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Abstract

We introduce a comprehensive framework for modeling single cell transcriptomic
responses to perturbations, aimed at standardizing benchmarking in this rapidly
evolving field. Our approach includes a modular and user-friendly model develop-
ment and evaluation platform, a collection of diverse perturbational datasets, and
a set of metrics designed to fairly compare models and dissect their performance.
Through extensive evaluation of both published and baseline models across diverse
datasets, we highlight the limitations of widely used models, such as mode collapse.
We also demonstrate the importance of rank metrics which complement traditional
model fit measures, such as RMSE, for validating model effectiveness. Notably,
our results show that while no single model architecture clearly outperforms others,
simpler architectures are generally competitive and scale well with larger datasets.
Overall, this benchmarking exercise sets new standards for model evaluation, sup-
ports robust model development, and furthers the use of these models to simulate
genetic and chemical screens for therapeutic discovery.

1 Introduction

Perturbing biological systems, such as cells, using small molecules and genetic modifications can help
researchers to uncover causal drivers of diseases and identify potential therapeutic targets [9, 26, 11].
Advances in CRISPR technology and lab automation have enabled these experiments, which we refer
to as perturbation screens, to be conducted at scale with up to hundreds of thousands of perturbations
applied in parallel in a single experiment [49]. These perturbation screens have been combined with
modern RNA-sequencing technology to measure gene expression profiles at single cell resolution,
creating atlases of cellular snapshots that reveal perturbation effects [35, 54, 36, 1, 15,9, 51, 61].

However, measuring the perturbation effects of all roughly 20, 000 protein coding genes or 100 drug-
like chemicals remains prohibitively expensive, especially when taking into account combinations
of perturbations and different tissues, cell types, and cell lines [43, 44]. As a result, there has
been a growing interest in generative machine learning approaches that can predict the effects of
perturbations on gene expression.

Specifically, researchers have developed models that can generate counterfactual, out of sample (0os)
predictions of perturbation effects [19]. One use case, which we call covariate transfer, involves
training a model on perturbation effects measured in a set of covariates (e.g., cell lines) and predicting
those effects in another covariate where the perturbation-covariate pairs have not been observed.
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combo prediction involves training a model on individual perturbation effects and predicting the
effects of multiple perturbations in combination. The ultimate goal is to enable in-silico screens
across the vast space of unobserved perturbations to accelerate therapeutic discovery.

Related Works Comparing the performance of published models has been challenging due to
inconsistent benchmarks with different datasets and metrics. The sc-perturb database provides
datasets with unified metadata, but does not benchmark models [40]. The NeurIPS 2023 perturbation
prediction challenge [53] was a major achievement in standardizing benchmarks, providing a novel
chemical perturbation dataset with scRNA-seq readouts measured in PBMCs. The challenge used the
covariate transfer task, with metrics including mean RMSE, MAE, and cosine similarity of predicted
vs ground truth log p-values. The challenge attracted a large number of submissions, many of which
were inspired by published models such as chemCPA [53].

Ahlmann-Eltze et al. [3], Wenteler et al. [56], Csendes et al. [12], and Wong et al. [58] evaluate
single-cell foundation models (scFM) such as scGPT, scFoundation, scBERT, Geneformer and UCE,
in the context of perturbation response modeling. These studies focus on how these general-purpose
models can be fine-tuned for this task, using task-specific models such as GEARS, CPA as well as
other baselines (e.g., mean prediction, KNN, random forest, linear models) to highlight the limitations
of scFMs for this task. Notably, Wong et al. [58] used our baseline models and rank metric to establish
the performance of scGPT and GEARS. These works mostly use well-known model fit metrics such
as RMSE/MSE and Pearson correlation between averaged predicted and ground truth expression
profiles (Pearson Delta, Pearson LogFC). Wenteler et al. [56] also proposed various distributional
metrics, including E-distance, which is equivalent to our energy distance based MMD metric.

Kernfeld et al. [27] systematically assessed a wide array of perturbation response prediction models,
with a focus on models that use gene regulatory networks as a form of prior knowledge. A central
finding of their work was that simple baselines often matched or outperformed more sophisticated
models such as GEARS and Geneformer, which confirm the robust performance of simple approaches
in this domain. Recent works by Li et al. [30] and Li et al. [31] provide more comprehensive
benchmarks of a large set of deep learning models across diverse datasets and metrics. Beyond
conventional evaluation, their work introduces novel tasks, such as unseen perturbation/covariate
transfer [30, 31] and cell state transition prediction [30]. Notably, while scFMs can excel on unseen
perturbation prediction, simpler models often show better performance in the unseen covariate
prediction [30].

Contributions In this work, we (1) introduce a highly modular and user-friendly framework in
the form of a codebase (Perturbench) for model development and evaluation, (2) curate diverse
perturbational datasets and define biologically relevant tasks, (3) develop metrics that enable rigorous
model comparison and capture key failure modes, and (4) perform extensive evaluation of published
perturbation models, strong baselines, and individual model components. Figure 1 illustrates our
approach.

We reproduce key components of published models that cover a spectrum of architectures, and
evaluate them alongside strong baseline models. We specifically test the models on difficult tasks,
simulating how they will be deployed in real-life contexts. Our findings reveal that some widely used
models are prone to “mode” or “posterior” collapse (see Appendix C.7 for more details). Since a
common use-case of these models is to run in-silico screens that rank perturbations by a desired effect
(e.g. reversing a disease state) [55], we propose rank metrics complementary to traditional measures
of model fit (e.g. root mean squared error (RMSE)) that specifically assess the models’ ability to
accurately order perturbations and detect model collapse. In addition, we demonstrate that models
with simple architectures can outperform more sophisticated models when trained on larger datasets.

We anticipate that our codebase, together with this benchmark and the accompanying metrics, will
serve as a valuable framework for the community to develop more robust perturbation response
prediction models. The PerturBench library can be found on GitHub at https://github.com/
altoslabs/perturbench/.
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Figure 1: A) Single cell perturbational datasets at multiple scales. B) Biologically relevant covariate
transfer and combinatorial prediction data splits. C) Dataloaders support two training strategies: 1)
control matching which involves mapping a control cell to a perturbed cell and 2) disentanglement
which maps a perturbed cell to itself. D) A model zoo with modular components such as relevant
baseline models, adversarial loss, perturbation sparsity, and others. E) Standardized benchmarking
suite supporting flexible pipelines and metrics for evaluating models

2 Datasets and Tasks

Many published models have been evaluated on relatively small datasets, where most of the data
are seen in the train split. However, in real-world settings, we often have complex datasets that only
contain a small fraction of the perturbation effects we are interested in predicting. Thus, we select
datasets and create tasks that mirror these real-world challenges. We select six published datasets,
Norman et al. [38], Srivatsan et al. [51], Frangieh et al. [18], McFaline-Figueroa et al. [37], Jiang
et al. [23], and Szalata et al. [53] (OP3) which include at least 100 perturbations and cover a diversity
of perturbation modalities (chemical vs genetic), combinatorial perturbations, dataset sizes, and
covariates. We provide a cursory overview in Table 1 and more information in Appendix D.1. Here,
we define a biological state as a unique set of covariates that we plan to model (e.g. cell type/line).
Dataset preprocessing details can be found in Appendix D.3.

Table 1: Summary of benchmarking datasets.

Dataset Single Dual Modality Primary Biological Cells Task
pert.  pert. cells states

Srivatsan20 188 0 chemical X 3 178,213  covariate transfer
Frangieh21 248 0 genetic X 3 218,331 covariate transfer
Jiang24 219 0 genetic X 30 1,628,476 covariate transfer
McFalineFigueroa23 525 0 genetic X 15 892,800 covariate transfer
Norman19 155 131 genetic X 1 91,168 combo prediction
0P3 144 0 chemical v 4 296,147  covariate transfer

We create covariate transfer tasks for the Srivatsan20, Frangieh21, Jiang24 and OP3 datasets
as well as a combo prediction task for the Norman19 dataset. In addition, we study two scenarios:
data scaling and imbalanced data. In the former, we benchmark model performance with increasing
training data. In the latter, we simulate increasing the imbalance of perturbations observed in different
covariates. Details of the experiments are in sections 5.3 and C.6 respectively. The aim of both
scenarios is to simulate how models will be deployed in practice, where there are often complex
covariates, imbalanced datasets, and/or large amounts of missing data [see e.g. 16]. Additional details
about data splitting implementation can be found in the Appendix D.4.



3 Perturbation Prediction Models

3.1 Modeling counterfactuals

Perturbation response models aim to predict out-of-sample effects of genetic or chemical interventions
on cells. Here, we define out of sample as predicting effects in unobserved covariates or unobserved
perturbation combinations. However, RNA sequencing technology destroys the cell, making it
impossible to observe its gene expression state before and after perturbation. Published models
use two main strategies to learn representations of perturbation effects: matching methods to match
control and perturbed cells, or disentanglement strategies within autoencoder architectures to separate
the effects of perturbations from the baseline cell state.

Matched Controls Matching treated outcomes to controls is a common approach to identify
treatment effects [see e.g. 52, Section 1.3 for a historical summary]. In the context of perturbation
effect prediction, matching control and perturbed cells has been used by a variety of published models
such as GEARS [46], scGPT [13], and scFoundation [20]. For the matching approach, ensuring
that the control cell is from the same cell type/line, experiment or batch as the perturbed cells helps
reduce potential confounding effects, but cannot account for unobserved sources of variance. A more
complex approach is to use optimal transport to identify the control cell most likely to transition
into a given perturbed cell [24, 10, 28]. This enables prediction of the full distribution of cellular
responses, instead of just the average response.

Disentanglement An alternative to matching methods involves disentanglement [6], which enables
models to separate the unperturbed cellular state and the perturbation effect. The compositional
perturbation autoencoder (CPA) [34] uses an adversarial classifier to ensure that the unperturbed
“basal” state is free of any perturbational information, forcing the perturbation encoder to learn
a meaningful representation of the perturbation. These representations are added to control cell
encodings during inference to generate counterfactual predictions. Biolord [41] partitions the latent
space into subspaces and optimizes those latent spaces to represent covariates and perturbations, which
can be recombined during inference to generate counterfactual predictions. SVAE [33] leverages
recent results by Lachapelle et al. [29] demonstrating that enforcing a sparsity constraint can induce
disentanglement. Bereket and Karaletsos [7] build on sVAE using an additive conditioning for the
perturbations, leading to SAMS-VAE which has biologically interpretable latent encodings.

3.2 Models for benchmarking

In this paper, we implement a range of perturbation response models with diverse architectures such
as CPA, Biolord, SAMS-VAE and GEARS. Our aim is to assess the core modeling assumption
behind these models, such as the adversarial classifier in CPA and the sparse additive mechanism in
SAMS-VAE. See Appendix D.5 for details. These models are marked with * following the model
name (e.g. CPA™).

To investigate the effect of disentanglement, we ablate the adversarial component from CPA and refer
to the new version as CPA* (noAdv). The rest of the model is unchanged. Despite the basal state of
cells (i.e. zpqsq1) are contaminated with perturbation and covariate information, counterfactual gene
expressions are still generated by adding the target perturbation embedding to zp,s4;. We verified
that our CPA implementation performs at least as well as the published version in C.7.4.

Working under the same hypothesis, we removed the binary mask from SAMS-VAE*, thus discarding
the sparsity assumption which drives the disentanglement and offers interpretability. We also discard
the distributional assumption on the perturbation embedding, arriving at a simplified version which
we refer to as SAMS-VAE* (S) that is free of any global latent variables.

We also experiment with scGPT, a single-cell gene expression foundation model [13], to embed gene
expression — as inputs to CPA and our Latent Additive baseline model. Our aim is to understand
whether using cell embeddings from a pretrained foundation model improve performance.

3.3 Baseline models

We also implement and benchmark the following baselines:



Linear The linear baseline model uses the control matching approach. Given a perturbed cell, 2,
we sample a random control cell with matched covariates, x, and reconstruct =’ by applying one
linear layer given the perturbation and covariates:

ey

where pone hot denotes the one-hot encoding of the perturbation and covone not denotes one-hot
encodings of covariates (e.g. cell type/line).

/
r=x+ flinear (ponefhoty covonefhot)a

Latent Additive We extend the linear model into a stronger baseline which we call Latent Additive,
by encoding expression values and perturbations into a latent space Z C R% i.e.

Zetrl = fctrl(x)v and Zpert = fpert (pone_hot)a

Subsequently, we reconstruct the expression value by decoding the added latent space representation
2" = faec(Zetrl + Zpert)- All functions fqec, fetrl, fpery are implemented as multilayer perceptrons
(MLPs) with dropout [50] and layer normalization [5].

Decoder Only We introduce another class of baseline which we refer to as Decoder-Only, that
does not leverage gene expression and aims to predict the perturbation effect solely from covariates,
or perturbation, or a mix of both. Consequently, model prediction can be expressed as *’ = fgec(2)
for 2 € {Pone_hot } U {€0Vone_hot } U {(Pone_hot COVone_hot) }- This baseline can be used to establish
a performance lower-bound when it does not receive any perturbation information, simulating mode
or posterior collapse where the model predicts the same effect for every perturbation.

4 Benchmarking

Existing perturbation response modeling studies use different metrics, making direct comparison
between models difficult. Here, we develop a standardized, modular benchmarking suite with a
variety of metrics that mimic key downstream applications and capture common model failure modes.
See Appendix A for implementation details.
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4.2 Metrics

We select a range of metrics that evaluate different aspects of the predicted perturbation response
accuracy. We use RMSE (as recommended in Ji et al. 22) to compare the average predicted cell states
to the observed cell states and cosine similarity to assess the fidelity of predicted versus observed
effects (LogFCs). However, as we show in Appendix C.7, these “global” fit-based metrics fail to fully
capture all aspects of a model’s performance. Hence, we introduce a set of rank-based metrics that
can be seen as a measure of specificity of the model to different perturbations.



4.2.1 Rank Metrics

Since the space of possible genetic or chemical perturbations is massive, a common application of
these models is to rank perturbations by by their ability to induce some desired cell state, and select
only the top perturbations for experimental validation [55].

Unfortunately, there are no metrics developed for perturbation ordering, which results in models that
generate predictions with high cosine similarity or low RMSE to the observed gene expression, but
fail to capture smaller but key changes that uniquely distinguish the effects of one perturbation from
others. In particular, mode or posterior collapse where a model always generates the same prediction
irrespective of target perturbation may still result in decent cosine similarity or RMSE on particular
dataset.

We find it difficult to use existing information retrieval metrics such as the mean reciprocal rank [42]
as that would require a specific desired cell state to create rankings, potentially biasing our evaluation.
Therefore, we introduce a rank-based metric that measures, for a given observed perturbation, how
close the model prediction is to the observation, compared to predictions made for other perturbations.
The rank metric is computed on a per perturbation basis:

P

rankayverage 1= 1Zmnk(ﬁci), rank(&;) := S Z I(dist(z;, ;) < dist(&;,2;)), (2)

P p-1.27,
i

where p is the number of perturbations that are being modelled, Z;, x; are the predicted and observed
(average) expression value of perturbation 4, and dist is a generic distance. Figure 2 shows two
examples of perturbations predictions and the respective computations of rank metrics. The rank
metric is always a number between 0 and 1, where 0 is a perfect score and 0.5 is the expected score
of a random prediction. Each fit-based metric has a corresponding rank metric. We verified the
calibration of this rank metric in Appendix C.7.5.

4.2.2 Distributional Metrics

We evaluate model predictions with metrics that capture the full distribution of perturbation response
across cells, such as MMD and differentially expressed gene (DEG) recall.

Our MMD metric computes the energy distance between predicted and the ground truth perturbed
cells, either in the gene expression or principal component analysis (PCA) space. To embed cells
with PCA, we fit a PCA model to the ground truth test split, retaining the top 256 PCs, and project
predicted cells onto the ground truth PCs. DEG recall measures the fraction of ground truth DEGs
that can be recalled from the predicted cells. DEGs for the predicted and ground truth perturbed cells
are computed relative to the control cells, using the scanpy’s t1.rank_genes_groups method with
default parameters [57]. The t-scores are sorted and the top 20 are retained for comparison. We leave
DecoderOnly DEG recall empty as it cannot model variance in perturbation response.

4.3 Benchmarking Rules

Since model performance often varies with hyperparameters, we run hyperparameter optimization
(HPO) for every model in each dataset, task and scenario to ensure accurate model comparisons.
Specifically, we use optuna [4] with the default tree-structured Parzen estimator [8]. Each HPO run
includes at least 60 trials with 6 trials running in parallel, and we select the best hyperparameters
using a combination of the RMSE and RMSE rank metric, i.e. RMSE + 0.1 - rankgysg. We find
this approach results in good overall performance. Additional details are in Appendix D.6, along with
the best hyperparameters for each model/dataset/task. For the best hyperparameter configuration, we
run model training four additional times with different seeds to assess stability.

5 Experiments

In this section, we summarize the results of the covariate transfer and combo prediction tasks using
different datasets, as well as the data scaling scenario. Additional results, including results for the
Frangieh21 and OP3 dataset, imbalanced data scenario, and implementation details can be found in
Appendices C, D, and D.7.



Table 2: Results of the covariate transfer experiment measuring generalization across cell lines in the
Srivatsan20 dataset. Mean + one standard deviation reported across 5 seeds. Best performance
per metric is indicated in bold. The same convention applies to subsequent tables.

Model Cosine LogFC Cosine LogFC rank MMD PCA DEG recall
CPA* 0.38+6 x 1073 0.15+£1 x 1072 0.53+4x107% 0.007+2x 1073

CPA* (noAdv) 040+5x107% 0.09+4x1073 049+1x10"2 0.004+2x 1073
CPA* (scGPT) 0.39+9x 1073 0.13+2x 1072 - -

SAMS-VAE* 0.44+1x 1073 0.17+1 x 1072 069+1x10"2 0.000+1x 10~*
SAMS-VAE* (S) 0.53+1x10"2 0.124+2x 102 0.79 +1 x 1072 0.000 £ 0
Biolord* 0.18+1x 10! 0.37+2x 1072 4.3+ 4 x 10° 0.000+1 x 104
LA 0.45+2x 1073 0.13+4x 1073 20+2x101! 0.000 £ 0
LA (scGPT) 0.50+4x 1073 0.13+7x 1073 - -
Decoder 0.35+5x%x 1073 0.16 £ 1 x 1072 1.9+5x%x 1073 -
Decoder (Cov) 0.30+1x 102 0.474+9x 1073 - -

Linear 0.16+1x 1072 0.284+5x 1073 076+ 9 x10~* 0.004+3 x 10~*

5.1 Predicting Perturbation Effects Across Cell Lines

We begin with the covariate transfer task and assess each model’s ability to predict the effects of drug
treatment in cell lines where the drugs have not been observed. For each cell line in the Srivatsan20
dataset, we held out 30% of the perturbations for validation and testing, ensuring that any held-out
perturbations have been observed in the two other cell lines. The results are summarized in Table 2.
Of the three published models, CPA* performs best on the rank metrics, while SAMS-VAE* is
slightly worse. However, SAMS-VAE* performs better on the fit based RMSE and cosine LogFC
metrics. BioLord* underperforms both models on all metrics.

We performed ablation studies by removing the adversarial component from CPA*, resulting in the
CPA* (noAdv). Strikingly, CPA* (noAdv) outperforms the original version and is the best performing
model overall on the rank metrics. We also ablated the sparse mask and global latent variables from
SAMS-VAE®, resulting in SAMS-VAE* (S), and observe that SAMS-VAE* (S) also beats the original
implementation on all metrics. These results highlight the need for a modular model development
platform that enables ablation studies.

Our Decoder-Only baseline which does not leverage perturbation information, Decoder (Cov), also
performs well on cosine LogFC and RMSE fit, yet does no better than random on rank metrics.
This suggests that Decoder (Cov) can find a single expression vector that achieves a decent fit to
all perturbations in a given cell line, highlighting the need for our rank metrics that assess whether
models can correctly order perturbations. Appendix C.7 contains a more detailed assessment, where
we are able to establish that SAMS-VAE* (S) as well as our baselines, are less prone to mode collapse,
based on analysis in the Srivatsan20 and Frangieh21 datasets.

By replacing gene expression inputs with scGPT cell embeddings, we are able to see marginal
improvement in the performance for CPA* and LA.

We see large differences in model performance on the MMD metric computed in the PCA space
(MMD PCA). Models using autoencoder architectures (CPA and SAMS-VAE), tend to have better
performance than our baseline models (Latent Additive, Decoder Only). All models performed poorly
on our differentially expressed gene recall (DEG recall) metric. Additional metrics for Srivatsan20
can be found in Table 5.

Since the Srivatsan20 dataset contained mostly cancer cell lines, we also benchmarked models
on the Frangieh21 and OP3 datasets, which contain melanoma cells in co-culture with immune
cells and primary peripheral blood monocyte cells (PBMCs) respectively. With the Frangieh21
dataset, we assess models’ ability to transfer genetic perturbation effects from simpler cell systems to
a more complex co-culture system, finding similar trends in model performance, with more details in
Appendix C.3.



Table 3: Results of the combo prediction experiment. Model performance predicting dual perturbation
effects in the Norman19 dataset.

Model Cosine logFC Cosine LogFC rank MMD PCA DEG recall
CPA* 0.76£4x 1073  0.0072+£2 x 1073 22+2x1072  0.032+4x1073

CPA* (noAdv) 0.77+1x 102  0.0057+3 x 1073 2.2+1x 1071 0.016 £9 x 1073
CPA™ (scGPT) 0.70 £ 2 x 1072 0.0254+6 x 1073 - -

SAMS-VAE* 0.45+2 x 1072 0.021+5 x 1073 1.9+3 x 1072 0.000 £ 0
SAMS-VAE* (S) 0.78+6x107% 0.019+5x107°® 074+5x10"2 0.028+6 x 10~
Biolord* 0.41+2x 1072 0.027+1x 1073 1.6+5x 1073 0.000 £ 0
GEARS 0.44 +5x 1073 0.051+1x 1072 - -

LA 0.79+1x10"2 0.005+2x 1073 32+6x107%  0.000+£3x 104
LA (scGPT) 0.77+4x1073  0.0085+1x 1073 - -
Decoder 0.73+2x 1072 0.017+6 x 1073 324+4x1073 -

Linear 0.60 +£2 x 1072 0.035+4 x 1073 1.24+4%x 1072  0.018+2x 1073

With the OP3 dataset, we assess models’ ability to transfer small molecule effects across heterogeneous
PBMC cell types, again finding similar trends in model performance. The gap between CPA/SAMS-
VAE and the Latent Additive/Decoder models’ performance on the MMD PCA metric was larger,
suggesting that the OP3 dataset contains greater within-cell-type heterogeneity compared to the
Srivatsan20 or Frangieh21 datasets. Additional details can be found in Appendix C.4

Our simpler baselines, in particular the Latent Additive (LA) model, offer competitive performance
at a fraction of training cost. These baseline models also scale well with larger datasets that contain
more complex covariates, as shown in the Section 5.3 with the McFalineFigueroa23 and Jiang24
datasets, where they outperform the more complex VAEs. However, they underperform more complex
models when evaluated on the MMD metrics, suggesting they only learn an average response to
perturbation. Thus, it is important to evaluate models across a diverse set of datasets and metrics,
which we offer in PerturBench.

5.2 Predicting Combinatorial Gene Over-expression Effects

Next we discuss model performance on the combo prediction task using the Norman19 dataset, which
contains both single and dual genetic perturbations. The models train on all single perturbations and
30% of the dual perturbations, with the remaining 70% of duals held out for validation and testing.
We summarize the results in Table 3.

The Latent Additive, Decoder-Only, and a subset of published models outperform the linear model
across all metrics, suggesting that deep learning approaches can capture some non-linear interactions
in the Norman19 dataset. However, the linear model performance performance is still relatively
strong, suggesting most dual perturbation effects are linear.

Again, removing the adversary component or sparsity constraint leads to better performance, as is
the case of CPA* (noAdv) and SAMS-VAE* (S). Both models perform largely on par with our best
baseline Latent Additive model. Overall, Norman19 offers clean perturbation effects, ideal for sanity
checking models during development.

The autoencoder architectures again outperform the baseline models in the MMD PCA metric.
However, the gap is smaller than the gap observed in the Srivatsan20, Frangieh21, or OP3 datsets,
suggesting less within-cell-line heterogeneity in the Norman19 dataset.

5.3 Effect of Data Scaling

In this section, we report the data scaling results, assessing whether models can take advantage of
additional training data to better generalize perturbation effects across biological states. We use
the McFalineFigueroa23 dataset that contains 3 cell lines with 5 chemical perturbations and 525
genetic perturbations. We treat unique cell line and chemical perturbation as a separate biological
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Figure 3: Scaling of cosine similarity (left) and its rank (right) with increasing size of data included
in the training process (z-axis) for several perturbation response models. Points represent results on
test data for 5 different seeds, the line represent their average.

Table 4: Results of the Jiang24 experiment which contains 30 different biological states (6 cell lines
& 5 cytokine treatments), with 70% of perturbations from 9 states held out for validation/testing.
Results are reported as mean & one standard deviation. Best performance per metric is indicated in
bold.

Model Cosine logFC Cosine LogFC rank MMD PCA DEG recall
CPA* 0.60+7x1074 0.404+9 x 1073 25+4x1073 0.004+2x 1073
CPA* (noAdv) 0.60+2x 1073 0.39+1x 102 25+3x107%  0.005+6 x 10~*
SAMS-VAE* 0.59+3x 1073 045+9x1072 0.32+5x10"3 0.000+4 x 1075
SAMS-VAE* (S) 0.57+5 x 1072 04242 %1072 1.6+ 1 x 109 0.002+1x 10~*
LA 0.47+1x 1073 0.384+6x 1073 26+2x107%  0.001+5x10*
Decoder 064+8x10"% 0.32+8x10°3 26+2x1073 -

Linear 0.17+8 x 10~° 0.34+2x1073 1.3+2x107%  0.003+2x 10*

state, resulting in 15 total states. To test whether adding biological states improves performance, we
construct nested subsets of the dataset (small C medium C full), all sharing the same validation
and test sets. Each of the subsets contains more biological states (details in Appendix D.4).

We find all models tend to improve with more training data in both cosine LogFC and its rank metric
(see Figure 3), with the exception of the CPA* and SAMS-VAE* models. As the training data
increases, CPA* and CPA* (noAdv) perform worse on the cosine LogFC metric, while SAMS-VAE*
and SAMS-VAE* (S) perform worse on the rank metric. Our baseline models, especially the simple
Latent Additive model, generally outperform the more complex CPA* and SAMS-VAE* models,
especially on the rank metric and with larger training data sizes. This suggests that the simpler
baselines may scale to large datasets better than the more complex published models.

We further assessed how these models perform on large datasets with complex covariates by applying
our benchmarking suite to the Jiang24 dataset, a large, 1.6 million cell dataset with complex
covariates. The dataset contained 6 cell lines with 5 unique cytokine treatments, which we modeled as
30 distinct biological states and 219 genetic perturbations. However, the set of perturbations applied
was different for each cytokine treatment. We used a similar splitting strategy where we held out 70%
of the covariates from 9 cell states for validation/testing.

The results are summarized in Table 4 where the Decoder-Only model performs the best on average
response and SAMS-VAE* performs best on the MMD PCA metric. Here, none of the published
models perform on-par with our simple baselines, particularly on the rank metrics which indicates
these more sophisticated models are unable to generate perturbation-specific responses. There is less
of a gap between the more complex autoencoder architectures and the baseline models in the MMD
PCA metric, suggesting less within-covariate heterogeneity compared to other datasets. These results



align with our earlier observation that simpler architectures with fewer modeling assumptions benefit
more from additional training data.

6 Discussion

Summary and Limitations Our study shows that for predicting average perturbation effects, there
is no model, or even class of models, that is clearly better than others. In smaller datasets, methods
such as CPA* (noAdv) and SAMS-VAE* (S) exhibit the best performance. However, these methods
do not scale well in larger datasets, where they are outperformed by our Latent Additive or Decoder-
Only models using the matching approach. The variance in performance across datasets highlights
the need to develop more versatile and universally robust models and we hope that our perturbation
framework will be helpful for developing and benchmarking these future models.

In terms of predicting the distribution of perturbation responses, as measured by the MMD metrics,
autoencoder models such as CPA*and SAMS-VAE* outperform the Latent Additive and Decoder-
Only baselines. The gap in MMD performance depends on the dataset, suggesting that some datasets
have less heterogeneity within biological states. More recent model architectures such as STATE and
CellFlow may be able to predict the full distribution of perturbation responses while also maintaining
strong performance on average effect metrics [2, 28]

We also find that ablating the adversarial component in CPA* and the sparsity-inducing component
in SAMS-VAE* improve performance over the original models. Since it is highly probable that
assumptions made and tested in one dataset may not hold true in another, comprehensive ablation
experiments across diverse datasets and metrics as are provided in Perturbench will be a essential to
developing more versatile and robust model architectures.

Our simple Decoder-Only models with no gene expression input generally perform well, outper-
forming all other models on the Jiang24 dataset. This potentially points to new architectures that
emphasize the perturbation encoder, assuming the information present in the gene expression input
may not be as rich as the perturbation and covariate information. Other possible explanations include
inadequate control matching due to heterogeneity in the control cells not captured by covariate labels,
as well as noise in the single-cell RNA readouts or the perturbation labels. Specifically, some cells
with a perturbation label may not have a robust target gene knockdown in CRISPR experiments [32].

Models perform worse on the larger datasets and tasks, specifically McFalineFigueroa23 (data
scaling) and Jiang24. For example, on the data scaling task, no model achieved a rank metric below
0.4 (where 0.5 is random predictor). This could be due to both the intrinsic difficulty of the task, and
the amount of measurement or biological noise present in a dataset. For the data scaling task, most
models performed better with more data, potentially suggesting perturbation models follow scaling
laws [25].

Given the diversity of implementations among public models, we aimed to assess the core components
of each model. Thus, our benchmarking results should be interpreted as an assessment of how
these core components perform rather than a perfectly accurate recreation of the public model
implementation (see Appendix D.5 for details).

Benchmarking codebase We provide three main components: datasets and dataloaders, a model
development framework, and an evaluation API with metrics (Appendix A). Each component can be
used together or individually. For example, a user who just wants to benchmark predictions generated
by an existing model can use the evaluation API. Whereas a user who wants to develop a new model
with our model framework can use the entire codebase. Each component is extensible, making it
easy for users to add new datasets, models, and metrics. The codebase can be found on GitHub at
https://github.com/altoslabs/perturbench/.

Conclusion The perturbation response modeling field holds great promise in searching the truly
vast space of genetic and chemical perturbations to find disease targets and potential therapeutics. In
this work, we bring together state-of-the-art models in a unified framework with thorough evaluation.
We benchmarked individual model components through ablation studies, assessed performance
on different datasets at different scales, and developed rank metrics that capture key downstream
applications and model failure modes. Finally, we hope that our modular codebase will prove valuable
in future model development and benchmarking efforts.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We carefully checked that the claims made in our abstract and appendix are
accurate.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations explicitly in the discussion sections.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper describes datasets, benchmarks and concomitant software. No new
theoretical claims are being made.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code to reproduce all our results including configuration files to run the
relevant experiments is attached to the supplementary material.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data used in this benchmark is publicly available. The associated codebase
and data preprocessing is available at https://github.com/altoslabs/perturbench/.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper comes with a full codebase and hydra configuration files that enable
the replication of all our experimental results, including data splits, hyperparameters and all
other relevant components. In addition, we provide a complete explanation of all necessary
details in the appendix.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have run all our experiments multiple times using. Our tables contain error
statistics (standard deviation) and our plots show the results of multiple runs in addition to
the average performance.

. Experiments compute resources
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11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of the configuration of the compute resources used in
hyperparameter optimization and sensitivity analysis in the appendix.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: : We read the code of ethics and can confirm that all our experiements conform
to it.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work presented in this paper does not directly create novel capabilities,
but provides a framework to develop, benchmark and compare models for perturbation
predictions.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets we use have been appropriately cited in the document.
Where code has been adapted from external sources, the codebase retains a licence notice
(e.g. for our CPA fork).

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a detailed documentation of our codebase in the paper and in
particular in the supplementary material.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs as any important, original, or non-standard
components.
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Appendix

A Software Framework: The PerturBench Library

The PerturBench library is designed to encapsulate the essential elements of perturbation modeling,
prioritizing reusability and flexibility for researchers. It integrates seamlessly with leading Python-
based machine learning frameworks including PyTorch, PyTorch Lightning, and Hydra, as well
as cutting-edge single-cell analysis libraries such as Scanpy and AnnData. Our design choices
streamline the training of innovative model architectures and the assessment of both existing and
novel techniques across a comprehensive range of benchmarks and datasets. The library is structured
into three core modules: data, model, and analysis. These modules are engineered to work
together to support a variety of applications, from complete model development to modular use for
integration with other tools and analytical assessments. Subsequent sections will detail the primary
abstractions each module offers, illustrating their practicality and adaptability for diverse research
tasks.

A.1 Foundational Frameworks

PerturBench leverages contemporary machine learning and single-cell analysis libraries that are
prevalent within their respective research communities. This strategic choice is intended to lower
the adoption barrier for the proposed benchmark. Additionally, these libraries offer comprehensive
guidelines on usage patterns and best practices, which serve to inform the organizational structure of
the code.

Pytorch: is one the most widely spread neural network libraries [39]. Its core functionality is to
build computational graphs with support for efficient auto differentiation. Using this autodiff engine,
Pytorch then provides abstractions to build and optimize various neural networks and ML algorithms.
In addition, it provides utilities to load and serve data under different training regimes. These concepts
are captured within the torch.utils.data.Dataset and torch.utils.data.DatalLoader ab-
stractions. We use these to implement our perturbench.data module.

Pytorch Lightning: While Pytorch provides most of the functionality to train any neural network
model, it could still be a challenging task to write training and evaluation code that can be portable
across different platforms, have minimal boiler plate code, and be easy to read and understand.
Pytorch Lighting is a library that builds on top Pytorch Lighting to provide [17]: 1) hardware agnostic
model implementations, 2) clear easy to read codebase with minimal boiler plate code, 3) reproducible
experiments, and 4) integration with popular machine learning tools. We wrap our models and data
into Lightning’s LightningModule and LightningDataModule to abstract away most of the code
for managing model training and serving data. Then we leverage Lightning’s Trainer that abstracts
the various traning loops to write generic train and evaluation scripts. Furthermore, Lightning’s
Callback to integrate various logging libraries such as TensorBoard.

Hydra: A complex benchmarking suite needs to configure its large number of components and
to provide a simple summary for reproducing any experiment. In pertubench, we utilize Hydra
[59] for managing configuration files. Hydra provides a hierarchical configuration system that can
be composed based on the components of the system being configured. In addition, it provides
convenient tools such as a command line interface (cli) with auto-completion, support for HPO via
optuna, and basic type checking.

AnnData We use AnnData as our primary format for storing and interacting with single cell
RNA-seq datasets [57]. Each AnnData object contains a single cell gene expression matrix with
associated cell level metadata such as perturbation and covariates, as well as gene level metadata such
as gene name and ID. Our data module expects single cell datasets stored as AnnData h5ad files and
our analysis module expects model predictions in the form of AnnData objects.
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A.2 Data Abstractions

The library is built around the Example abstraction given in Listing 1 that represents a single datum
and its batched version. This data structure contains the necessary fields required for the training and
evaluation of perturbation prediction models and serves to unify the model/data API. Each example
has two required fields: a gene_expression 1D tensor that contains the gene expression levels,
and the perturbations that has the list perturbation names that has been applied to this cell. In
addition, the example contains some optional fields that support more complex functionality like
using pre-computed embeddings in the extra field, or control matching via controls. An ordered
list of gene names can be provided in gene_names such that it is ordered according to the provided
gene counts in gene_expression.

I class Example (NamedTuple):

2 """Single Cell Expression Example."""

4 gene_expression: Tensor

5 perturbations: list[str]

6 covariates: dict[str, str] | None = None
7 controls: Tensor | None = None

8 gene_names: list[str]

9 extra: dict[str, Any]
Listing 1: Data structure representing a single example.

For training, we provide two types of pytorch datasets. The SingleCellPerturbation class repre-
sents a single cell RNA-seq dataset (Listing 2) and the SingleCellPerturbationWithControls
class adds control matching functionality, sampling a matched control cell for every perturbed cell
(Listing 3).

I class SingleCellPerturbation(Dataset):

2 """Single Cell Perturbation Dataset."""

4 gene_expression: Tensor

5 perturbations: list[list[str]]

6 covariates: dict[str, list[str]] | None = None
7 cell_ids: list[str] | None = None

8 gene_names: list[str] | None = None

9 transforms: Callable | None = None

10 extra: dict[str, Any]

12 # factory method

13 @staticmethod

14 def from_anndata(

15 adata: ad.AnnData,

16 perturbation_key: str,

17 perturbation_combination_delimiter: str | None,
18 covariate_keys: list[str] | None = None,

19 perturbation_control_value: str | None = None,
20 embedding_key: str | None = None,

21 ) -> tuple[SingleCellPerturbation, dict[str, Any]]:

Listing 2: Pytorch dataset classes for training.
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I class SingleCellPerturbationWithControls(SingleCellPerturbation):

2 """Single Cell Perturbation Dataset with matched controls."""
4 control_ids: Sequence[str] | None = None
5 control_indexes: Map(CovariateDict, list[int])

6 control_expression: Tensor

8 # factory method

9 @staticmethod

0 def from_anndata(

adata: ad.AnnData,
perturbation_key: str,

o =

3 perturbation_combination_delimiter: str | None,
4 covariate_keys: list[str] | Nomne = None,

5 perturbation_control_value: str | None = None,
6 embedding_key: str | None = Nomne,

7 ) -> tuple[SingleCellPerturbation, dict[str, Anyl]:

o

Listing 3: Pytorch dataset classes for training.

For inference, we provide two additional types of pytorch datasets. The Counterfactual dataset
represents a desired set of counterfactual predictions. Since these counterfactual predictions are
applied to unperturbed control cells, we only need to store control cell expression values. A single
item of this dataset is a counterfactual perturbation applied to set of control cells with will return a
Batch of data with the control cell expression, control covariates, and desired perturbation.

To evaluate counterfactual predictions, we also provide the CounterfactualWithReference class
which inherits from the Counterfactual class. In additional to providing a Batch of control cells
with covariates and the desired perturbation, this class also provides an AnnData object with the gene
expression values for the perturbed cells corresponding to the covariates and desired perturbations.
This enables us to use our suite of benchmarking metrics to compare the model predictions with the
observed data. We provide the classes in Listing 4.

| class Counterfactual (Dataset):

2 """Counterfactual Dataset."""

3 # Desired counterfactual perturbations
4 perturbations: Sequence[list[str]]

5 covariates: dict[str, Sequencel[str]]

6 control_expression: SparseMatrix

7 control_indexes: FrozenDictKeyMap

8 gene_names: Sequencel[str] | None = None

9 transforms: InitVar[Callable | Sequence[Callable] | None] = field(
default=None)

0 info: dict[str, Any] | None = None

control_embeddings: np.ndarray | None = Nomne

1
1
1
13 class CounterfactualWithReference (Counterfactual):
1
1

4 """Counterfactual Dataset with matched Reference Data."""
5 # A map from a unique perturbation and set of covariates to
indexes

# in the reference_adata (i.e. all indexes that contain k562 cells
# with AGR2 knocked down)

reference_indexes: dict[str, FrozenDictKeyMap] | None = Nomne

# An AnnData object containing the observed perturbational dataset
# matching the desired counterfactual predictions

reference_adata: ad.AnnData | None = None

1

o

MRz 3s

Listing 4: Pytorch dataset classes for inference.
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A.3 Data Splitting
We implement a datasplitter class that can generate three types of datasplits:

1. Cross covariate splits that ask a model to predict a perturbation’s effect in covariate(s) that
were not in the training split. The model will have seen other perturbation in the covariate(s).

2. Combinatorial splits that ask a model to predict the effect of multiple perturbations. The
model will have seen the individual perturbations and some other combinations.

3. Inverse combinatorial splits that ask a model to predict the effect of a single perturbation
when it has seen a dual perturbation and the other single perturbation.

We design a data splitter with two parameters that allow us to curate the splits: (1) The maximum
number, m, of cell types (covariates) to hold out. We randomly hold out between one and m cell
types (sampled uniformly). The more cell types held out, the more challenging the task becomes due
to fewer training cell types. (2) The total fraction of perturbations held out per cell type, f. A larger
fraction makes it more difficult for the model to generate accurate predictions. The datasplitter can
also read in custom splits from disk as a csv file.

A.4 Model Abstraction: Model Base Class

We implement a base model class, PerturbationModel, that abstracts away common model com-
ponents that we describe in Listing 5. This class specifically contains:

* A default optimizer

* A training record that contains the data transforms and other key metadata needed for
training and inference

* Methods for generating and evaluating counterfactual predictions

class PerturbationModel(L.LightningModule, ABC):
"""A base model class for perturbation prediction models.
training_record: dict = {
transform’: None,
’train_context’: None,
n_total_covs’: None,

nnn

}

evaluation_config: DictConfig | None = None
summary_metrics: pd.DataFrame | None = None
prediction_output_path: str | None = None

def configure_optimizers(self):
"""Base optimizer for lightning Trainer."""
def predict_step(
self,
data_tuple: tuple[Batch, pd.DataFramel],
batch_idx: int,
) -> ad.AnnData | None:
"""Given a batch of data, predict the counterfactual perturbed

nun

def test_step(
self,
data_tuple: tuple[Batch, pd.DataFrame, ad.AnnDatal],
batch_idx: int,

"""Run evaluation on a Batch of counterfactual predictions and
matched observed predictions."""

def on_test_end(self) -> None:

"""Run rank evaluations (if specified) and summarize
benchmarking
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33

34

36

38

w oo =

=

metrics."""

Q@abstractmethod
def predict(self, counterfactual_batch: Batch) -> torch.Tensor:
"""Given a counterfactual_batch of data,

predict the counterfactual perturbed expression.
nmnn

Listing 5: Pytorch dataset classes for inference.

A.5 Evaluation

All models that inherit from the base PerturbationModel class will be able to run evaluation using
the Pytorch Lightning trainer test step. These evaluations can be configured via Hydra if using our
train.py script and evaluations can be run automatically after training completes. For users who
only want to use our evaluation metrics, we offer a kaggle style evaluation API that takes as input
model predictions as an AnnData object, with an example in Listing 6.

from perturbench.analysis.benchmarks.evaluator import Evaluator

# List available tasks
print (Evaluator.list_tasks ())

# Select an evaluation task
evaluator = Evaluator (
task = "sciplex3-transfer",
)
# The input format of the Evaluator class is a
# dictionary of model predictions stored as AnnData objects
input_dict = {"CPA_pred": cpa_pred} # cpa_pred is an AnnData object
result_df = evaluator.evaluate(input_dict)
print (result_df) # Summary dataframe with evaluation metrics

Listing 6: Evaluation API usage example.
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B Additional Modeling Background

B.1 Perturbation embeddings

Drug Embeddings It can be beneficial to use pre-trained embeddings to enable or enhance predic-
tive performance of perturbation models, for instance, ESM embeddings for gene expression [45].
The performance of these models in predicting unseen perturbations is dependent on the quality of
the perturbation representation, which is itself a complex task [21, 48, 45] and outside the scope
of this study. GEARS uses gene co-expression to build a gene to gene graph [46], PerturbNet uses
a perturbation encoder network to encode perturbations into a lower dimensional embedding [60].
For drug perturbations, PerturbNet uses a structure encoder and for genetic perturbations, it models
the gene as a multi-hot vector over all gene ontology annotations. The authors of CPA include a
variation to their original model that embeds drugs into a lower dimensional space using molecular
features [34]. scFoundation leverages GEARS but instead of constructing the graph using static gene
coexpression, it uses the gene embeddings for a given cell to create a gene-gene graph [20]. The
performance of these models in predicting unseen perturbations is dependent on the quality of the
perturbation representation, which is itself a complex task [21, 48, 45] and outside the scope of this
study.

24



C Further Results

C.1 Additional Srivatsan20 metrics

Table 5: Additional Srivatsan20 metrics

Model RMSE mean RMSE mean rank MMD
CPA* 0.020+£3x107* 0.16+7x103 24+1x10"2
CPA* (noAdv) 0.020+£1x107* 010+5x10"3 23+3x1072
CPA* (scGPT) 0.020£3x107%  0.16+2x 1072 -
SAMS-VAE* 0.0234+8x107° 0.17+1x1072 25+2x10°2
SAMS-VAE*(S) 0.018+3 x10™% 0.13+1x1072 29+1x102
Biolord* 0.086+4x1072 035+1x101! 4.9 +3 x 10°
LA 0018+6x10°% 0.15+£3x102 43+2x10"!
LA (scGPT) 0.017+1x10"%* 0.14+5x 1073 -
Decoder 0.018+1x10"% 0.14+7x10"3 42+4x1073
Decoder (Cov) 0.0234+3x107% 0.50+4 x 1072 -

Linear 0.030+£5x%x107%* 027+2x103 224+7x10°3

C.2 Additional Norman19 metrics

Table 6: Additional Norman19 metrics

Model RMSE mean RMSE mean rank MMD
CPA* 0.046+5x107* 0.019+£3x107% 56+3x1072
CPA* (noAdv) 0.046+1x1073 0.017£3x10% 55+1x10"1!
CPA* (scGPT) 0.053+1x10"%  0.036+3 x 1073 -
SAMS-VAE* 0.084+7x10"%* 0.026+2x10"% 41+4x10"2
SAMS-VAE* (S) 0.047+2x1073 0.030£7x10"% 33+5x102
Biolord* 0.086+6x10"* 0.02841x10"3 28+5x1073
GEARS 0.069+1x10"%  0.0554+6 x 1073 -

LA 0.0434+4x10"% 0014+1x103 6.7+4x1073
LA (scGPT) 0.044+4x10"% 0.013+2x1073 -
Decoder 0.043+3x10"% 0014+4x10%* 67+6x1073
Linear 0.057+3x1073  0.016+8x107* 25+4x10"2

C.3 Generalizing from less complex to more complex biological systems

We also apply PerturBench to a highly relevant real-world task: predicting perturbation effects in more
complex disease system using effects measured in less complex systems. The Frangieh21 dataset
contains 3 biological systems: primary melanoma cells cultured alone, or with IFN~, or co-cultured
with tumor infiltrating immune cells. We held out 70% of the perturbations in the co-culture system
and used the remaining perturbations as well as all perturbations in the other systems as training.

The results are summarized in Table 7. Our baseline models such as LA and Decoder generally
perform better on the rank metrics, whereas more sophisticated models such as SAMS-VAE* (S)
perform better on cosine LogFC and RMSE. Again, model simplification consistently results in
performance gains, as in the case of CPA* (noAdv) and SAMS-VAE* (S). Overall, Frangieh21
shows that biological heterogeneity of datasets has a major impact on model comparison, again

highlighting the need to include diverse datasets for benchmark.
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Aside from this note, we also observe that the vanilla SAMS-VAE* suffers from mode collapse, as
indicated by its near-random rank scores on cosine LogFC and RMSE. Indeed, we notice the model is
generating generic expression vectors irrespective of the target perturbation, see details in Appendix
C.7. Further dissecting SAMS-VAE* performance, we find that model has learnt near-identical
embedding vectors for any perturbations. This suggests that despite the theoretical advantage of
sparse additive mechanism, effectively optimizing the model in practice remains a non-trivial question,
and can lead to degenerate scenarios which fortunately can be uncovered by our rank metric.

Table 7: Results of a covariate transfer experiment generalizing from less complex biological systems
to a more complex co-culture system in the Frangieh21 dataset.

Model Cosine logFC Cosine LogFC rank MMD PCA DEQG recall

CPA* 0.10+7x 1073 0.30+3 x 1072 0.26+5 % 1073 0.000 £ 0

CPA* (noAdv) 0.10+7x107% 0.20+3x1073 0.21+2x10°3 0.000 £ 0

CPA* (scGPT) 0.07+4x 1073 0.26+5x 1073 . -

SAMS-VAE* 0.15+2 x 102 0.48 +2 x 1072 0.20+2x 1073 0.000 £ 0

SAMS-VAE* (S) 0.22+3x1073 0.22+8x 1073 0.32+4x 1073 0.000 £ 0

BioLord* 0.12+9x 1073 029+3x1072 0.20+£3x1073 0.000+1x10~*

LA 0.17+6 x 1073 0.26+1x 1072 3.1+3x 1072 0.000+0

LA (scGPT) 0.18+6 x 1073 027+1x1072 - -

Decoder 0.10+2x 1073 0.21+5x 1073 33+4x107% -

Linear 0.01+4x 10" 0244+9x10~* 0.79+6 x 1073 0.000 £ 0
Table 8: Additional Frangieh21 metrics.

Model RMSE mean RMSE mean rank MMD

CPA* 0.027+1x107%  028+1x1072 21+2x102

CPA* (noAdv) 0.027+9x107°  0.19+3x1072 1.8+1x102

CPA* (scGPT) 0.029+2x10"% 0264+1x10"2 -

SAMS-VAE* 0.026+2x107%  046+2x1072 22+1x 102

SAMS-VAE* (S) 0.025+5x10"% 022+1x1072 244+1x10"2

BioLord* 0.027+2x107%  021+4x1072 1.1+2x10°2

LA 0.024+4x107%* 021+2x1072 6.4+3x1072

LA (scGPT) 0.024+6x10% 0.24+1x 102 -

Decoder 0025+4x10% 015+4x10* 66+8x10*

Linear 0.043+7x1075 030+£2x10% 21+8x103

C.4 Generalizing across cell types in primary tissue dataset

The covariate transfer task in the OP3 dataset targets primary tissue which are Peripheral Blood
Mononuclear Cells (PBMCs) collected from three donors. It was originally used in the NeurIPS
2023 Perturbation Prediction Challenge [53]. The purpose of this task is to assess a model’s ability to
predict the effects of chemical perturbations in held-out B and Myeloid cell types, while training data
are primarily composed of perturbation profiles in T and NK cells.

Our results are reported in Table 9 and 10. In general, we see that both implementations of CPA
and SAMS-VAE perform competitively — often matching or even surpassing the baseline methods:
Latent, Decoder, and Linear models, on both the pseudobulk and distributional metrics in the OP3
dataset task. Ablating the adversarial component of CPA (CPA noAdv) reduces performance on the
cosine logFC and RMSE metrics, while slightly improving performance on the rank metrics. Our
improved SAMS-VAE implementation which involves ablating the sparse mask performs better on
all metrics. The Decoder Only model outperforms the Latent Additive baseline on the rank metrics
and is close on the Cosine logFC and RMSE metrics, suggesting that the simpler Decoder Only
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architecture that maps directly from perturbation to average perturbed cell response is superior for
this OP3 dataset when predicting average responses.

All models again perform poorly on the DEG recall task, similar to what we have seen for other
datasets. The CPA, SAMS-VAE abd BioLord models are significantly better than baselines on the
MMD metrics, especially when computed in PCA space (MMD PCA). As with the other datasets,
models generally perform worse in the gene expression space (MMD GEX). The MMD metrics in
both gene expression and PCA space are worse for the OP3 dataset compared to our other datasets,
suggesting a more heterogeneous perturbation response which confirms the value of the added OP3
dataset.

Table 9: Main results of the 0P3 experiment. Model performance predicting small molecule perturba-
tion effects across primary PBMC cell types in the OP3 dataset.

Model Cosine LogFC Cosine LogFC rank MMD PCA DEQG recall

CPA* 0.394+6x1073 0.091+2x107% 0.71+1x10"2 0.002+2x 10~*

CPA* (noAdv) 0.32+6x1073  0076£3x1073  0.86+1 x 1072 0.000 0

SAMS-VAE* 0414+1x1072  0.11+2x 1072 0.90 + 3 x 1072 0.000 & 0

SAMS-VAE* (S) 043+2x10"2 0.079+7x107% 0.74+3x 1073 0.000 £0

Biolord* 028+3x1073 0.051+5x10"3 0924+5x 1073 0.000 £0

LA 0.394+2x1072  0.12+3 x 1072 414+5%x1072  0.000+£6 x 107°

Decoder 0.32+6x107%  0070£5x 1073  444+1x1072 -

Linear 0.011+£9x10"°> 0.144+4x107* 2.64+4x 1073 0.000+0
Table 10: Additional OP3 metrics

Model RMSE mean RMSE mean rank MMD

CPA* 0.032+2x10"% 0.062+4x10=2 53+3x1072

CPA* (noAdv) 0.034+4x10"% 0051+4x10"% 57+1x1072

SAMS-VAE* 0.034 4+ 5 x 10~* 0.11 +£2x 1072 5.6+4x 1072

SAMS-VAE* (S) 0.031+1x10"% 0051+4x10"% 56+9x1073

Biolord* 0.038+£8x107° 0.051+6x10"3 46+2x1072

LA 0.036 £2 x 1073 0.14+3x1072 11.0+£6 x 1072

Decoder 0.035+2x 1074 0.068+6 x 1073 11.0+5x 1073

Linear 0.070 £4 x 10~° 024+9x107* 4.04+7x1073

C.5 Additional Jiang24 metrics

Table 11: Additional Jiang24 metrics

Model RMSE mean RMSE mean rank MMD
CPA* 0.015+5x107% 042+1x10"2 8.0+2x1073
CPA* (noAdv) 0.015+4x107% 040+1x10"2 8.0+2x1073
SAMS-VAE* 0.017+2x107% 0454+6x10"3 45+7x103
SAMS-VAE* (S) 0.016+2x 1073  0.42+3 x 1072 6.5+ 2 x 10°
LA 0.015+7x107°% 038+7x1073 80x9x10~*
Decoder 0015+3x10°% 032+5x103 80+2x1073
Linear 0.038+5x%x107° 043+1x10% 31+2x10°3
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C.6 Effect of Data Imbalance

An important consideration with perturbation response models is how robust they are to imbalanced
data i.e. how evenly data is distributed across covariates. We quantify imbalance using normalized
entropy as follows:

D iz1 o log Tt

Imbalance := 1 — Tog F

where n;,© = 1,...,k denotes the number of samples in class ¢ and n = Z?:l n; the overall
number of observations. The Srivatsan20 data is perfectly balanced (Imbalance = 0), with every
perturbation being observed in every cell line. However, in-silico machine learning perturbation
models often aim to learn generalizable features by using data from multiple sources, which will
invariably produce imbalanced datasets.

To test how different models’ performance is affected by data imbalance we downsample perturbations
per cell line from Srivatsan20 to construct three sub-datasets with different levels of imbalance
(Appendix D.4). The results are summarized in Figure C.1. We observe that when the data is highly
balanced, the linear model performs acceptably well, but this does not hold as imbalance increases.
Imbalance may therefore be an important criteria for deciding the suitability of a linear model. CPA
both with and without scGPT embeddings, is more robust to changes in data balance than the the
linear or Latent Additive models. Interestingly, whilst the Latent Additive model is more markedly
affected by data imbalance than other models, using scGPT embeddings seems to buffer performance
by some extent. The extent to which performance is affected by data imbalance highlights the
importance of curated datasets as well as potential mitigation strategies such as oversampling rare
cell lines/types [14].
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Figure C.1: Cosine similarity of log fold changes (left) and its rank (right) of the models as a function
of data balance.

C.7 Collapse and Rank Metrics

Mode or posterior collapse is a common failure mode in generative models, notably in Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs). The problem arises when a
generative model inadequately captures the diversity of training data, resulting in repetitive outputs
that are effectively collapsing onto a set of limited modes in the data distribution. For VAEs, posterior
collapse indicates the latent variables lack meaningful information and are ignored by the decoder.
This effectively rids a VAE of any mechanism to control the properties of generated samples, which
in practice also leads to mode collapse.

For perturbation response modelling, these issues are particularly concerning as the predicted re-
sponses are expected to be perturbation-specific, so that they are able to capture the nuances of
perturbation effects across a diverse set of cell types/lines, treatments and other conditions. This is
above-all essential for inferring the distinct effect of perturbations on various biological processes, as
well as ranking and identifying targets for the disease of interest.

However, as we will demonstrate, traditional measures such as RMSE, cannot distinguish between
mode collapse or not, because models that simply predict the the average expression level for a
particular cell line can still achieve relatively good performance. This motivates our rank metrics
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which can act as a safeguard against such degenerate cases, to some extent. Yet, we reveal its
limitations through comparison with the visual assessment, and propose two new metrics that are
more diagnostic of mode collapse.

A B

Figure C.2: Cosine similarity matrix based on log-fold changes predicted, between every pair
of perturbation-covariate combination in Srivatsan20 dataset. All models are hyperparameters
optimised. A) DecoderOnly model with only covariates as input. B) DecoderOnly model with
covariates and perturbations as input. C) CPA*. D) CPA* (noAdv). E) SAMS-VAE* (8). F) true
log-fold changes in the dataset. Diagnoal blocks correspond to cell lines: A549, K562, MCF-7.

Table 12: Numerical quantification of mode collapse for models presented in Srivatsan20 dataset.
RMSE RMSE RMSE Matrix

Model mean meanrank mean transposed-rank  distance
DecoderOnly 0.026 0.488 0.482 49.906
DecoderOnly (+ perturbations)  0.021 0.116 0.232 40.645
CPA* 0.022 0.104 0.323 36.343
CPA* (noAdv) 0.021 0.098 0.337 32.238
SAMS-VAE* (S) 0.020 0.111 0.179 19.301

C.7.1 Mode collapse in Srivatsan20 dataset

Consider an example based on the Srivatsan20 dataset which measures the perturbational effects of
small molecules applied to three cancer cell lines: A549, K562, MCF-7. We look at five models: 1)
our DecoderOnly with only cell line as input, 2) our DecoderOnly with cell line and perturbations
as input, 3) the vanilla CPA*, 4) CPA* with no adversarial components, and 5) the simplified version
of SAMS-VAE*. In addition, we compare the model predictions to the experimental data.

Results are shown in Figure C.2. Of the 85 unique cell line and perturbation combinations in the
validation split, we measure the similarity between the predicted log-fold changes for every pair of
such combinations. In total, these similarities form a 85 x 85 matrix which is shown as a heatmap.

The experimental data in F) shows the similarity of the log-fold changes between different pertur-
bations to be small within each cell line (three diagonal blocks correspond to the three cell lines
in Srivatsan20 dataset), and even smaller between cell lines. In comparison, the DecoderOnly
model with only cell line as input (panel A) shows its predictions are (unsurprisingly) identical for any
perturbation within a cell line, which is a prime example of mode collapse. Qualitatively, from A) to
E), models have shown a general declining trend in mode collapse, with the simplified SAMS-VAE*
(S) suffering the least mode collapse.
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However, we point our readers to the RMSE metrics reported in Table 12, which are of roughly
similar order of magnitude for all models. This means judging by the RMSE alone, it is impossible
to tell which model suffers from mode collapse. On the other hand, our rank metric distinguishes the
degenerative case from the rest, but it is still not sensitive enough to discern the severity of mode
collapse.

C.7.2 Diagnostic metrics for mode collapse

To come up with metrics more indicative of mode collapse, we propose two other metrics which as
shown in Table 12, are more strongly correlated with the visual assessment. The first one is called
transposed-rank, defined slightly different than our vanilla rank metric:
T 1¢ T4 T A 1 c ot (4 c ot (4
rank, g0 = Zrank (&), rank (&;):= —— I(dist (&4, z;) < dist(&;, ;)),
L p—1 155y
%

3

where p is the number of perturbations that are being modelled, Z;, x; are the predicted and observed
(average) expression value of perturbation ¢, and dist is a generic distance.

Compared to Eq. 2, the new transposed-rank metric ranks the observed expression on a per prediction
basis, whereas in the original rank metric, it is vice-versa. We hypothesize that ranking the observa-
tions on a per-prediction basis will make the test more challenging thus exposing the weakness of a
mode-collapsed model, because in this case the observed expressions have more variance than the
predictions.

Finally, we propose a matrix distance based metric which directly measures the difference between
the two similarity matrices:

n n
diStance(Scosinea Scosine) = ||Scosine - ScosineHFrobenius = Z Z(§13 - Sij)2 (4)

i=1 j=1

where Scogine is from model prediction and S‘wsine is from the experimental data.

Of all metrics reported in Table 12, matrix distance aligns the best with the visual assessment of
the heatmaps, followed by the transposed-rank. We have implemented the transposed-rank in the
PerturbBench GitHub repository for users to assess mode collapse with a stricter metric.

Unlike our original rank metric, the transposed-rank metric can be affected by the scaling of the
predictions. For example, adding a constant factor to all model predictions will not affect the
RM SE, 41 but will affect the RM SE4,ansposed_rank- Thus, the original rank metric is useful if a
user is mainly interested in whether the model predictions are ordered correctly. The transposed-rank
metric is useful for users that want a stricter assessment of whether the predictions are similar to
the ground truth perturbations, beyond the ordering of the perturbations. An adapted version of the
transposed-rank metric is being used as the Perturbation Discrimination Score (Eq. 5) for the 2025
Virtual Cell Competition [47].

Perturbation Discrimination Score = 1 — rankfvemge (@)
In the future, we could also add the matrix distance measure as an additional approach for specifically
measuring mode collapse.

C.7.3 Mode collapse in Frangieh21 dataset

So far, we have shown that all models suffer mode collapse in the Srivatsan20 dataset, but to
varying extent. Now, we move on to Frangieh21, and demonstrate that similar observation still holds
and in particular, the values of transposed-rank and matrix distance in diagnosing mode collapse.

Results are shown in Figure C.3 and Table 13. Models included for investigation are: 1) the vanilla
SAMS-VAE* , 2) the simplified SAMS-VAE*, 3) the vanilla CPA*, 4) CPA* with no adversarial
components, and 5) our LatentAdditive model. Once again, we compare the model predictions to
the experimental data in Frangieh21 which has only one cell line and 87 unique perturbations.
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Table 13: Numerical quantification of mode collapse for models presented in Frangieh21 dataset.

RMSE RMSE RMSE Matrix
Model .

mean meanrank mean transposed-rank distance
SAMS-VAE* 0.024 0.383 0.491 81.007
SAMS-VAE* (S) 0.023 0.160 0.416 54.481
CPA* 0.024 0.236 0.484 80.434
CPA* (noAdv) 0.024 0.156 0.480 80.166
LA 0.023 0.127 0.413 65.308

Figure C.3: Cosine similarity matrix based on log-fold changes predicted, between every pair of
perturbation in Frangieh21 dataset. All models are hyperparameters optimised A) SAMS-VAE*. B)
SAMS-VAE* (S).C)CPA*. D) CPA* (noAdv). E)LatentAdditive. F) true log-fold changes in the
dataset.

The vanilla SAMS-VAE* has indeed mode-collapsed as it is observed in section C.3. CPA* and
CPA* (noAdv) also suffer significant mode collapse, despite RMSE rank suggests otherwise. On
the other hand, RMSE transposed-rank and matrix distance metrics clearly indicate mode collapse
taking place in these models, which aligns with our visual assessment in Figure C.3. This indicates
the transposed-rank and matrix distance are also better suited for identifying mode collapse in the
Frangieh?21 dataset.

Overall, based on our observations in Srivatsan20 and Frangieh21 datasets, we establish that
our simple baseline models such as DecoderOnly with perturbation and covariate inputs and
LatentAdditive, as well as the simplified SAMS-VAE™ (S), are less prone to mode collapse.

C.7.4 Verifying CPA implementation using the Norman19 dataset

To confirm that our implementation of CPA performed at least as well as the public, we verified that
our CPA implementation matches or exceeds the published CPA implementation performance on the
Norman19 dataset, where CPA (Theis) is the public version of CPA hosted on github and accessed on
07/30/2025, and CPA (PerturBench) is our recreation of CPA. We specifically trained a CPA (Theis)
model using their Norman19 example notebook with provided hyperparameters and their version
of the Norman19 dataset, using the “split_6" train/val/test split. We then added their version of the
Norman19 dataset to PerturBench, and trained our CPA implementation on the same dataset/split.
We evaluated both model’s performance on the held out “ood” split using PerturBench metrics.
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CPA (Theis) CPA (PerturBench)

RMSE 0.112 0.0273
RMSE rank 0.427 0.00889
Cosine LogFC 0.206 0.750
Cosine LogFC rank 0.262 0.0133
DEG Recall 0.0987 0.384
MMD PCA 3.28 2.31
MMD 4.24 3.77

We noticed that the choice of loss has a major impact on performance, and models that used a simple
MSE loss performed better than Gaussian or Negative Binomial Negative Log Likelihood (NLL)
losses. We chose to use the MSE loss in our CPA reproduction, whereas the public model uses NLL
losses we believe is the primary reason why our reimplemented CPA performs significantly better
than the public CPA implementation. We feel that the use of MSE loss enables us to compare the rest
of the model components more on a more even basis.

C.7.5 Verifying rank metric calibration with a random model

We ran 10 experiments using a null predictor (randomly initialized Latent Additive model) and ran
inference using control cells from the Srivatsan20 dataset. When benchmarking against the held
out Srivatsan20 perturbations, the null predictor achieved an average RMSE rank metric of 0.4988,
confirming that the metric is correctly calibrated.
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D Implementation Details

D.1 Dataset Summary

Dataset 1 (Norman19) This datasets [38] contains 287 gene overexpression perturbations with 131
containing multiple perturbations in K562 cells. We selected this dataset as it is the largest perturb-
seq dataset with combinatorial perturbations so far. This dataset has also been used in several
perturbation prediction studies including CPA [34], scGPT [13], SAMS-VAE [7] and Biolord [41].

Dataset 2 (Srivatsan20) This dataset [51] includes 188 chemical perturbations across the K562,
A549, and MCF-7 cell lines. The chemical perturbations were applied at 4 doses but for the purposes
of this study, we subset to highest dose only since most of the models we are benchmarking do not
have dose response modeling capacity. We selected this dataset to benchmark prediction of chemical
perturbations. This dataset has also been used in multiple perturbation prediction studies including
CPA [34] and Biolord [41].

Dataset 3 (Frangieh21) This dataset [18] includes 248 genetic perturbations across 3 melanoma
cell conditions that simulate interaction with immune cells. The conditions are: 1) melanoma
cells cultured alone, 2) melanoma cells with IFN~, and 3) melanoma cells co-cultured with tumor
infiltrating immune cells. We selected this dataset to benchmark whether a perturbation response
prediction model could predict perturbation effects in the more complex co-culture condition using
training data from the simpler conditions.

Dataset 4 (Jiang24) This dataset [23] includes 219 genetic perturbations across 6 cell lines and
5 cytokine treatments (which can be seen as 30 unique biological states). We selected this dataset
due to the large number of biological states and the fact that the perturbations were chosen because
they had been reported to modulate cytokine signaling. This dataset has not been previously used to
benchmark perturbation prediction models.

Dataset S (McFalineFigueroa23) This dataset [37] includes 525 genetic perturbations across 3
cell lines and 5 chemical treatments (which can be seen as 15 unique biological states). We selected
this dataset due to the large number of perturbations and the fact that it contains multiple covariates
(cell lines and chemical treatments). This dataset has not been previously used to benchmark
perturbation prediction models.

Dataset 6 (0P3) This dataset [53] includes 144 chemical perturbations applied to four annotated
primary peripheral blood mononuclear cell (PBMC) types that are T cells, NK cells, B cells and
Mpyeloid cells. The negative control, DMSO (Dimethyl Sulfoxide), is dosed at 14.1 uM. One positive
control, Belinostat, is dosed at 0.1 uM. All other perturbations, including the other positive con-
trol, Dabrafenib, are dosed at 1.0 uM. This dataset was previously featured in the NeurIPS 2023
perturbation prediction challenge.

D.2 Dataset Curation

We download the gene expression counts matrices which are from the original sources of these
datasets. Afterwards, we identify the key metadata columns (perturbation, cell line, chemical
treatment) and standardize their naming and format across datasets.

D.3 Dataset Preprocessing

It is a common practice to pre-process perturbation datasets before feeding them into a machine
learning pipeline for training or inference. In this section, we describe the data processing that is used
by our benchmark.

To ensure we are capturing the most biologically relevant features, we subset the expression vectors
to highly variable or differentially expressed genes. Specifically, we keep the top 4000 variable genes
using the scanpy pp.highly_variable_genes method with flavor=’seurat_v3’. We also keep
the top 25 top differentially expressed genes for every perturbation in every unique set of covariates,
using scanpy’s t1.rank_genes_groups method with default parameters. For datasets with genetic
perturbations, we also ensure that the perturbed gene is included in the feature set as well.

33



For the models that require log-normalization, we apply the default scanpy [57] preprocessing
pipeline. Specifically, we divide the counts by the total counts in each cell, multiply by a scaling
factor of 10,000, and apply a log-transform with a pseudocount of 1, i.e.

Zinormalized = 10g (1 + Z:EZ]} . ].04) .
i

D.4 Data Splitting

McFalineFigueroa23 splits We manually generate the data scaling splits for the
McFalineFigueroa23 dataset by first selecting 3 covariates where certain perturbations
will be held-out. Of the 3 cell lines (al72, t98g, u87mg) and 5 treatments (control, nintedanib,
zstk474, lapatinib, trametinib) in McFalineFigueroa23, we have specifically selected the following
3 covariates: al72 with nintedanib, t98g with lapatinib, and u87mg with control. Within each of
these "held-out covariates", we randomly hold out 70% of perturbations for validation and testing.
Some perturbations may be held out across multiple covariates.

To build the small version of the dataset, we select 3 additional covariates that match the cell line
and chemical treatment of the "held-out covariates" to add to the training split (al72 with control
treatment, t98g with nintedanib, u8§7mg with lapatinib). To build the medium version of the dataset,
we add the remaining 3 covariates that match cell line and chemical treatment to the training split.
The large version contains the full dataset — all 15 covariates.

The attached codebase has a python notebook responsible for generating this split:
notebooks/neurips2025/build_data_scaling_splits.ipynb.

Jiang24 splits We hold out 70% of perturbations in all 12 combinations of the following cytokines:
IFNG, INS, TGFB and cell lines: k562, mcf7, ht29, hapl. The remaining perturbations are used for
training.

The attached codebase has a python notebook responsible for generating this split:
notebooks/neurips2025/build_jiang24_frangieh21_splits.ipynb.

Frangieh21 splits We hold out 70% of the perturbations in the co-culture condition and use the
remaining perturbations for training.

The attached codebase has a python notebook responsible for generating this split:
notebooks/neurips2025/build_jiang24_frangieh21_splits.ipynb.

OP3 splits We reuse the original train, public test and private test data partitions from the NeurIPS
2023 perturbation prediction challenge, in order to create our own train, validation and test splits.
The negative controls, DMSO, are used as control cells, and are allocated at a 50/25/25 ratio to
train, validation and test splits. The two positive controls, Belinostat and Dabrafenib, are assigned
to the training split. The validation and test splits are filtered to remove perturbation and cell type
combinations that contain less than 100 perturbed cells.

The attached codebase has a python notebook responsible for generating this split:
notebooks/neurips2025/build_op3_splits.ipynb.

Srivatsan2( Data Imbalance splits To generate the imbalanced Srivatsan20 datasets for Figure
C.1, we set three different desired level of imbalance, which we have quantified via normalized
entropy based on the number of perturbations per cell line:

- ,
YR oo R
Imbalance := 1 — iz o log

where n;,7 = 1, ..., k denotes the number of samples in class 7 and n = Z:L:l n,; the overall number
of observations. The full Srivatsan20 data is fully balanced with 188 perturbations seen in all three
cell lines. For the three subsequent imbalanced data sets, we fix the first cell line to always see all
188 perturbations, and then randomly choose the number of seen perturbations for the other two cell
lines that will result in the desired level of balance (distributions given in Table 14). Control cells are
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Table 14: Number of perturbations in each cell line for downsampled subsets of Srivatsan20 with
different levels of data balance.

Balance # Perts Cell Line 1  # Perts Cell Line 2  # Perts Cell Line 3

1 188 188 188
0.9 188 50 117
0.8 188 81 30
0.7 188 33 33

always seen in training for each cell line. We then randomly downsample each cell line to the desired
number of perturbations, and use our datasplitter with default parameters to generate a cross cell line
split. We set the minimum number of perturbations to 30 per cell line.

Unseen perturbation splits Some models such as scGPT, GEARS, and PerturbNet create an
embedding over the perturbation space which enables prediction of the effect of perturbations that
are never seen during training in any context. Since this task is very complex and most likely highly
dependent on the quality of the perturbation embedding/representation, we choose not to address it
the scope of this study.

D.5 Models

CPA We implement a version of CPA using the published Theis lab model (forked 02/23). The
Theis lab codebase has been updated since publication, and we have incorporated the most important
changes into our implementation. However, some small differences remain, thus, we refer to our
implementation as CPA*.

To ensure that we have correctly implemented CPA, we verify that our implementation has achieved
similar or better performance on all metrics compared to the published versions. To this end, we have
trained a CPA model using the published Theis lab model (forked 02/23) and our implementation
using the exact same hyperparameters identified to be optimal by the authors, on the same data split
and assessed the performance. Our implementation of CPA has obtained comparable (and indeed,
slightly better) results than the original codebase. CPA alternates between training the generator and
discriminator, and in the ablated version: CPA* (noAdv), we disregard the discriminator by setting
the adversarial loss to zero and training the generator exclusively.

SAMS-VAE SAMS-VAE is available under a restrictive licence. For this reason, we imple-
ment a version of the model carefully following the authors’ description. Since, the model is
re-implementation, we refer to it as SAMS-VAE*.

To further understand the effect of sparse additive mechanism, we ablate the sparsity-inducing
component of SAMS-VAE by completely removing the binary mask and its associated global latent
variable. The other significant modification is to remove the global variable defined on the perturbation
embedding. To this end, we obtain a simplified version, i.e. SAMS-VAE* (S), which does not contain
any global latent variables, and learns perturbation effects through ordinary embedding vectors
without any sparsity or distributional assumptions.

BioLord For modelling the effect of perturbations, Biolord requires embeddings, either from
the GEARS GO graph for genes or RDKIT embeddings for small molecules. For the sake of fair
comparison, we have excluded the use of embeddings and therefore, implemented a slight variation of
Biolord, henceforth referred to as Biolord*, where instead of neighbourhoods based on embeddings,
we use the same one hot representation for perturbations as for all other models.

GEARS Because the GEARS model differs from other models in its use of GNNs to encode gene
expression values and perturbations, as well as the authors did not recommend applying it to the
covariate transfer task, we choose not to reimplement GEARS in our library. We instead write a
helper function and HPO script for training and evaluating GEARS using its publicly available code,
on the same Norman19 split which we have used for other models.
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scGPT Embeddings To generate scGPT embeddings, we use the pretrained whole human model
and generate embeddings with no further fine-tuning on our processed datasets.

Linear The simple linear baseline model uses the control matching approach. Given a perturbed
cell, 2/, we sample a random control cell with matched covariates, x, and reconstruct =’ by applying
one linear layer given the perturbation and covariates:

xl =x+ flinear (ponefhoty Covonefhot)y (6)
where pone hot denotes the one-hot encoding of the perturbation and covone not denotes one-hot
encodings of covariates (i.e. cell type/line).

Latent Additive We extended the linear model into a baseline Latent Additive model by encoding
expression values and perturbations into a latent space Z C R% i.e.

Zetrl = fctrl (fﬂ), and Zpert = .fpert (pone_hot)a
where pone not denotes the one-hot encoding of the perturbation. Subsequently, we reconstruct the
expression value by decoding the added latent space representation &' = faec(Zctrl + Zpert)-

Decoder Only As a further ablation study, we introduce a model class that aims to predict the
transcriptome solely from covariates, covone hot, perturbation information, pone_hot, Of @ mix of both.
This model takes as an input neither the transcriptome of a control cell nor the transcriptome of a
perturbed cell. Consequently, prediction of the expression of a perturbed cell can be modelled as
' = faec(2) for z € {Pone_not } U {€0Vone_not } U { (Pone_hots COVone_nhot) } and we refer to them as
Decoder-Only models. This class of models provides a range of baselines:

* Firstly, a model decoding only from covariates provides a lower bound on the performance of
acceptable models and a sense of what performance can be expected when a model collapses
to its mode(s). For instance, if the covariates contain only the cell type/line, this model
will only learn the average expression value for each cell type/line. Since no perturbation
information is used, the model is completely collapsed for every class of covariates.

* Secondly, a model that decodes only from perturbations offers a baseline that illustrates the
extent to which expression levels resulting from perturbations can be predicted, disregarding
any information about cell type/line or expression levels in control cells.

* Thirdly, a model that decodes information from both cell type/line and perturbations provides
a baseline for understanding the additional information that the transcriptome could offer,
which is not already captured by the covariates or inherently present in the perturbation data.

D.6 Hyperparameter Optimization

D.6.1 Identifying a Hyperparameter Metric

In order to carry out HPO, we need to define a performance metric that can be taken as an objective
function for optuna. The model loss calculated on the validation data can in many cases be unsuitable
for such a task, as some hyperparameters are part of the loss itself and aim, for instance, to find a
balancing factor between different loss terms. In such scenarios, the objective would induce optuna
to simply set a scaling factor to 0. Hence, we require an alternative metric as an HPO objective
function.

To define an objective functions we set out the following requirements:

* To make our models comparable and to avoid confounding issues, we compare all models
based on the same metric for the purposes of HPO.

* Considering the results of Section C.7 hyperparameter optimization can not simply be
carried out on one metric, such as RMSE, as we have established that this metric alone does
not cover all aspects of model performance.

To identify suitable hyperparameter metrics, we carried out several HPO runs with linear combinations
of cosine similarity and the respective rank metric, as well as RMSE and its respective rank metric.
In a few pilot hpo runs we observed that

Lypo = RMSE + 0.1 - rankryvsge
results in models that perform well on both aspects, traditional model fit as well as ranking metrics.
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D.6.2 Hyperparameter Ranges

For hyperparameter optimization we used optuna [4]. Hence, we can define all hyperparameter
ranges as optuna distributions, either in the form of categorical, int or float. We describe the
seed and the specific optuna hyperparameter ranges as well as their distribution classes in Tables 15
to 19 and 21.

Table 15: CPA hyperparamter range.

Hyperparameter Distribution

Number of layers in the encoder part of the model.:
n_layers_encoder Int: 1 to 7, step=2

Number of perturbation embedding layers:
n_layers_pert_emb Int: 1 to 5, step=1

Number of layers in the adversarial classifier:
adv_classifier_n_layers Int: 1 to 5, step=1

Hidden dimension size:
hidden_dim Int: 256 to 5376, step=1024

Hidden dimension size of the adversarial classifier:
adv_classifier_hidden_dim Int: 128 to 1024, log=True

Number of adversarial steps:

adv_steps Categorical: [2, 3, 5, 7, 10, 20, 30]
Number of latent variables:

n_latent Categorical: [64, 128, 192, 256, 512]
Learning rate:

1r Float: 5e-6 to le-3, log=True

Weight decay:

wd Float: 1e-8 to 1le-3, log=True
Dropout rate:

dropout Float: 0.0 to 0.8, step=0.1

KL divergence weight:

kl_weight Float: 0.1 to 20, log=True

Adversarial weight:
adv_weight Float: 0.1 to 20, log=True

Penalty weight:
penalty_weight Float: 0.1 to 20, log=True
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Table 16: Latent additive model hyperparameter range.

Hyperparameter Distribution

Number of layers in the encoder part of the model:

n_layers Int: 1 to 7, step=2

Width of the encoder layers in the model:

encoder_width Int: 256 to 5376, step=1024
Dimensionality of the latent space:

latent_dim Categorical: [64, 128, 192, 256, 512]
Learning rate:

1r Float: 5e-6 to 5e-3, log=True
Weight decay:

wd Float: 1e-8 to 1le-3, log=True

Dropout rate:
dropout Float: 0.0 to 0.8, step=0.1

Table 17: Linear additive model hyperparameter range.

Hyperparameter Distribution

Learning rate:

1r Float: 5e-6 to 5e-3, log=True
Weight decay:
wd Float: 1e-8 to le-3, log=True

Table 18: Biolord hyperparameter range.

Hyperparameter Distribution

Weight of the penalty term in the loss function:
penalty_weight Float: 1lel to 1e5, log=True

Number of layers in the encoder part of the model.:
n_layers Int: 1 to 7, step=2

Width of the encoder layers in the model.:
encoder_width Int: 256 to 5376, step=1024

Dimensionality of the latent space:
latent_dim Categorical: [64, 128, 192, 256, 512]

Learning rate:
1r Float: 5e-6 to 5e-3, log=True

Weight decay:
wd Float: 1e-8 to le-3, log=True

Dropout rate:
dropout Float: 0.0 to 0.8, step=0.1
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Table 19: SamsVae hyperparameter range.

Hyperparameter Distribution

Number of layers in the encoder part of the model.:
n_layers_encoder_x Int: 1 to 7, step=2

Number of layers in the encoder part of the model.:
n_layers_encoder_e Int: 1 to 7, step=2

Number of layers in the decoder part of the model.:
n_layers_decoder Int: 1 to 7, step=2

Width of the encoder layers in the model:
latent_dim Categorical: [64, 128, 192, 256, 512]

Hidden dimension for x:
hidden_dim_x Int: 256 to 5376, step=1024

Hidden dimension for the conditional input:
hidden_dim_cond Int: 50 to 500, step=50

Whether to use sparse additive mechanism:
sparse_additive_mechanism Categorical: [True, False]

Whether to use mean field encoding:

mean_field_encoding Categorical: [True, False]
Learning rate:

1r Float: 5e-6 to le-3, log=True
Weight decay:

wd Float: 1e-8 to 1le-3, log=True

The target probability for the masks:
mask_prior_probability Float: 1le-4 to 0.99, log=True

Dropout rate:
dropout Float: 0.0 to 0.8, step=0.1

Table 20: DecoderOnly hyperparameter range.

Hyperparameter Distribution

Number of layers in encoder/decoder:
n_layers Int: 1 to 7, step=2

Width of the encoder:
encoder_width Int: 256 to 5376, step=1024

Learning rate:

1r Float: 5e-6 to 5e-3, log=True
Weight decay:
wd Float: 1le-8 to le-3, log=True

Whether to apply a softplus activation to the output of the decoder to enforce non-negativity:
softplus_output Categorical: [True, Falsel

39



Table 21: GEARS hyperparameter range.

Hyperparameter Distribution

Number of layers in perturbation GNN:
num_go_gnn_layers Int: 1 to 3, , step=1

Number of layers in gene GNN:
num_gene_gnn_layers Int: 1 to 3, step=1

Number of neighboring perturbations in GO graph:
num_similar_genes_go_graph Int: 10 to 30, step=10

Number of neighboring genes in gene co-expression graph:
num_similar_genes_co_express_graph Int: 10 to 30, step=10

Width of the encoder:

hidden_size Int: 32 to 512, step=32
Minimum coexpression threshold:

co_express_threshold_graph Float: 0.2 to 0.5, step=0.1
Learning rate:

1r Float: 5e-6 to 5e-3, log=True
Weight decay:

wd Float: 1e-8 to le-3, log=True
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D.7 Compute Resources

For the Norman19 and Srivatsan20, and data imbalance tasks, we used nodes with one Nvidia
A10G GPU each. We ran 60 hyperparameter optimization trials for each model, and assessed 10
models on the Srivatsan20 task and 9 models on the Norman19 task. We also ran 4 training runs
with the best hyperparameters for stability analysis. We also ran an additional 5 models on the 4
different data imbalance splits, again with 4 runs for stability. For the HPO runs we used 813 hours
for Srivatsan20 and 399 hours for Norman19. See details in Table 22.

For the McFalineFigueroa23 data scaling task, we used nodes with Nvidia A10G GPUs for most
of the combinations of models and subsets. We used A100G or H100G GPUs for all deep learning
model for the biggest split, and for all datasets on CPA (which required the most GPU memory).
We again used 60 hyperparameter optimization trials across 4 models with an additional 4 runs
for stability. In total for this experiments we used 2517 hours of servers with GPUs, see details in
Table 22.

Table 22: Total runtime of HPO for different models and datasets

dataset model runtime  A100
mcfaline23-full cpa 171.97 yes
mcfaline23-full decoder-only 136.91 yes
mcfaline23-full latent-additive 150.36  yes
mcfaline23-full linear-additive 321.08
mcfaline23-medium cpa 127.44  yes
mcfaline23-medium  decoder-only 225.24
mcfaline23-medium latent-additive 280.12
mcfaline23-medium linear-additive 359.33
mcfaline23-small cpa 105.12  yes
mcfaline23-small decoder-only 135.38
mcfaline23-small latent-additive 186.14
mcfaline23-small linear-additive 31791
normanl9 biolord 129.71
normanl9 cpa 42.98
normanl9 cpa-no-adversary 48.08
normanl9 cpa-scgpt 25.20
normanl9 decoder 20.48
normanl9 latent 32.69
normanl9 latent-scgpt 21.42
normanl9 linear 30.17
normanl9 sams 48.06
sciplex3 biolord 312.49
sciplex3 cpa 41.66
sciplex3 cpa-no-adversary 51.83
sciplex3 cpa-scgpt 38.54
sciplex3 decoder 40.41
sciplex3 decoder-cov 36.42
sciplex3 latent 56.59
sciplex3 latent-scgpt 76.25
sciplex3 linear 70.48
sciplex3 sams 88.76
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