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Abstract

Large Language Models (LLMs) frequently001
face challenges with complex reasoning tasks.002
A recent structured AI methodology ad-003
dresses this by distinctly dividing tasks into004
symbolic formalization, managed by LLMs,005
and problem-solving, conducted by symbolic006
solvers. While solvers like SymPy and Pyke007
prevent hallucinations, they often struggle with008
advanced reasoning tasks. This study addresses009
their limitations by leveraging the extensive rea-010
soning data in Lean, a programming language011
for theorem proving. Training a custom model012
using Lean’s rich theorem proving data greatly013
enhances our model’s reasoning capacity, al-014
lowing it to outperform traditional solvers. We015
achieve state-of-the-art result on FOLIO, a log-016
ical reasoning dataset, indicating the potential017
of our method for natural language reasoning.1018

1 Introduction019

Reasoning, a bedrock of intelligence and a core020

capability of humans, has long been a challeng-021

ing issue for machine learning systems, even for022

the latest, powerful large language models (LLMs).023

LLMs, despite their impressive abilities to under-024

stand and generate natural language, often fall short025

when dealing with complex reasoning tasks. They026

frequently suffer from "hallucinations", wherein027

the model makes statements or predictions not028

grounded in its inputs, leading to spurious results029

(Saparov and He, 2023; Dasgupta et al., 2022).030

Recent advances in AI have adopted a structured031

approach to tackling reasoning problems by split-032

ting them into symbolic formalization and problem-033

solving phases (He-Yueya et al., 2023; Pan et al.,034

2023; Ye et al., 2023). The formalization step is035

often handled by a large language model (LLM),036

while problem-solving is tackled by an out-of-the-037

box solver. In this approach, symbolic reasoning038

essentially acts as a rigorous checkpoint, ensuring039

1Our code and data will be released upon publication.

that the model outputs align with logical and factual 040

standards, thereby mitigating the issue of halluci- 041

nation. Here, solvers may range from being com- 042

pletely deterministic, like SymPy (He-Yueya et al., 043

2023), or rely on a combination of heuristics and 044

basic machine learning techniques, as is the case 045

with Pyke (Pan et al., 2023) and Z3 (Ye et al., 2023; 046

de Moura and Bjørner, 2008). While this approach 047

successfully addresses hallucinations, it still strug- 048

gles with more complex problems. The limitation 049

mainly lies in the capabilities of the solvers them- 050

selves; they lack the ability to extract and use the 051

vast wealth of reasoning data and information avail- 052

able in large language resources as LLMs do. This 053

absence of information integration leaves them un- 054

derpowered when dealing with intricate reasoning 055

tasks. 056

Serving as a powerful theorem prover and a 057

versatile programming language, Lean (de Moura 058

et al., 2015) presents a compelling solution to con- 059

nect symbolic reasoning with extensive linguistic 060

resources. Much like symbolic solvers, Lean has a 061

strict check system, ensuring each reasoning step is 062

certified. Every day, a substantial amount of code 063

is written in Lean, capturing reasoning “nuggets” 064

with step-by-step rationals that are useful for train- 065

ing LLMs. A few recent studies have already 066

tapped into Lean for automatic theorem proving 067

tasks (Polu et al., 2023; Han et al., 2022a; Lam- 068

ple et al., 2022), showing its potential in tackling 069

difficult reasoning challenges. 070

In this paper, we develop a Lean-based frame- 071

work to tackle natural language reasoning with 072

datasets such as ProofWriter (Tafjord et al., 2021) 073

and FOLIO (Han et al., 2022b). We use LLMs 074

to formalize these datasets into Lean’s formalized 075

language, and fine-tune a custom model on these 076

problems using a modest amount of data we col- 077

lected ourselves. Our contributions in this paper 078

are twofold. 079

• We show that incorporating theorem proving data 080
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in training a custom model achieves competitive081

performance with substantially less training data.082

This strategy outperforms conventional out-of-083

the-box solvers, especially when tackling more084

complex problems. The model also obtained085

state-of-the-art results on FOLIO.086

• We make available the training data gathered087

in this study, which includes 100 fully veri-088

fied formalization of natural language reasoning089

problems from ProofWriter to Lean, as well as090

27 similar translations from FOLIO. Addition-091

ally, we are releasing the corresponding theorem092

proofs for these problems.093

2 Problem Definition and Notation094

The underlying task we aim to solve is providing095

an answer to a natural query, where background096

natural language context is given, such that it would097

be possible to logically deduce the answer to the098

query based on the context. This task, referred099

to as natural language reasoning, along with our100

solution to it, consists of the following components:101

• Context, which represents natural language ut-102

terances, composing a set of rules and facts. For103

example: Hudson is a cat, all cats are animals,104

and cats often meow.105

• Question, which denotes the posed question. For106

example, Does Hudson often meow?107

• Options is an available set of answers (discrete108

categories) from which an answer can be chosen.109

For example, True, False or Unknown.110

• Formalized context is the formalization of the111

context in the underlying logical language, in our112

case, in Lean. For example, the formalized con-113

text for our example would be: axiom A1 is_cat114

Hudson, axiom A2 ∀x, is_cat x → is_animal x115

and axiom A3 ∀x, is_cat x → often_meow x.116

Formalized question: Given that Lean operates117

as a theorem prover, questions are transformed118

into dual theorems: one asserting the positive119

stance and the other negating it. For the given ex-120

ample, the formalized questions would be: Theo-121

rem hudson_often_meows: often_meow Hudson122

and Theorem not_hudson_often_meows: ¬ of-123

ten_meow Hudson.124

• Goal: In the Lean theorem proving context, a125

"goal" is a logical statement that needs to be126

proven true, given a set of axioms and rules.127

When we set out to answer a question using the128

Lean prover, this question (or its formalized rep- 129

resentation) becomes our root goal. As we apply 130

various Tactics to simplify or break down this 131

primary goal, we generate intermediate goals. 132

These intermediate goals can be thought of as 133

subproblems or sub-questions derived from the 134

primary question. The proof process in Lean is 135

essentially a journey from the root goal through 136

a series of intermediate goals until we reach a 137

point where all goals have been resolved based 138

on our axioms and rules. 139

For instance, using our earlier examples, 140

if the root goal is proving Theorem hud- 141

son_often_meows: often_meow Hudson, an in- 142

termediate goal might be proving that Hudson is 143

a cat. As we apply Tactics, we aim to resolve 144

each intermediate goal using our provided con- 145

text, gradually working our way towards proving 146

the root goal. Once all intermediate goals are ad- 147

dressed, we have effectively proven our root goal, 148

and the proof search concludes successfully. 149

• Tactics are instructions in the Lean theorem 150

prover language used to manipulate goals to ob- 151

tain a proof for a given goal. For example, apply 152

A3 Hudson is a tactic that uses modus ponens on 153

the Goal often_meow Hudson and transforms it 154

to a new Goal is_cat Hudson 155

A diagram of these components and the relations 156

between them is depicted in Figure 1. This proce- 157

dure is framed within the language of the Lean 158

theorem prover as a goal-satisfying process. 159

The environment we use for theorem proving 160

is Lean.2 Lean is an open source theorem prov- 161

ing programming language, originally developed 162

for mathematical theorem proving, with a vibrant 163

community support. Its current base includes over 164

100,000 theorems and 1,000,0000 lines of code.3 165

Lean can also be used as a generic theorem prover, 166

not necessarily in the area of mathematics. This is 167

the way we use it for our case. 168

3 Methodology 169

Our methodology is composed of four main com- 170

ponents: a formalizer, a tactic generator, a proof 171

search mechanism, and a result interpreter. The 172

formalizer converts context and question to formal- 173

ized context and formalized question. The tactic 174

2https://leanprover.github.io/.
3https://en.wikipedia.org/wiki/Lean_

(proof_assistant).
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Context, Question and Options

The cow is big. The cow likes the dog. The cow visits the dog. The dog needs the cow The cow needs the cow. If something visits the dog and the dog needs the cow then it

needs the cow. If the dog visits the cow then the cow visits the dog. If something needs the cow and the cow likes the dog then it likes the cow.

Question: Does the Cow like the Cow Options: True, False or Unknown

Likes Cow Cow

apply R4 apply R3 Cow

Needs Cat Cow ∧
Likes Cow Cat

Needs Cow Cow ∧
Likes Cow Dog

sorry

No Goals

......

split

Needs Cow Cow,
Likes Cow Dog

apply R1 Cow exact T5
Likes Cow Dog......

exact T2

No Goals

Tactic Generator + Proof Search

constant Cow: obj                         
constant Dog: obj                         
constant Cat: obj                         
constant Big: obj -> Prop             
constant Likes: obj->obj->Prop    
constant Needs obj->obj->Prop

axiom R1 : ∀ x : obj, Visits x Dog ∧ Needs Dog Cow → Needs x
Cow
axiom R2 : Visits Dog Cow → Visits Cow Dog
axiom R3 : ∀ x : obj, Needs x Cow ∧ Likes Cow Dog → Likes x Cow
axiom R4: ∀ x : obj, Needs Cat Cow ∧ Likes Cow Cat → Likes Cow
Cow

Theorem does_cow_like_cow : Likes Cow Cow

Formalizer

Exists Path
that found a proof

to the theorem 

Yes

No
Is this theorem

the positive version
of the question

Yes

No

Check every proof
path

Unknown

False True

Result Intepreter

axiom T1: Big Cow                       
axiom T2: Likes Cow Dog             
axiom T3: Visits Cow Dog             
axiom T4: Needs Dog Cow           
axiom T5: Needs Cow Cow   

Figure 1: An overview of our approach: The natural language context is first processed by the “formalizer”. It then
advances to the proof search stage, where all the orange tactics are generated by the “tactic generator”. Finally, the
outcome is interpreted by the “result interpreter”.

generator then generates tactics based on premises175

extracted from the formalized context. The proof176

search mechanism oversees tactic execution and177

goal expansion. Lastly, the result interpreter anal-178

yses the output of the proof search and identifies179

the correct answer in options. In this section, we180

provide detailed explanations of each component.181

3.1 Formalizer182

In this process of formalization, we used the Ope-183

nAI models text-davinci-003 (GPT-3) and GPT-4184

(OpenAI, 2023). For text-davinci-003, we followed185

the same prompting approach as Logic-LM (Pan186

et al., 2023) to separate the task specification and187

problems, thereby enabling the model to continue188

with the task of formalization through next-token-189

prediction. For GPT-4, we used similar prompts,190

but included the task specification in the system191

prompt.192

There is no definitive way to assert that a formal-193

ized result is correct since there is no deterministic194

Automated Theorem Prover (ATP) that can confirm195

the accuracy of formalization. However, the syntax196

of the formalized result can be checked, as correct197

syntax is a prerequisite for downstream theorem198

proving. If an error is encountered during compi-199

lation, we provide the error message generated by200

Lean along with the faulty formalization and ask201

the formalizer to reformulate the result. We further202

conduct manual inspections of the formalizer in §5.203

We note that we take a strict approach, and if the204

formalizer fails more than once, then the example 205

is counted as not being correctly solved. 206

3.2 Tactic Generator 207

The model we used for tactic generation is Re- 208

Prover (Yang et al., 2023). This model employs 209

retrieval mechanisms to explicitly select premises. 210

When provided with the current state of proof, this 211

generator retrieves a selected set of potentially use- 212

ful premises from formalized context and gener- 213

ates tactic using both the goal and the retrieved 214

premises. 215

The premise retrieval component of our process 216

draws from the Dense Passage Retriever (DPR) 217

(Karpukhin et al., 2020). Provided with a goal g 218

as the query and a set of candidate premises P , it 219

generates a ranked list of m premises from P . In 220

DPR, both g and P are treated as raw texts that are 221

embedded in a vector space. We then retrieve the 222

top m premises that maximize the cosine similarity 223

between the state and the premise. 224

The division of the problem-solving task into 225

premise selection and tactic generation simplifies 226

the process and facilitates easier troubleshooting. 227

It isolates the source of potential issues, be it in 228

the premise selection or the tactic generation, thus 229

reducing the complexity of the problem. This divi- 230

sion of duties also lightens the load for the tactic 231

generator by allowing it to concentrate solely on 232

its specific role, rather than grappling with the en- 233

tirety of the problem. An added advantage of this 234

3



approach is that it makes the system’s reasoning235

steps more transparent and understandable.236

As a baseline, we also prompt GPT-4 to generate237

proofs. When the answer aligns with the chosen238

theorem (say the chosen theorem is the positive239

stance of the question and the answer is YES), we240

present GPT-4 with the correct proof as part of241

the prompt. Conversely, if the answer does not242

align with the chosen option, signifying that the243

formalized theorem is unprovable, we still encour-244

age the model to engage in step-by-step reasoning,245

even though it will eventually hit a roadblock. In246

instances where the answer is UNKNOWN, imply-247

ing that neither option can be proven, we provide248

step-by-step reasoning prompts for each option, ac-249

knowledging that the process will not result in a250

definitive answer. An example of the prompt to251

GPT-4 can be found in Appendix A.1.252

3.3 Proof Search253

Different from the tactic generator module that gen-254

erates tactics, the proof search module controls the255

overall search process that selects tactics and main-256

tains states during proof construction. LeanDoJo257

(Yang et al., 2023), a recently released framework258

that enables interaction with Lean programmati-259

cally, provides the mechanism to check the validity260

of tactics and execute tactics.261

The search method involves building a proof tree,262

which incrementally evolves the goal through tac-263

tic invocations. This approach was first introduced264

in (Polu and Sutskever, 2020). LeanDoJo (Yang265

et al., 2023) subsequently provided an implemen-266

tation of this method, which we utilized for our267

study. As a reference, the middle part of Figure 1268

provides a practical illustration of this process. For269

each given proof goal, we explore 64 possible tac-270

tics, commencing from the root goal. All goals are271

maintained in a priority queue and are expanded272

based on cumulative log probabilities of the goal,273

defined as the summation of the log probabilities274

of the tactics that brought us to the goal from the275

root. This implies that we tend to expand those276

goals where our generative model has the highest277

global confidence. The resulting tendency is to-278

wards breadth-first exploration, as goals at greater279

depths have more parent tactics and hence a typ-280

ically higher cumulative log probability. During281

the search process, there are no restrictions on the282

length of the priority queue.283

To enhance search efficiency and circumvent po-284

tential loops, we have incorporated a mechanism 285

that stops the expansion of a node N if we have 286

already explored another node M with a state se- 287

quence that prefixes N . Essentially, if a current 288

goal or state being explored is a superset (or con- 289

tains all the elements) of a previously explored goal, 290

the current goal is not further expanded. This is 291

based on the observation that if we have already 292

assessed the potential paths and outcomes for a 293

specific goal, then exploring a more generalized 294

version of the same goal is redundant. Such a 295

mechanism avoids unnecessary repetitions, thereby 296

streamlining the search process and improving 297

overall efficiency. Moreover, we define a valid 298

proof as one that is devoid of “cheating” keywords 299

(such as “sorry”) that tell Lean to assume that the 300

current goal is completed, even though it hasn’t 301

been proven, meaning that every path containing 302

“cheating” keywords is disregarded. 303

Errors in the search process typically manifest in 304

two ways: a timeout or the exhaustion of nodes to 305

search. We have allocated a three-minute window 306

for each search, which is usually sufficient. We 307

provided more analysis of the errors made by tactic 308

generator in the experiment section. 309

3.4 Interpreting Results 310

For options that include “Unknown”, we only re- 311

gard the result as correct if no other options can be 312

proven. All datasets investigated in this study have 313

questions with only one correct option among the 314

choices. Consequently, if the proof system verifies 315

more than one option, the response is immediately 316

marked as incorrect. 317

4 Experimental Setup 318

We now describe our experimental setup: the 319

datasets we used, our model training and our base- 320

lines. 321

4.1 Datasets 322

In our evaluation, we use as a testbed two common 323

logical reasoning datasets: 324

ProofWriter: This deductive logical reasoning 325

dataset presents problems in an intuitive language 326

form. We incorporated the Open-World Assump- 327

tion (OWA) subset as per (Pan et al., 2023), where 328

each instance is characterized by a (problem, goal) 329

pairing, and labels can be categorized as TRUE, 330

FALSE, or UNKNOWN. It encompasses five seg- 331

ments based on the required reasoning depth: 0, 332
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≤ 1, ≤ 2, ≤ 3, and ≤ 5 hops. Our focus is the333

depth-5 subset, which is the most challenging one.334

To get a fair comparison against Logic-LM, we335

used the same 600 sample tests, ensuring an even336

label distribution.337

FOLIO: Unlike ProofWriter, FOLIO is con-338

structed using intricate first-order logic, increas-339

ing the complexity of the proving part. Beyond340

just the logic, the formalization for FOLIO is also341

challenging. The dataset presents problems in a342

more natural and intricate wording, with relation-343

ships that are considerably more complex. Such a344

combination of advanced logic and rich linguistic345

structure renders the formalization task in FOLIO346

substantially tougher than in ProofWriter. For our347

analysis, we turned to the entire FOLIO test set,348

encompassing 204 examples.349

4.2 Model Training350

Regarding the data for model training, we collected351

100 theorem proofs for ProofWriter, where each352

problem’s proof was either manually annotated or353

collected from successful proofs generated by GPT-354

4. A similar approach was employed with FOLIO,355

albeit with 27 theorems. The data collection took356

about two days.357

The pre-training model structure we adopted was358

the same as used in the ReProver paper, namely359

Google’s Byte-T5 (Xue et al., 2022). We also ex-360

perimented with the pre-trained ReProver from Le-361

anDoJo (Yang et al., 2023), which was pre-trained362

on mathlib 3. The fine-tuning on our collected data363

took about six hours on one A100 40G.364

4.3 Baselines365

For all of our experiments, we tested reasoning366

ability against textual input to GPT-4. When bench-367

marking against GPT-4 for all datasets, we strived368

to leverage prompts from previous work to the369

greatest extent possible. Our principal focus was370

GPT-4’s chain-of-thought (CoT) output.371

For our own formalization, we use three exam-372

ples as prompts for both ProofWriter and FOLIO.373

Because FOLIO uses the same context for different374

questions, we use a multi-question-style prompt for375

FOLIO where each prompt contains multiple ques-376

tions, an example can be found in Appendix A.2.377

For ProofWriter and FOLIO, we also compared378

our results against Logic-LM (Pan et al., 2023).379

Given that Z3 can also be used within Lean for380

problem-solving, we also employed Z3 on our for-381

malized context using lean-smt package (Mohamed382

et al., 2022), which servers as a comparison against 383

SATLM (Ye et al., 2023). In addition, our findings 384

were compared with other benchmark on these two 385

datasets. 386

5 Results 387

We describe the results of our experiments: an 388

analysis of the formalization module, a description 389

of how to improve the tactic generator module and 390

a comparison of our work against the baselines. 391

5.1 Analysis of Formalization 392

To discern whether errors arise during the formal- 393

ization or proving stages, and to pinpoint the exact 394

mistakes in the formalization process, we prompted 395

the LLM to formalize a selection of 100 questions 396

from ProofWriter’s validation set and 40 questions 397

from FOLIO’s training set and manually examined 398

them. These findings can be viewed in Table 1. 399

Only those formalizations that correctly captured 400

every fact, axiom, and rule were counted as accu- 401

rate. The striking accuracy on ProofWriter can be 402

attributed to its simpler language structure com- 403

pared to FOLIO. In the case of FOLIO, using a 404

large language model for formalization helped in 405

filtering out unnecessary details from the natural 406

language context, making it easier to understand 407

the essence of the problem and do reasoning. We 408

have illustrated typical GPT-4 formalization mis- 409

takes in B, using a composite sample derived from 410

various error instances. Interestingly, Lean’s for- 411

malization accuracy aligns closely with both Prolog 412

and FOL in Logic-LM. This consistency under- 413

scores Lean’s versatility, allowing it to uniformly 414

represent both problem types. 415

We observed improved results when formalized 416

code was paired with descriptive textual comments 417

sourced from the context. This approach split the 418

formalization task into two: 1) linking textual input 419

with formalized code and 2) generating formalized 420

code based on the prior textual comment. These 421

textual cues acted as a bridge between raw text and 422

formalized code, aiding the underlying computa- 423

tion processes. 424

It is important to highlight that the compilation 425

errors in the formalized Lean code were straight- 426

forward to correct. When issues arise during the 427

Lean building process, we present the error mes- 428

sage and the original formalized Lean code to LLM 429

for re-formalization. If the subsequent attempt is 430

unsuccessful, we simply categorize it as incorrect. 431
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Model ProofWriter FOLIO
Formalize Prove Total Formalize Prove Total

GPT-4 Base 94% 15% 80% 60% 10% 35%
GPT-4 Base Comments 99% - 80% 75% - 35%
GPT-4 Base Separate - 5% 75% - 10% 40%
GPT-3 Base Comments 77% 12% 63% 45% 10% 35%
Logic-LM 98% 75.5% 74% 65% 69.2% 55%

Table 1: Formalization, Proof, and Total accuracies for ProofWriter and FOLIO using the OpenAI language model
API. ’Base Comments’ provide annotations before each line of formalized code. In ’Base Separate’, formalization
and proof are segmented into two distinct prompts, reducing the workload on the LLM. For Logic-LM, proof
accuracy is determined from correctly formalized problems, while total accuracy is calculated on all problems. For
simplicity, we did not use the self-refinement technique when evaluating Logic-LM

The distinction in performance between GPT-3432

and GPT-4 is evident. While the formalization for433

simple concepts is the same, GPT-3 struggles with434

intricate logic, highlighting its limitations. As such,435

we opted not to use GPT-3 in further tests.436

The proof accuracy section of the table is deter-437

mined by whether the generated proof can compile438

successfully in Lean. If the formalization of ques-439

tion to theorem is correct and the proof can be com-440

piled without any error or warning, then we can441

be confident that the proof is valid. However, the442

accuracy of generated proof is very low. This could443

be due to overloading large language model with444

tasks, making it difficult to complete both on a sin-445

gle prompt. We attempted to separate formalization446

and proof, but the outcome remained disappointing,447

indicating GPT-3 and GPT-4’s inability to perform448

proving tasks. Interestingly, the proof accuracy of449

Logic-LM wasn’t as high as we expected. Upon450

replicating their code, we found the chosen solver451

Pyke to be suboptimal, struggling to identify an452

answer when multiple search paths are available453

and some could result in loops.454

Despite the inaccuracies in most of GPT-4’s455

proofs, it achieved a high accuracy rate for final456

choices on ProofWriter (as shown in Total column).457

We believe this may be due to GPT-4’s training458

exposure to it, potentially leading to a degree of459

memorization.460

5.2 Enhanced Proving461

In this section, we focus on training custom Re-462

Prover models to do tactic generation using our463

annotated training data. To isolate the impact of464

the tactic generator, we used all the accurate formal-465

izations from the previous subsection. This gave us466

99 test examples for ProofWriter and 14 for FOLIO.467

Furthermore, we annotated an additional 100 fully468

correct samples from the ProofWriter training set 469

and 27 from the FOLIO training set. All findings 470

are detailed in Table 2. 471

We first compare the results on premise selec- 472

tion, using the metrics recall@1 and recall@4.The 473

recall@k metric is defined by the ratio of ground 474

truth premises intersecting with the top predicted 475

premises to the total number of correct premises, 476

represented as: 477

recall@k =
|GT_Prem ∩ Pred_Prem[0 : k]|

|GT_Prem|
. 478

It is clear that relying on ReProver trained solely 479

with math data yielded suboptimal results. This 480

can be attributed to the limited set of tactics avail- 481

able for both ProofWriter and FOLIO. While these 482

datasets have a confined tactic range, the model 483

frequently makes mistakes by attempting to use 484

other, unrelated tactics. The ReProver fine-tuning 485

outperformed T5 fine-tuning in terms of overall 486

results. Furthermore, the accuracy for FOLIO were 487

noticeably poorer than those for ProofWriter. This 488

disparity is likely due to FOLIO’s intricate logic 489

and its need for a broader array of first-order-logic 490

tactics such as cases, have, and contradiction. In 491

contrast, ProofWriter primarily employs tactics like 492

apply, exact, and split. 493

We proceeded to evaluate the overall proof 494

results. Consistently, the ReProver fine-tuning 495

model trained on math theorem proving data out- 496

performed other approaches for both ProofWriter 497

and FOLIO datasets. This advantage can be at- 498

tributed to the limited data available for fine-tuning 499

our tactic generator, thus highlighting the bene- 500

fits of our approach. While the premise selector 501

benefits from distinct cues and a limited range of 502

choices, the realm of tactic generation is much 503

broader. This vastness of options renders the Re- 504
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Model
ProofWriter FOLIO

Premise Selection Proof Premise Selection Proof
Rec@1 Rec@4 Acc Rec@1 Rec@4 Acc

GPT-4 baseline N/A 15% N/A 10%
ReProver baseline 56.2% 81.3% 0% 23.5% 38.2% 0%
T5 fine-tuned 62.5% 100% 99% 54.8% 95.2% 71.4%
ReProver fine-tuned 75% 100% 99% 71.4% 96.8% 85.7%

Table 2: Recall@k for premise selection and overall proof accuracy across various tactic generator, encompassing
the entire process from premise selection to tactic generation and proof search. We did not compute the Premise
Selection accuracy for the GPT-4 baseline because prompting GPT-4 to select premises using Lean goals is
challenging and is a primary concern in this context

Method Acc
Abs Biases (Gontier et al., 2022) 80.6%
MetaInduce (Yang et al., 2022) 98.6%
RECKONING (Chen et al., 2023b) 99.8%
GPT-4 CoT (Pan et al., 2023) 68.1%
Logic-LM (Pan et al., 2023) 79.3%
T5 fine-tuned 95.8%
ReProver fine-tuned 98.3%

Table 3: Accuracy with different methods on
ProofWriter. Abs Biases stands for Abstraction Induc-
tive Biases

Model Acc
Codex (Han et al., 2022b) 56.0%
FOLNet (Chen, 2023) 70.6%
GPT-4 CoT (Pan et al., 2023) 70.6%
Logic-LM (Pan et al., 2023) 74.5%
Lean Z3 (SATLM) 77.5%
T5 fine-tuned 66.2%
ReProver fine-tuned 78.4%

Table 4: Accuracy comparisons across different meth-
ods for the FOLIO dataset. The Codex baseline employs
an 8-shot prompt. The result from ’Lean Z3’ is derived
from lean-smt applied to formalized Lean Code

Prover baseline’s proof accuracy nearly negligible.505

But other than that, there is a strong correlation506

between premise selection accuracy and overall507

proof accuracy. While the benefits of a pre-trained508

ReProver baseline may not be as noticeable for sim-509

pler datasets like ProofWriter, its value becomes510

evident for more complex datasets, such as FOLIO.511

5.3 Comparing Against Other Baselines512

Having demonstrated that fine-tuning on pre-513

trained math theorem models yields superior per-514

formance, we proceed to benchmark our results515

against established baselines for both ProofWriter 516

and FOLIO. The evaluation uses the same set of 517

600 problems from the ProofWriter paper, in addi- 518

tion to the entire FOLIO test set. Given the smaller 519

test set used in the preceding section, it is of inter- 520

est to also compare our approach with the model 521

not pre-trained on theorem proving data on this 522

larger set. Subsequently, we conduct an analysis of 523

the errors made by the tactic generator in both the 524

FOLIO and ProofWriter, exploring the reason our 525

approach outperforms others. 526

As illustrated in Table 3, our approach yields re- 527

sults comparable to state-of-the-art methods for the 528

ProofWriter dataset. While other methods except 529

Logic-LM use the entire training set of ProofWriter, 530

our approach relies on just 100 examples, under- 531

scoring the efficiency of our method. 532

Table 4 presents our performance on the FOLIO 533

dataset. For a balanced comparison with SATLM, 534

which utilizes the Z3 solver, we used the lean-smt 535

tool 4 on our formalized Lean code. This tool pro- 536

duces outcomes in the form of “sat/unsat”. In Z3, 537

“sat” stands for “satisfiable.” When Z3 returns “sat” 538

as the result, it means that there exists an assign- 539

ment (a set of variable values) that makes the theo- 540

rem true, which basically means the answer to the 541

original question is True. “unsat” Stands for “unsat- 542

isfiable”. When Z3 returns “unsat”, it means that 543

there is no possible assignment that can make the 544

formula true. In other words, the formula is inher- 545

ently contradictory and cannot be satisfied under 546

any circumstance. We interpret these results sim- 547

ilarly to “found a proof/didn’t find a proof” using 548

our result interpreter. It’s worth noting that there 549

can be instances where a problem is inaccurately 550

formalized because the formalization accuracy on 551

FOLIO is lower than on ProofWriter. If the answer 552

4https://github.com/ufmg-smite/lean-smt
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to the problem being formalized is unknown, this553

can inadvertently skew the model’s performance,554

making it seem better than it truly is becasue our555

model can’t prove neither the positive stance nor556

the negative stance of the problem. Nevertheless,557

to the best of our knowledge, our approach sets a558

new benchmark on the FOLIO dataset.559

There are two types of error that occur during560

our proving process: timeout errors and running561

out of goals errors. The former arises when the562

time set for tactic generation and proof search is563

exhausted, while the latter occurs when generated564

tactics have errors, either due to syntactic invalidity565

or inability to be executed given the current goal,566

making them unprocessable by LeanDoJo. The567

likelihood of each error type can be influenced568

by the chosen beam size during the proof search.569

Our current approach utilizes a beam size of 64,570

meaning we generate 64 tactics for every goal we571

come across. At present, 81.8% of the errors from572

the ReProver fine-tuned model and 85.5% from the573

T5 fine-tuned model stem from timeouts. While574

a thorough inspection of every out-of-nodes error575

hasn’t been conducted, a significant portion seems576

to arise from incorrect formalization.577

6 Related Work578

Several past studies (Chen, 2023; Creswell and579

Shanahan, 2022; Chen et al., 2023b) used neuro-580

symbolic methods to augment neural networks with581

symbolic reasoning. Many of these approaches582

grapple with constraints like the necessity for cus-583

tom or specialized module designs that lack broad584

applicability. Recent work (Pan et al., 2023; Ye585

et al., 2023; Poesia et al., 2023) presents an adapt-586

able framework that melds contemporary LLMs587

with symbolic logic, bypassing the need to train or588

craft intricate modules tailored for specific prob-589

lems. While our research aligns with these, we do590

not exclusively rely on ready-made solvers.591

A common method to boost the reasoning skills592

of Large Language Models (LLMs) is by training593

them on data that requires some form of inference.594

As noted by (Lewkowycz et al., 2022), LLMs that595

are trained on data filled with science and math data596

do better on tasks that require reasoning, especially597

when using CoT prompting. Other work (Fu and598

Khot, 2022; Fu et al., 2023) suggests that LLMs get599

their advanced reasoning capabilities from being600

trained on code. This work is a natural extension601

of this idea to theorem proving data.602

LLMs’ intersection with theorem proving has re- 603

cently become an important topic in NLP. Although 604

some studies delve into various theorem provers 605

(Polu and Sutskever, 2020; Jiang et al., 2023), a 606

consistent focus has been observed around Lean. 607

A distinct advantage of Lean is its array of open- 608

source tools (Yang et al., 2023) which simplify data 609

collection and enable easy interaction with external 610

tools. Predominant research on theorem proving 611

with Lean encompasses strategies such as harness- 612

ing intricate proving artifact as seen in (Han et al., 613

2022a), resorting to curriculum learning (Polu et al., 614

2023) which capitalizes on theorem provers’ ability 615

to verify proofs to generate more training data, and 616

high-level planning reminiscent of the tactics used 617

by AlphaGo as detailed by Lample et al. (2022). 618

For future work, we posit that these methodolo- 619

gies could potentially be repurposed for natural 620

language reasoning. 621

7 Conclusion 622

We augmented LLMs with reasoning capabilities 623

by integrating into them Lean, a theorem proving 624

programming language, originally developed for 625

mathematical theorem proving. We examined the 626

source of errors from the formalization of natural 627

language and from proving based on such formal- 628

ization. We also examined the performance en- 629

hancements from pretraining on theorem proving 630

data, and offered a comprehensive comparison with 631

other techniques that highlights our model’s supe- 632

rior strengths. Our results underscore the potential 633

of integrating theorem proving frameworks with 634

LLMs in advancing natural language reasoning. 635

Looking ahead, we aim to improve our method’s 636

ability to capture complex real-world situations, es- 637

pecially those filled with commonsense that’s hard 638

to express as symbols. One way to attack this prob- 639

lem might be to separate general knowledge repre- 640

sentation from logical reasoning. Furthermore, in 641

future work we would like to devise better ways to 642

exploit the reasoning abilities inherent in theorem 643

proving data. This will allow us to solve reasoning 644

tasks more effectively, given that this is a unique 645

resource that involves step-by-step logic and rea- 646

soning with a well-defined method of verifying the 647

correctness of an answer. 648
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Limitations649

Despite our promising results, our method encoun-650

ters limitations when dealing with problems that651

involve commonsense and factual reasoning. In652

these cases, it is challenging to retrieve all the653

necessary information and accurately represent it654

in Lean’s formal language. Consider the MMLU655

(Hendrycks et al., 2020) and SummEdits (Laban656

et al., 2023) datasets as examples. MMLU requires657

the model to possess extensive world knowledge658

and problem-solving abilities, while SummEdits659

involves determining consistency in summaries of660

different edits. In both instances, the ability to661

represent the complexity and nuance of real-world662

knowledge in Lean is severely limited. Further663

complications arise when dealing with math word664

problems (Cobbe et al., 2021) and similar tasks665

(Hendrycks et al., 2021), where the goal is to de-666

rive a numeric solution rather than a proof. The667

theorem proving approach, while effective for cer-668

tifying the validity of logical reasoning, does not669

directly yield a numerical answer, limiting its util-670

ity in these scenarios. Lastly, our method grap-671

ples with problems found in more complicated672

theorem proving datasets like TheoremQA (Chen673

et al., 2023a). These problems require advanced674

understanding of natural language, alongside the675

ability to formalize complex theorems into Lean.676

Our current framework struggles with this level677

of complexity, underscoring the need for more so-678

phisticated formalization techniques and a deeper679

integration between language understanding and680

theorem proving.681

Even in the context of symbolic problems, there682

are challenges. For instance, consider a problem683

from the LogicalDeduction task of the BigBench684

dataset (Srivastava et al., 2022), involving the ar-685

rangement of three books on a shelf: a black book,686

an orange book, and a blue book. The problem687

states that the blue book is to the right of the or-688

ange book, and the orange book is to the right of the689

black book. The question is to confirm whether the690

black book is the leftmost. Although this problem691

appears straightforward, employing Lean to solve692

it is neither the most practical nor the most efficient693

approach. Lean, as a theorem prover, is excellent in694

abstract reasoning and proof construction, but when695

faced with tasks involving constraints and variable696

possibilities, it falls short. In this particular prob-697

lem, using Lean would require us to formalize the698

concepts of ordering and relative positioning. Even699

after doing so, generating a proof would necessitate 700

significant manual labor and wouldn’t necessarily 701

yield a readily interpretable answer. In contrast, 702

a Constraint Satisfaction Problem (CSP) solver, 703

which is specifically designed to handle such prob- 704

lems, can effectively manage constraints like the 705

relative order of books and generate potential solu- 706

tions efficiently. 707

Ethical Considerations 708

Incorporating Lean’s theorem proving capabilities 709

into Large Language Models (LLMs) represents 710

a significant stride forward in the AI reasoning 711

domain. Our method has not only shown a remark- 712

able improvement in handling complex reasoning 713

tasks but also offers a layer of mathematical rigor 714

that bolsters the reliability of conclusions derived. 715

However, as we elevate the reasoning prowess of 716

LLMs, there’s an amplified potential for embedded 717

biases within the training data to manifest and mag- 718

nify. Especially in reasoning scenarios, this can 719

inadvertently lead to skewed logic or unintended 720

favoritism in areas of utmost sensitivity such as 721

medical diagnoses or legal interpretations. While 722

our method’s foundation in Lean’s theorem prov- 723

ing data acts as a rigorous check, complete reliance 724

on it is not foolproof. A proactive approach in re- 725

viewing both training data and model outcomes is 726

essential to uphold unbiased reasoning. 727

Our integration of Lean provides LLMs with 728

the unique advantage of elucidating detailed logi- 729

cal pathways, reinforcing the transparency of our 730

reasoning process. By tracing reasoning step by 731

step, it not only bolsters confidence in the derived 732

conclusions but also enhances the explainability of 733

these systems. Such transparency is vital in foster- 734

ing trust, especially when these models are used in 735

pivotal decision-making processes. This robustness 736

coupled with the broader societal implications of 737

advanced reasoning in LLMs underscores the ne- 738

cessity for ongoing ethical reflection and proactive 739

measures to address potential challenges. 740
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A Prompts for Formalization 880

A.1 Prompts for ProofWriter 881

In subsection 5.1, we discussed various formaliza- 882

tion approaches. In this section, we present the 883

results using the GPT-4 Base Comments method 884

on ProofWriter when the answer is False. As evi- 885

dent from the last line, the predicted outcome from 886

GPT-4 can be derived easily. 887
888

System Message: 889
You are a logician with background in 890
mathematics that translates natural language 891
reasoning text to Lean code so that these natural 892
language reasoning problems can be solved. During 893
the translation, please keep close attention to the 894
predicates and entities. There is an additional 895
requirement: I also want you to try to prove the 896
theorem you translated to Lean. If you can prove the 897
theorem, give me True at the end of the answer. If 898
you can prove the negation of the theorem, write 899
False at the end of the answer. If you can neither 900
prove whether the original theorem or the negation 901
of the theorem, please give me Unknown at the end of 902
the answer. 903

904
905

Input: 906
Textual context: The cat is blue. The cat is nice. 907
The cat likes the cow. The cat needs the cow. The 908
cat needs the rabbit. The cow does not need the 909
rabbit. The cow needs the tiger. The rabbit is 910
round. The tiger is nice. The tiger does not 911
like the cow. If someone likes the cat and they 912
chase the cat then they are blue. If someone 913
likes the cow and they are red then the cow is 914
round. If someone needs the tiger and they need 915
the cat then they do not chase the cow. If someone 916
needs the cat and the cat is blue then the cat is 917
red. If someone is round then they need the cat. 918
If someone likes the cat and the cat needs the 919
rabbit then the cat chases the tiger. If the rabbit 920
needs the tiger then the rabbit is not round. 921

922
Question: Based on the above information, is the 923
following statement true, false, or unknown? The 924
cow chases the cow. 925926

927
Output: 928
universe u 929

930
constant obj : Type u 931

932
constant Cat : obj 933
constant Cow : obj 934
constant Rabbit : obj 935
constant Tiger : obj 936

937
constant Blue : obj → Prop 938
constant Nice : obj → Prop 939
constant Likes : obj → obj → Prop 940
constant Needs : obj → obj → Prop 941
constant Round : obj → Prop 942
constant Red : obj → Prop 943
constant Chases : obj → obj → Prop 944

945
axiom T1 : Blue Cat 946
axiom T2 : Nice Cat 947
axiom T3 : Likes Cat Cow 948
axiom T4 : Needs Cat Cow 949
axiom T5 : Needs Cat Rabbit 950
axiom T6 : ¬ Needs Cow Rabbit 951
axiom T7 : Needs Cow Tiger 952
axiom T8 : Round Rabbit 953
axiom T9 : Nice Tiger 954
axiom T10 : ¬ Likes Tiger Cow 955

956
-- If someone likes the cat and they chase the cat 957

then they are blue 958
axiom R1 : ∀ x : obj, Likes x Cat ∧ Chases x Cat → 959

Blue x 960
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-- If someone likes the cow and they are red then961
the cow is round962

axiom R2 : ∀ x : obj, Likes x Cow ∧ Red x → Round963
Cow964

-- If someone needs the tiger and they need the cat965
then they do not chase the cow966

axiom R3 : ∀ x : obj, Needs x Tiger ∧ Needs x Cat967
→ ¬ Chases x Cow968

-- If someone needs the cat and the cat is blue969
then the cat is red970

axiom R4 : ∀ x : obj, Needs x Cat ∧ Blue Cat →971
Red Cat972

-- If someone is round then they need the cat973
axiom R5 : ∀ x : obj, Round x → Needs x Cat974
-- If someone likes the cat and the cat needs the975

rabbit then the cat chases the tiger976
axiom R6 : ∀ x : obj, Likes x Cat ∧ Needs Cat977

Rabbit → Chases Cat Tiger978
-- If the rabbit needs the tiger then the rabbit is979

not round980
axiom R7 : ∀ x : obj, Needs Rabbit Tiger → ¬981

Round Rabbit982
983
984

theorem cow_chases_cow : Chases Cow Cow :=985
begin986

have H1 : Needs Cow Tiger := T7,987
have H2 : Needs Cat Cow := T4,988
have H3 : ¬ Chases Cow Cow := R3 Cow (and.intro989

H1 H2),990
contradiction,991
sorry,992

end993
994

-- Looks like the theorem cannot be proven in Lean.995
-- So let’s try to prove the negation of the996

theorem, which is Cow does not chase Cow997
998

theorem not_cow_chases_cow : ¬ Chases Cow Cow :=999
begin1000

apply R3 Cow,1001
split,1002
exact T7,1003
apply R5,1004
apply R2 Cat,1005
split,1006
exact T3,1007
apply R4 Rabbit,1008
split,1009
apply R5,1010
exact T8,1011
exact T1,1012

end1013
1014

-- The negation of the theorem can be proven in1015
Lean. So1016

-- The answer is False10171018

A.2 Prompts used for FOLIO1019

For FOLIO, the prompts differ slightly from those1020

used for ProofWriter. Since FOLIO’s textual con-1021

text remains consistent across multiple questions,1022

we concatenate questions sharing the same context1023

and prompt the large language model in a single in-1024

stance. An illustrative example is provided below.1025
1026

System Message:1027
You are a logician with background in1028
mathematics that translates natural language1029
reasoning text to Lean code so that these natural1030
language reasoning problems can be solved. During1031
the translation, please keep close attention to the1032
predicates and entities. There is an additional1033
requirement: I also want you to try to prove the1034
theorem you translated to Lean. If you can prove the1035
theorem, give me True at the end of the answer. If1036
you can prove the negation of the theorem, write1037
False at the end of the answer. If you can neither1038
prove whether the original theorem or the negation1039
of the theorem, please give me Unknown at the end of1040
the answer.1041

1042
Input: 1043
Textual context: There are six types of wild 1044
turkeys: Eastern wild turkey, Osceola wild 1045
turkey, ’Goulds wild turkey, ’Merriams wild 1046
turkey, Rio Grande wild turkey, and Ocellated 1047
wild turkey. Tom is not an Eastern wild turkey. 1048
Tom is not an Osceola wild turkey. Tom is 1049
also not a Gould’s wild turkey, or a 1050
Merriam’s wild turkey, or a Rio Grande wild 1051
turkey. Tom is a wild turkey. 1052

1053
Question 1: Based on the above information, is the 1054
following statement true, false, or uncertain? 1055
Tom is an Ocellated wild turkey. 1056
Question 2: Based on the above information, is the 1057
following statement true, false, or uncertain? 1058
Tom is an Eastern wild turkey. 1059
Question 3: Based on the above information, is the 1060
following statement true, false, or uncertain? 1061
Joey is a wild turkey. 10621063

1064
Output: 1065
-- Introducing basic types for entities in our 1066

universe. 1067
constant Turkey : Type 1068
constant Tom : Turkey 1069
constant Joey : Turkey 1070

1071
-- Defining properties for the turkeys in our 1072

universe. 1073
constant is_wild_turkey : Turkey → Prop 1074
constant is_eastern_wild_turkey : Turkey → Prop 1075
constant is_osceola_wild_turkey : Turkey → Prop 1076
constant is_goulds_wild_turkey : Turkey → Prop 1077
constant is_merriams_wild_turkey : Turkey → Prop 1078
constant is_rio_grande_wild_turkey : Turkey → Prop 1079
constant is_ocellated_wild_turkey : Turkey → Prop 1080

1081
-- Context from the information 1082

1083
-- Tom is not an Eastern wild turkey. 1084
axiom A1 : ¬ is_eastern_wild_turkey Tom 1085
-- Tom is not an Osceola wild turkey. 1086
axiom A2 : ¬ is_osceola_wild_turkey Tom 1087
-- Tom is also not a Gould’s wild turkey. 1088
axiom A3 : ¬ is_goulds_wild_turkey Tom 1089
-- Tom is not a Merriam’s wild turkey. 1090
axiom A4 : ¬ is_merriams_wild_turkey Tom 1091
-- Tom is not a Rio Grande wild turkey. 1092
axiom A5 : ¬ is_rio_grande_wild_turkey Tom 1093
-- Tom is a wild turkey. 1094
axiom A6 : is_wild_turkey Tom 1095
-- There are six types of wild turkeys: Eastern 1096

wild turkey, Osceola wild turkey, ’Goulds wild 1097
turkey, ’Merriams wild turkey, Rio Grande wild 1098
turkey, and Ocellated wild turkey. 1099

axiom turkey_type_exclusivity : ∀ (t : Turkey), 1100
is_wild_turkey t → is_eastern_wild_turkey t ∨ 1101
is_osceola_wild_turkey t ∨ 1102
is_goulds_wild_turkey t ∨ 1103
is_merriams_wild_turkey t ∨ 1104
is_rio_grande_wild_turkey t ∨ 1105
is_ocellated_wild_turkey t 1106

1107
-- Formalizing the Questions 1108

1109
-- Question 1 1110
-- Tom is an Ocellated wild turkey. 1111
-- Let’s first prove the positive case. 1112
theorem tom_is_ocellated_wild_turkey : 1113

is_ocellated_wild_turkey Tom := 1114
begin 1115

cases turkey_type_exclusivity Tom A6, { 1116
have h1 : ¬ is_eastern_wild_turkey Tom, 1117

from A1, 1118
contradiction, 1119

}, { 1120
cases h, { 1121

have h1 : ¬ is_osceola_wild_turkey 1122
Tom, from A2, 1123

contradiction, 1124
}, { 1125

cases h, { 1126
have h1 : ¬ is_goulds_wild_turkey 1127

Tom, from A3, 1128
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contradiction,1129
}, {1130

cases h, {1131
have h1 : ¬1132

is_merriams_wild_turkey Tom, from A4,1133
contradiction,1134

}, {1135
cases h, {1136

have h1 : ¬1137
is_rio_grande_wild_turkey Tom, from A5,1138

contradiction,1139
}, {1140

assumption,1141
}1142

}1143
}1144

}1145
}1146

end1147
1148

-- Let’s try the negative case.1149
1150

theorem not_tom_is_ocellated_wild_turkey : ¬1151
is_ocellated_wild_turkey Tom :=1152

begin1153
exact A2,1154

end1155
1156

-- The answer is Unknown1157
1158

-- Question 21159
-- Tom is an Eastern wild turkey.1160
-- Let’s first prove the positive case.1161
theorem tom_is_eastern_wild_turkey :1162

is_eastern_wild_turkey Tom :=1163
begin1164

sorry, -- Placeholder for proof1165
end1166

1167
-- Let’s try the negative case.1168

1169
theorem not_tom_is_eastern_wild_turkey : ¬1170

is_eastern_wild_turkey Tom :=1171
begin1172

exact A1,1173
end1174

1175
-- The answer is False1176

1177
-- Question 31178
-- Joey is a wild turkey.1179
-- Let’s first prove the positive case.1180
theorem joey_is_wild_turkey : is_wild_turkey Joey :=1181
begin1182

sorry, -- Placeholder for proof1183
end1184

1185
-- Let’s try the negative case.1186

1187
theorem not_joey_is_wild_turkey : ¬ is_wild_turkey1188

Joey :=1189
begin1190

sorry, -- Placeholder for proof1191
end1192

1193
-- The answer is Unknown11941195

B Example Errors During Formalization1196

This is an artificial example highlighting typical1197

errors encountered in the formalization stage.1198
1199

Input:1200
There are three types of wild turkeys: Eastern1201
turkey, Osceola turkey, ’Goulds turkey. Tom is1202
neither an Eastern turkey nor an Osceola turkey.1203
Tom is a wild turkey. Bob is a Eastern turkey.1204
Bob weights 86 pounds and Tom weights 73 pounds.1205
Turkey either bites or stings.Bob bites. Eastern1206
turkey ’s bite would cause death.1207

1208
Question 1: Tom is a Gould’s turkey.1209
Question 2: Bob is heavier than Tom.1210
Question 3: If Bob bites you, you will die.12111212

1213
Output: 1214
constant Turkey : Type 1215
constant Eastern Osceola Goulds : Turkey → Prop 1216
constant weight_86 weight_73 : Turkey → Prop 1217
constant bites stings : Turkey → Prop 1218
constant eastern_bite_causes_death : Turkey → Prop 1219
constant Tom Bob : Turkey 1220

1221
axiom A1 : ¬ Eastern Tom ∧ ¬ Osceola Tom 1222
axiom A2 : Eastern Bob 1223
axiom A3 : weight_86 Bob 1224
axiom A4 : weight_73 Tom 1225
axiom A5 : ∀ (t : Turkey), bites t ∨ stings t 1226
axiom A6 : bites Bob 1227
axiom A7 : ∀ (t : Turkey), 1228

eastern_bite_causes_death t 12291230

There are a few errors in the above code, includ- 1231

ing: 1232

• There is a missing axiom that corresponds 1233

to "There are three types of wild turkeys": 1234

Goulds Tom ∨ Eastern Tom ∨ Osceola Tom 1235

• The formalization of numbers is incorrect, it 1236

should be: constant weight : Turkey → , ax- 1237

iom A3 : weight Bob = 86, axiom A4 : weight 1238

Tom = 73 1239

• The formalization of logic is incorrect, 1240

it should be: (¬ bite_causes_death t ∧ 1241

bite_causes_itching t) ∨ (bite_causes_death 1242

∧ ¬ bite_causes_itching t) 1243

• There is an incorrect division of concepts that 1244

would make the proving impossible, the cor- 1245

rect version should be: ∀ (t : Turkey), Eastern 1246

t → bite_causes_death t 1247
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