
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP LEARNING ALGORITHMS FOR MEAN FIELD
OPTIMAL STOPPING IN FINITE SPACE AND DISCRETE
TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimal stopping of stochastic processes is a fundamental problem in optimization
that has found applications in risk management, finance, economics, and recently
in the fields of computer science. We extend the standard framework to a multi-
agent setting, named multi-agent optimal stopping (MAOS), where a group of
agents cooperatively solves finite-space, discrete-time optimal stopping problems.
Solving the finite-agent case is computationally prohibitive when the number of
agents is very large, so this work studies the mean field optimal stopping (MFOS)
problem, obtained as the number of agents approaches infinity. We prove that
MFOS provides a good approximate solution to MAOS. We also prove a dynamic
programming principle (DPP), based on the theory of mean field control. We
then propose two deep learning methods: one simulates full trajectories to learn
optimal decisions, whereas the other leverages DPP to compute the value function
and to learn the optimal stopping rule with backward induction; both methods
train neural networks for the optimal stopping decisions. We demonstrate the
effectiveness of these approaches through numerical experiments on 6 different
problems in spatial dimension up to 300. To the best of our knowledge, this is the
first work to study MFOS in finite space and discrete time, and to propose efficient
and scalable computational methods for this type of problems.

1 INTRODUCTION

Optimal stopping (OS) has emerged as a powerful approach to tackle real-world problems character-
ized by uncertainty and sequential decision-making, in which the goal is to find the best time to stop
a stochastic process (see Shiryaev (2007), Ekren et al. (2014)). Famous real-world OS problems are
the job search (also called house selling or secretary problem) (Lippman and McCall, 1976) and in
machine learning, the question of when to stop training a neural network can also be viewed as an
instance of OS problems (Wang et al., 1993; Dai et al., 2019).

The OS framework has been extended to cover multi-agent scenarios, in which the aim is to stop
several (possibly interacting) dynamical systems at different times in order to minimize a common
cost function. We will refer to this setting at multi-agent optimal stopping (MAOS). MAOS has
gained significant importance in a variety of fields. In robotics, for example, this theory has found
applications in mission monitoring task, where multiple robots must observe the progress of other
robots performing a specific task (Best et al., 2018). In finance the problem of pricing options with
multiple stopping times (see Kobylanski et al. (2011)) can be viewed as an MAOS problem and was
a motivation for Talbi et al. (2023; 2024).

However, the problem’s complexity increases drastically with the number of agents. To tackle this
issue, mean-field approximations can be used. In the case of multi-agent control, this leads to the
theory of Mean Field Control (MFC), which aims to approximate very large systems of interacting
agents who are cooperatively minimizing a social cost by choosing optimal controls; see (Bensous-
san et al., 2013; Carmona and Delarue, 2018). Applications include crowd motion (Achdou and
Lasry, 2019), flocking (Fornasier and Solombrino, 2014), finance (Carmona and Laurière, 2023),
opinion dynamics (Liang and Wang, 2019), and artificial collective behavior (Gu et al., 2021; Cui
et al., 2024), among others. In contrast with optimal control, mean field approximations have not

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

been used for OS problems, except for (Talbi et al., 2024; 2023) in the continuous time and contin-
uous space setting, and computational methods have not yet been developed.

Our work makes a first step in this direction: focusing on discrete time, finite space MFOS models,
we provide a theoretical foundation and then introduce two deep learning methods, which can solve
MFOS with many states by learning optimal stopping decisions that are functions of the whole
population distribution. We call these methods direct approach (DA) and dynamic programming
approach (DP), and test them on several environments.

Main Contributions Our main contributions are twofold:

Theoretically: (1) we prove that MFOS in discrete space and time yields an approximate
optimal stopping decision for N -agent MAOS with a rate of O(1/

√
N) (Thm 3.2); (2) we

prove a DPP for MFOS by interpreting the model as a special kind of MFC problem (Thm 4.1).

Computationally: (1) we propose two deep learning methods to solve MFOS problems, by
learning the optimal stopping decision as a function of the whole population distribution (Alg. 1
and 2); (2) we illustrate the performance of both algorithms on six environments of increasing
complexity, with distributions’ dimension and time horizon up to 300 and 50 respectively.

To the best of our knowledge, this is the first work to study discrete-time, finite-space MFOS prob-
lems. Our theoretical results relay on the interpretation of MFOS problems as MFC problems, which
provides a new perspective and opens up new direction to study MFOS problems. Additionally, it is
the first time that computational methods are proposed to solve MFOS. This is a first step towards
solving complex multi-agent optimal stopping problems with very large number of agents.

Related works MFOS has been recently studied in continuous time and space from a purely the-
oretical view by Talbi et al. (2023; 2024) who studied the connection with finite-agent MAOS prob-
lems and characterized the solution of (continuous) MFOS using a PDE on the infinite-dimensional
space of probability measures, which is intractable. Instead, we focus on discrete time scenarios
with finite state space (i.e., an individual agent’s state can take only finitely many different values),
and hence the distribution is finite dimensional. This setting can be viewed as an approximation of
the continuous setting. Deep learning methods have been proposed for discrete time single-agent
OS problems. Becker et al. (2019) proposed to learn the stopping decision at each time using a deep
neural network. Herrera et al. (2023) extended the approach using randomized neural networks.
Damera Venkata and Bhattacharyya (2024) proposed to use recurrent neural networks to solve non-
Markovian OS problems. Other approaches have been proposed, particularly for continuous time
OS problems, such as learning the stopping boundary (Reppen et al., 2022). These single-agent
OS approaches cannot be easily adapted to solve MAOS problems: The solution which consists
in treating the whole system as one agent would lead to stopping all the agents at the same time,
and single-agent methods do not capture the interdependence between agents. Furthermore, these
approaches are not suitable to tackle continuous space MFOS problems as introduced by Talbi et al.
(2023) because the value function must be a function of the population distribution, which leads to
an infinite dimensional problem. For this reason, there are no existing computational methods for
MFOS. In this work, we focus on a finite space setting and propose the first computational methods
for MFOS problems by leveraging the aforementioned deep learning literature to tackle the (finite
but) high dimensionality of the population distribution. Another difference with (Talbi et al., 2023;
2024) is that these work purely rely on an OS viewpoint, while we unveil a connection with MFC
problems. This is a conceptual contribution of our work. Recently, MFC problems in discrete time
and finite space have been studied using reinforcement learning methods (Gu et al., 2023; Motte and
Pham, 2022; Carmona et al., 2023). However, here we focus on situations in which the model is
known and we develop deep learning algorithms. This allows us to solve problems in much higher
dimension (up to 300 for the neural network’s input) than these works.

2 MODEL

When the number of agents tends to infinity an aggregation effect takes place, enabling us to rep-
resent the influence of the community using an “average” term, commonly referred to as the mean
field term. As the number of agents approaches infinity, they become independent and identically

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

distributed (i.i.d.), and the behavior of each individual agent is determined by a stochastic differen-
tial equation (SDE) of McKean-Vlasov type. This phenomenon is often known as the “propagation
of chaos” (Sznitman, 1991). The objective is to discern the properties of the solutions to the limiting
problem. By integrating these properties into the formulation of the N -agent control framework, we
can derive approximate solutions to the latter problem (for more theoretical background on MFC,
see (Bensoussan et al., 2013; Carmona et al., 2013; Carmona and Delarue, 2018)).

2.1 MOTIVATION: FINITE AGENT MODEL

The mean field problem that we will solve is motivated by the N -agent problem that we are about
to describe. Let X be a finite state space. Let us denote by P(X) the set of probability distributions
on X , and let E be the set of realizations of the random noise. Let T be a time horizon and let N
be the number of agents that are interacting.. Each agent i has a state denoted by Xi

n at time n. At
time n, each agent stops with probability pin(X

α
n). We introduce αin a random variable taking value

0 if the agent continues and 1 if it stops. We denote by πin(·|Xα
n) = Be(pin(X

α
n)) its distribution,

which is a Bernoulli distribution. We denote by Xα
n = (X1

n, . . . , X
N
n) and α = (α1, . . . , αN) the

vectors of states and stopping decisions at time n.

Dynamics. We assume that the agents are indistinguishable and interact in a symmetric fashion,
i.e. through their empirical distribution µN,αn (x) := 1

N

∑N
i=1 δXi,α

n
(x), which is the proportion of

agents at x at time n with δ the indicator function. The system evolves according to a transition
function F : N×X × P(X)× E → X . In particular: for every i = 1, . . . , N ,

Xi,α
0 ∼ µ0

αin ∼ πin(·|Xα
n), Xi,α

n+1 =

{
F (n,Xi,α

n , µN,αn , ϵin+1), if
∑n
m=0 α

i
m = 0

Xi,α
n , otherwise,

(1)

where ϵin is a random noise impacting the evolution of agent i and m0 is the initial distribution.

Let us define the stopping time for agent i: τ i = inf{n ≥ 0 :
∑n
m=0 α

i
m ≥ 1}, which is the first

time for player i at which the decision is to stop.

Objective function. Let us consider a function Φ : X ×P(X) → R. Φ(x, µ) denotes the cost that
an agent incurs if she stops at x and the current population distribution is µ. The goal for all the N
agents is to collectively minimize the following social cost function:

JN (α1, . . . , αN) = E

[
1

N

N∑
i=1

Φ(Xi,α
τ i , µ

N,α
τ i)

]
. (2)

The problem consists in finding (α1, . . . , αN) ∈ argminJN . Next, we give an example.

Motivating Example: We take state space X = {1, 2, 3, 4, 5, 6, 7} with boundaries (i.e., in 1
agents cannot move left and in 7 they cannot move right), time horizon T = 3, transition func-
tion F (n, x, µ, ϵ) = x + ϵ, where ϵ = 0 with probability p = 1/2, ϵ = 1 with probability p = 1/4
and ϵ = −1 with probability p = 1/4. Following (1), the dynamics of agent i is: Xi

n+1 = Xi
n+ϵ

i
n+1

if the agent does not stop, and Xi
n+1 = Xi

n otherwise. All agents start in x = 4. We define a target
distribution ρtarget = 1

2δ4 +
1
4δ5 +

1
4δ3. If the agent i stops at time n, then she is incurred the cost:

Φ(Xi
n, µ

N
n) =

∑
x∈X |µNn (x) − ρtarget(x)|2, which is smaller if the agent stops when the popula-

tion distribution matches the target one. Notice that some agents might have to stop even though
the target distribution is not matched, so that other agents can later have a lower cost because this
is a cooperative task. Solving exactly this problem (i.e., finding the optimal stopping time for every
agent) is very complex. Our approach consists in considering the mean field problem, which leads
to an efficient approximate solution (see Example 4 in Section 6).

Challenges: Single-agent methods cannot be readily applied to the multi-agent setting since
they cannot capture the interdependence due to the distribution in the cost and in the dynamics.
In particular, in the multi-agent setting, we allow agents to stop at different times. When the
number of agents is very large, computing exactly the optimal stopping times is infeasible.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Mean field optimal stopping (MFOS) can intuitively provide an approximate solution but (1)
this needs to be justified and (2) scalable numerical methods for MFOS need to be developed.

2.2 MEAN FIELD MODEL

As mentioned earlier, if we let the number of players tend to infinity, we expect, thanks to propaga-
tion of chaos type results, that the states will become independent and each state will have the same
evolution, which will be a non-linear Markov chain. More precisely, passing formally to the limit in
the dynamics (1), we obtain the following evolution:

Xα
0 ∼ µ0

αn ∼ πn(·|Xα
n) = Be(pn(X

α
n)), X

α
n+1 =

{
F (n,Xα

n , µ
α
n, ϵn+1), if

∑n
m=0 αm = 0

Xα
n , otherwise,

(3)

where pn(x) denotes the probability with which the agent continues if she is in state x at time n,
and µαn is the distribution of Xα

n itself, which we may also denote by L(Xα
n).

We want to emphasize the fact that the introduction of randomized stopping times for individual
agents is crucial for our purpose; see the example in Appx. A.1.

We can define, in the same way we did before, the first time at which the control α is 1 as τ :=
inf{n ≥ 0 :

∑n
m=0 αm ≥ 1}. Then the social cost function in the mean field problem is defined as:

J(α) = E
[
Φ(Xα

τ ,L(Xα
τ))

]
. (4)

Notice that here the expectation has the effect of averaging over the whole population, so there is no
counterpart to the empirical average that appears in the finite agent cost (2). To stress the dependence
on the initial distribution, we will sometimes write J(α,m0).

2.3 MEAN FIELD MODEL WITH EXTENDED STATE

A key step towards building efficient algorithms is dynamic programming, which relies on Marko-
vian property. However, in its current form the above problem is not Markovian. This makes the
problem time-inconsistent. To make the system Markovian, we need keep track of the information
about whether the player’s process has been stopped in the past. This information is not contained
in the state so we need to extend the state. Let Aα = (Aαn)n=0,...,T the process such that Aαn = 0 if
the agent has already stopped before time n, and 1 otherwise. We can interpret this process as the
“Alive” process, while α stands for the “action”, namely, to stop or not. So Aαn = 1 means the agent
has not stopped yet; when the agent stops, αn = 1 and Aαn+1 switches to 0. It is important to notice
that if the agent is stopped precisely at time n then, we still have Aαn = 1 but Aαm = 0 for every
m > n. We define the extended state as: Y αn = (Xα

n , A
α
n), which takes value in the extended state

space S := X × {0, 1}. Then, the dynamics (3) of the representative player can rewritten as:

Xα
0 ∼ µ0, Aα0 = 1

αn ∼ πn(·|Xα
n) = Be(pn(X

α
n))

Aαn+1 = Aαn · (1− αn)

Xα
n+1 =

{
F (n,Xα

n ,L(Xα
n), ϵn+1), if Aαn · (1− αn) = 1

Xα
n , otherwise.

(5)

The idea of extending the state using the extra information is similar to Talbi et al. (2023) in contin-
uous time and space. The mean field social cost (4) can rewritten as:

J(α) = E
[T∑
m=0

Φ(Xα
m,L(Xα

m))Aαmαm

]
(6)

Actually, notice that the expectation amounts to taking a sum with respect to the extended state’s
distribution. Let us denote by νpn = L(Y αn) the distribution at time n. We are going to denote νpX
the first marginal of νp (sometimes also denoted by µ). Note that it does not really depend on α but

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

only on the stopping probability p, so we use the superscript p when referring to ν. This distribution
evolves according to the mean field dynamics:{

νp0 (x, 0) = 0, νp0 (x, 1) = µ0(x), x ∈ X ,
νpn+1 = F̄ (νpn, pn),

(7)

where the function F̄ is defined as follows. We denote by H the set of all function h : X → [0, 1],
which represents a stopping probability (for each state). Then, F̄ : {0, . . . , T}×P(S)×H → P(S)
is defined by: for every x ∈ X , a ∈ {0, 1}, F̄ (ν, h) is the distribution generated by doing one step,
starting from ν and using the stopping probabilities h. Mathematically,

(F̄ (ν, h))(x, a) =

(
ν(x, 0) + ν(x, 1)h(x)

)
(1− a) +

(∑
z∈X

ν(z, 1)

(
qνz,x(1− h(z))

))
a, (8)

where Qν = (qνz,x)z,x∈X is the transition matrix associated to the unstopped process X , i.e. qνz,x
is the probability to go from the state z to the state x knowing that we are not going to stop in x.
Notice that in general the transitions may depend on ν itself. So the last equation can be written
more succinctly in a matrix-vector product but the transition matrix depends on ν itself, which is
why this type of dynamics is sometimes referred to a non-linear dynamics. The mean field social
cost can be rewritten purely in terms of the distribution as follows:

J(p) =

T∑
m=0

∑
(x,a)∈S

νpm(x, a)Φ(x, µpm)apm(x), (9)

where p : {0, . . . , T} × X → [0, 1] is the function that associates to every time step and state the
probability to stop (in that state at that time). Let us define P0,T the set of all such functions.

The link with the above formulation is that αn(x) is distributed according toBe(pm(x)), and νpm :=
L(Y αm) is the extended state’s distribution. Moreover, νpm(x, 0) is the mass in x that has stopped.
Last, L(Xα

m) = µαm(x) =
∑
a∈{0,1} ν

p
m(x, a) is the first marginal of this distribution.

3 APPROXIMATE OPTIMALITY FOR FINITE-AGENT MODEL

In this section, we aim to address the following question:“Is the mean-field model capable of solving
the original problem of N agents, at least approximately?”. Specifically, we demonstrate that the
MFOS solution provides an approximately optimal solution for the finite-agent MAOS problem.
The main assumption we use is:

Assumption 3.1. Let Lp > 0 and let us define P := {p : {0, . . . , T} × X × P(S) → [0, 1] :
p is Lp-Lipschitz}, the set of all possible admissible policies p. Assume that the mean field dynamics
F̄ described in (8) is LF̄ - Lipschitz. Assume also that the function Ψ : P(X ×{0, 1})×P(X) → R
defined as Ψ(ν, h) :=

∑
(x,a)∈S ν(x, a)Φ(x, νX)ah(x) is LΨ-Lipschitz.

Assuming Lipschitz dynamics, cost and policies is classical in the literature on mean field control
problems, see e.g. (Mondal et al., 2022; Pásztor et al., 2023; Cui et al., 2023) and can be achieved
using neural networks (Araujo et al., 2022).

Due to space constraints, we simply provide an informal statement here. The precise statement is
deferred to Appx. A.2, see Theorem A.3, along with the detailed setting and notations.

Theorem 3.2 (ε-approximation of the N -agent problem). Suppose Assumption 3.1 holds. If
p∗ is the optimal policy for the MFOS problem and p̂ is the optimal policy for the N -agent
problem (when all the agents use the same policy), then: as N → +∞, JN (p∗, . . . , p∗) −
JN (p̂, . . . , p̂) → 0, with rate of convergence O

(
1/
√
N
)

(the explicit bound is in the proof).

A key step in the proof consists in analyzing the difference between the N -agent dynamics and the
mean-field dynamics under a stopping policy, see Lemma A.1 (“Convergence of the measure”) in
appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

101 102 103 104

Number of agents N

10 2

10 1

L2 e
rro

r t
o

M
ea

n
fie

ld
 d

ist
rib

ut
io

n Multi-agent numerical result
f(N) = 1.635N 1/2

101 102 103 104

Number of agents N

10 2

10 1

Op
tim

al
ity

 g
ap

 to
 M

ea
n

fie
ld

 c
os

t Multi-agent numerical result
f(N) = 0.456N 1/2

0.0

0.5

1.0

N
=

10

Time 0 Time 1 Time 2 Time 3 Time 4 Final State

0.0

0.5

1.0

N
=

10
0

0.0

0.5

1.0

N
=

10
00

0 1 2 3 4
X

0.0

0.5

1.0

M
ea

n
fie

ld

0 1 2 3 4
X

0 1 2 3 4
X

0 1 2 3 4
X

0 1 2 3 4
X

0 1 2 3 4
X

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Figure 1: MFOS v.s. MAOS. We use the stopping probability function learned by Algorithm 1 for
MFOS to simulate the multi-agent OS.

Theorem 3.2 is further supported through empirical evidence as is shown in Fig. 1, where we apply
the stopping probability function learned by Algorithm 1 on MFOS in Example 1 (see Section 5
and 6 for details) to the N -agent problem with varying N (see Appx. E.1). We compute the L2 dis-
tance of multi-agent empirical distribution to mean-field distribution and the optimality gap between
multi-agent and mean-field cost, both averaged over 10 runs. The plots demonstrate a clear decay
rate of order N−1/2. This theorem justifies that MFOS is not only an intrinsically interesting prob-
lem, but the solution to MFOS also serves as an approximate solution to the corresponding MAOS
problem. In the sequel, we will focus on solving the MFOS problem.

4 DYNAMIC PROGRAMMING

Our motivation for developing a dynamic programming principle (DPP) for our formulation comes
from both the literature and numerical purposes. Dynamic programming (DP) appears very often in
the literature, encompassing fields such as economics, finance, development of computer programs
to the ability of a computer to master the game of chess, Go, and many others. In the control theory
of a dynamic system in particular, it has been studied and used very often to find solutions to a
given optimization problem. Moreover, implementing an algorithm that founds on DPP often leads
to precise optimal solutions that perform better than other methods.

We introduce the dynamical form of the social cost (9) as:

Vn(ν) := inf
p∈Pn,T

J(p(x), ν) := inf
p∈Pn,T

T∑
m=n

∑
(x,a)∈S

νp,ν,nm (x, a)Φ(x, µp,ν,nm)apm(x), (10)

where Pn,T is the set of all possible function p : {n, . . . , T} × X → [0, 1] and νp,ν,n denotes the
distribution of the process that starts at time n with a given distribution ν; it satisfies (7) but starting
at time n instead of 0 with νp,ν,nn = ν. The optimal value at time 0 will be denoted: V ∗(ν) = V0(ν),
which is also equal to infp J(p, ν). We can now state and prove the following DPP.

Theorem 4.1 (Dynamic Programming Principle). For the dynamics given by (5) and the value
function given by (10) the following dynamic programming principle holds:{

VT (ν) =
∑

(x,a)∈S ν(x, a)Φ(x, νX)a,

Vn(ν) = infh∈H
∑

(x,a)∈S ν(x, a)Φ(x, νX)ah(x) + Vn+1(F̄ (ν, h)), n < T,
(11)

where νX is the first marginal of the distribution ν, i.e., νX(x) = ν(x, 0) + ν(x, 1). The
sequence of optimizers define an optimal stopping decision that we will denote by h∗ :
{0, . . . , T − 1} × X × P(S) → [0, 1] and satisfies: for every n ∈ {0, . . . , T − 1} and ev-
ery ν ∈ P(S), Vn(ν) =

∑
(x,a)∈S ν(x, a)Φ(x, νX)ah∗n(x, ν) + Vn+1(F̄ (ν, h

∗
n(x, ν))).

To prove this result, we will show that we can reduce the problem to a mean field optimal control
problem in discrete time and continuous space. See details in Appx. B. Dynamic programming for
MFC problem (Laurière and Pironneau, 2014; Pham and Wei, 2017) and mean field MDPs (Gu et al.,
2023; Motte and Pham, 2022; Carmona et al., 2023) have been extensively studied, and DPP for
continuous time MFOS has been established by Talbi et al. (2023) using a PDE approach. However,
to the best of our knowledge, this is the first DPP result for MFOS problems in discrete time. It
serves as a building block for one of the deep learning methods proposed below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Actually we can show that this DPP still holds for a restricted class of randomized stopping times in
which all the agents (regardless of their own state) have the same probability of stopping. Let P̃n,T
be the set of p : {0, . . . , T} → [0, 1]. Notice that here pn does not depend on the individual state x.
At every time step n = m every agent has the same probability to stop pm, i.e for every x ∈ X at
time n = m, pn(x) = pn. We call this set as synchronous stopping times. Let us define the value:

Ṽn(ν) := inf
p∈P̃n,T

J(p, ν) := inf
p∈P̃n,T

T∑
m=n

pm
∑

(x,a)∈S

νp,ν,nm (x, a)Φ(x, µp,ν,nm)a.

Theorem 4.2. For the setting of synchronous stopping times, the value function satisfies:{
ṼT (ν) =

∑
(x,a)∈S ν(x, a)Φ(x, νX)a,

Ṽn(ν) = infh∈[0,1]

∑
(x,a)∈S ν(x, a)Φ(x, νX)ah+ Vn+1(F̄ (ν, h)), n < T.

(12)

The proof follows the same argument as the one of Theorem 4.1 so we omit it.

5 ALGORITHMS

To address the MFOS problem numerically, we propose two approaches based on two different
formulations. As the most naive approach, we can attempt to directly minimize the mean-field
social cost J(p) stated in (9), where we optimize over all the possible stopping probability functions
p : {0, . . . , T} × X → [0, 1]. A more ideal treatment is to leverage the Dynamic Programming
Principle (DPP) discussed in Theorem 4.1 and solve for the optimal stopping probability using
induction backward in time. For each of the timestep n, we implicitly learn the true value function
Vn(ν) by solving the optimization problem in (11), where we search over all possible one-step
stopping probability function h : X → [0, 1] for each time n. We refer to the method of directly
optimizing mean-field social cost as the direct approach (DA) and the attempt to solve MFOS via
backward induction of the DPP approach. Short versions of the pseudocodes are presented in Alg. 1
and 2. Long versions are in Appx. C (see Alg. 3 and 4). To alleviate the notations, we denote:
Φ̄(ν, h) =

∑
x∈X ν(x, 1)Φ(x, νX)h(x), which represents the one-step mean field cost. In the code,

optim up denotes one update performed by the optimizer (e.g. Adam in our simulations).

Algorithm 1 Direct Approach (DA)
Require: time-dependent stopping decision neural network:

ψθ : {0, . . . , T} × X × P(S) → [0, 1], max num-
ber of training iterationNiter

1: for k = 0, . . . , Niter − 1 do
2: Sample initial νp

0

3: for n = 0, . . . , T do
4: pn(x) = ψθ(x, ν

p
n, n; θk),x ∈ X

5: ℓn = Φ̄(νp
n, pn)

6: νp
n+1 = F̄ (νp

n, pn)

7: ℓ =
∑T

n=0 ℓn
8: θk+1 = optim up(θk, ℓ(θk))

9: Set θ∗ = θNiter

10: return ψθ∗

Algorithm 2 Dynamic Programming (DP)
Require: stopping decision neural networks: ψn

θ : X×P(S) → [0, 1]
for n ∈ {0, . . . , T − 1}, max training iterationNiter.

1: Set ψT
θ = 1

2: for n = T − 1, . . . , 0 do
3: for k = 0, . . . , Niter − 1 do
4: Sample νp

n

5: form = n, . . . , T do
6: ifm = n then
7: pm(x) = ψm

θ (x, νp
m; θnk)

8: else
9: pm(x) = ψm

θ (x, νp
m; θm,∗)

10: ℓm =
∑

x ν
p
m(x, 1)Φ(x, µm)pm(x)

11: νp
m+1 = F̄ (νp

m, pm)

12: ℓ =
∑T

m=n ℓm
13: θnk+1 = optim up(θmk , ℓ(θ

n
k))

14: Set θn,∗ = θnNiter

15: return (ψn
θn,∗)n=0,...,T

6 EXPERIMENTS

In this section, we present 6 experiments of increasing complexity to validate our proposed method
and demonstrate its potential applications. Due to space constraints, two of them have been included
in Appx. E. It is important to emphasize that each experiment reflects a distinct scenario, varying
both in dynamics (random, deterministic; with or without mean-field interactions) and in the cost

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

function (with or without mean-field dependence). This provides a comprehensive overview of the
method’s versatility and potential applications. Eventually, we present a task of spatial dimension
300 (i.e., neural network’s input dimension) and time horiwon 50 with a random obstacle dynamics,
motivated by applications to a fleet of drones which have to match a target distribution. We solve all
6 environments with both algorithms (the details are in Appx. E).

Problem Dimensions: For the problem dimension, we count it as the sum of the dimension of the
information input to the neural network. Since the state is in X , which is finite, we encode it as a one-
hot vector in R|X | before passing it to the neural network to ensure differentiability. For the mean-
field distribution with stopped and non-stopped parts, it is an element of the (2|X |−1)-simplex, and
is represented as a non-negative vector in R2|X |. Therefore, MFOS tasks are intrinsically of spatial
dimension |X |+ 2|X | = 3|X |, where |X | is the dimension of an individual agent’s state space.

Comparison of the Two Proposed Algorithms: While in theory both algorithms are equally capa-
ble of tackling MFOS problems, in practice these algorithms have advantages in different settings.
Empirically, we found that the optimal stopping decision is learned faster by DA than by DP, when
compute power is not a restriction. However, DA requires differentiating through the whole trajec-
tory at each gradient step, which requires a large amount of memory when the dimension is high.
The minimum required memory for training with DA increases with T , whereas DP requires only
constant order memory that is independent of the time horizon, since it trains time step per time
step. Therefore, when targeting an MFOS problem with a long time horizon T , DPP becomes more
efficient, at least memory-wise. Similar observations were made in the context of continuous time
optimal control by Germain et al. (2022).

Example 1 (Towards the uniform) and Example 2 (Rolling a die), on a 1D gridworld state space,
are described in details in Appx. E.1 and Appx. E.2 respectively due to space constraint.

Example 3: Crowd Motion with Congestion. This example extends the setting of Example 2
by incorporating a congestion term into the dynamics. The outcome of the die takes the role of
the noise ϵ ∼ U(X) where X = {1, 2, 3, 4, 5, 6}. The system starts in the initial distribution
η = 1

4δ1+
1
4δ2+

1
2δ5, and evolves according to the dynamics (5) with µ0 = η, and F (n, x, µ, ϵ) = ϵ

where we are going to introduce a term of congestion multiplying the probability of moving by
(1 − Ccongµ(x)) to model the fact that it is difficult to move from a state x if the distribution is
concentrated in that state (details in Appx. E.3) . The social cost function associated to this scenario
is Φ(x, µ) = x. Time horizon is set to T = 4. We executed the experiment without congestion (see
Appx. E.2) and we expect congestion to slow down the movement. DR results are shown in Fig. 2.

This example demonstrates that two classes of stopping times (synchronous and asynchronous) can
lead to very different optimal stopping decisions and induce distributions. Although the true value
is unknown, the results indicate that synchronous stopping times yield a higher value, while asyn-
chronous stopping times lead to a significant reduction in the cost. Additionally, in the asynchronous
case, congestion leads to reduced movement, as observed between time 0 and time 1 in state 4. See
Appx. E.3 for the DPP results.

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

Lo
ss

Testing Loss
Testing Loss

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

0 2000 4000 6000 8000 10000
Iterations

3.200

3.300

3.400

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

3.200

3.250

3.300

3.350

3.400

Lo
ss

Testing Loss
Testing Loss

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 2: Example 3. DA results, asynchronous vs synchronous stopping times. Left: comparison
of training and testing losses for asynchronous stopping times (top) and synchronous stopping times
(bottom). Right: Comparison of the evolution of the distribution after training (asynchronous stop-
ping class on top, synchronous stopping class on bottom).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Example 4: Distributional Cost. This example extends, at the mean field level, the motivating
example described at the end of Section 2.1. Based on Theorem 3.2, the mean field solution provides
a good approximation of the N -agent problem. DR and DPP results are shown in Fig. 3 and 4
respectively. The results for synchronous stopping time are shown in Appx. E.4.

0 2000 4000 6000 8000 10000
Iterations

0.200

0.250

0.300

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.000

0.100

0.200

0.300

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4 5 6
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4 5 6
X

Time 1

0 1 2 3 4 5 6
X

Time 2

0 1 2 3 4 5 6
X

Time 3

0 1 2 3 4 5 6
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing
Target dist.

Figure 3: Example 4. DA results, asynchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training.

0.200

0.250

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.000

0.200

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.140

Ti
m

e
1

Lo
ss

0.200

0.250

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
2

Lo
ss

0 1000 2000 3000 4000
Iterations

0.200

0.225

0.250

Lo
ss

Figure 4: Example 4. DPP results, asyn-
chronous stopping. Training and testing losses.

Example 5: Towards Uniform in Dimension 2. This example extends Example 1 (see Appx. E.1)
to two dimensions, demonstrating how the algorithm performs in higher-dimensional settings. We
take state space X = {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4}, time horizon T = 4, transition function
F (n, x, µ, ϵ) = x+(1, 0) which means that the agent deterministically moves to the state on the right
on the same row, with boundary at x = 4, and cost function Φ(x, µ) = µ(x) which depends on the
mean field only through the state of the agent (this is sometimes called local dependence). For the
testing distribution, we take a distribution concentrated on state x = 0, denoted as µ0 = δ0. Fig. 5
shows that the distribution evolves towards a uniform distribution across each row, as expected, and
also illustrates the optimal strategy (decision probability) required to achieve this outcome. Results
for the DPP algorithm and the synchronous stopping are in Appx. E.5.

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.4

0.6

0.8Decision Prob
0

1
2

3
4

St
op

pe
d

Di
st

.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Example 5. DA results, asynchronous stopping. Left: stopping decision probability.
Right: evolution of the distribution after training.

Example 6: Matching a Target with a Fleet of Drones. We conclude with a more realistic and
complex example to showcase the potential applications of our algorithms. This example aims to
align a fleet of drones with a given target distribution at terminal time T , starting from a random
initial distribution. To make this experiment more interesting, we expand the framework described
so far by considering a different type of cost and by including a noisy obstacle hindering the drones’
movements (see Appx. E.6 for the mathematical formulation). We take X = {0, . . . , 9}×{0, . . . , 9}
that represents a 10 × 10 grid. Hence, the neural network’s input is of dimension 3|X | = 300.
The system follows the dynamics that diffuse uniformly over the possible neighbors, where the
possible neighbors of x ∈ X are defined as x ± (0, 1) or x ± (1, 0) if the resulting state is still an
element of X . Moreover, we introduce extra stochasticity into the dynamics by placing an obstacle
at a random state on the grid at each time step. The location is uniformly selected from X and
is viewed as a common noise affecting the dynamics of all the agents. This introduces additional
complexity in the learning problem because even for a fixed stopping decision rule, the evolution
of the population is stochastic. We consider the target distribution ρ to be the uniform distribution
over the grid of the letter “M”, “F”, “O”, and “S” respectively, and we set the terminal cost gρ(ν) =∑
x∈X |ν(x)− ρ(x)|2. We choose the time horizon T = 50. Fig. 6 shows that the learned stopping

probability from Algorithm 2 successfully drives the initial distribution into the shape of the letter

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

“M”. Another important aspect of the algorithms’ outcome is that the learned stopping decisions
are agnostic to the initial distribution in the sense that the same stopping decision rule can be used
on different initial distributions and always leads to matching the target distribution. Fig. 7 shows
the terminal distributions under random initial testing distribution: the learned stopping probability
function is robust to any test distribution used at inference time. Results for the DA algorithm are
shown in Appx. E.6.

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

Figure 6: Example 6. DPP results, asynchronous stopping. Match the Letter “M” in 10×10 grid with
common noise. We plot the stopped distribution, continuing distribution, and decision probability
function every 5 timestep. The marked red square indicates the random obstacles (common noise).

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0.06

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

Figure 7: Example 6. DPP results, asynchronous stopping. Match the Letter “M”, “F”, “O”, and
“S”. Tested with the randomly sampled initial distribution.

7 CONCLUSION

We proposed a discrete-time, finite state MAOS problem with randomized stopping times and its
mean field version. We proved that the latter is a good approximation of the former, and we estab-
lished a DPP for MFOS. These new problems cannot be tackled using traditional PDE approaches
or adapting previous methods for single-agent OS problems. To overcome these challenges, we
proposed two deep learning methods and evaluated their performance over six different scenarios.
When an analytical solution is available, we demonstrated that our methods recover this solution
in only a few iterations. In more complex environments, our approach is able to effectively solve
the task with high performance. The approach presented in this work can be effectively extended to
other contexts and applications, especially given the growing importance of MAOS problems.

Limitations and Future Works: First, we did not prove convergence of the algorithms due to
the difficulty of analyzing deep networks. We also left for future work a detailed analysis of the
comparison between synchronous and asynchronous stopping. Last, we would like to continue the
numerical experimentation on more complex, real-world examples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement: All the experimental details about computational resources and hy-
perparameters choices are provided in the appendix due to space limitation.

REFERENCES

Yves Achdou and Jean-Michel Lasry. Mean field games for modeling crowd motion. Contributions
to partial differential equations and applications, pages 17–42, 2019.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A unified
algebraic perspective on Lipschitz neural networks. In The Eleventh International Conference on
Learning Representations, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214–223. PMLR, 2017.

Nicole Bäuerle. Mean field markov decision processes. Applied Mathematics & Optimization, 88
(1):12, 2023.

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping. Journal of Machine
Learning Research, 20(74):1–25, 2019.

Alain Bensoussan, Jens Frehse, and Sheung Chi Phillip Yam. Mean field games and mean field type
control theory. Springer Briefs in Mathematics. Springer, New York, 2013. ISBN 978-1-4614-
8507-0; 978-1-4614-8508-7.

Graeme Best, Shoudong Huang, and Robert Fitch. Decentralised mission monitoring with spa-
tiotemporal optimal stopping. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4810–4817. IEEE, 2018.

René Carmona and François Delarue. Probabilistic theory of mean field games with applications.
I, volume 83 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018. ISBN
978-3-319-56437-1; 978-3-319-58920-6. Mean field FBSDEs, control, and games.

René Carmona and Mathieu Laurière. Deep learning for mean field games and mean field control
with applications to finance. Machine Learning and Data Sciences for Financial Markets: A
Guide to Contemporary Practices, page 369, 2023.

René Carmona, François Delarue, and Aimé Lachapelle. Control of McKean-Vlasov dynamics
versus mean field games. Math. Financ. Econ., 7(2):131–166, 2013. ISSN 1862-9679.

René Carmona, Mathieu Laurière, and Zongjun Tan. Model-free mean-field reinforcement learning:
mean-field MDP and mean-field Q-learning. The Annals of Applied Probability, 33(6B):5334–
5381, 2023.

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International Con-
ference on Learning Representations, 2023.

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International Con-
ference on Learning Representations, 2024.

Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. Bayesian optimization
meets Bayesian optimal stopping. In International conference on machine learning, pages 1496–
1506. PMLR, 2019.

Niranjan Damera Venkata and Chiranjib Bhattacharyya. Deep recurrent optimal stopping. Advances
in Neural Information Processing Systems, 36, 2024.

Ibrahim Ekren, Nizar Touzi, and Jianfeng Zhang. Optimal stopping under nonlinear expectation.
Stochastic Processes and Their Applications, 124(10):3277–3311, 2014.

Massimo Fornasier and Francesco Solombrino. Mean-field optimal control. ESAIM: Control, Opti-
misation and Calculus of Variations, 20(4):1123–1152, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maximilien Germain, Joseph Mikael, and Xavier Warin. Numerical resolution of mckean-vlasov
fbsdes using neural networks, 2022.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field controls with Q-learning for co-
operative MARL: convergence and complexity analysis. SIAM Journal on Mathematics of Data
Science, 3(4):1168–1196, 2021.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Dynamic programming principles for mean-
field controls with learning. Operations Research, 71(4):1040–1054, 2023.

Calypso Herrera, Florian Krach, Pierre Ruyssen, and Josef Teichmann. Optimal stopping via ran-
domized neural networks. Frontiers of Mathematical Finance, pages 0–0, 2023.

Magdalena Kobylanski, Marie-Claire Quenez, and Elisabeth Rouy-Mironescu. Optimal multiple
stopping time problem. The Annals of Applied Probability, 21(4):1365 – 1399, 2011.

Mathieu Laurière and Olivier Pironneau. Dynamic programming for mean-field type control. C. R.
Math. Acad. Sci. Paris, 352(9):707–713, 2014. ISSN 1631-073X.

Yong Liang and Bingchang Wang. Robust mean field social optimal control with applications to
opinion dynamics. In 2019 IEEE 15th International Conference on Control and Automation
(ICCA), pages 1079–1084, 2019. doi: 10.1109/ICCA.2019.8899655.

Steven A Lippman and John J McCall. The economics of job search: A survey. Economic inquiry,
14(2):155–189, 1976.

Washim Uddin Mondal, Mridul Agarwal, Vaneet Aggarwal, and Satish V Ukkusuri. On the approx-
imation of cooperative heterogeneous multi-agent reinforcement learning (MARL) using mean
field control (MFC). Journal of Machine Learning Research, 23(129):1–46, 2022.

Médéric Motte and Huyên Pham. Mean-field Markov decision processes with common noise and
open-loop controls. The Annals of Applied Probability, 32(2):1421–1458, 2022.

Barna Pásztor, Andreas Krause, and Ilija Bogunovic. Efficient model-based multi-agent mean-field
reinforcement learning. Transactions on Machine Learning Research, 2023.

Huyên Pham and Xiaoli Wei. Dynamic programming for optimal control of stochastic McKean-
Vlasov dynamics. SIAM J. Control Optim., 55(2):1069–1101, 2017. ISSN 0363-0129.

A Max Reppen, H Mete Soner, and Valentin Tissot-Daguette. Neural optimal stopping boundary.
arXiv preprint arXiv:2205.04595, 2022.

Albert N Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media, 2007.

Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour
XIX—1989, pages 165–251. Springer, 1991.

Mehdi Talbi, Nizar Touzi, and Jianfeng Zhang. Dynamic programming equation for the mean field
optimal stopping problem. SIAM Journal on Control and Optimization, 61(4):2140–2164, 2023.

Mehdi Talbi, Nizar Touzi, and Jianfeng Zhang. From finite population optimal stopping to mean
field optimal stopping. The Annals of Applied Probability, 34(5):4237 – 4267, 2024.

Cédric Villani. The Wasserstein distances. Optimal transport: old and new, pages 93–111, 2009.

Changfeng Wang, Santosh Venkatesh, and J Judd. Optimal stopping and effective machine com-
plexity in learning. Advances in neural information processing systems, 6, 1993.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A N -AGENT COOPERATIVE OPTIMAL STOPPING

A.1 WHY DO WE NEED RANDOMIZATION IN THE CONTROL? AN EXAMPLE

We want to show with an example that the extension to randomized stopping times is necessary
in the mean-field formulation, because when we try to plug an optimal strategy into the N -agent
problem, we notice that the latter is no longer optimal.

Example 1 (Randomized is better). Let consider the following scenario: we take the state space
X = {T,C} and initial distribution µ0 = 3/4δT + 1/4δC ; transition function F (T, x, µ, ϵ) = C,
F (C, x, µ, ϵ) = T , meaning that the system at any time step, can stop or switch the state. We take
as social cost:

Φ(x, µ) =

{
1 if µ(x) ≤ 1/2

5 if µ(x) > 1/2.
(13)

Notice that without allowing the randomized stopping the value is V ∗ = 3/4 ·5+1/4 ·1 = 4, which
corresponds to stop all the distribution (in every state) at time n = 0. In the end, this formulation
cannot reflect the optimum in the association of N agents. Indeed when we plug this policy into the
N agent formulation we obtained the value V N = 1/N(3N/4 · 5 + N/4 · 1) = 4, which is not
optimal since we can use the strategy (which is going to be optimal for the N -agent problem) to
stop, at time 0, only the 1/3 of players in state T , allowing the others to change state. This leads to
a final configuration of m1 = 1/2δT + 1/2δC and a value of V ∗,N = 1/N(N/4 · 5 + 3N/4 · 1) =
2 < V N = 4.

In particular, we want to emphasize the fact that, without allowing a randomized stopping time in the
MF formulation, we find an optimal state-dependent strategy, which corresponds , in the problem
with finite agents, to the fact that every player in the same state will have the same stopping time.

A.2 PROOF OF THEOREM 3.2

This section demonstrates that solving the optimal control problem at the asymptotic regime for
the number of agents tending to infinity allows one to find the solution to the multi-agent problem
by including the solution found at the regime in the latter. This is of fundamental importance in
applications as it allows a simpler and clearer situation to be analyzed for the purpose of solving a
complicated problem. Let us recall theN -agent formulation. We are going to work in the framework
where the central planner use the same policy p to control each agent. We suppose Assumption 3.1
holds.

Let us fix the following notation νN,pm := 1
N

∑N
i=1 δY i,α

m
and νpm := L(Y αm) .



Xi,α
0 ∼ µ0, Ai,α0 = 1

αin ∼ πin(·|Xi,α
n) = Be(pn(X

i,α
n))

Ai,αn+1 = Ai,αn · (1− αin)

Xi,α
n+1 =

{
F (n,Xi,α

n , 1
N

∑N
j=0 δY j,α

n
, ϵin+1), if Ai,αn · (1− αin) = 1

Xi,α
n , otherwise.

(14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The social cost is defined as:

JN (p) := JN (p, . . . , p) :=
1

N

N∑
i=1

E

[
T∑

m=0

Φ(Xi,α
m ,

1

N

N∑
i=0

δXi,α
m

)Ai,αm αim

]
=

= E

[
T∑

m=0

1

N

N∑
i=1

Φ(Xi,α
m ,

1

N

N∑
i=0

δXi,α
m

)Ai,αm αim

]
=

= E

 T∑
m=0

∑
(x,a)∈S

νN,pm (x, a)Φ(x, νN,pX,m)apm(x)

 =

= E

[
T∑

m=0

Ψ(νN,pm , pm(νN,pm))

]
(15)

The asymptotic problem is written as:

Xα
0 ∼ µ0, Aα0 = 1

αn ∼ πn(·|Xα
n) = Be(pn(X

α
n))

Aαn+1 = Aαn · (1− αn)

Xα
n+1 =

{
F (n,Xα

n ,L(Xα
n), ϵn+1), if Aαn · (1− αn) = 1

Xα
n , otherwise,

(16)

where the social cost is defined as:

J(p) :=

T∑
m=n

∑
(x,a)∈S

νp,ν,nm (x, a)Φ(x, νpX,m)apm(x) =

=

T∑
m=n

Ψ(νpm, pm(νpm)).

(17)

Let us recall that P := {p : {0, . . . , T} × X × P(S) → [0, 1] : p is Lp-Lipschitz}, the set of
all possible admissible policies p. From now we are going to use the notation ∥ · ∥ for the norm
associated to the total variation distance. Firstly we want to prove the at time time n the distributions
νN,pm and νpm are close in the following sense (see Cui et al. (2023) for a similar setting).
Lemma A.1 (Convergence of the measure). Suppose Assumption 3.1 holds. Given the dynamics
(14) and (16) for every n = 0, . . . , T it holds:

sup
p∈P

E
[
∥νN,pn − νpn∥

]
= O(1/

√
N). (18)

Proof. We are going to follow an induction argument over the time steps:

Initialization: for n = 0, since we have indipendent samples at the starting point, by the law of large
numbers (LLN) we have:

sup
p∈P

E
[
∥νN,p0 − νp0∥

]
→ 0

with rate of convergence O
(

1√
N

)
.

In particular, let us denote S := {y1, · · · , yK}, νp0 (yi) = pi, ν
N,p
0 (yi) =

1
N

∑N
i=1 δY α

i
(yi) =

C(yi)
N ,

where C(yi) is defined as the number of agent that are in the state yi at time 0. We can write:

E
[
∥νN,p0 − νp0∥

]
=

1

2
E

 |S|∑
i=1

∣∣∣∣C(yi)N
− pi

∣∣∣∣
 ≤

√
|S|
2

E

 |S|∑
i=1

(
C(yi)

N
− pi

)2
1/2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

by Cauchy-Schwarz inequality. Notice now that C(yi) ∼ Bin(N, pi) and so

|S|∑
i=1

V ar

(
C(yi)

N

)
=

|S|∑
i=1

pi(1− pi)

N
=

1−
∑|S|
i=1 p

2
i

N
≤ |S| − 1

N |S|

since the quantity 1−
∑|S|
i=1 p

2
i has its max when pi = 1

|S| .

Eventually we obtain the explicit constant:

E
[
||νN,p0 − νp0 ||

]
≤

√
|S| − 1

2
√
N

.

Remark A.2. Notice that the bound depends on the cardinality of the state space: more states lead to
a larger upper bound, meaning possibly a larger discrepancy between the empirical and mean field
distributions. This is due to the fact that we used as metric the total variation distance, which sums
over all possible states. In continuous space this metric is not feasible and so usually the Wasserstein
distance is used for convergence analysis (see Carmona and Delarue (2018)). Actually in the finite
space and discrete time setting we have the following inequality:

dmin∥µ− ν∥TV ≤W1(µ, ν) ≤ D∥µ− ν∥TV ,

where dmin := minx ̸=y d(x, y) and D := maxx ̸=y d(x, y). Notice that the Wasserstein distance in
finite space and discrete time is defined as:

Wp(µ, ν) =

 min
T∈C(µ,ν)

n∑
i=1

n∑
j=1

d(xi, xj)
p · Ti,j

 1
p

,

where C(µ, ν) is the set of couplings defined as:

C(µ, ν) =

T ∈ Rn×n
∣∣∣∣ n∑
j=1

Ti,j = µi ∀i,
n∑
i=1

Ti,j = νj ∀j, Ti,j ≥ 0 ∀i, j

 ,

and d(xi, xj) is the distance between points xi and xj in the metric space. More details on Wasser-
stein distances are described in Villani (2009) and Arjovsky et al. (2017).

Induction step: assume now that (18) holds at time n. Using triangle inequality, at time n + 1 we
have, for any p ∈ P ,

E
[
∥νN,pn+1 − νpn+1∥

]
≤

≤ E
[
∥νN,pn+1 − F̄ (νN,pn , pn(ν

N,p
n))∥

]
+ E

[
∥F̄ (νN,pn , pn(ν

N,p
n))− νpn+1∥

]
where we recall the expression of F̄ described by (8).

For the second term, by Lipschitz property of F̄ and p(ν), we can write :

E
[
∥F̄ (νN,pn , pn(ν

N,p
n))− νpn+1∥

]
= E

[
∥F̄ (νN,pn , pn(ν

N,p
n))− F̄ (νpn, pn(ν

p
n))∥

]
≤ LF̄E

[
|∥νN,pn − νpn∥+ ∥pn(νN,pn)− pn(ν

p
n)∥|

]
≤ LF̄E

[
|∥νN,pn − νpn∥+ Lp∥νN,pn − νpn∥|

]
= (LF̄ (1 + Lp))E

[
∥νN,pn − νpn∥

]
≤ (LF̄ (1 + Lp))

n+1E[||νN,p0 − νp0∥]

≤ (LF̄ (1 + Lp))
n+1

√
|S| − 1

2
√
N

by induction step, and the upper bound is independent of p ∈ P (since the constant Lp is the same
for all the control p ∈ P).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For the first term we have:

E
[∥∥∥νN,pn+1 − F̄ (νN,pn , pn(ν

N,p
n))

∥∥∥] =

= E

[∥∥∥∥∥ 1

N

N∑
i=1

δY i,α
n+1

− F̄ (νN,pn , pn(ν
N,p
n))

∥∥∥∥∥
]
=

=
1

2
E

∣∣∣∣∣∣
∑
y∈S

1

N

N∑
i=1

δY i,α
n+1

(y)− F̄ (νN,pn , pn(ν
N,p
n))(y)

∣∣∣∣∣∣
 =

=
1

2

∑
y∈S

E

[∣∣∣∣∣ 1N
N∑
i=1

δY i,α
n+1

(y)− F̄ (νN,pn , pn(ν
N,p
n))(y)

∣∣∣∣∣
]
=

=
1

2

∑
y∈S

E

[
E

[∣∣∣∣∣ 1N
N∑
i=1

δY i,α
n+1

(y)− F̄ (νN,pn , pn(ν
N,p
n))(y)

∣∣∣∣∣
∣∣∣∣Y α
n

]]
The interpretation of F̄ gives us:

F̄ (νN,pn , pn(ν
N,p
n))(y) =

∑
y′

νN,pn (y′)P(Y pn+1 = y|Y pn = y′)

=
1

N

N∑
i=1

P(Y pn+1 = y|Y pn = Y i,pn)

=
1

N

N∑
i=1

P(Y i,pn+1 = y|Y i,pn)

=
1

N

N∑
i=1

E[δi,pYn+1
(y)|Y i,pn]

where we used that the i particles are indistinguishable and have the same transition functions. So
we can conclude the argument as:

E
[∥∥∥νN,pn+1 − F̄ (νN,pn , pn(ν

N,p
n))

∥∥∥] =

=
1

2

∑
y∈S

E

[
E

[∣∣∣∣∣ 1N
N∑
i=1

δY i,α
n+1

(y)− E

[
1

N

N∑
i=1

δY i,α
n+1

(y)

∣∣∣∣Y α
n

]∣∣∣∣∣
∣∣∣∣Y α
n

]]
≤ |S|

4
√
N

by the LLN, where again the bound is independent of p ∈ P .

Indeed, given the past history Y α
n the random variables δY i,α

n+1
become conditionally independent

for every i = 1, . . . , N . Furthermore each δY i,α
n+1(y)

is a Bernoulli random variable, therefore its

variance V ar(δY i,α
n+1

(y)|Y α
n) ≤ 1

4 . Summing over all agents, the variance of the empirical mean

becomes 1
4N . Using Cauchy-Schwarz inequality, for any random variable Z with finite variance

E[|Z −E[Z]|] ≤
√
V ar(Z), so in our case we obtained the constant |S|

4
√
N

. We have thus proved by
induction that:

sup
p∈P

E
[
∥νN,pn − νpn∥

]
≤

[
(LF̄ (1 + Lp))

n+1

√
|S| − 1

2
+

|S|
4

]
1√
N

for every time step n = 0, . . . , T .

This result allows us to prove the following main theorem on the optimal cost approximation in the
N -agent problem. This is a precise version of the informal statement in Theorem 3.2.
Theorem A.3 (ε-approximation of the N -agent problem). Suppose Assumption 3.1 holds. Given
the dynamics (14) and (16) and the social cost associated (15), (17), let us denote by p∗ the optimal
policy for the mean field problem and by p̂ the optimal policy for the N -agent problem. It holds:

JN (p∗, . . . , p∗)− JN (p̂, . . . , p̂) = O(1/
√
N). (19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. We can write:

JN (p∗, . . . , p∗)− JN (p̂, . . . , p̂) =

(
JN (p∗, . . . , p∗)− J(p∗)

)
+

(
J(p∗)− J(p̂)

)
+

(
J(p̂)− JN (p̂)

)
Notice first that we can bound this term simply deleting the second term in the r.h.s noticing J(p∗)−
J(p̂) ≤ 0 since p∗ is optimal for the mean field cost J(p). For the first term we can write:

JN (p∗, . . . , p∗)− J(p∗)

= E

[
T∑

m=0

Ψ(νN,p
∗

m , p∗m(νN,p
∗

m))

]
−

T∑
m=n

Ψ(νp
∗

m , p
∗
m(νp

∗

m))

=

T∑
n=0

E
[
Ψ(νN,p

∗

n , p∗n(ν
N,p∗

n))−Ψ(νp
∗

n , p
∗
n(ν

p∗

n))
]

≤ LΨ

T∑
n=0

E
[∥∥∥νN,p∗n − νp

∗

n

∥∥∥+
∥∥∥p∗n(νN,p∗)− p∗n(ν

p∗

n)
∥∥∥]

≤ LΨ(1 + Lp)

T∑
n=0

E
[∥∥∥νN,p∗n − νp

∗

n

∥∥∥]
≤ TLΨ(1 + Lp) sup

n∈{0,...,T}
E
[∥∥∥νN,p∗n − νp

∗

n

∥∥∥] ≤ TLΨ(1 + Lp)

[
(LF̄ (1 + Lp))

T

√
|S| − 1

2
+

|S|
4

]
1√
N
,

by Lemma A.1. For the last term J(p̂) − JN (p̂) we can apply the same argument that we just
described. In the folliwng way we obtain:

JN (p∗, . . . , p∗)− JN (p̂, . . . , p̂) ≤ 2TLΨ(1 + Lp)

[
(LF̄ (1 + Lp))

T

√
|S| − 1

2
+

|S|
4

]
1√
N

B PROOF OF THEOREM 4.1

Let us prove Theorem 4.1.

Proof. To prove this result, we will show that we can reduce the problem to a mean field optimal
control problem in discrete time and continuous space. Then we can apply the well-studied dynamic
programming principle for mean field Markov decision processes (MFMDPs) (see e.g. Motte and
Pham (2022); Carmona et al. (2023); Bäuerle (2023)). We have:

Vn(ν) = inf
p∈Pn,T

T∑
m=n

∑
(x,a)∈S

νp,ν,nm (x, a)Φ(x, µp,ν,nm)apm(x)

= inf
p∈Pn,T

T∑
m=n

Ψ(νp,ν,nm , pm),

where Ψ : P(X × {0, 1})× P(X) → R and it is defined as:

Ψ(ν, q) :=
∑

(x,a)∈S

ν(x, a)Φ(x, νX)aq(x).

Then we can define the process Z taking value in P(X × {0, 1}):
Zpn = z = ν; Zpm := νp,ν,nm ∀m ≥ n

such that it follows the dynamics Zpm+1 = F̄ (Zpm, pm) for every m = n, . . . , T − 1. We can write:

Vn(z) = inf
p∈Pn,T

T∑
m=n

Ψ(Zpm, pm),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and we recognize a well studied control problem for which the DPP is:

Vn(z) = inf
h∈H

Ψ(z, h) + Vn+1(F̄ (z, h)).

where H is the set of all functions h : X → [0, 1]. Finally we can recover our result:

Vn(ν) = inf
h∈H

∑
(x,a)∈S

ν(x, a)Φ(x, νX)ah(x) + Vn+1(F̄ (ν, h)). (20)

where νX is the first marginal of the distribution ν.

C ALGORITHMS

Alg. 3 and 4 present respectively the direct approach and the DP-based method.

Algorithm 3 Direct Approach for MFOS

Require: Time-dependent stopping decision neural network: ψθ : {0, . . . , T}×X×P(S) → [0, 1],
cost function Φ, mean-field dynamic transition F̄ , time horizon T , max training iterationNiter.
// TRAINING

1: for k = 0, . . . , Niter − 1 do
2: Uniformly sample initial distribution νp0 from the probability simplex on R2|X |

3: for n = 0, . . . , T do
4: pn(x) = ψθ(x, ν

p
n, n; θk) for any x ∈ X ▷ Compute stopping probability

5: ℓn =
∑
x∈X ν

p
n(x, 1)Φ(x, µn)pn(x) ▷ Compute loss at time n

6: νpn+1 = F̄ (νpn, pn) ▷ Simulate MF dynamic
7: ℓ =

∑T
n=0 ℓn ▷ Compute the total loss

8: θk+1 = optimizer update(θk, ℓ(θk)) ▷ AdamW optimizer step
9: Set θ∗ = θNiter

10: return ψθ∗

Algorithm 4 Dynamic Programming Approach for MFOS

Require: A sequence of stopping decision neural network: ψnθ : X × P(S) → [0, 1] for n ∈
{0, . . . , T −1}, cost function Φ, mean-field dynamic transition F̄ , time horizon T , max training
iteration Niter.
// TRAINING

1: Set ψTθ = 1 since all distribution stopped at time T .
2: for n = T − 1, . . . , 0 do ▷ Train backward in time
3: for k = 0, . . . , Niter − 1 do
4: Uniformly sample initial distribution νpn from the probability simplex on R2|X |

5: for m = n, . . . , T do
6: if m = n then
7: pm(x) = ψmθ (x, νpm; θnk) ▷ Compute with NN for current time
8: else
9: pm(x) = ψmθ (x, νpm; θm,∗) ▷ Compute with trained NN from future time

10: ℓm =
∑
x∈X ν

p
m(x, 1)Φ(x, µm)pm(x) ▷ Compute loss at time m

11: νpm+1 = F̄ (νpm, pm) ▷ Simulate MF dynamic
12: ℓ =

∑T
m=n ℓm ▷ Compute the total loss from time n to T

13: θnk+1 = optimizer update(θmk , ℓ(θ
n
k)) ▷ AdamW optimizer step

14: Set θn,∗ = θnNiter
▷ Stored trained weight

D IMPLEMENTATION DETAILS

In this section, we will discuss the choice of neural networks, training batch size, learning rate, and
iterations, and all the related hyperparameters as well as computational resources used.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Neural Network Architectures: We have 4 variants of neural networks.

For the direct approach, the neural network takes an input time t, while for the DPP approach, the
neural network does not need time input.

For the asynchronous stopping problem, besides time, the neural network has two spatial inputs 1)
the state x, represented as an integer, goes through an embedding layer with learnable parameters
and the results are fed to other operations. 2) the distribution ν, represented as a vector, is inputted
to the neural net directly. For the synchronous stopping problem, the neural network only has one
spatial input, which is the distribution ν, and is treated as the same way as discussed before.

In general, our neural network has the following structure. Our neural network takes an input pair
(x, t), where x is the spatial input, t is the time. If t is a needed input, then it is passed through
a module to generate a standard sinusoidal embedding and then fed to 2 fully connected layers
with Sigmoid Linear Unit (SiLU) and generate an output tout. Spatial input x is passed through an
MLP with k residual blocks, each containing 4 linear layers with hidden dimension D and SiLU
activation. This generates an output yout. Our final output out is computed through,

out = Outmod(GroupNorm(yout + tout))

where Outmod is an out module that consists of 3 fully connected layers with hidden dimension D
and SiLU activation, GroupNorm stands for group normalization. If t is not a needed input, then
set tout = 0.

For all the test cases we have experimented with, we use k = 3, D = 128 for all the 1D experiments
and k = 5, D = 256 for the 2D experiments.

Computational Resources: We run all the numerical experiments on an RTX 4090 GPU and a
Macbook Pro with M2 Chip. For any of the test cases, one run took at most 3 minutes on GPU and
7 minutes on CPU.

Training Hyperparameters: For all the experiments, we choose an initial learning rate 10−4 of
the AdamW optimizer. Each training is at most 104 iterations, with a batch size 128. The number
of training iterations is chosen based on numerical evidence and trial and error. We start with a
moderate number and then increase it if the model shows signs of undertraining and is far from
convergence.

E NUMERICAL EXPERIMENTS DETAILS

This section aims to complete the results of the 6 numerical experiments conducted. While some of
the following plots have been previously discussed in Section 6, we provide the full descriptions of
Example E.1 and Example E.2 here for the sake of completeness.

E.1 EXAMPLE 1: TOWARDS THE UNIFORM

We take state space X = {0, 1, 2, 3, 4}, time horizon T = 4, transition function F (n, x, µ, ϵ) = x+1
which means that the agent deterministically moves to the state on the right, with boundary at x = 4
(meaning that once at 4, the agent does not move anymore), and cost function Φ(x, µ) = µ(x)
which depends on the mean field only through the state of the agent (this is sometimes called local
dependence). For the testing distribution, we take a distribution concentrated on state x = 0, denoted
as µ0 = δ0. It can be seen that the optimal strategy consists in spreading the mass to make it as
close as uniform as possible (hence the name of this example). Fig. 8 shows that the testing loss
decays towards the true optimal value, and the distribution evolves towards a uniform distribution
as expected. Fig. 9 shows the losses with DPP: there is one curve per time step. At time 0, the
value is close to the optimal value. First, we explain how the optimal value is computed. Since the
agents move deterministically to the right, the only option to freeze some mass at a state x is to do
it at time n. It can be seen that: for every n = 0, . . . , T and for every x ∈ X , we want to have
pn(x = n) = 1

T+1−n1x=n for n < T and pn(x) = 1 for n = T . Actually notice that for all x ̸= n
the choice of pn is arbitrary so, at every time-step n we can apply the same pn for every state x.
This brings us to optimize over the set of synchronous stopping times.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then we can compute the optimal value and obtain: V ∗,δ0 := T+2
2(T+1) .

Figs. 10 and 11 show the result for synchronous stopping.

0 2000 4000 6000 8000 10000
Iterations

0.270

0.280

0.290

0.300

0.310

0.320

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.600

0.625

0.650

0.675

0.700

0.725

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4
X

Time 1

0 1 2 3 4
X

Time 2

0 1 2 3 4
X

Time 3

0 1 2 3 4
X

Time 4

0 1 2 3 4
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 8: Example 1. DA results, asynchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training.

0.280

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110
0.120
0.130

Ti
m

e
1

Lo
ss

0.660

0.680

Lo
ss

0.110
0.120
0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 1000 2000 3000 4000
Iterations

0.660

0.670

0.680

Lo
ss

Figure 9: Example 1. DPP results, asyn-
chronous stopping. Training and testing losses.

0 2000 4000 6000 8000 10000
Iterations

0.280

0.300

0.320

0.340

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.600

0.650

0.700

0.750

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4
X

Time 1

0 1 2 3 4
X

Time 2

0 1 2 3 4
X

Time 3

0 1 2 3 4
X

Time 4

0 1 2 3 4
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 10: Example 1. DA results, synchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training.

0.290
0.300
0.310

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

0.700

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110

0.120

0.130

Ti
m

e
1

Lo
ss

0.640

0.660

0.680

Lo
ss

0.110

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 1000 2000 3000 4000
Iterations

0.660

0.680
Lo

ss

Figure 11: Example 1. DPP results, syn-
chronous stopping. Training and testing losses.

E.2 EXAMPLE 2: ROLLING A DIE

In this example, at every time step, a fair six-sided die is rolled. This takes the role of the noise ϵ ∼
U(X) where X = {1, 2, 3, 4, 5, 6}. The system starts in the initial distribution η = 1

4δ1+
1
4δ2+

1
2δ5,

and evolves according to the dynamics (5) with: µ0 = η, F (n, x, µ, ϵn+1) = ϵn+1. The social cost
function associated to this scenario is Φ(x, µ) = x. DR and DPP results are shown in Figs. 12 and
13 respectively. Here again we observe convergence to the true optimal value. The optimal value is
computed as follows. Using the dynamic programming principle described in (11) we can compute
the optimal strategy and the optimal value:

p0(·) = (1, 0, 0, 0, 0, 0) p1(·) = (1, 1, 0, 0, 0, 0)

p2(·) = (1, 1, 0, 0, 0, 0) p3(·) = (1, 1, 0, 0, 0, 0)

p4(·) = (1, 1, 1, 0, 0, 0) p5(·) = (1, 1, 1, 1, 1, 1)

V ∗,η = 1, 6525.

For our considered initial distribution, this is one of the possible optimal strategies, since we have no
mass on some states and thus can assign any stopping probability to them. However, the solution we
have presented is the only optimal solution for all possible initial distributions. Note that if we opti-
mize on the class of synchronous stop times, we do not reach the same optimal value, but we reach a
higher value, concluding that for this type of problem, it is better to optimize on asynchronous stop
times. In fact, when you narrow the decision only to the class of synchronous stop times is better to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

stop everyone at the first initial state reaching a value of Ṽ ∗ = 3, 25 > 1, 6525 = V ∗. Synchronous
stopping results are shown in Fig. 14 and 15.

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 12: Example 2. DA results, asyn-
chronous stopping. Top: training and testing
losses. Bottom: evolution of the distribution af-
ter training.

2.000

2.500

Ti
m

e
0

Lo
ss

Training Loss

2.000

2.500

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

1.000

1.250

Ti
m

e
1

Lo
ss

2.600

2.800

3.000

Lo
ss

1.000

1.250

1.500

Ti
m

e
2

Lo
ss

3.100

3.200

3.300

Lo
ss

1.200

1.400

1.600

Ti
m

e
3

Lo
ss

3.250

3.300

3.350

Lo
ss

0 1000 2000 3000 4000
Iterations

1.400

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.350

3.400

Lo
ss

Figure 13: Example 2. DPP results, asyn-
chronous stopping. Training and testing losses.

0 2000 4000 6000 8000 10000
Iterations

3.200

3.300

3.400

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

Lo
ss

Testing Loss

Testing Loss
Optimal Cost

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 14: Example 2. DA results, synchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training.

3.200

3.400

Ti
m

e
0

Lo
ss

Training Loss

2.000

3.000
Lo

ss

Testing Loss

Testing Loss
Optimal Cost

1.600

1.800

Ti
m

e
1

Lo
ss

3.370

3.380

Lo
ss

1.600

1.800

Ti
m

e
2

Lo
ss

3.370

3.380

Lo
ss

1.600

1.800

Ti
m

e
3

Lo
ss

3.370

3.380

Lo
ss

0 1000 2000 3000 4000
Iterations

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.370

3.380

Lo
ss

Figure 15: Example 2. DPP results, syn-
chronous stopping. Training and testing losses.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.3 EXAMPLE 3: CROWD MOTION WITH CONGESTION.

This example extends the previous one, adding a congestion factor. The transition probabilities are:

pn(z, x) := P (Xn+1 = z|Xn = x) =

{
1
6 (1−

1
5Ccongµ(x)), if z ̸= x,

1
6 (1 + Ccongµ(x)), if z = x.

(21)

Let us set Ccong = 0.8. However, the reasoning regarding the differences between scenarios in
which the central planner optimizes the set of asynchronous stopping times or the set of synchronous
stopping times is similar.

DPP testing and training losses are shown in Fig. 16.

2.000

2.500

Ti
m

e
0

Lo
ss

Training Loss

2.000

2.500

Lo
ss

Testing Loss
Testing Loss

1.000

1.250

Ti
m

e
1

Lo
ss

2.600

2.800

3.000

Lo
ss

1.000

1.200

1.400

Ti
m

e
2

Lo
ss

3.000

3.200

Lo
ss

1.250

1.500

Ti
m

e
3

Lo
ss

3.200

3.300

Lo
ss

0 1000 2000 3000 4000
Iterations

1.400

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.300

3.400

Lo
ss

3.200

3.400

Ti
m

e
0

Lo
ss

Training Loss

3.200

3.300

3.400

Lo
ss

Testing Loss
Testing Loss

1.600

1.800

Ti
m

e
1

Lo
ss

3.370

3.380

3.390

Lo
ss

1.600

1.800

Ti
m

e
2

Lo
ss

3.380

3.390

Lo
ss

1.600

1.800

Ti
m

e
3

Lo
ss

3.375

3.380

3.385

Lo
ss

0 1000 2000 3000 4000
Iterations

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.375

3.380

3.385

Lo
ss

Figure 16: Example 3. DPP results. Training and testing losses. Left: asynchronous stopping.
Right: synchronous stopping.

E.4 EXAMPLE 4: DISTRIBUTIONAL COST

Synchronous stopping results are shown in Fig. 17.

0 2000 4000 6000 8000 10000
Iterations

0.225

0.250

0.275

0.300

0.325

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.000

0.050

0.100

0.150

0.200

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4 5 6
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4 5 6
X

Time 1

0 1 2 3 4 5 6
X

Time 2

0 1 2 3 4 5 6
X

Time 3

0 1 2 3 4 5 6
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing
Target dist.

Figure 17: Example 4. DA results, synchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training.

0.250

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.000

0.100

0.200

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.130

0.140

Ti
m

e
1

Lo
ss

0.200

0.220

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
2

Lo
ss

0 1000 2000 3000 4000
Iterations

0.200

0.220

0.240

Lo
ss

Figure 18: Example 4. DPP results, syn-
chronous stopping. Training and testing losses.

E.5 EXAMPLE 5: TOWARDS THE UNIFORM IN 2D

Asynchronous stopping results, including training losses, testing losses, distribution evolution, and
stopping probability are shown in Figs. 19 and 20. Synchronous stopping results are shown in Figs.
21 and 22.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
Iterations

0.065

0.068

0.070

0.072

0.075

0.077

Lo
ss

Training Loss

0 1000 2000 3000 4000 5000
Iterations

0.240

0.260

0.280

0.300

Lo
ss

Testing Loss
Testing Loss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.4

0.6

0.8Decision Prob

Figure 19: Example 5. DA results, asyn-
chronous stopping. Top: training and testing
losses. Bottom: evolution of the distribution and
stopping probability after training.

0.066

0.068

0.070

Ti
m

e
0

Lo
ss

Training Loss

0.240

0.260

0.280

Lo
ss

Testing Loss
Testing Loss

0.025

0.026

0.027

Ti
m

e
1

Lo
ss

0.255

0.260

0.265

Lo
ss

0.025

0.026

0.027

Ti
m

e
2

Lo
ss

0.258

0.260

0.263

Lo
ss

0 2000 4000 6000 8000
Iterations

0.026

0.028

Ti
m

e
3

Lo
ss

0 2000 4000 6000 8000
Iterations

0.258

0.260

0.263

Lo
ss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4
0

1
2

3
4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.25
0.50
0.75Decision Prob

Figure 20: Example 5. DPP results, asyn-
chronous stopping. Top: training and testing
losses. Bottom: evolution of the distribution and
stopping probability after training.

0 1000 2000 3000 4000 5000
Iterations

0.068

0.070

0.072

0.074

0.076

0.078

Lo
ss

Training Loss

0 1000 2000 3000 4000 5000
Iterations

0.240

0.260

0.280

0.300

0.320

Lo
ss

Testing Loss
Testing Loss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.2

0.4

0.6Decision Prob

Figure 21: Example 5. DA results, synchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution and stopping
probability after training.

0.070

0.073

Ti
m

e
0

Lo
ss

Training Loss

0.250

0.275

0.300
Lo

ss

Testing Loss
Testing Loss

0.027
0.028
0.029

Ti
m

e
1

Lo
ss

0.260

0.270

Lo
ss

0.026

0.028

Ti
m

e
2

Lo
ss

0.260

0.265

Lo
ss

0 1000 2000 3000 4000 5000
Iterations

0.027
0.028
0.029

Ti
m

e
3

Lo
ss

0 1000 2000 3000 4000 5000
Iterations

0.258
0.260
0.263

Lo
ss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.3

0.4Decision Prob

Figure 22: Example 5. DPP results, syn-
chronous stopping. Top: training and testing
losses. Bottom: evolution of the distribution and
stopping probability after training.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.6 EXAMPLE 6: MATCHING A TARGET WITH A FLEET OF DRONES.

In this example, we extend our framework by incorporating a terminal cost and common noise.
This allows us to consider a richer and more realistic class of MFOS environments. We extend the
dynamics defined in (5) in the following way:

Xα
0 ∼ µ0, Aα0 = 1

αn ∼ π(·|Xα
n) = Be(pn(X

α
n))

Aαn+1 = Aαn · (1− αn)

Xα
n+1 =

{
F (n,Xα

n , µ
α
n, ϵn+1, ϵ

0
n+1), if Aαn · (1− αn) = 1

Xα
n , otherwise.

(22)

where, ϵ0n is the common noise that affects the dynamics of all agents equally. Note that with the
presence of common noise the mean field distribution ν is not deterministic, but it is a random
variable that evolves conditionally with respect to the common noise.

Furthermore the social cost defined in (9) can be extended by adding a terminal cost:

J(p) = E0

 T∑
n=0

∑
(x,a)∈S

(
νpn(x, a)Φ(x, ν

p
X,n)apn(x)

)
+ g(νpX,T)

 , (23)

where g : P(X) → R is the terminal cost and E0 is the expectation with respect the common noise
realization.

The results for DA for different target distributions are provided in Fig. 23. The results for DPP for
different target distributions are provided in Fig. 24.

It is evident that, unlike the DPP, the optimal strategy in the DA tends to stop with high probability
at the final time steps, as clearly illustrated for the target distributions corresponding to the letters
“O” and “S”.

F HYPERPARAMETERS SWEEP

In this section, we show the results of a sweep over the learning rate for Example 1 with the two
methods and the two types of stopping times. We consider learning rates 10−2, 10−3 and 10−4 in
this order in the plots from top to bottom.

Direct method stopping: Figs. 25 and 26 show the losses for the asynchronous and the synchronous
stopping times respectively.

Direct method stopping: Figs. 27 and 28 show the losses for the asynchronous and the synchronous
stopping times respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25

0.50

0.75Decision Prob
0

2
4

6
8St

op
pe

d
Di

st
.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

Figure 23: Example 6. DA results, asynchronous stopping. Match the Letter “M”, “F”, “O”, “S”, in
a 10× 10 grid with common noise.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

Figure 24: Example 6. DPP results, asynchronous stopping. Match the Letter “M”, “F”, “O”, “S”,
in a 10× 10 grid with common noise

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 1000 2000 3000
Iterations

0.275

0.300

0.325

0.350

0.375

0.400

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.700

0.800

0.900

1.000

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(a) Learning rate 10−2

0 1000 2000 3000
Iterations

0.280

0.300

0.320

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.650

0.700

0.750

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(b) Learning rate 10−3

0 1000 2000 3000
Iterations

0.280

0.300

0.320

0.340

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.625

0.650

0.675

0.700
Lo

ss

Testing Loss
Testing Loss
Optimal Cost

(c) Learning rate 10−4

Figure 25: Example 1: Sweep of learning rates. DA results,
asynchronous stopping.

0 1000 2000 3000
Iterations

0.300

0.400

0.500

0.600

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.700

0.800

0.900

1.000

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(a) Learning rate 10−2

0 1000 2000 3000
Iterations

0.300

0.320

0.340

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.650

0.700

0.750

0.800

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(b) Learning rate 10−3

0 1000 2000 3000
Iterations

0.280

0.290

0.300

0.310

0.320

0.330

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.650

0.700

0.750

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(c) Learning rate 10−4

Figure 26: Example 1: Sweep of learning rates. DA results,
synchronous stopping.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.280

0.300
Ti

m
e

0

Lo
ss

Training Loss

0.600

0.800

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110
0.120
0.130

Ti
m

e
1

Lo
ss

0.650

0.700

Lo
ss

0.110
0.120
0.130

Ti
m

e
2

Lo
ss

0.650

0.675

0.700

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.680

0.700

Lo
ss

(a) Learning rate 10−2

0.280

0.300

0.320

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110

0.120

0.130

Ti
m

e
1

Lo
ss

0.650

0.675

0.700

Lo
ss

0.110

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.680

Lo
ss

(b) Learning rate 10−3

0.280

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.625

0.650

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110
0.120
0.130

Ti
m

e
1

Lo
ss

0.640

0.660

0.680

Lo
ss

0.110
0.120
0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.680

Lo
ss

(c) Learning rate 10−4

Figure 27: Example 1: Sweep of learning rates.
DPP results, asynchronous stopping.

0.300

0.350

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.800

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.140

Ti
m

e
1

Lo
ss

0.650

0.700

Lo
ss

0.120

0.140

Ti
m

e
2

Lo
ss

0.670

0.680

0.690

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.670

0.680

Lo
ss

(a) Learning rate 10−2

0.300

0.320

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.700

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110

0.120

0.130

Ti
m

e
1

Lo
ss

0.660

0.680

0.700

Lo
ss

0.120

0.130
Ti

m
e

2

Lo
ss

0.660

0.670

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.130

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.670

0.680

Lo
ss

(b) Learning rate 10−3

0.290
0.300
0.310

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

0.700
Lo

ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.130

0.140

Ti
m

e
1

Lo
ss

0.660

0.680

0.700

Lo
ss

0.110

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.130

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.670
0.680
0.690

Lo
ss

(c) Learning rate 10−4

Figure 28: Example 1: Sweep of learning rates.
DPP results, synchronous stopping.

28

	Introduction
	Model
	Motivation: finite agent model
	Mean field model
	Mean field model with extended state

	purpleApproximate optimality for finite-agent model
	Dynamic programming
	Algorithms
	Experiments
	Conclusion
	N-agent cooperative optimal stopping
	Why do we need randomization in the control? An Example
	Proof of Theorem 3.2

	Proof of Theorem 4.1
	Algorithms
	Implementation details
	Numerical Experiments details
	Example 1: Towards the Uniform
	Example 2: Rolling a Die
	Example 3: Crowd Motion with Congestion.
	Example 4: Distributional Cost
	Example 5: Towards the Uniform in 2D
	Example 6: Matching a Target with a Fleet of Drones.

	Hyperparameters sweep

