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Abstract

Large Language Models (LLMs) frequently
face challenges with complex reasoning tasks.
A recent structured Al methodology ad-
dresses this by distinctly dividing tasks into
symbolic formalization, managed by LLMs,
and problem-solving, conducted by symbolic
solvers. While solvers like SymPy and Pyke
prevent hallucinations, they often struggle with
advanced reasoning tasks. This study addresses
their limitations by leveraging the extensive rea-
soning data in Lean, a programming language
for theorem proving. Training a custom model
using Lean’s rich theorem proving data greatly
enhances our model’s reasoning capacity, al-
lowing it to outperform traditional solvers. We
achieve state-of-the-art result on FOLIO, a log-
ical reasoning dataset, indicating the potential
of our method for natural language reasoning.'

1 Introduction

Reasoning, a bedrock of intelligence and a core
capability of humans, has long been a challeng-
ing issue for machine learning systems, even for
the latest, powerful large language models (LLMs).
LLMs, despite their impressive abilities to under-
stand and generate natural language, often fall short
when dealing with complex reasoning tasks. They
frequently suffer from "hallucinations", wherein
the model makes statements or predictions not
grounded in its inputs, leading to spurious results
(Saparov and He, 2023; Dasgupta et al., 2022).
Recent advances in Al have adopted a structured
approach to tackling reasoning problems by split-
ting them into symbolic formalization and problem-
solving phases (He-Yueya et al., 2023; Pan et al.,
2023; Ye et al., 2023). The formalization step is
often handled by a large language model (LLM),
while problem-solving is tackled by an out-of-the-
box solver. In this approach, symbolic reasoning
essentially acts as a rigorous checkpoint, ensuring

'Our code and data will be released upon publication.

that the model outputs align with logical and factual
standards, thereby mitigating the issue of halluci-
nation. Here, solvers may range from being com-
pletely deterministic, like SymPy (He-Yueya et al.,
2023), or rely on a combination of heuristics and
basic machine learning techniques, as is the case
with Pyke (Pan et al., 2023) and Z3 (Ye et al., 2023;
de Moura and Bjgrner, 2008). While this approach
successfully addresses hallucinations, it still strug-
gles with more complex problems. The limitation
mainly lies in the capabilities of the solvers them-
selves; they lack the ability to extract and use the
vast wealth of reasoning data and information avail-
able in large language resources as LLMs do. This
absence of information integration leaves them un-
derpowered when dealing with intricate reasoning
tasks.

Serving as a powerful theorem prover and a
versatile programming language, Lean (de Moura
et al., 2015) presents a compelling solution to con-
nect symbolic reasoning with extensive linguistic
resources. Much like symbolic solvers, Lean has a
strict check system, ensuring each reasoning step is
certified. Every day, a substantial amount of code
is written in Lean, capturing reasoning “nuggets”
with step-by-step rationals that are useful for train-
ing LLMs. A few recent studies have already
tapped into Lean for automatic theorem proving
tasks (Polu et al., 2023; Han et al., 2022a; Lam-
ple et al., 2022), showing its potential in tackling
difficult reasoning challenges.

In this paper, we develop a Lean-based frame-
work to tackle natural language reasoning with
datasets such as ProofWriter (Tafjord et al., 2021)
and FOLIO (Han et al., 2022b). We use LLMs
to formalize these datasets into Lean’s formalized
language, and fine-tune a custom model on these
problems using a modest amount of data we col-
lected ourselves. Our contributions in this paper
are twofold.

* We show that incorporating theorem proving data



in training a custom model achieves competitive
performance with substantially less training data.
This strategy outperforms conventional out-of-
the-box solvers, especially when tackling more
complex problems. The model also obtained
state-of-the-art results on FOLIO.

* We make available the training data gathered
in this study, which includes 100 fully veri-
fied formalization of natural language reasoning
problems from ProofWriter to Lean, as well as
27 similar translations from FOLIO. Addition-
ally, we are releasing the corresponding theorem
proofs for these problems.

2 Problem Definition and Notation

The underlying task we aim to solve is providing
an answer to a natural query, where background
natural language context is given, such that it would
be possible to logically deduce the answer to the
query based on the context. This task, referred
to as natural language reasoning, along with our
solution to it, consists of the following components:

* Context, which represents natural language ut-
terances, composing a set of rules and facts. For
example: Hudson is a cat, all cats are animals,
and cats often meow.

* Question, which denotes the posed question. For
example, Does Hudson often meow?

* Options is an available set of answers (discrete
categories) from which an answer can be chosen.
For example, True, False or Unknown.

* Formalized context is the formalization of the
context in the underlying logical language, in our
case, in Lean. For example, the formalized con-
text for our example would be: axiom Al is_cat
Hudson, axiom A2 Vx, is_cat x — is_animal ©
and axiom A3 V', is_cat x — often_meow .

Formalized question: Given that Lean operates
as a theorem prover, questions are transformed
into dual theorems: one asserting the positive
stance and the other negating it. For the given ex-
ample, the formalized questions would be: Theo-
rem hudson_often_meows: often_meow Hudson
and Theorem not_hudson_often_meows: — of-
ten_meow Hudson.

* Goal: In the Lean theorem proving context, a
"goal" is a logical statement that needs to be
proven true, given a set of axioms and rules.
When we set out to answer a question using the

Lean prover, this question (or its formalized rep-
resentation) becomes our root goal. As we apply
various Tactics to simplify or break down this
primary goal, we generate intermediate goals.
These intermediate goals can be thought of as
subproblems or sub-questions derived from the
primary question. The proof process in Lean is
essentially a journey from the root goal through
a series of intermediate goals until we reach a
point where all goals have been resolved based
on our axioms and rules.

For instance, using our earlier examples,
if the root goal is proving Theorem hud-
son_often_meows: often_meow Hudson, an in-
termediate goal might be proving that Hudson is
a cat. As we apply Tactics, we aim to resolve
each intermediate goal using our provided con-
text, gradually working our way towards proving
the root goal. Once all intermediate goals are ad-
dressed, we have effectively proven our root goal,
and the proof search concludes successfully.

» Tactics are instructions in the Lean theorem
prover language used to manipulate goals to ob-
tain a proof for a given goal. For example, apply
A3 Hudson is a tactic that uses modus ponens on
the Goal often_meow Hudson and transforms it
to a new Goal is_cat Hudson

A diagram of these components and the relations
between them is depicted in Figure 1. This proce-
dure is framed within the language of the Lean
theorem prover as a goal-satisfying process.

The environment we use for theorem proving
is Lean.” Lean is an open source theorem prov-
ing programming language, originally developed
for mathematical theorem proving, with a vibrant
community support. Its current base includes over
100,000 theorems and 1,000,0000 lines of code.?
Lean can also be used as a generic theorem prover,
not necessarily in the area of mathematics. This is
the way we use it for our case.

3 Methodology

Our methodology is composed of four main com-
ponents: a formalizer, a tactic generator, a proof
search mechanism, and a result interpreter. The
formalizer converts context and question to formal-
ized context and formalized question. The tactic

https://leanprover.github.io/.
‘https://en.wikipedia.org/wiki/Lean_
(proof_assistant).
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Context, Question and Options

Question: Does the Cow like the Cow Options: True, False or Unknown

The cow is big. The cow likes the dog. The cow visits the dog. The dog needs the cow The cow needs the cow. If something visits the dog and the dog needs the cow then it

needs the cow. If the dog visits the cow then the cow visits the dog. If something needs the cow and the cow likes the dog then it likes the cow.

{ Formalizer
i constant Cow: obj axiom T1: Big Cow

i constant Dog: obj axiom T2: Likes Cow Dog

constant Cat: obj

H axiom T3: Visits Cow Dog
i constant Big: obj -> Prop

H axiom T4: Needs Dog Cow
i constant Likes: obj->obj->Prop

i constant Needs obj->obj->Prop

axiom T5: Needs Cow Cow Likes Cow Cat

axiom R1:V x : obj, Visits x Dog A Needs Dog Cow — Needs x :

i Cow
axiom R2 : Visits Dog Cow — Visits Cow Dog

axiom R3 : V x : obj, Needs x Cow A Likes Cow Dog — Likes x Cow

axiom R4: V x : obj, Needs Cat Cow A Likes Cow Cat — Likes Cow

i Cow

Theorem does_cow_like_cow : Likes Cow Cow

Needs Cat Cow A

Needs Cow Cow, !

"‘/X """ ’

| Tactic Generator + Proof Search

: Result Intepreter

Exists Path
that found a proof
to the theorem

i Needs Cow Cow A
Likes Cow Dog

Likes Cow Dog

Is this theorem
the positive version
of the question

Figure 1: An overview of our approach: The natural language context is first processed by the “formalizer”. It then
advances to the proof search stage, where all the orange tactics are generated by the “tactic generator”. Finally, the

outcome is interpreted by the “result interpreter”.

generator then generates tactics based on premises
extracted from the formalized context. The proof
search mechanism oversees tactic execution and
goal expansion. Lastly, the result interpreter anal-
yses the output of the proof search and identifies
the correct answer in options. In this section, we
provide detailed explanations of each component.

3.1 Formalizer

In this process of formalization, we used the Ope-
nAl models text-davinci-003 (GPT-3) and GPT-4
(OpenAl, 2023). For text-davinci-003, we followed
the same prompting approach as Logic-LM (Pan
et al., 2023) to separate the task specification and
problems, thereby enabling the model to continue
with the task of formalization through next-token-
prediction. For GPT-4, we used similar prompts,
but included the task specification in the system
prompt.

There is no definitive way to assert that a formal-
ized result is correct since there is no deterministic
Automated Theorem Prover (ATP) that can confirm
the accuracy of formalization. However, the syntax
of the formalized result can be checked, as correct
syntax is a prerequisite for downstream theorem
proving. If an error is encountered during compi-
lation, we provide the error message generated by
Lean along with the faulty formalization and ask
the formalizer to reformulate the result. We further
conduct manual inspections of the formalizer in §5.
We note that we take a strict approach, and if the

formalizer fails more than once, then the example
is counted as not being correctly solved.

3.2 Tactic Generator

The model we used for tactic generation is Re-
Prover (Yang et al., 2023). This model employs
retrieval mechanisms to explicitly select premises.
When provided with the current state of proof, this
generator retrieves a selected set of potentially use-
ful premises from formalized context and gener-
ates tactic using both the goal and the retrieved
premises.

The premise retrieval component of our process
draws from the Dense Passage Retriever (DPR)
(Karpukhin et al., 2020). Provided with a goal g
as the query and a set of candidate premises P, it
generates a ranked list of m premises from P. In
DPR, both g and P are treated as raw texts that are
embedded in a vector space. We then retrieve the
top m premises that maximize the cosine similarity
between the state and the premise.

The division of the problem-solving task into
premise selection and tactic generation simplifies
the process and facilitates easier troubleshooting.
It isolates the source of potential issues, be it in
the premise selection or the tactic generation, thus
reducing the complexity of the problem. This divi-
sion of duties also lightens the load for the tactic
generator by allowing it to concentrate solely on
its specific role, rather than grappling with the en-
tirety of the problem. An added advantage of this



approach is that it makes the system’s reasoning
steps more transparent and understandable.

As a baseline, we also prompt GPT-4 to generate
proofs. When the answer aligns with the chosen
theorem (say the chosen theorem is the positive
stance of the question and the answer is YES), we
present GPT-4 with the correct proof as part of
the prompt. Conversely, if the answer does not
align with the chosen option, signifying that the
formalized theorem is unprovable, we still encour-
age the model to engage in step-by-step reasoning,
even though it will eventually hit a roadblock. In
instances where the answer is UNKNOWN, imply-
ing that neither option can be proven, we provide
step-by-step reasoning prompts for each option, ac-
knowledging that the process will not result in a
definitive answer. An example of the prompt to
GPT-4 can be found in Appendix A.1.

3.3 Proof Search

Different from the tactic generator module that gen-
erates tactics, the proof search module controls the
overall search process that selects tactics and main-
tains states during proof construction. LeanDoJo
(Yang et al., 2023), a recently released framework
that enables interaction with Lean programmati-
cally, provides the mechanism to check the validity
of tactics and execute tactics.

The search method involves building a proof tree,
which incrementally evolves the goal through tac-
tic invocations. This approach was first introduced
in (Polu and Sutskever, 2020). LeanDoJo (Yang
et al., 2023) subsequently provided an implemen-
tation of this method, which we utilized for our
study. As a reference, the middle part of Figure 1
provides a practical illustration of this process. For
each given proof goal, we explore 64 possible tac-
tics, commencing from the root goal. All goals are
maintained in a priority queue and are expanded
based on cumulative log probabilities of the goal,
defined as the summation of the log probabilities
of the tactics that brought us to the goal from the
root. This implies that we tend to expand those
goals where our generative model has the highest
global confidence. The resulting tendency is to-
wards breadth-first exploration, as goals at greater
depths have more parent tactics and hence a typ-
ically higher cumulative log probability. During
the search process, there are no restrictions on the
length of the priority queue.

To enhance search efficiency and circumvent po-

tential loops, we have incorporated a mechanism
that stops the expansion of a node N if we have
already explored another node M with a state se-
quence that prefixes IN. Essentially, if a current
goal or state being explored is a superset (or con-
tains all the elements) of a previously explored goal,
the current goal is not further expanded. This is
based on the observation that if we have already
assessed the potential paths and outcomes for a
specific goal, then exploring a more generalized
version of the same goal is redundant. Such a
mechanism avoids unnecessary repetitions, thereby
streamlining the search process and improving
overall efficiency. Moreover, we define a valid
proof as one that is devoid of “cheating” keywords
(such as “sorry”) that tell Lean to assume that the
current goal is completed, even though it hasn’t
been proven, meaning that every path containing
“cheating” keywords is disregarded.

Errors in the search process typically manifest in
two ways: a timeout or the exhaustion of nodes to
search. We have allocated a three-minute window
for each search, which is usually sufficient. We
provided more analysis of the errors made by tactic
generator in the experiment section.

3.4 Interpreting Results

For options that include “Unknown”, we only re-
gard the result as correct if no other options can be
proven. All datasets investigated in this study have
questions with only one correct option among the
choices. Consequently, if the proof system verifies
more than one option, the response is immediately
marked as incorrect.

4 Experimental Setup

We now describe our experimental setup: the
datasets we used, our model training and our base-
lines.

4.1 Datasets

In our evaluation, we use as a testbed two common
logical reasoning datasets:

ProofWriter: This deductive logical reasoning
dataset presents problems in an intuitive language
form. We incorporated the Open-World Assump-
tion (OWA) subset as per (Pan et al., 2023), where
each instance is characterized by a (problem, goal)
pairing, and labels can be categorized as TRUE,
FALSE, or UNKNOWN. It encompasses five seg-
ments based on the required reasoning depth: O,



<1, <2, <3, and < 5 hops. Our focus is the
depth-5 subset, which is the most challenging one.
To get a fair comparison against Logic-LM, we
used the same 600 sample tests, ensuring an even
label distribution.

FOLIO: Unlike ProofWriter, FOLIO is con-
structed using intricate first-order logic, increas-
ing the complexity of the proving part. Beyond
just the logic, the formalization for FOLIO is also
challenging. The dataset presents problems in a
more natural and intricate wording, with relation-
ships that are considerably more complex. Such a
combination of advanced logic and rich linguistic
structure renders the formalization task in FOLIO
substantially tougher than in Proof Writer. For our
analysis, we turned to the entire FOLIO test set,
encompassing 204 examples.

4.2 Model Training

Regarding the data for model training, we collected
100 theorem proofs for ProofWriter, where each
problem’s proof was either manually annotated or
collected from successful proofs generated by GPT-
4. A similar approach was employed with FOLIO,
albeit with 27 theorems. The data collection took
about two days.

The pre-training model structure we adopted was
the same as used in the ReProver paper, namely
Google’s Byte-T5 (Xue et al., 2022). We also ex-
perimented with the pre-trained ReProver from Le-
anDoJo (Yang et al., 2023), which was pre-trained
on mathlib 3. The fine-tuning on our collected data
took about six hours on one A100 40G.

4.3 Baselines

For all of our experiments, we tested reasoning
ability against textual input to GPT-4. When bench-
marking against GPT-4 for all datasets, we strived
to leverage prompts from previous work to the
greatest extent possible. Our principal focus was
GPT-4’s chain-of-thought (CoT) output.

For our own formalization, we use three exam-
ples as prompts for both ProofWriter and FOLIO.
Because FOLIO uses the same context for different
questions, we use a multi-question-style prompt for
FOLIO where each prompt contains multiple ques-
tions, an example can be found in Appendix A.2.

For ProofWriter and FOLIO, we also compared
our results against Logic-LM (Pan et al., 2023).
Given that Z3 can also be used within Lean for
problem-solving, we also employed Z3 on our for-
malized context using lean-smt package (Mohamed

et al., 2022), which servers as a comparison against
SATLM (Ye et al., 2023). In addition, our findings
were compared with other benchmark on these two
datasets.

5 Results

We describe the results of our experiments: an
analysis of the formalization module, a description
of how to improve the tactic generator module and
a comparison of our work against the baselines.

5.1 Analysis of Formalization

To discern whether errors arise during the formal-
ization or proving stages, and to pinpoint the exact
mistakes in the formalization process, we prompted
the LLM to formalize a selection of 100 questions
from ProofWriter’s validation set and 40 questions
from FOLIO’s training set and manually examined
them. These findings can be viewed in Table 1.
Only those formalizations that correctly captured
every fact, axiom, and rule were counted as accu-
rate. The striking accuracy on ProofWriter can be
attributed to its simpler language structure com-
pared to FOLIO. In the case of FOLIO, using a
large language model for formalization helped in
filtering out unnecessary details from the natural
language context, making it easier to understand
the essence of the problem and do reasoning. We
have illustrated typical GPT-4 formalization mis-
takes in B, using a composite sample derived from
various error instances. Interestingly, Lean’s for-
malization accuracy aligns closely with both Prolog
and FOL in Logic-LM. This consistency under-
scores Lean’s versatility, allowing it to uniformly
represent both problem types.

We observed improved results when formalized
code was paired with descriptive textual comments
sourced from the context. This approach split the
formalization task into two: 1) linking textual input
with formalized code and 2) generating formalized
code based on the prior textual comment. These
textual cues acted as a bridge between raw text and
formalized code, aiding the underlying computa-
tion processes.

It is important to highlight that the compilation
errors in the formalized Lean code were straight-
forward to correct. When issues arise during the
Lean building process, we present the error mes-
sage and the original formalized Lean code to LLM
for re-formalization. If the subsequent attempt is
unsuccessful, we simply categorize it as incorrect.



Model ProofWriter FOLIO
Formalize Prove Total | Formalize Prove Total
GPT-4 Base 94% 15%  80% 60% 10%  35%
GPT-4 Base Comments 99% 80% 75% - 35%
GPT-4 Base Separate - 5% 75% - 10%  40%
GPT-3 Base Comments 77% 12%  63% 45% 10%  35%
Logic-LM 98% 75.5% 74% 65% 69.2% 55%

Table 1: Formalization, Proof, and Total accuracies for ProofWriter and FOLIO using the OpenAl language model
API. ’Base Comments’ provide annotations before each line of formalized code. In *Base Separate’, formalization
and proof are segmented into two distinct prompts, reducing the workload on the LLM. For Logic-LM, proof
accuracy is determined from correctly formalized problems, while total accuracy is calculated on all problems. For
simplicity, we did not use the self-refinement technique when evaluating Logic-LM

The distinction in performance between GPT-3
and GPT-4 is evident. While the formalization for
simple concepts is the same, GPT-3 struggles with
intricate logic, highlighting its limitations. As such,
we opted not to use GPT-3 in further tests.

The proof accuracy section of the table is deter-
mined by whether the generated proof can compile
successfully in Lean. If the formalization of ques-
tion to theorem is correct and the proof can be com-
piled without any error or warning, then we can
be confident that the proof is valid. However, the
accuracy of generated proof is very low. This could
be due to overloading large language model with
tasks, making it difficult to complete both on a sin-
gle prompt. We attempted to separate formalization
and proof, but the outcome remained disappointing,
indicating GPT-3 and GPT-4’s inability to perform
proving tasks. Interestingly, the proof accuracy of
Logic-LLM wasn’t as high as we expected. Upon
replicating their code, we found the chosen solver
Pyke to be suboptimal, struggling to identify an
answer when multiple search paths are available
and some could result in loops.

Despite the inaccuracies in most of GPT-4’s
proofs, it achieved a high accuracy rate for final
choices on ProofWriter (as shown in Total column).
We believe this may be due to GPT-4’s training
exposure to it, potentially leading to a degree of
memorization.

5.2 Enhanced Proving

In this section, we focus on training custom Re-
Prover models to do tactic generation using our
annotated training data. To isolate the impact of
the tactic generator, we used all the accurate formal-
izations from the previous subsection. This gave us
99 test examples for Proof Writer and 14 for FOLIO.
Furthermore, we annotated an additional 100 fully

correct samples from the ProofWriter training set
and 27 from the FOLIO training set. All findings
are detailed in Table 2.

We first compare the results on premise selec-
tion, using the metrics recall@1 and recall@4.The
recall@k metric is defined by the ratio of ground
truth premises intersecting with the top predicted
premises to the total number of correct premises,
represented as:

|GT_Prem N Pred_Prem[0 : k]|

1@k =
reea |GT_Prem|

It is clear that relying on ReProver trained solely
with math data yielded suboptimal results. This
can be attributed to the limited set of tactics avail-
able for both ProofWriter and FOLIO. While these
datasets have a confined tactic range, the model
frequently makes mistakes by attempting to use
other, unrelated tactics. The ReProver fine-tuning
outperformed TS5 fine-tuning in terms of overall
results. Furthermore, the accuracy for FOLIO were
noticeably poorer than those for ProofWriter. This
disparity is likely due to FOLIO’s intricate logic
and its need for a broader array of first-order-logic
tactics such as cases, have, and contradiction. In
contrast, Proof Writer primarily employs tactics like
apply, exact, and split.

We proceeded to evaluate the overall proof
results. Consistently, the ReProver fine-tuning
model trained on math theorem proving data out-
performed other approaches for both ProofWriter
and FOLIO datasets. This advantage can be at-
tributed to the limited data available for fine-tuning
our tactic generator, thus highlighting the bene-
fits of our approach. While the premise selector
benefits from distinct cues and a limited range of
choices, the realm of tactic generation is much
broader. This vastness of options renders the Re-



ProofWriter FOLIO
Model Premise Selection Proof | Premise Selection Proof
Rec@1 Rec@4 Acc | Rec@l Rec@4 Acc
GPT-4 baseline N/A 15% N/A 10%
ReProver baseline 56.2% 81.3% 0% 23.5% 38.2% 0%
T5 fine-tuned 62.5% 100% 9% | 54.8% 952% 71.4%
ReProver fine-tuned 75% 100% 99% 71.4% 96.8%  85.7%

Table 2: Recall @k for premise selection and overall proof accuracy across various tactic generator, encompassing
the entire process from premise selection to tactic generation and proof search. We did not compute the Premise
Selection accuracy for the GPT-4 baseline because prompting GPT-4 to select premises using Lean goals is

challenging and is a primary concern in this context

Method Acc

Abs Biases (Gontier et al., 2022) 80.6%
Metalnduce (Yang et al., 2022) 98.6%
RECKONING (Chen et al., 2023b) | 99.8%
GPT-4 CoT (Pan et al., 2023) 68.1%
Logic-LM (Pan et al., 2023) 79.3%
TS5 fine-tuned 95.8%
ReProver fine-tuned 98.3%

Table 3: Accuracy with different methods on
ProofWriter. Abs Biases stands for Abstraction Induc-
tive Biases

Model Acc

Codex (Han et al., 2022b) 56.0%
FOLNet (Chen, 2023) 70.6%
GPT-4 CoT (Pan et al., 2023) | 70.6%
Logic-LLM (Pan et al., 2023) | 74.5%
Lean Z3 (SATLM) 77.5%
TS5 fine-tuned 66.2%
ReProver fine-tuned 78.4%

Table 4: Accuracy comparisons across different meth-
ods for the FOLIO dataset. The Codex baseline employs
an 8-shot prompt. The result from ’Lean Z3’ is derived
from lean-smt applied to formalized Lean Code

Prover baseline’s proof accuracy nearly negligible.
But other than that, there is a strong correlation
between premise selection accuracy and overall
proof accuracy. While the benefits of a pre-trained
ReProver baseline may not be as noticeable for sim-
pler datasets like ProofWriter, its value becomes
evident for more complex datasets, such as FOLIO.

5.3 Comparing Against Other Baselines

Having demonstrated that fine-tuning on pre-
trained math theorem models yields superior per-
formance, we proceed to benchmark our results

against established baselines for both ProofWriter
and FOLIO. The evaluation uses the same set of
600 problems from the Proof Writer paper, in addi-
tion to the entire FOLIO test set. Given the smaller
test set used in the preceding section, it is of inter-
est to also compare our approach with the model
not pre-trained on theorem proving data on this
larger set. Subsequently, we conduct an analysis of
the errors made by the tactic generator in both the
FOLIO and ProofWriter, exploring the reason our
approach outperforms others.

As illustrated in Table 3, our approach yields re-
sults comparable to state-of-the-art methods for the
ProofWriter dataset. While other methods except
Logic-LM use the entire training set of ProofWriter,
our approach relies on just 100 examples, under-
scoring the efficiency of our method.

Table 4 presents our performance on the FOLIO
dataset. For a balanced comparison with SATLM,
which utilizes the Z3 solver, we used the lean-smt
tool 4 on our formalized Lean code. This tool pro-
duces outcomes in the form of “sat/unsat”. In Z3,
“sat” stands for “satisfiable.” When Z3 returns “sat”
as the result, it means that there exists an assign-
ment (a set of variable values) that makes the theo-
rem true, which basically means the answer to the
original question is True. “unsat” Stands for “unsat-
isfiable”. When Z3 returns “unsat”, it means that
there is no possible assignment that can make the
formula true. In other words, the formula is inher-
ently contradictory and cannot be satisfied under
any circumstance. We interpret these results sim-
ilarly to “found a proof/didn’t find a proof” using
our result interpreter. It’s worth noting that there
can be instances where a problem is inaccurately
formalized because the formalization accuracy on
FOLIO is lower than on ProofWriter. If the answer

*https://github.com/ufmg-smite/lean-smt



to the problem being formalized is unknown, this
can inadvertently skew the model’s performance,
making it seem better than it truly is becasue our
model can’t prove neither the positive stance nor
the negative stance of the problem. Nevertheless,
to the best of our knowledge, our approach sets a
new benchmark on the FOLIO dataset.

There are two types of error that occur during
our proving process: timeout errors and running
out of goals errors. The former arises when the
time set for tactic generation and proof search is
exhausted, while the latter occurs when generated
tactics have errors, either due to syntactic invalidity
or inability to be executed given the current goal,
making them unprocessable by LeanDoJo. The
likelihood of each error type can be influenced
by the chosen beam size during the proof search.
Our current approach utilizes a beam size of 64,
meaning we generate 64 tactics for every goal we
come across. At present, 81.8% of the errors from
the ReProver fine-tuned model and 85.5% from the
T5 fine-tuned model stem from timeouts. While
a thorough inspection of every out-of-nodes error
hasn’t been conducted, a significant portion seems
to arise from incorrect formalization.

6 Related Work

Several past studies (Chen, 2023; Creswell and
Shanahan, 2022; Chen et al., 2023b) used neuro-
symbolic methods to augment neural networks with
symbolic reasoning. Many of these approaches
grapple with constraints like the necessity for cus-
tom or specialized module designs that lack broad
applicability. Recent work (Pan et al., 2023; Ye
et al., 2023; Poesia et al., 2023) presents an adapt-
able framework that melds contemporary LLMs
with symbolic logic, bypassing the need to train or
craft intricate modules tailored for specific prob-
lems. While our research aligns with these, we do
not exclusively rely on ready-made solvers.

A common method to boost the reasoning skills
of Large Language Models (LLMs) is by training
them on data that requires some form of inference.
As noted by (Lewkowycz et al., 2022), LLMs that
are trained on data filled with science and math data
do better on tasks that require reasoning, especially
when using CoT prompting. Other work (Fu and
Khot, 2022; Fu et al., 2023) suggests that LLMs get
their advanced reasoning capabilities from being
trained on code. This work is a natural extension
of this idea to theorem proving data.

LLMs’ intersection with theorem proving has re-
cently become an important topic in NLP. Although
some studies delve into various theorem provers
(Polu and Sutskever, 2020; Jiang et al., 2023), a
consistent focus has been observed around Lean.
A distinct advantage of Lean is its array of open-
source tools (Yang et al., 2023) which simplify data
collection and enable easy interaction with external
tools. Predominant research on theorem proving
with Lean encompasses strategies such as harness-
ing intricate proving artifact as seen in (Han et al.,
2022a), resorting to curriculum learning (Polu et al.,
2023) which capitalizes on theorem provers’ ability
to verify proofs to generate more training data, and
high-level planning reminiscent of the tactics used
by AlphaGo as detailed by Lample et al. (2022).
For future work, we posit that these methodolo-
gies could potentially be repurposed for natural
language reasoning.

7 Conclusion

We augmented LLMs with reasoning capabilities
by integrating into them Lean, a theorem proving
programming language, originally developed for
mathematical theorem proving. We examined the
source of errors from the formalization of natural
language and from proving based on such formal-
ization. We also examined the performance en-
hancements from pretraining on theorem proving
data, and offered a comprehensive comparison with
other techniques that highlights our model’s supe-
rior strengths. Our results underscore the potential
of integrating theorem proving frameworks with
LLMSs in advancing natural language reasoning.

Looking ahead, we aim to improve our method’s
ability to capture complex real-world situations, es-
pecially those filled with commonsense that’s hard
to express as symbols. One way to attack this prob-
lem might be to separate general knowledge repre-
sentation from logical reasoning. Furthermore, in
future work we would like to devise better ways to
exploit the reasoning abilities inherent in theorem
proving data. This will allow us to solve reasoning
tasks more effectively, given that this is a unique
resource that involves step-by-step logic and rea-
soning with a well-defined method of verifying the
correctness of an answer.



Limitations

Despite our promising results, our method encoun-
ters limitations when dealing with problems that
involve commonsense and factual reasoning. In
these cases, it is challenging to retrieve all the
necessary information and accurately represent it
in Lean’s formal language. Consider the MMLU
(Hendrycks et al., 2020) and SummEdits (Laban
et al., 2023) datasets as examples. MMLU requires
the model to possess extensive world knowledge
and problem-solving abilities, while SummEdits
involves determining consistency in summaries of
different edits. In both instances, the ability to
represent the complexity and nuance of real-world
knowledge in Lean is severely limited. Further
complications arise when dealing with math word
problems (Cobbe et al., 2021) and similar tasks
(Hendrycks et al., 2021), where the goal is to de-
rive a numeric solution rather than a proof. The
theorem proving approach, while effective for cer-
tifying the validity of logical reasoning, does not
directly yield a numerical answer, limiting its util-
ity in these scenarios. Lastly, our method grap-
ples with problems found in more complicated
theorem proving datasets like TheoremQA (Chen
et al., 2023a). These problems require advanced
understanding of natural language, alongside the
ability to formalize complex theorems into Lean.
Our current framework struggles with this level
of complexity, underscoring the need for more so-
phisticated formalization techniques and a deeper
integration between language understanding and
theorem proving.

Even in the context of symbolic problems, there
are challenges. For instance, consider a problem
from the LogicalDeduction task of the BigBench
dataset (Srivastava et al., 2022), involving the ar-
rangement of three books on a shelf: a black book,
an orange book, and a blue book. The problem
states that the blue book is to the right of the or-
ange book, and the orange book is to the right of the
black book. The question is to confirm whether the
black book is the leftmost. Although this problem
appears straightforward, employing Lean to solve
it is neither the most practical nor the most efficient
approach. Lean, as a theorem prover, is excellent in
abstract reasoning and proof construction, but when
faced with tasks involving constraints and variable
possibilities, it falls short. In this particular prob-
lem, using Lean would require us to formalize the
concepts of ordering and relative positioning. Even

after doing so, generating a proof would necessitate
significant manual labor and wouldn’t necessarily
yield a readily interpretable answer. In contrast,
a Constraint Satisfaction Problem (CSP) solver,
which is specifically designed to handle such prob-
lems, can effectively manage constraints like the
relative order of books and generate potential solu-
tions efficiently.

Ethical Considerations

Incorporating Lean’s theorem proving capabilities
into Large Language Models (LLMs) represents
a significant stride forward in the Al reasoning
domain. Our method has not only shown a remark-
able improvement in handling complex reasoning
tasks but also offers a layer of mathematical rigor
that bolsters the reliability of conclusions derived.
However, as we elevate the reasoning prowess of
LLMs, there’s an amplified potential for embedded
biases within the training data to manifest and mag-
nify. Especially in reasoning scenarios, this can
inadvertently lead to skewed logic or unintended
favoritism in areas of utmost sensitivity such as
medical diagnoses or legal interpretations. While
our method’s foundation in Lean’s theorem prov-
ing data acts as a rigorous check, complete reliance
on it is not foolproof. A proactive approach in re-
viewing both training data and model outcomes is
essential to uphold unbiased reasoning.

Our integration of Lean provides LLMs with
the unique advantage of elucidating detailed logi-
cal pathways, reinforcing the transparency of our
reasoning process. By tracing reasoning step by
step, it not only bolsters confidence in the derived
conclusions but also enhances the explainability of
these systems. Such transparency is vital in foster-
ing trust, especially when these models are used in
pivotal decision-making processes. This robustness
coupled with the broader societal implications of
advanced reasoning in LLMs underscores the ne-
cessity for ongoing ethical reflection and proactive
measures to address potential challenges.
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A Prompts for Formalization

A.1 Prompts for Proof Writer

In subsection 5.1, we discussed various formaliza-
tion approaches. In this section, we present the
results using the GPT-4 Base Comments method
on ProofWriter when the answer is False. As evi-
dent from the last line, the predicted outcome from
GPT-4 can be derived easily.

System Message:

You are a logician with background in

mathematics that translates natural language
reasoning text to Lean code so that these natural
language reasoning problems can be solved. During
the translation, please keep close attention to the
predicates and entities. There is an additional
requirement: I also want you to try to prove the
theorem you translated to Lean. If you can prove the
theorem, give me True at the end of the answer. If
you can prove the negation of the theorem, write
False at the end of the answer. If you can neither
prove whether the original theorem or the negation
of the theorem, please give me Unknown at the end of
the answer.

Input:

Textual context: The cat is blue. The cat is nice.
The cat likes the cow. The cat needs the cow. The
cat needs the rabbit. The cow does not need the
rabbit. The cow needs the tiger. The rabbit is
round. The tiger is nice. The tiger does not

like the cow. If someone likes the cat and they
chase the cat then they are blue. If someone

likes the cow and they are red then the cow is
round. If someone needs the tiger and they need
the cat then they do not chase the cow. If someone
needs the cat and the cat is blue then the cat is
red. If someone is round then they need the cat.
If someone likes the cat and the cat needs the
rabbit then the cat chases the tiger. If the rabbit
needs the tiger then the rabbit is not round.

Question: Based on the above information, is the
following statement true, false, or unknown? The
cow chases the cow.

Output:
universe u
constant obj Type u
Cat
Cow :
Rabbit
Tiger

constant
constant
constant
constant

obj
obj
obj
obj

constant
constant
constant
constant
constant
constant
constant

Blue
Nice
Likes
Needs
Round :
Red :
Chases

obj — Prop
obj — Prop
obj — obj — Prop
obj — obj — Prop
obj — Prop
obj — Prop

obj — obj — Prop

T1
T2
T3
T4
TS5
T6
T7

: Blue Cat
: Nice Cat
: Likes Cat Cow
: Needs Cat Cow
: Needs Cat Rabbit
— Needs Cow Rabbit
: Needs Cow Tiger
T8 Round Rabbit
T9 : Nice Tiger
T10 : — Likes Tiger Cow

axiom
axiom
axiom
axiom
axiom
axiom
axiom
axiom
axiom
axiom

If someone

then they are b
axiom R1 : V x obj,
Blue x

Likes x Cat A Chases x Cat —
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-— If someone likes the cow and they are red then
the cow is round
axiom R2 vV x obj,
Cow
—-— If someone needs the tiger and they need the cat
then they do not chase the cow
axiom R3 vV x obj, Needs x Tiger A Needs x Cat
— — Chases x Cow
If someone needs the cat
then the cat red
axiom R4 Vo x Needs
Red Cat
If someone 1is round then
axiom R5 vV x obj, Round x — Needs x Cat
If someone likes the cat and the cat needs the
rabbit then the cat chases the tiger
axiom R6 vV x obj, Likes x Cat A Needs Cat
Rabbit — Chases Cat Tiger
—-— If the rabbit needs the tiger then the rabbit is
not round
axiom R7 Vo x
Round Rabbit

Likes x Cow A Red x — Round

and the cat is blue
is
obj, x Cat A Blue Cat —

they need the cat

obj, Needs Rabbit Tiger — —

theorem cow_chases_cow Chases Cow Cow

begin
have H1 Needs Cow Tiger := T7,
have H2 Needs Cat Cow := T4,
have H3 — Chases Cow Cow := R3 Cow (and.intro
H1 H2),
contradiction,
sorry,
end

-— Looks like the theorem cannot be proven in Lean.
-— So let’s try to prove the negation of the
theorem, which is Cow does not chase Cow

theorem not_cow_chases_cow — Chases Cow Cow
begin

apply R3 Cow,

split,

exact T7,

apply R5,

apply R2 Cat,

split,

exact T3,

apply R4 Rabbit,

split,

apply RS,

exact T8,

exact T1,
end

—-— The negation of the theorem can be proven in
Lean. So
The answer 1is

False

A.2  Prompts used for FOLIO

For FOLIO, the prompts differ slightly from those
used for ProofWriter. Since FOLIO’s textual con-
text remains consistent across multiple questions,
we concatenate questions sharing the same context
and prompt the large language model in a single in-
stance. An illustrative example is provided below.

System Message:

You are a logician with background in

mathematics that translates natural language
reasoning text to Lean code so that these natural
language reasoning problems can be solved. During
the translation, please keep close attention to the
predicates and entities. There is an additional
requirement: I also want you to try to prove the
theorem you translated to Lean. If you can prove the
theorem, give me True at the end of the answer. If
you can prove the negation of the theorem, write
False at the end of the answer. If you can neither
prove whether the original theorem or the negation
of the theorem, please give me Unknown at the end of
the answer.

Input:
Textual
turkeys:

context: There are six types of wild
Eastern wild turkey, Osceola wild
turkey, ’Goulds wild turkey, ’Merriams wild
turkey, Rio Grande wild turkey, and Ocellated
wild turkey. Tom is not an Eastern wild turkey.
Tom is not an Osceola wild turkey. Tom is

also not a Gould’s wild turkey, or a

Merriam’s wild turkey, or a Rio Grande wild
turkey. Tom is a wild turkey.

Question 1: Based on the above information, is the
following statement true, false, or uncertain?
Tom is an Ocellated wild turkey.

Question 2: Based on the above information, is
following statement true, false, or uncertain?
Tom is an Eastern wild turkey.

Question 3: Based on the above information, is
following statement true, false, or uncertain?
Joey is a wild turkey.

the

the
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Output:
—— Introducing basic types for entities in our
universe.

constant Turkey Type
constant Tom Turkey
constant Joey Turkey

—-— Defining properties for the turkeys in our
universe.

constant is_wild_turkey Turkey — Prop

constant 1is_eastern_wild_turkey Turkey — Prop

constant 1is_osceola_wild_turkey Turkey — Prop

constant is_goulds_wild_turkey Turkey — Prop

constant is_merriams_wild_turkey Turkey — Prop

constant is_rio_grande_wild_turkey Turkey — Prop

constant is_ocellated_wild_turkey Turkey — Prop

—-- Context from the information

-— Tom is not an Eastern wild turkey.

axiom Al — 1is_eastern_wild_turkey Tom

Tom is not an Osceola wild turkey.

axiom A2 — is_osceola_wild_turkey Tom

Tom is also not a Gould’s wild turkey.

axiom A3 - is_goulds_wild_turkey Tom

Tom is not a Merriam’s wild turkey.

axiom A4 - is_merriams_wild_turkey Tom

Tom is not a Rio Grande wild turkey.

axiom A5 — is_rio_grande_wild_turkey Tom

Tom is a wild turkey.

axiom A6 is_wild_turkey Tom

—— There are six types of wild turkeys: Eastern
wild turkey, Osceola wild turkey, 'Goulds wild
turkey, 'Merriams wild turkey, Rio Grande wild
turkey, and Ocellated wild turkey.

axiom turkey_type_exclusivity vV o(t Turkey)
is_wild_turkey t — is_eastern_wild_turkey t V
is_osceola_wild_turkey t V
is_goulds_wild_turkey t V
is_merriams_wild_turkey t V
is_rio_grande_wild_turkey t V
is_ocellated_wild_turkey t

-— Formalizing the Questions

—— Question 1
- Tom is an Ocellated wild turkey.
-— Let’s first prove the positive case.
theorem tom_is_ocellated_wild_turkey
is_ocellated_wild_turkey Tom
begin
cases turkey_type_exclusivity Tom A6, {

have hl — is_eastern_wild_turkey Tom,
from Al,
contradiction,

oo A

cases h, {

have hl — is_osceola_wild_turkey
Tom, from A2,
contradiction,
b A
cases h, {
have hl - is_goulds_wild_turkey
Tom, from A3,




contradiction,
b A
cases h, {
have hl
is_merriams_wild_turkey Tom,
contradiction,
oo A
cases h, {
have hl
is_rio_grande_wild_turkey Tom, from A5,
contradiction,
b A
assumption,

-

from A4,

|

}

}

end
Let’s try the negative case.

theorem not_tom_is_ocellated_wild_turkey :
is_ocellated_wild_turkey Tom :=

begin
exact A2,

—— Ine answer 1s Un

—-— Question 2

i turkey.

-— L t prove the posit

theorem tom_is_eastern_wild_turkey :
is_eastern_wild_turkey Tom :=

ve case.

begin

sorry, —— ~ for proof
end

Let’s try negative case.

theorem not_tom_is_eastern_wild_turkey :
is_eastern_wild_turkey Tom :=

begin
exact Al,

—— The

answer

Question 3

Let’s fir prove the
theorem joey_is_wild_turkey :
begin

sorry,

positive case.

is_wild_turkey Joey :=

—— Placeholder for proof

negative case.

theorem not_joey_is_wild_turkey :
Joey :=

begin
sorry, —— Plac

— is_wild_turkey

end

B Example Errors During Formalization

This is an artificial example highlighting typical
errors encountered in the formalization stage.

Input:
There are three types of wild turkeys: Eastern
turkey, Osceola turkey, ’Goulds turkey. Tom is

neither an Eastern turkey nor an Osceola turkey.
Tom is a wild turkey. Bob is a Eastern turkey.
Bob weights 86 pounds and Tom weights 73 pounds.
Turkey either bites or stings.Bob bites. Eastern
turkey ’s bite would cause death.

Question 1:
Question 2:
Question 3:

Tom is a Gould’s turkey.
Bob is heavier than Tom.
If Bob bites you, you will die.

Output :

constant Turkey : Type

constant Eastern Osceola Goulds : Turkey — Prop
constant weight_86 weight_73 : Turkey — Prop
constant bites stings : Turkey — Prop

constant eastern_bite_causes_death : Turkey — Prop
constant Tom Bob : Turkey

axiom Al - Eastern Tom A — Osceola Tom

axiom A2 : Eastern Bob

axiom A3 : weight_86 Bob

axiom A4 : weight_73 Tom

axiom A5 : V (t : Turkey), bites t V stings t
axiom A6 : bites Bob

axiom A7 : V (t : Turkey),

eastern_bite_causes_death t
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There are a few errors in the above code, includ-
ing:

* There is a missing axiom that corresponds
to "There are three types of wild turkeys":
Goulds Tom V Eastern Tom \/ Osceola Tom

e The formalization of numbers is incorrect, it
should be: constant weight : Turkey — , ax-
iom A3 : weight Bob = 86, axiom A4 : weight
Tom =73

* The formalization of logic is incorrect,
it should be: (— bite_causes_death t N
bite_causes_itching t) V (bite_causes_death
A — bite_causes_itching t)

* There is an incorrect division of concepts that
would make the proving impossible, the cor-
rect version should be: V (¢ : Turkey), Eastern
t — bite_causes_death t




