.85 78.46 81.67 47.50 71.62
Actra (ours) Traj Attn Object Tokens 37.8M 83.08 81.54 84.00 50.00 74.66

w/ CDL Traj Attn Object Tokens 37.8M 86.92 86.15 83.33 35.00 72.85

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

We compare our approach with various baseline models across three different benchmarks: VIMA-
Bench (Jiang et al., 2022), Maniskill2 (Gu et al., 2023), and CALVIN (Mees et al., 2022). Each
benchmark emphasizes different aspects of robot learning. VIMA-Bench investigates multi-modal
robot learning, where prompts to agents are multi-modal; its evaluation assesses the generalization
capacity to novel adjectives, nouns, and even meta-tasks. Maniskill2 targets everyday objects with
complex geometries, testing generalization to unseen geometric and visual attributes. CALVIN, on
the other hand, examines long-horizon manipulation tasks, assessing how well models generalize to
new environments.

We include state-of-the-art VLA models as baselines, including DT (Chen et al., 2021), Gato (Reed
et al., 2022), Flamingo (Alayrac et al., 2022; Jiang et al., 2022) and VIMA (Jiang et al., 2022).
In Maniskill2, we compare against RT-1 (Brohan et al., 2023b) instead since it addresses the same
task. In VIMA-Bench and CALVIN, Actra (38M) is composed of 12 layers, 16 attention heads, and
an embedding size of 512; the baselines (42M) uses their default configuration with 5 layers, 16
attention heads and embedding size of 512. In Maniskill2, Actra (198M) and the baselines are all
composed of 10 layers, 20 attention heads, and an embedding size of 1280. All models are trained
using the AdamW optimizer (Loshchilov & Hutter, 2019) with the same hyperparameters within
each benchmark, such as the number of epochs, batch size, and learning rate. Benchmark-specific
details will be provided in their respective sections.

4.2 PERFORMANCE COMPARISON ON VIMA-BENCH

VIMA-Bench (Jiang et al., 2022) focuses on multi-modal robot learning, where the prompts pro-
vided to robots are multi-modal. It evaluates generalization capabilities across four levels: place-
ment generalization, combinatorial generalization, novel object generalization, and novel task gen-
eralization. Each level presents increasing difficulty, with placement generalization involving only
the randomization of object positions, combinatorial generalization recombining seen adjectives and
nouns, novel object generalization introducing unseen adjectives and nouns, and novel task general-
ization incorporating entirely new meta-tasks.

We include the baselines from the original paper and use the same implementation. According to
their findings, models with cross-attention and self-attention achieve comparable performance only
when the model size exceeds 42M parameters. Therefore, we adopt this configuration for all base-
lines to strike a balance between model size and performance. We intentionally reduce our model’s
size by approximately 10% to demonstrate the increased capacity afforded by our optimized archi-
tecture. The prompt encoder is T5 (Raffel et al., 2020) and the vision encoder is ViT (Dosovitskiy
et al., 2021). Discrete SE(2) actions are used in this benchmark. All models are trained for 10
epochs with learning rate = 1 × 10−4 and weight decay = 0.1. Each task is evaluated using 10
trials and the results are summarized in Table 1. The baselines provided in VIMA-Bench explore
different methods of encoding images as well as two types of attention mechanisms. We use the
best-performing object tokens as visual inputs. Our model demonstrates improved performance
across all four generalization levels, despite utilizing only 90% of the baseline model size. Con-
trastive dynamics learning further boosts performance on the first two levels but lowers it on L3 and
L4. This may be attributed to CDL’s training data, which only includes seen nouns and adjectives,
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Table 2: Performance comparison of success rate (%) on the Maniskill2 benchmark. “Cont.” stands
for container.

Configuration Unseen tasks Distractors
Model Attn Type Params Color Size Shape Cont. All 0 2-4 6-8 Overall
RT-1 — 46M 27.03 6.36 20.30 0.79 1.27 61.09 39.17 23.40 22.43
VIMA Cross Attn 525M 26.00 26.00 17.20 30.75 19.33 47.93 41.47 36.33 30.63
Gato Self Attn 198M 46.00 74.00 42.00 44.40 40.00 76.40 73.33 62.67 57.35
Actra (ours) Traj. attn 198M 72.00 91.00 52.40 63.43 70.67 90.93 90.53 79.07 76.25

Table 3: Performance comparison of success rate (%) on the CALVIN benchmark under the most
challenging ABC→D setting.

Configuration Tasks completed in a row
Model Attn Type Vision Encoder Params 1 2 3 4 5 Avg. Len.
MCIL RNN ConvNet 63.6M 31.0 7.9 1.4 0.0 0.0 0.40
DT Self Attn ViT w/ CLS 44.1M 43.5 19.4 3.2 3.2 0.0 0.69
Gato Self Attn ViT w/ Perceiver 44.1M 46.0 17.5 4.8 1.6 0.0 0.70
VIMA Cross Attn ViT w/ CLS 42.4M 39.2 13.6 3.6 0.7 0.2 0.57
Flamingo Cross Attn ViT w/ Perceiver 42.4M 39.2 13.2 4.3 1.0 0.2 0.59
Actra (ours) Traj. Attn ViT w/ Perceiver 37.8M 56.5 30.6 12.9 9.7 3.2 1.13

enhancing the model’s performance on seen meta-tasks at the expense of generalizability to novel
nouns, adjectives, and meta-tasks.

4.3 PERFORMANCE COMPARISON ON MANISKILL

In the Maniskill environment (Gu et al., 2023), we evaluate one of the most commonly utilized skills,
“pick and place”, with everyday objects with complex geometries. Its goal is to pick up a target ob-
ject and place it into a container. A language prompt specifies which target object and container are
intended, with one prompt corresponding to one task. To test generalization capability, we limit the
training set to 15 tasks and evaluate the models on 34 tasks. This benchmark spans generalization
levels L1 to L3 in VIMA-Bench (Jiang et al., 2022): all items are randomly placed and the robot
pose is randomly initialized, thereby including placement generalization; novel target objects are
also introduced as unseen tasks, facilitating both combinatorial and novel object generalization. We
compare success rates across various types of unseen objects, including unseen target objects, con-
tainers, and distractors, as detailed in Table 2. The training data corresponds to the “2-4 Distractors”
setting. This benchmark consists of five types of unseen tasks. The first three types involve target
objects with unseen colors, sizes, and shapes. For example, the apple is part of the training data,
while the bowl, with its novel shape, is not. The fourth type introduces unseen containers. The fifth
type composes all of the first four types. A distractor is an item that is neither the target object nor
the container. They are randomly sampled from a diverse pool of items. For all five types of “unseen
tasks”, we randomly sample and place 2-4 distractors. For seen target objects, we explore whether
the number of distractors can impact the models’ performance.

We maintained a similar model size across all models in VIMA-Bench. However, in this benchmark,
we experiment with the same number of Transformer layers for Actra, VIMA, and Gato. We utilize
T5 (Raffel et al., 2020) for language prompts and ResNet (He et al., 2016) for images. We also
use discrete 6D pose actions in this environment. RT-1 retains its original configuration with 46M
parameters. We train the models for 5 epochs with learning rate = 1 × 10−4 and weight decay
= 1 × 10−4. We conduct 50 trials for each task, and each trial is limited to 100 timesteps before a
timeout. Due to the additional cross-attention layers in VIMA, its model size is significantly larger,
which may have contributed to overfitting in this experiment. Our model matches the parameter
count of Gato while achieving superior performance and generalization.

4.4 PERFORMANCE COMPARISON ON CALVIN

The CALVIN benchmark (Mees et al., 2022) focuses on long-horizon manipulation tasks. During
each evaluation session, the model is prompted with five random tasks in a specific order. The
session terminates as soon as a task fails, and the remaining tasks are not attempted. Performance
is measured by the number of tasks successfully completed in a row. The benchmark provides three
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Table 4: Ablation study of the proposed components in Actra. Starting from the row “Actra”, we
exclude contrastive dynamics learning.

VIMA-Bench Maniskill (Seen, 2-4 Distractors)
Config L1 L2 L3 L4 Overall Easy Medium Hard Overall
Actra w/ CDL 86.92 86.15 83.33 35.00 72.85 93.83 89.71 83.50 90.53
Actra 83.08 81.54 84.00 50.00 74.66 91.33 88.57 75.00 87.87

w/o Traj Attn 80.76 78.46 82.49 45.00 71.68 86.33 83.71 76.00 83.73
w/o Act Query 61.54 54.62 57.50 25.00 49.67 86.00 80.86 69.00 81.33
w/o Both 48.46 49.23 43.33 17.50 39.63 72.33 76.00 67.00 73.33

different experimental settings: D→D, ABCD→D, and ABC→D, where each letter represents a
distinct environment. In the D→D setting, the model is both trained and evaluated in environment
D. However, in the ABC→D setting, the model is trained on data from environments A, B, and
C, but evaluated in environment D. Thus, the ABC→D setting assesses the model’s capacity for
zero-shot generalization. We compare our model to baselines in this most challenging ABC→D
experiment. Since only 1% of the training dataset for ABC→D is annotated with language prompts,
we utilize this language-annotated subset for training, further increasing the difficulty of the task.

We use CLIP language encoder (Radford et al., 2021) and MAE-ViT vision encoder (He et al.,
2022). Continuous 6D pose actions are used in all models. The models are trained for 10 epochs
with learning rate = 9 × 10−4 and weight decay = 1 × 10−4. Performance comparison results are
presented in Table 3. Since the rollout of a trajectory terminates as soon as any of the five tasks fails,
successfully completing all five tasks is highly challenging. Our model is able to complete longer
task sequences than all baselines, highlighting its effectiveness in generalizing to new environments.

4.5 ABLATION STUDY

In our ablation study, we evaluate the effects of the proposed approaches, as shown in Table 4.
In Maniskill, we provided more granular results across three difficulty levels: hard, medium, and
easy (Appendix A.4). Contrastive dynamics learning proves effective in enhancing primary robot
imitation learning, particularly for placement and combinatorial generalization. CDL enables the
model to better learn environment dynamics. However, since the training data is limited to seen
nouns, adjectives, and meta-tasks, this improvement may come at the cost of reduced generalization
to novel objects and tasks.

We further investigate the impact of ablating trajectory attention and action query in Actra. The
removal of trajectory attention results in a noticeable decrease in success rates across all levels, un-
derscoring its crucial role in processing segmented multi-modal trajectories. Similarly, the absence
of action queries leads to reduced success rates, highlighting its importance in enhancing informa-
tion extraction for action generation. When both components are removed, the model reverts to a
typical token-level autoregressive model, akin to Gato Reed et al. (2022).

4.6 QUALITATIVE ANALYSIS

We present the loss and accuracy curves for the models on VIMA-Bench in Figure 4. The Flamingo
baseline is excluded from the figure due to its significantly worse performance, with both loss and
accuracy falling outside the plotted range. Despite having a model size approximately 10% smaller,
our model exhibits a much faster convergence rate. The substantially lower loss and higher accuracy
explain the superior performance of Actra. This highlights that Actra’s architecture enables greater
model capacity even with fewer parameters. Specifically, trajectory attention facilitates improved
information flow within each segment, while action queries efficiently extract embeddings dedicated
to individual action dimensions. The combination of these techniques optimizes performance over
previous Transformer architectures.

In Maniskill, we identified a crucial distinction between Actra’s capabilities and those of the base-
lines: Actra masters “instantaneous regrasp”. Figure 5 presents key frames from an instantaneous
regrasp corresponding to the most challenging task of “pick blue tea box and place into clear box”.
In most cases, baseline models struggle to recognize failed grasps. Even if they identify a failed
grasp, the time taken to start a new attempt is usually prolonged. In contrast, our Actra model
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Figure 4: Loss and accuracy curves during training on VIMA-Bench.

t=7 t=10 t=17

t=30t=28

t=14

t=45t=34

Grasp 1 Grasp 2

Grasp 4 Place

Figure 5: An example of instantaneous regrasp. Four grasp attempts were completed within only 30
steps, a capability not observed in the baseline models. An elaborate description of the example is
provided in Appendix A.5.

promptly detects a failed grasp and repeatedly attempts to grasp the object until successful. This
ability significantly reduces the failure rate, contributing to our substantially higher success rate.

5 CONCLUSION

This paper introduces Actra, an optimized Transformer architecture designed for multi-modal trajec-
tories in robotic tasks. Actra distinguishes itself from vanilla Transformer decoders through two key
components: trajectory attention and action query. Trajectory attention harnesses the unique char-
acteristics of multi-modal trajectories, facilitating enhanced information flow among tokens within
each segment. This allows Actra to encode the sequence at the segment level, and we introduce ac-
tion queries to enable a segment-level decoding procedure. We incorporate an additional contrastive
dynamics learning objective to explicitly train the model to learn environment dynamics, which also
improves multi-modal alignment. This further elevates Actra’s performance in robot imitation learn-
ing. Through comprehensive comparisons across various benchmarks, our approach demonstrates
substantial performance gain over state-of-the-art models. Detailed ablation studies and qualitative
analyzes further validate the effectiveness of Actra.

6 LIMITATIONS AND FUTURE DIRECTIONS

While more powerful language and vision encoders could be explored for further performance gains,
we intentionally refrain from incorporating frontier language or vision models into Actra to ensure
a fair comparison with the baselines. Due to the nature of imitation learning, model performance
is inherently upper-bounded by the quality of the demonstration data. Unlike NLP, the limited
availability and diversity of robot pretraining data restrict the performance gains achievable through
contrastive dynamics learning. Moreover, the significant differences across various benchmarks—
such as camera settings, action types, and meta-tasks—make it impractical to train a single policy
capable of handling all benchmarks. This points to an intriguing future direction: unifying policies
across different robotic environments, which may require significantly larger models, such as large
language models.
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A APPENDIX

A.1 TRAJECTORY ATTENTION MATRIX

The trajectory attention is implemented with its corresponding attention mask, as illustrated in Fig-
ure 6. Output tokens on the left attend to input tokens at the top. For example, in the first row,
the token p1 can attend to tokens (p1, p2, p3, p4) and no future tokens, hence other tokens starting
from s1 are masked out. For action generation, action queries can attend to all tokens up to the
current state, while no other tokens can attend to action queries. Therefore, action query tokens are
all masked from the input.

Although we can use the decoding attention matrix for both decoding and encoding, employing the
right matrix can save compute for the action queries. Regardless of using the left or right matrix, the
resulting embeddings are identical for the encoded trajectory in VLA contrastive learning, thanks to
our modified positional embeddings.

s₁

s₂

a₁

a₂

a₃

q₁

q₂

q₃

q₁ q₂ q₃s₁ s₂ a₁ a₂ a₃

P₁ P₂ P₃ P₄ S₁ S₂

q₁ q₂ q₃

A₁ A₂ A₃ S₁ S₂ Q₁ Q₂ Q₃ A₁ A₂ A₃P₁P₁ P₂ P₃ P₄P₁

P₁ P₂ P₃ P₄ s₁ s₂ a₁ a₂ a₃P₁P₁ p₂ p₃ p₄p₁

P₁
P₂
P₃
P₄

s₁

s₂

a₁

a₂

a₃

P₁P₁

p₂

p₃

p₄

p₁

q₁

q₂

q₃

(a) Trajectory attention matrix for decoding.

s₁ s₂ a₁ a₂ a₃

s₁

s₂

a₁

a₂

a₃

P₁ P₂ P₃ P₄ S₁ S₂ Q₁ Q₂ Q₃ A₁ A₂ A₃ S₁ S₂ Q₁ Q₂ Q₃ A₁ A₂ A₃P₁P₁ P₂ P₃ P₄P₁

P₁ P₂ P₃ P₄ s₁ s₂ a₁ a₂ a₃P₁P₁ p₂ p₃ p₄p₁

P₁
P₂
P₃
P₄

s₁

s₂

a₁

a₂

a₃

P₁P₁

p₂

p₃

p₄

p₁

(b) Trajectory attention matrix for encoding.

Figure 6: The attention matrix of Trajectory Attention. Dark boxes represent masked entries in the
attention matrix. The left attention matrix is used for decoding during action generation while the
right attention matrix is used for encoding the trajectory in VLA contrastive learning.

A.2 TRAINING OBJECTIVES OF DIFFUSION-BASED VLA MODELS

The training objectives in diffusion-based VLA models (Ho et al., 2020; Austin et al., 2021) can be
written as:

LDDPM = MSE
(
εk, εθ

(
x0 + εk, k

))
LD3PM = CE

(
εk, εθ

(
x0 + εk, k

)) (2)

where x0 is the original action and εk is the noise of the k-th iteration; εθ is the VLA model.

A.3 GENERALIZATION LEVELS

For Actra, Gato, and VIMA, unseen shape proves to be the most challenging level, followed by
unseen containers. VIMA also exhibits volatility when dealing with small objects from the “Size”
level. RT-1, in particular, struggles with identifying the container when an unseen container is
introduced. It’s important to note that not all seen target objects have a generalized version for every
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Figure 7: Actra in Franka Kitchen. The model completes four random tasks. The top left image
shows the initial state and the other three images are three different final states.

generalization level. For example, a strawberry is a seen target object, but there is no over-sized
strawberry for the “Shape” level. Consequently, models may achieve a higher success rate on some
generalization levels than on seen tasks. Furthermore, since unseen color and size are part of the
mixture, the success rate in “Both” is not as low as in “Shape” and “Container”. The introduction of
more distractors in the scene increases the likelihood of collisions and causes additional difficulty in
grasping the objects. However, this negative effect is not severe enough to considerably degrade the
performance.

A.4 DIFFICULTY LEVELS

In simple terms, easy tasks involve spherical, regular-sized target objects, such as a baseball. The
medium difficulty level includes elongated or small target objects, such as a banana or strawberry.
Hard tasks encompass oversized, non-spherical, or thin objects, such as a tea box or knife.

Easy tasks include spherical, regular-sized objects. The reason why round objects are easier to pick
is that the robot arm can close the gripper in any direction. Size also has a big impact on the success
rate because over-sized objects require more precise grasp poses. If a grasp is not precise, the two
fingers of the gripper might have collision with the object and not be able to reach down on the
object. Small objects can increase the difficulty because the gripper might miss them if the grasp is
slightly off. An object like a remote controller or a banana should be picked up “across” the object,
not “along” the object. Thus, we define the medium difficulty level as the objects that are too big,
too small, or elongated. Hard tasks involve non-spherical, oversized, or thin objects, such as a tea
box and a knife. A tea box is non-spherical and oversized and thus the robot arm can only grasp it
precisely in parallel with the sides, not diagonally. A knife can be hard since it is very thin and close
to the desk. The gripper might collide with the desk while grasping.

A.5 INSTANTANEOUS REGRASP

More explanation for the example in Figure 5. The first grasp was unsuccessful as one finger of the
gripper collided with the blue tea box and the grasp slipped. Subsequently, Actra swiftly initiated
two additional grasps; however, the gripper closed too early, resulting in collisions with the tea box
again. Shortly after the second and third failures, the gripper’s fingers successfully reached down
to opposite sides of the blue tea box, completing the fourth regrasp. Remarkably, all four grasp
attempts were executed within a mere 30 timesteps, a feat not observed in the baselines.
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Figure 8: Actra in Push-T. The grey T is the object and the green T is its target position. The model
controls the blue dot to push the T-shaped object towards the target position. The red cross is the
cursor. The images on the left and right are two different initial states, and the middle image is the
final state where the object perfectly overlaps with the target position.

Table 5: Performance comparison (%) in Franka Kitchen and Push-T.

Franka Kitchen Continuous Action Discrete Action Push-T Discrete Action
Model Config Params p1 p2 p3 p4 Mean p1 p2 p3 p4 Mean Config Params Score
Diffusion base 43M 100 94 72 34 76 54 18 10 2 21 base 43M 83.89
VIMA base 113M 92 90 80 66 82 90 72 48 16 57 small 26M 91.09
Gato base 43M 100 98 84 62 86 100 88 68 38 74 small 19M 90.43
Actra base 43M 100 100 94 70 91 100 94 68 52 79 small 19M 94.11

A.6 ADDITIONAL RELATED WORK

MOO (Stone et al., 2023) introduced multi-modal prompt capability to RT-1, while Q-Transformer
(Chebotar et al., 2023) adapted RT-1 to the Q-learning setting. RoboFlamingo (Li et al., 2023b)
constructed a VLA based on the existing Flamingo VLM (Alayrac et al., 2022; Awadalla et al.,
2023). ACT (Zhao et al., 2023) adopts the DETR framework for robotics tasks but utilizes fixed
position embeddings at the timestep level. Another category of VLAs focuses on building high-level
planners for long-horizon robotics tasks and abstracting away the low-level control policies, such as
SayCan (Ichter et al., 2022), PaLM-E (Driess et al., 2023), and ChatGPT for Robotics (Vemprala
et al., 2023).

In addition to the primary learning objective, auxiliary or pretraining objectives have proven useful
in further enhancing model performance. The success of masked language modeling, as initially
proposed in BERT (Devlin et al., 2019), has prompted the adoption of similar objectives in various
domains. In computer vision models and VLMs, representative works like MAE (He et al., 2022)
and ViLBERT (Lu et al., 2019) have employed comparable strategies. VLAs have also utilized
masked modeling objectives for their vision encoders, such as MVP (Radosavovic et al., 2022),
Voltron (Karamcheti et al., 2023), GR-1 (Wu et al., 2023). While these approaches have proven ben-
eficial for the vision encoder, they often overlook the crucial alignment between different modalities.

A.7 ADDITIONAL BENCHMARKS: FRANKA KITCHEN & PUSH-T EXAMPLES

Actra-small (19.4M) consists of 6 layers, 8 attention heads, and an embedding size of 512. Actra-
base (43.3M) comprises 6 layers, 12 attention heads, and an embedding size of 768. The baseline
models adopt the same configurations unless specified otherwise. We provide some execution ex-
amples by Actra in Franka Kitchen (Figure 7) and Push-T (Figure 8).

Franka Kitchen. Franka Kitchen (Gupta et al., 2019) includes five skills that span seven specific
tasks within the scene. The “turn knob” skill involves turning the oven knob to activate either the top
or bottom burner. “Toggle switch” involves turning on the light switch. “Slide door open” requires
opening the slide cabinet, while “swing door open” involves opening either the left hinge cabinet or
the microwave door by the door handle. The “lift by handle” skill entails moving the kettle by its
handle. Performance is measured by the completion of multi-stage tasks, as summarized in Table 5.
Results are averaged over 50 runs. In each run, the models are required to complete four random
tasks within 280 steps. If pi = 1, it means the model has completed i tasks and thus reached the
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Figure 9: The attention matrix of trajectory attention (left, showing two timesteps) and the visual-
ization of two trained matrices (middle and right, showing five timesteps). Brighter cells correspond
to higher attention weights. The tick labels are shown for the last token of every segment.

i-th stage; otherwise, pi = 0. Since the scale of Franka Kitchen is relatively small, we compare the
models in their base configuration. We also compare the performance of models using continuous
and discrete actions in this environment. Some examples by Actra in Franka Kitchen are shown in
Appendix A.7.

Push-T. In Push-T (Florence et al., 2021), the models need to push a T-shaped object until it aligns
perfectly with the target position. This task requires precise control, as performance is measured by
the overlapping area, with perfect alignment equating to a score of 1.0. The performance of the
models is compared in Table 5. Results are averaged over 30 trials. The maximum number of steps
the models can take in each trial is 200, so they need to push the object precisely while maintaining
adequate speed. Because this is a 2D task, we found that using small models is sufficient, except
for the diffusion-based model, which uses the base configuration. Since the cross-attention layers
in VIMA make its default small model amount to 50.8M parameters, which is even larger than
Actra-base, we use three Transformer blocks instead. We found that models fail to learn effective
policies using continuous actions; therefore, we only report results of discrete actions. Several push-
T examples by Actra are included in Appendix A.7.

A.8 TRAJECTORY ATTENTION VISUALIZATION

We present a visualization of the attention matrices from the top layer of Actra, depicted in Fig-
ure 9. The explanation of the attention matrix can be found in the appendix. In the visualization,
prompt tokens exhibit similar attention values. Notably, tokens from more recent timesteps receive
a higher attention weight compared to those from earlier in the sequence. This aligns with our ex-
pectation that the latest timestep is the most informative one for generating the next action. Some
of the attention weights above the main diagonal are strongly activated, indicating the additional
attention connections facilitated by our trajectory attention are beneficial. In the right matrix, a clear
distinction is observed between the attention weights produced by state tokens and query tokens.
This distinction underscores that action queries extract information differently from state tokens,
elucidating their role in improving action generation.
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