
EDGE++: Improved Training and Sampling of EDGE

Mingyang Wu∗

Department of Computer Science
Tufts University

Medford, MA, USA
mingyang.wu@tufts.edu

Xiaohui Chen∗

Department of Computer Science
Tufts University

Medford, MA, USA
xiaohui.chen@tufts.edu

Li-Ping Liu
Department of Computer Science

Tufts University
Medford, MA, USA

liping.liu@tufts.edu

Abstract

Recently developed deep neural models like NetGAN, CELL, and Variational Graph Au-
toencoders have made progress but face limitations in replicating key graph statistics on
generating large graphs. Diffusion-based methods have emerged as promising alternatives,
however, most of them present challenges in computational efficiency and generative perfor-
mance. EDGE is effective at modeling large networks, but its current denoising approach
can be inefficient, often leading to wasted computational resources and potential mismatches
in its generation process. In this paper, we propose enhancements to the EDGE model
to address these issues. Specifically, we introduce a degree-specific noise schedule that
optimizes the number of active nodes at each timestep, significantly reducing memory
consumption. Additionally, we present an improved sampling scheme that fine-tunes the
generative process, allowing for better control over the similarity between the synthesized
and the true network. Our experimental results demonstrate that the proposed modifications
not only improve the efficiency but also enhance the accuracy of the generated graphs,
offering a robust and scalable solution for graph generation tasks.

1 Introduction

The generation of large graphs has been accomplished using random graph models [24], such as
the Stochastic-Block Model (SBM) [13]. Despite their use, these models fall short in capturing
complex structures, paving the way to the development of deep neural models. Recently, several
neural methods, including NetGAN [2], CELL [26], and Variational Graph Autoencoders [16],
have been proposed to model large graphs. However, Chanpuriya et al. [3] points out that they are
edge-independent model and are still incapable of reproducing key statistics unless they memorize
the training graph, i.e., high edge overlap between the generated graphs and the original one. An
edge-independent model generates all edges independently at once. In constrast, edge-dependent
models like diffusion-based graph models [28; 12] and autoregressive graph models [31; 20], have
shown promise with small graphs [14; 30]. In particular, diffusion-based graph models demonstrate
better modeling capbility as they avoid the long-term memory issues.

While demonstrating significant success, the majority of existing diffusion models fail to generate
large networks with thousands of nodes. Recently, Chen et al. [7] advocates to diffuse a graph into an
empty graph and leverages a neural network to reverse the edge-removal process (see Fig. 1(a)). In
the edge-removal process, it identifies that not all nodes participate in the edge-formation process

∗These authors contributed equally to this work.

NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023).

Sample active nodes from At

Remove edges from to At−1 At

: data

Derives active nodes from , At−1 At

Add edges by active nodes and At
At−1

Denoising process

Diffusion process

1 0 1 0 1

At

1

5

2

3

4

AT ∼ G(N,0)A0

1

5

2

3

4

1

5

2

3

4

1

5

2

3

4

(a) Overview of the EDGE framework

redundant
computation expensive

computation

trajectory

mismatch

trajectory

mismatch

(b) Behavior of active nodes in EDGE (c) Behavior of generated edges in EDGE

Figure 1. (a) EDGE defines an edge-removal process and learns a model to reverse it. In the denoising
process, it first identifies nodes that may have edges added (active node), then predicts edges between
them. (b, c) Denoising and diffusion processes of active nodes and edges on Polblogs. The denoising
process in EDGE is inconsistent with the reverse of the diffusion process. This mismatch issue
appears in the active nodes prediction and consequently leads to unsatisfied generative performance.

in every timestep, and proposes to first select the active nodes then predict edge formation only
among them. Furthermore, it shows that one can use a prescribed degree sequence to guide the graph
generation. This denoising scheme notably reduces both the computational cost and task complexity.

While EDGE has demonstrated powerful capability in modeling large networks, the computational
power of the denoising network is not fully utilized. As demonstrated in Fig. 1(b), by using default
noise schedule in vanilla diffusion models, the computation is highly concentrated in the second half
of the denoising process, wasting the network capability in the first half. Such an uneven distribution
of the number of active nodes also leads to a higher memory consumption, as the space complexity is
upperbounded by the largest number. Moreover, while using degree-guided generation, we observe
that there is a mismatch between the diffusion and denoising processes (see Fig. 1(b,c)). Such
inconsistency may potentially deteriorate the generative performance.

In this work, we propose two components to address the aforementioned issues in EDGE. First, we
propose a degree-specific noise schedule to control the number of active nodes at each timestep. The
proposed noise schedule significantly reduces the largest number of active nodes during denoising,
saving much more computation in terms of memory. Second, we propose an improved sampling
scheme, which fixes the generation error potentially made in each denoising step. Experiment results
show that by adopting the proposed techniques, we obtain significant memory savings in training
EDGE, and achieve better generative performance in Polblogs and PPI datasets. Moreover, we
showcase how to perform graph generation with EO control by leveraging the proposed techniques.

2 Background
We are interested in a graph generative model that considers the following diffusion process over
variables A1:T :

q(A1:T |A0) =

T∏
t=1

q(At|At−1), where q(At|At−1) =
∏

i,j:i<j

B(At
i,j ; (1− βt)A

t−1
i,j + βtp).

Here A0 is the data adjacency matrix, and B(x;µ) is the Bernoulli distribution over variable x with
probability µ. And βt is the noise schedule parameter at timestep t. Following the convention, we
define αt = 1−βt and ᾱt =

∏t
τ=1 ατ . Ideally, β1:T are tuned such that the marginal q(AT |A0)

converges to some prior distribution p(AT). Specifically, p(AT) is an Erdős-Rényi graph model
G(N, p), with N being the graph size and p being the probability an edge may occur between any
two nodes. EDGE [7] set p = 0 and simplify the diffusion process into an edge-removal process

2

(Fig. 1(a)). Under this setting, it proposes two techniques to reduce the computation cost and learning
complexity.

Introducing the active node variables. Due to the sparsity property of a graph, EDGE identifies
that only a portion of the nodes may have their edges removed at every timestep, and derives the
following equivalent diffusion process:

q(A1:T |A0) = q(A1:T , s1:T |A0) =

T∏
t=1

q(At|At−1)q(st|At−1,At).

This is because st is deterministic given At−1 and At. In the denoising process, for each timestep,
one can first decide which nodes will be active given At, then only perform edge prediction among
the active nodes. The denoising process can be formulated as

pθ(A
0:T , s1:T) = p(AT)

T∏
t=1

pθ(A
t−1|At, st)pθ(s

t|At),

then the learning objective is to maximize the variational lower bound L(A0; θ) of log pθ(A0):

Eq

[
log

p(AT)

q(AT |A0)
+log pθ(A

0|A1, s1)+

T∑
t=2

log
pθ(A

t−1|At, st)

q(At−1|At, st,A0)
+

T∑
t=1

log
pθ(s

t|At)

q(st|At,A0)

]
.

Degree-guided graph generation. EDGE further shows that if the initial degree d0 of the generated
graph is given, one doesn’t need to learn the active node predictor pθ(st|At). Specifically, it shows
that given the initial degree d0 and the current degree dt, the active node posterior is

q(st|dt,d0) =

N∏
i=1

q(sti|dt
i,d

0
i), where q(sti|dt

i,d
0
i) = B

(
sti; 1−

(
1− βtᾱt−1

1− ᾱt

)d0
i−d

t
i

)
. (1)

To sample a graph, one needs to sample a degree sequence d0 first, then replace the parameterized
active node distribution pθ(s

t|At) with q(st|dt,d0). The degree-guided generation can significantly
reduce the model learning complexity, greatly improving the generation accuracy.

Since EDGE defines latent variables on two levels of granularities – nodes and edges, the behavior of
the active nodes should also be taken into consideration. Fig. 1(b) visualizes the node behavior when
defining linear noise schedule on edges, the number of active nodes varies unevenly over timesteps,
making the modeling of some timesteps wasteful and the sampling computation redundant. Moreover,
we observe that there is a mismatch issue during sampling, making the generated graphs having a
higher volume than the ground-truth graph (Fig 1(c)). Next, we present two techniques to address
those limitations without modifying the framework of EDGE.

3 Methodologies
In this section, we first elaborate on how to improve the noise schedule based on active node control,
and then we present volume-preserved sampling, which alleviates the aforementioned mismatching
issue.

3.1 Improved noise schedule
While EDGE uses existing noise schedule schemes, which are defined on edges, we argue that a
better schedule principle should focus on the nodes. Denote γ1:T to be an active node schedule,
where γt > 0 for all t is an unnormalized portion of the total number of nodes. The reason it is
unnormalized is that the actual number of active nodes is data-specific. We introduce a free parameter
K such that gγt

(K) := KNγt is the actual number of active nodes, we defer the discussion of the
use of K later in this section.

Given γ1:T , the goal is to find the corresponding edge noise schedule α1:T . In the following, we will
first draw the connection between the edge noise schedule and the expected number of active nodes
for each timestep, then we show how to obtain the parameters α1:T that satisfy the given active node
schedule.

3

Connecting edge noise schedule to active node control. Since the active node schedule is data-
specific, let d0 ∈ NN be the degree sequence of a graph, given α1:T , the expected number of active
nodes hd0(α1:t, t) ∈ R at timestep t is

hd0(α1:t, t) =

N∑
i=1

(1− α
d0

i
1), if t = 1

N∑
i=1

d0
i∑

dt−1
i =1

(1− α
dt−1

i
t) Bin(k = dt−1

i , n = d0
i , p = ᾱt−1), otherwise

. (2)

Here Bin(k, n, p) is a binomial distribution parameterized by number of trails n and probability
p. Intuitively, the expected number of active nodes is computed as

∑N
i=1 q(s

t
i = 1|d0

i), where
q(sti|d0

i) is the distribution of active node i at timestep t. When t > 1, q(sti|d0
i) is computed by the

marginalization

q(sti|d0
i) =

d0
i∑

dt−1
i =1

q(sti|dt−1
i)q(dt−1

i |d0
i), (3)

where both q(sti|d
t−1
i) and q(dt−1

i |d0
i) can be expressed analytically [7]. We further provide a

detailed derivation in the App. A.

Finding the corresponding edge noise schedule α∗
1:T . With the shown relation between α1:T and

active node behavior, we now can get α∗
1:T for any active node schedule. Specifically, we can obtain

α∗
1:T by solving

α∗
1:T = argmin

α1:T

T∑
t=1

(
hd0(α1:t, t)− gγt

(K)
)2

︸ ︷︷ ︸
L(α1:T ;K,γ1:T ,d0)

, s.t.
T∏

t=1

αt ≈ 0. (4)

Here we are actually optimizing α1:T such that the expected number of active nodes matches the
desired one (i.e., gγt

(K)) at each timestep. Recall that we need the marginal distribution q(AT |A0)
converge to G(N, 0), so

∏
αt should converge to 0. This constraint is imposed when solving the

objective.

To solve for α∗
1:T that satisfies the constraint, we introduce the parameter K, which is solved along

with α1:T . The parameter K is tuned such that (1) the objective loss is sufficiently low (when K is
small enough); (2) and the constraint

∏
αt ≈ 0 is satisfied (when K is large enough). In practice,

we solve K and α∗
1:T alternatively via binary search (See Alg. 1). Given specific K, we solve the

objective using a numerical solver.

3.2 Volume-preserved Sampling

500 400 300 200 100 0
Timestep

0

50

100

150

ac

tiv
e

no
de

s denoise
diffuse

500 400 300 200 100 0
Timestep

0

50

100

150

ac

tiv
e

no
de

s denoise
diffuse

500 400 300 200 100 0
Timestep

0

5

10

15

ed

ge
s (

×1
03) denoise

diffuse

500 400 300 200 100 0
Timestep

0

5

10

15

ed

ge
s (

×1
03) denoise

diffuse

(a) Constant active node schedule (b) Volume-preserved sampling

Figure 2. (a) Customized active node behavior still faces the
mismatch problem; (b) Volume-preserved sampling corrects the
mismatch problem.

We identify that in EDGE, the use
of degree-guided posterior q(s|dt,d0)
may lead to inconsistency between
the active node behavior in diffusion
and denoising processes. The rea-
son is that when sampling edges from
edge model pθ(At−1|At, st), the de-
gree constraints are not imposed. As
a result, some nodes may stay inac-
tive with more edges than their degree
specification, while other nodes that
are under the budget will still be sam-
pled to be active. Such error can not
be fixed by the degree-guided poste-
rior and thus will accumulate over the
denoising process.

We propose a solution that can guarantee the model generates the correct numbers of active nodes
and edges for each timestep (See Fig. 2). This is achieved by simply reweighting the node and edge

4

Algorithm 1 Sovling α∗
1:T via binary search

1: Input: Loss and constrainttolerance ϵ1, ϵ2, Kmin,Kmax,
degree sequence d0, and active node control γ1:T .

2: K1 = Kmin,K2 = Kmax,K = (K1 +K2)/2
3: α∗

1:T = argminα1:T
L(α1:T ;K, γ1:T ,d

0)

4: while L(α∗
1:T ; ·) > ϵ1 or

∏T
t=1 α

∗
t > ϵ2 do

5: if L(α∗
1:T ; ·) > ϵ1 then

6: K1 = K,K = (K +K2)/2

7: else if
∏T

t=1 α
∗
t > ϵ2 then

8: K2 = K,K = (K +K1)/2
9: end if

10: α∗
1:T = argminα1:T

L(α1:T ;K, γ1:T ,d
0)

11: end while
12: Output: Edge noise schedule parameter α∗

1:T

Algorithm 2 Volume-preserved sampling
via reweighting

1: Input: Degree sequence d0, edge model pθ ,
denoising timestep T , and edge noise sched-
ule parameter α1:T .

2: Initialize AT = 0
3: for t = T, . . . , 1 do
4: Compute degree sequence dt from At

5: Compute q̂(st|dt,d0) using Eq. 5
6: Sample st ∼ q̂(st|dt,d0)
7: Compute p̂θ(A

t−1|At, st) using Eq. 6
8: Sample At−1 ∼ p̂θ(A

t−1|At, st)
9: end for

10: Output: Generated graph A0

distribution. For active node distribution, we have the following corrected form:

q̂(st|dt,d0)=

N∏
i=1

q̂(sti|dt,d0), q̂(sti|dt,d0)=B
(
sti;

hd0(α1:t, t)∑N
i=1 p

t
i

pti

)
, pti=1−

(
1− βtᾱt−1

1−ᾱt

)d0
i−dt

i
. (5)

Recall that given edge noise schedule α1:T , hd0(α1:t, t) is the expected number of active nodes at
timestep t. The reweighting is performed on active nodes that still have a degree budget, i.e., dt

i < d0
i .

For edge distribution, we have

p̂θ(A
t−1|At, st,d0) =

∏
i,j:i<j

B
(
At−1

i,j ;
∆Et∑

i′,j′:i′<j′ ℓ
t
θ(i

′, j′)
ℓtθ(i, j)

)
, (6)

where ℓtθ(i, j) = p̂θ(A
t−1
i,j = 1|At, st), and ∆Et =

(
(ᾱt−1 − ᾱt)

N∑
i=1

d0
i + st

T
Atst

)
/2.

Here ℓtθ(i, j) is the probability of forming an edge between node i and j. Note that we only compute
probabilities for active node pairs, and p̂θ(A

t−1
i,j = 1|At, st) = At

i,j if one of the {i, j} is inactive.
Note that in each denoising step, we regenerate all edges within the subgraph indicated by st as this
allows the model to refine its previous prediction. The denominator of the weight in Eqn. 6 is the
expected number of edges the model will generate within the subgraph. And the numerator ∆Et

represents the actual number of edges it should generate within the subgraph at that moment. With
such reweighting, we can guarantee the model generates the correct number of edges at each timestep.

The correction operations on nodes and edges are optional and can be performed separately. We
demonstrate the proposed sampling scheme in Alg. 2. With the corrected sampling algorithm, one
can perform graph generation with edge overlap control [3].

4 Experiments
We demonstrate how the proposed techniques improve EDGE in terms of generative accuracy and
efficiency. We denote the improved EDGE as EDGE++. We also present an application for generating
realistic graphs with precise edge overlap control.

4.1 Setup
Datasets. We perform experiments on two large networks: Polblogs [1] and PPI [29]. The Polblogs
network contains 1,222 nodes and 16,714 edges in total, and the PPI network contains 3,852 nodes
and 37,841 edges.

Evaluation. We follow Chanpuriya et al. [3] and Chen et al. [7] to assess the consistency of the graph
statistics between the generated networks and the original one. Our evaluation metrics encompass the
following graph statistics: maximum degree; normalized triangle counts (NTC); normalized square
counts (NSC); power-law exponent of the degree sequence (PLE); GINI; assortativity coefficient
(AC) [23]; global clustering coefficient (CC) [3]; and characteristic path length (CPL). We also access
the memory consumption of the models during training and sampling.

5

Graph statistics Memory usage (GB)
Max Deg. NTC NSC PLE GINI AC CC CPL Training Sampling

Polblogs

True 351 1 1 1.414 0.622 -0.221 0.23 2.738 - -
EDGE 355.1 1.018 1.052 1.400 0.611 -0.166 0.239 2.589 22.4 6.5
EDGE++ 344.2 1.016 1.023 1.401 0.603 -0.201 0.226 2.663 15.4 6.1

PPI

True 593 1 1 1.462 0.629 -0.099 0.092 3.095 - -
EDGE 593.5 1.143 1.601 1.431 0.604 -0.062 0.102 3.071 57.6 19.5
EDGE++ 594.1 0.905 1.254 1.440 0.612 -0.081 0.082 3.011 34.1 17.2

Table 1: Generative performance of EDGE and EDGE++. For graph statistics, we report the average
statistics over 8 generated samples, the numbers in bold indicate the method is better at the 5%
significance level. Memory Usage of training is reported with a batch size of 4 and sampling with a
batch size of 1.

Baselines. Since EDGE has shown superior results over traditional baselines [26; 27; 3], we only
compare to EDGE in § 4.2. In § 4.3 We also compare against CELL [26], TSVD [27], and three
methods proposed by Chanpuriya et al. [3] (CCOP, HDOP, Linear).

4.2 Generative Performance

We directly compare the generative performance of EDGE and EDGE++ in Table 1. EDGE++
achieves competitive or better performance than EDGE in terms of recovering the graph statistics.
Specifically, EDGE++ excels in 7 out of 8 metrics in both Polblogs and PPI datasets. We hypothesize
the reason is that the complexity of the edge prediction task is amortized to each timestep, the
model is then more capable of a relatively simpler learning task. Moreover, training EDGE++ is
more memory-economic compared to EDGE: it saves 31.25% and 40.78% of the GPU memory in
training Polblogs and PPI datasets, respectively. This further demonstrates that with the proposed
techniques, one can scale EDGE to model even larger graphs.

4.3 Graph Generation with EO Control – An Application
Chanpuriya et al. [3] shows that edge-independent graph models cannot generate desired graph
statistics when the EO is low. Specifically, it tunes the EO to control the similarity between the
generated graphs and the original graph. This section demonstrates how our proposed methods
empower EDGE to generate graphs with controllable EOs. As we can observe in Fig. 3, the
performance of EDGE degenerates when tunning EO from 0 to 1. However, such a phenomenon is
not observed in EDGE++, indicating that we can synthesize realistic graphs with different levels of
diversity. We further elaborate on how to control the EO of EDGE and EDGE++ in the App. B.2

0.00 0.25 0.50 0.75 1.00

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Power Law Exp.

0.00 0.25 0.50 0.75 1.00
50

100

150

200

250

300

350
Max Degree

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Triangle Counts

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Square Counts

0.00 0.25 0.50 0.75 1.00
2.50

2.55

2.60

2.65

2.70

2.75

2.80
Charac. Path Length

0.00 0.25 0.50 0.75 1.00
0.25

0.20

0.15

0.10

0.05

0.00

0.05

Assortativity

0.00 0.25 0.50 0.75 1.00

0.05

0.10

0.15

0.20

0.25

0.30

Clustering Coeff.

0.00 0.25 0.50 0.75 1.00
0.1

0.2

0.3

0.4

0.5

0.6

Gini

True CCOP HDOP CELL Linear TSVD EDGE EDGE++

Figure 3. Graph generation of Polblogs with edge overlap control

6

5 Conclusion
In this work, we propose two techniques to improve the accuracy and efficiency of EDGE, a generative
graph model that is able to generate high-quality large graphs. By customizing the number of active
nodes at each timestep, EDGE requires significantly less GPU memory during training and achieves
better generative performance on Polblogs and PPI databases. Moreover, the proposed volume-
preserved sampling alleviates the trajectory mismatch problem, enabling one to generate graphs with
edge overlap control. Our empirical study validates the effectiveness of the proposed techniques.

References
[1] L. A. Adamic and N. Glance. The political blogosphere and the 2004 us election: divided they

blog. In Proceedings of the 3rd international workshop on Link discovery, pages 36–43, 2005.

[2] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann. Netgan: Generating graphs via
random walks. In International conference on machine learning, pages 610–619. PMLR, 2018.

[3] S. Chanpuriya, C. Musco, K. Sotiropoulos, and C. Tsourakakis. On the power of edge inde-
pendent graph models. Advances in Neural Information Processing Systems, 34:24418–24429,
2021.

[4] X. Chen, X. Han, J. Hu, F. J. Ruiz, and L. Liu. Order matters: Probabilistic modeling of node
sequence for graph generation. arXiv preprint arXiv:2106.06189, 2021.

[5] X. Chen, X. Chen, and L. Liu. Interpretable node representation with attribute decoding. arXiv
preprint arXiv:2212.01682, 2022.

[6] X. Chen, Y. Li, A. Zhang, and L.-p. Liu. Nvdiff: Graph generation through the diffusion of
node vectors. arXiv preprint arXiv:2211.10794, 2022.

[7] X. Chen, J. He, X. Han, and L.-P. Liu. Efficient and degree-guided graph generation via discrete
diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

[8] H. Dai, A. Nazi, Y. Li, B. Dai, and D. Schuurmans. Scalable deep generative modeling for
sparse graphs. In International conference on machine learning, pages 2302–2312. PMLR,
2020.

[9] P. Erdos, A. Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60, 1960.

[10] K. K. Haefeli, K. Martinkus, N. Perraudin, and R. Wattenhofer. Diffusion models for graphs
benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.

[11] X. Han, X. Chen, F. J. Ruiz, and L.-P. Liu. Fitting autoregressive graph generative models
through maximum likelihood estimation. Journal of Machine Learning Research, 24(97):1–30,
2023.

[12] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[13] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
networks, 5(2):109–137, 1983.

[14] J. Jo, S. Lee, and S. J. Hwang. Score-based generative modeling of graphs via the system of
stochastic differential equations. arXiv preprint arXiv:2202.02514, 2022.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

[17] L. Kong, J. Cui, H. Sun, Y. Zhuang, B. A. Prakash, and C. Zhang. Autoregressive diffusion
model for graph generation.

7

[18] J. Li, J. Yu, J. Li, H. Zhang, K. Zhao, Y. Rong, H. Cheng, and J. Huang. Dirichlet graph
variational autoencoder. Advances in Neural Information Processing Systems, 33:5274–5283,
2020.

[19] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia. Learning deep generative models of
graphs. arXiv preprint arXiv:1803.03324, 2018.

[20] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud, R. Urtasun, and R. Zemel.
Efficient graph generation with graph recurrent attention networks. In Advances in Neural
Information Processing Systems, pages 4255–4265, 2019.

[21] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky. Graph normalizing flows. Advances in Neural
Information Processing Systems, 32, 2019.

[22] N. Mehta, L. C. Duke, and P. Rai. Stochastic blockmodels meet graph neural networks. In
International Conference on Machine Learning, pages 4466–4474. PMLR, 2019.

[23] M. E. Newman. Assortative mixing in networks. Physical review letters, 89(20):208701, 2002.

[24] M. E. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks.
Proceedings of the national academy of sciences, 99(suppl_1):2566–2572, 2002.

[25] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon. Permutation invariant graph
generation via score-based generative modeling. In International Conference on Artificial
Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

[26] L. Rendsburg, H. Heidrich, and U. Von Luxburg. Netgan without gan: From random walks to
low-rank approximations. In International Conference on Machine Learning, pages 8073–8082.
PMLR, 2020.

[27] C. Seshadhri, A. Sharma, A. Stolman, and A. Goel. The impossibility of low-rank representa-
tions for triangle-rich complex networks. Proceedings of the National Academy of Sciences,
117(11):5631–5637, 2020.

[28] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pages 2256–2265. PMLR, 2015.

[29] C. Stark, B.-J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher, R. Oughtred, M. S. Livstone,
J. Nixon, K. Van Auken, X. Wang, X. Shi, et al. The biogrid interaction database: 2011 update.
Nucleic acids research, 39(suppl_1):D698–D704, 2010.

[30] C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard. Digress: Discrete
denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734, 2022.

[31] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. GraphRNN: Generating realistic
graphs with deep auto-regressive models. arXiv preprint arXiv:1802.08773, 2018.

[32] C. Zang and F. Wang. Moflow: an invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 617–626, 2020.

A Derivation of Active Node Control

We are interested in computing the expected number of active nodes given a prescribed degree
sequence and an edge noise schedule α1:T :

hd0(α1:t, t) =

N∑
i=1

q(sti = 1|d0
i), (7)

where q(sti|d0
i) is the distribution of node i being active at timestep t. Before deriving the form of the

distributions, we first revisit the two properties derived by Chen et al. [7]:

8

Property 1. The forward degree distributions have the form

q(dt−1|d0) =

N∏
i=1

q(dt−1
i |d0

i), where q(dt−1
i |d0

i) = Binomial(k = dt−1
i , n = d0

i , p = ᾱt−1).

(8)

Intuitively, for q(dt−1|d0), there are d0
i edges connected to node i, each with probability ᾱt−1 to be

kept at time step t− 1. The probability the number of remaining edges equals dt−1
i at time step t− 1

is a binomial distribution.

Property 2. At timestep t, the active node distribution for node i given dt−1
i is

q(sti|dt−1
i) = B

(
sti; 1− (1− βt)

dt−1
i

)
. (9)

With the above properties, we show that when t = 1, we directly have

q(s1i |d0
i) = B(s1i ; 1− (1− βt)

d0
i) = 1− α

d0
i

t (10)

by using property 1. For t > 1, q(sti|d0
i) can be computed by marginalization, specifically, we

introduce dt−1
i and expand q(sti|d0

i) into follow:

q(sti|d0
i) =

d0
i∑

dt−1
i =1

q(sti,d
t−1
i |d0

i)

=

d0
i∑

dt−1
i =1

q(sti|dt−1
i)q(dt−1

i |d0
i).

=

d0
i∑

dt−1
i =1

B(sti; 1− α
dt−1

i
t)Bin(k = dt−1

i , n = d0
i , p = ᾱt−1)

=

d0
i∑

dt−1
i =1

(1− α
dt−1

i
t)Bin(k = dt−1

i , n = d0
i , p = ᾱt−1).

Now we show q(sti|d0
i) as

q(sti = 1|d0
i) =

1− α

d0
i

1 , if t = 1

d0
i∑

dt−1
i =1

(1− α
dt−1

i
t) Bin(k = dt−1

i , n = d0
i , p = ᾱt−1), otherwise

. (11)

Then we can derive the expected number of active nodes as

hd0(α1:t, t) =

N∑
i=1

(1− α
d0

i
1), if t = 1

N∑
i=1

d0
i∑

dt−1
i =1

(1− α
dt−1

i
t) Bin(k = dt−1

i , n = d0
i , p = ᾱt−1), otherwise

. (12)

B Experiment Details

B.1 Experiment Setup

For both Polblogs and PPI datasets, we set the number for diffusion timesteps to 512. We use the
same architecture from [7], with 5 message-passing blocks, each with 8 attention heads. We employ

9

(a) schedule of γ1:T (b) active node schedule in Polblogs (c) Active node schedule in PPI

Figure 4. Visualization of how different γ strategies may lead to different active node schedules on
Polblogs and PPI datasets.

the Adam optimizer [15] with a weight decay of 10−4 and use a batch size of 4 for both datasets.
The learning rate was fixed at 10−4, and we did not employ any learning rate scheduler during the
training process. For model evaluation, we selected the model that minimized the statistics difference
between the generated graphs and the original graphs. We use a batch size of 8 during evaluation.

B.2 Graph Generation with EO control

We can control the EO between the generated graphs and the original graph by generating A0 from At

with different At. For any timestep t ∈ [0, T], we can first draw At ∼ q(At|A0), then use the learned
denoising model to draw A0 by sequentially drawing (A0:t−1, s1:t) from pθ(A

0:t−1, s1:t|At). In the
experiment of § 4.3, we choose T = 512 and time interval ∆ = 25, for each t ∈ {∆, 2∆, 3∆, . . . , T},
we generate eight graphs and evaluate their statistics.

For better visualization, we choose constant active node scheduling for EDGE++, which leads to that
the density of At decreases linearly as t → T . Note that since EDGE doesn’t support customization
of the active node control, most of the sampled A0 appear to have a very low EO. Moreover, due to
the mismatching issue, EDGE conversely performs worse in terms of recovering the true statistics as
EO increases.

C Related Works

Edge-independent models, which assume the independent formation of edges with certain probabili-
ties, are commonly found in probabilistic models for large networks. This category comprises various
traditional models like the Erdős-Rényi graph models [9], SBMs [13], and deep neural models like
variational graph auto-encoders [16; 22; 18; 5], NetGAN and its variant [2; 26]. Recent studies reveal
that these models fail to replicate desired statistics of the target network, such as triangle counts,
clustering coefficient, and square counts [27; 3].

On the other hand, deep auto-regressive (AR) graph models [19; 31; 20; 32; 11] construct graph
edges by sequentially generating elements of an adjacency matrix. These algorithms are notably
slow as they require making N2 predictions. Dai et al. [8] propose a method to circumvent this by
leveraging graph sparsity and predicting only non-zero entries in the adjacency matrix. However,
these AR-based models often face long-term memory issues, making it difficult to model global
graph properties. These models also lack invariance with respect to node orders of training graphs,
necessitating specialized techniques for their training[4; 11].

Diffusion-based generative models have been demonstrated to be effective in producing high-quality
graphs [25; 21; 14; 10; 6; 30; 17; 7]. They model edge correlations by refining a graph through
multiple steps, overcoming the limitations of auto-regressive models. While the majority of the
diffusion-based models have primarily focused on generation tasks with smaller graphs, EDGE [7]
is the first model that scales to generate large graphs with thousands of nodes. However, EDGE is
found to be inefficient in utilizing the denoising model.

10

D Additional Results

We investigate how to choose a suitable active node control for training EDGE. we found that constant
schedule and polynomial schedule give better results in terms of generative performance. Specifically,
we investigate the following three polynomial functions:

poly1: γt = (0.5t/T − 0.5)2 + 0.4
poly2: γt = (0.5t/T − 0.5)2 + 0.5
poly3: γt = −0.5(t/T − 0.3)2 + 0.7

We visualize the chosen functions in Fig. 4(a). Moreover, we also demonstrate how the γ schedule
maps to the actual node control in Polblogs (Fig. 4(b)) and PPI (Fig. 4(c)). The active node schedule
is data-specific since it needs to make sure the constraint

∏
αt ≈ 0 is satisfied. This is achieved by

tuning the parameter K as discussed in § 3.1.

We further provide the generative performance of EDGE++ using different active node schedules in
Table. 2. All the active node schedules yield competitive performance in terms of recovering graph
statistics. We report the result of the constant active node schedule in § 4.2.

Max Deg. NTC NSC PLE GINI AC CC CPL

Polblogs

True 351 1 1 1.414 0.622 -0.221 0.23 2.738
constant 344.2 1.016 1.023 1.401 0.603 -0.201 0.226 2.663
poly1 351.0 0.926 0.972 1.400 0.611 -0.171 0.205 2.634
poly2 352.3 0.922 0.913 1.400 0.613 -0.218 0.205 2.633
poly3 329.0 0.998 1.032 1.400 0.609 -0.173 0.225 2.673

PPI

True 593 1 1 1.462 0.629 -0.099 0.092 3.095
constant 594.1 0.905 1.252 1.440 0.612 -0.081 0.082 3.011
poly1 594.3 0.904 1.244 1.440 0.612 -0.081 0.088 3.029
poly2 584.5 0.765 0.966 1.440 0.611 -0.084 0.070 3.009
poly3 594.0 0.743 0.999 1.442 0.614 -0.099 0.059 3.026

Table 2: Generative performance

11

	Introduction
	Background
	Methodologies
	Improved noise schedule
	Volume-preserved Sampling

	Experiments
	Setup
	Generative Performance
	Graph Generation with EO Control – An Application

	Conclusion
	Derivation of Active Node Control
	Experiment Details
	Experiment Setup
	Graph Generation with EO control

	Related Works
	Additional Results

