Under review as a conference paper at ICLR 2025

DEEP LEARNING ALGORITHMS FOR MEAN FIELD
OPTIMAL STOPPING IN FINITE SPACE AND DISCRETE
TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimal stopping of stochastic processes is a fundamental problem in optimization
that has found applications in risk management, finance, economics, and recently
in the fields of computer science. We extend the standard framework to a multi-
agent setting, named multi-agent optimal stopping (MAOS), where a group of
agents cooperatively solves finite-space, discrete-time optimal stopping problems.
Solving the finite-agent case is computationally prohibitive when the number of
agents is very large, so this work studies the mean field optimal stopping (MFOS)
problem, obtained as the number of agents approaches infinity. We prove that
MFOS provides a good approximate solution to MAOS. We also prove a dynamic
programming principle (DPP), based on the theory of mean field control. We
then propose two deep learning methods: one simulates full trajectories to learn
optimal decisions, whereas the other leverages DPP to compute the value function
and to learn the optimal stopping rule with backward induction; both methods
train neural networks for the optimal stopping decisions. We demonstrate the
effectiveness of these approaches through numerical experiments on 6 different
problems in spatial dimension up to 300. To the best of our knowledge, this is the
first work to study MFOS in finite space and discrete time, and to propose efficient
and scalable computational methods for this type of problems.

1 INTRODUCTION

Optimal stopping (OS) has emerged as a powerful approach to tackle real-world problems character-
ized by uncertainty and sequential decision-making, in which the goal is to find the best time to stop
a stochastic process (see Shiryaev (2007), Ekren et al. (2014)). Famous real-world OS problems are
the job search (also called house selling or secretary problem) (Lippman and McCall, 1976) and in
machine learning, the question of when to stop training a neural network can also be viewed as an
instance of OS problems (Wang et al., 1993; Dai et al., 2019).

The OS framework has been extended to cover multi-agent scenarios, in which the aim is to stop
several (possibly interacting) dynamical systems at different times in order to minimize a common
cost function. We will refer to this setting at multi-agent optimal stopping (MAOS). MAOS has
gained significant importance in a variety of fields. In robotics, for example, this theory has found
applications in mission monitoring task, where multiple robots must observe the progress of other
robots performing a specific task (Best et al., 2018). In finance the problem of pricing options with
multiple stopping times (see Kobylanski et al. (2011)) can be viewed as an MAOS problem and was
a motivation for Talbi et al. (2023; 2024).

However, the problem’s complexity increases drastically with the number of agents. To tackle this
issue, mean-field approximations can be used. In the case of multi-agent control, this leads to the
theory of Mean Field Control (MFC), which aims to approximate very large systems of interacting
agents who are cooperatively minimizing a social cost by choosing optimal controls; see (Bensous-
san et al., 2013; Carmona and Delarue, 2018). Applications include crowd motion (Achdou and
Lasry, 2019), flocking (Fornasier and Solombrino, 2014), finance (Carmona and Lauriere, 2023),
opinion dynamics (Liang and Wang, 2019), and artificial collective behavior (Gu et al., 2021; Cui
et al., 2024), among others. In contrast with optimal control, mean field approximations have not

Under review as a conference paper at ICLR 2025

been used for OS problems, except for (Talbi et al., 2024; 2023) in the continuous time and contin-
uous space setting, and computational methods have not yet been developed.

Our work makes a first step in this direction: focusing on discrete time, finite space MFOS models,
we provide a theoretical foundation and then introduce two deep learning methods, which can solve
MFOS with many states by learning optimal stopping decisions that are functions of the whole
population distribution. We call these methods direct approach (DA) and dynamic programming
approach (DP), and test them on several environments.

Main Contributions Our main contributions are twofold:

Theoretically: (1) we prove that MFOS in discrete space and time yields an approximate

optimal stopping decision for N-agent MAOS with a rate of O(1/v/N) (Thm 3.2); (2) we
prove a DPP for MFOS by interpreting the model as a special kind of MFC problem (Thm 4.1).

Computationally: (1) we propose two deep learning methods to solve MFOS problems, by
learning the optimal stopping decision as a function of the whole population distribution (Alg. 1
and 2); (2) we illustrate the performance of both algorithms on six environments of increasing
complexity, with distributions’ dimension and time horizon up to 300 and 50 respectively.

To the best of our knowledge, this is the first work to study discrete-time, finite-space MFOS prob-
lems. Our theoretical results relay on the interpretation of MFOS problems as MFC problems, which
provides a new perspective and opens up new direction to study MFOS problems. Additionally, it is
the first time that computational methods are proposed to solve MFOS. This is a first step towards
solving complex multi-agent optimal stopping problems with very large number of agents.

Related works MFOS has been recently studied in continuous time and space from a purely the-
oretical view by Talbi et al. (2023; 2024) who studied the connection with finite-agent MAOS prob-
lems and characterized the solution of (continuous) MFOS using a PDE on the infinite-dimensional
space of probability measures, which is intractable. Instead, we focus on discrete time scenarios
with finite state space (i.e., an individual agent’s state can take only finitely many different values),
and hence the distribution is finite dimensional. This setting can be viewed as an approximation of
the continuous setting. Deep learning methods have been proposed for discrete time single-agent
OS problems. Becker et al. (2019) proposed to learn the stopping decision at each time using a deep
neural network. Herrera et al. (2023) extended the approach using randomized neural networks.
Damera Venkata and Bhattacharyya (2024) proposed to use recurrent neural networks to solve non-
Markovian OS problems. Other approaches have been proposed, particularly for continuous time
OS problems, such as learning the stopping boundary (Reppen et al., 2022). These single-agent
OS approaches cannot be easily adapted to solve MAOS problems: The solution which consists
in treating the whole system as one agent would lead to stopping all the agents at the same time,
and single-agent methods do not capture the interdependence between agents. Furthermore, these
approaches are not suitable to tackle continuous space MFOS problems as introduced by Talbi et al.
(2023) because the value function must be a function of the population distribution, which leads to
an infinite dimensional problem. For this reason, there are no existing computational methods for
MFOS. In this work, we focus on a finite space setting and propose the first computational methods
for MFOS problems by leveraging the aforementioned deep learning literature to tackle the (finite
but) high dimensionality of the population distribution. Another difference with (Talbi et al., 2023;
2024) is that these work purely rely on an OS viewpoint, while we unveil a connection with MFC
problems. This is a conceptual contribution of our work. Recently, MFC problems in discrete time
and finite space have been studied using reinforcement learning methods (Gu et al., 2023; Motte and
Pham, 2022; Carmona et al., 2023). However, here we focus on situations in which the model is
known and we develop deep learning algorithms. This allows us to solve problems in much higher
dimension (up to 300 for the neural network’s input) than these works.

2 MODEL

When the number of agents tends to infinity an aggregation effect takes place, enabling us to rep-
resent the influence of the community using an “average” term, commonly referred to as the mean
field term. As the number of agents approaches infinity, they become independent and identically

Under review as a conference paper at ICLR 2025

distributed (i.i.d.), and the behavior of each individual agent is determined by a stochastic differen-
tial equation (SDE) of McKean-Vlasov type. This phenomenon is often known as the “propagation
of chaos” (Sznitman, 1991). The objective is to discern the properties of the solutions to the limiting
problem. By integrating these properties into the formulation of the /N-agent control framework, we
can derive approximate solutions to the latter problem (for more theoretical background on MFC,
see (Bensoussan et al., 2013; Carmona et al., 2013; Carmona and Delarue, 2018)).

2.1 MOTIVATION: FINITE AGENT MODEL

The mean field problem that we will solve is motivated by the N-agent problem that we are about
to describe. Let X be a finite state space. Let us denote by P(X) the set of probability distributions
on X, and let E be the set of realizations of the random noise. Let 1" be a time horizon and let N
be the number of agents that are interacting.. Each agent i has a state denoted by X! at time n. At
time n, each agent stops with probability p!, (X &). We introduce of, a random variable taking value
0 if the agent continues and 1 if it stops. We denote by 7', (-| X&) = Be(p’, (X)) its distribution,
which is a Bernoulli distribution. We denote by X = (X},..., XN)and a = (a!,...,a") the
vectors of states and stopping decisions at time n.

Dynamics. We assume that the agents are indistinguishable and interact in a symmetric fashion,
i.e. through their empirical distribution pl**(z) := + Zfil 6y (), which is the proportion of
agents at x at time n with § the indicator function. The system evolves according to a transition
function F': N x X x P(X) x E — X. In particular: forevery i = 1,..., N,

7,0
Xo'™ ™~ o
a Na i i3 i —
ai ~ 7Ti (|Xa) Xi,a _ F(na X’:‘Laﬁﬂn aaeiz-&-l)a if Zm:o O‘zn =0 (1)
" " nn n+l1 Xbe, otherwise,
where €, is a random noise impacting the evolution of agent i and m is the initial distribution.

Let us define the stopping time for agent i: 7/ = inf{n > 0: >."" _ «af > 1}, which is the first
time for player ¢ at which the decision is to stop.

Objective function. Let us consider a function @ : X x P(X) — R. ®(x,) denotes the cost that
an agent incurs if she stops at « and the current population distribution is p. The goal for all the N
agents is to collectively minimize the following social cost function:

N
1)
N 1 Ny _ i, N,
J (Ol,...,Oé)—]E Nilq)(Ti;,u‘Ti) . (2)
The problem consists in finding (o, ..., o) € argmin JV. Next, we give an example.

Motivating Example: We take state space X = {1,2,3,4,5,6,7} with boundaries (i.e., in 1
agents cannot move left and in 7 they cannot move right), time horizon 7" = 3, transition func-
tion F'(n,x, pu,€) = x + ¢, where ¢ = 0 with probability p = 1/2, ¢ = 1 with probability p = 1/4
and e = —1 with probability p = 1/4. Following (1), the dynamics of agent i is: X}, ; = X} +€,
if the agent does not stop, and X', ; = X, otherwise. All agents start in 2 = 4. We define a target
distribution pearget = %64 + %55 + %63. If the agent ¢ stops at time n, then she is incurred the cost:
DXL, 1) = cx 1Y (%) = prarget (z)|?, which is smaller if the agent stops when the popula-
tion distribution matches the target one. Notice that some agents might have to stop even though
the target distribution is not matched, so that other agents can later have a lower cost because this
is a cooperative task. Solving exactly this problem (i.e., finding the optimal stopping time for every
agent) is very complex. Our approach consists in considering the mean field problem, which leads
to an efficient approximate solution (see Example 4 in Section 6).

Challenges: Single-agent methods cannot be readily applied to the multi-agent setting since
they cannot capture the interdependence due to the distribution in the cost and in the dynamics.
In particular, in the multi-agent setting, we allow agents to stop at different times. When the
number of agents is very large, computing exactly the optimal stopping times is infeasible.

Under review as a conference paper at ICLR 2025

Mean field optimal stopping (MFOS) can intuitively provide an approximate solution but (1)
this needs to be justified and (2) scalable numerical methods for MFOS need to be developed.

2.2 MEAN FIELD MODEL

As mentioned earlier, if we let the number of players tend to infinity, we expect, thanks to propaga-
tion of chaos type results, that the states will become independent and each state will have the same
evolution, which will be a non-linear Markov chain. More precisely, passing formally to the limit in
the dynamics (1), we obtain the following evolution:

Xg ~ o

F(n, X2, pu& €nv1), if S0 _jam=0 Q)
nNn'Xa — B nXa7 «@ — »“An o Mno) m.fO
« e (‘ n) e(p (n)) n+1 {Xﬁ, 0therw1se,
where p,,(z) denotes the probability with which the agent continues if she is in state x at time n,
and p is the distribution of X% itself, which we may also denote by £(X2).

We want to emphasize the fact that the introduction of randomized stopping times for individual
agents is crucial for our purpose; see the example in Appx. A.1.

We can define, in the same way we did before, the first time at which the control o is 1 as 7 :=
inf{n >0:> " _ a, > 1}. Then the social cost function in the mean field problem is defined as:

o) = E|#(x2. LX) @

Notice that here the expectation has the effect of averaging over the whole population, so there is no
counterpart to the empirical average that appears in the finite agent cost (2). To stress the dependence
on the initial distribution, we will sometimes write J(c, my).

2.3 MEAN FIELD MODEL WITH EXTENDED STATE

A key step towards building efficient algorithms is dynamic programming, which relies on Marko-
vian property. However, in its current form the above problem is not Markovian. This makes the
problem time-inconsistent. To make the system Markovian, we need keep track of the information
about whether the player’s process has been stopped in the past. This information is not contained
in the state so we need to extend the state. Let A® = (AS),—o,..., 7 the process such that A% = 0 if
the agent has already stopped before time n, and 1 otherwise. We can interpret this process as the
“Alive” process, while « stands for the “action”, namely, to stop or not. So AY = 1 means the agent
has not stopped yet; when the agent stops, «,, = 1 and Af; , | switches to 0. It is important to notice
that if the agent is stopped precisely at time n then, we still have AY = 1 but A% = 0 for every
m > n. We define the extended state as: Y, = (X2, AS), which takes value in the extended state
space S := X x {0,1}. Then, the dynamics (3) of the representative player can rewritten as:

X8 ~ o, AZ=1
an ~ T (+|X7) = Be(pn(X7))

Anp =47 (1—an) &)
o [P X LX)), AT (- ay) =1
T X, otherwise.

The idea of extending the state using the extra information is similar to Talbi et al. (2023) in contin-
uous time and space. The mean field social cost (4) can rewritten as:

T
) =E| 3 90X LX) A ©

m=0
Actually, notice that the expectation amounts to taking a sum with respect to the extended state’s
distribution. Let us denote by v? = L(Y,%) the distribution at time n. We are going to denote /%
the first marginal of v” (sometimes also denoted by). Note that it does not really depend on « but

Under review as a conference paper at ICLR 2025

only on the stopping probability p, so we use the superscript p when referring to v. This distribution
evolves according to the mean field dynamics:

{Vg(x,O)z(), vh(x,1) = po(x), rec X,

_ (N

V£+1 = F(V7Ii7pn)7
where the function F is defined as follows. We denote by H the set of all function h : X — [0, 1],
which represents a stopping probability (for each state). Then, F' : {0,...,T} x P(S) xH — P(S)
is defined by: for every x € X,a € {0,1}, F(v, h) is the distribution generated by doing one step,
starting from v and using the stopping probabilities h. Mathematically,

(Fom)(e0) = (v60.0) 4 v D4)1 = 0) 4 (vl (200 -16D) o, ®)

zeX

where Q¥ = (¢7). zex is the transition matrix associated to the unstopped process X, i.e. ¢,
is the probability to go from the state z to the state knowing that we are not going to stop in x.
Notice that in general the transitions may depend on v itself. So the last equation can be written
more succinctly in a matrix-vector product but the transition matrix depends on v itself, which is
why this type of dynamics is sometimes referred to a non-linear dynamics. The mean field social
cost can be rewritten purely in terms of the distribution as follows:

T
Jp) =Y > vhi(z,a)®(z, 1h,)apm(x), ©)
m=0 (z,a)ES
where p : {0,...,T} x X — [0, 1] is the function that associates to every time step and state the

probability to stop (in that state at that time). Let us define Py 1 the set of all such functions.

The link with the above formulation is that v, (x) is distributed according to Be(p,(z)), and v?, :=
L(Y,%) is the extended state’s distribution. Moreover, v (z,0) is the mass in x that has stopped.

Last, L(X7,) = pip, (%) = X e (0,13 Vi (@, a) is the first marginal of this distribution.

3 APPROXIMATE OPTIMALITY FOR FINITE-AGENT MODEL

In this section, we aim to address the following question: “Is the mean-field model capable of solving
the original problem of N agents, at least approximately?”. Specifically, we demonstrate that the
MFOS solution provides an approximately optimal solution for the finite-agent MAOS problem.
The main assumption we use is:

Assumption 3.1. Let L, > 0 and let us define P := {p : {0,...,T} x X x P(S) — [0,1] :
p is L,-Lipschitz}, the set of all possible admissible policies p. Assume that the mean field dynamics
F described in (8) is Lz - Lipschitz. Assume also that the function ¥ : P(X x {0,1}) x P(X) — R
defined as (v, h) := 3", ,)esV(@,a)®(z, vx)ah(z) is Ly-Lipschitz.

Assuming Lipschitz dynamics, cost and policies is classical in the literature on mean field control
problems, see e.g. (Mondal et al., 2022; Pasztor et al., 2023; Cui et al., 2023) and can be achieved
using neural networks (Araujo et al., 2022).

Due to space constraints, we simply provide an informal statement here. The precise statement is
deferred to Appx. A.2, see Theorem A.3, along with the detailed setting and notations.

Theorem 3.2 (e-approximation of the N-agent problem). Suppose Assumption 3.1 holds. If
p* is the optimal policy for the MFOS problem and p is the optimal policy for the N-agent
problem (when all the agents use the same policy), then: as N — 4o, JN(p*,...,p*) —

JN(p,...,p) — 0, with rate of convergence O (1/\/N) (the explicit bound is in the proof).

A key step in the proof consists in analyzing the difference between the N-agent dynamics and the
mean-field dynamics under a stopping policy, see Lemma A.1 (“Convergence of the measure”) in
appendix.

Under review as a conference paper at ICLR 2025

Figure 1: MFOS v.s. MAOS. We use the stopping probability function learned by Algorithm 1 for
MFOS to simulate the multi-agent OS.

Theorem 3.2 is further supported through empirical evidence as is shown in Fig. 1, where we apply
the stopping probability function learned by Algorithm 1 on MFOS in Example 1 (see Section 5
and 6 for details) to the N-agent problem with varying N (see Appx. E.1). We compute the L? dis-
tance of multi-agent empirical distribution to mean-field distribution and the optimality gap between
multi-agent and mean-field cost, both averaged over 10 runs. The plots demonstrate a clear decay
rate of order N —1/2. This theorem justifies that MFOS is not only an intrinsically interesting prob-
lem, but the solution to MFOS also serves as an approximate solution to the corresponding MAOS
problem. In the sequel, we will focus on solving the MFOS problem.

4 DYNAMIC PROGRAMMING

Our motivation for developing a dynamic programming principle (DPP) for our formulation comes
from both the literature and numerical purposes. Dynamic programming (DP) appears very often in
the literature, encompassing fields such as economics, finance, development of computer programs
to the ability of a computer to master the game of chess, Go, and many others. In the control theory
of a dynamic system in particular, it has been studied and used very often to find solutions to a
given optimization problem. Moreover, implementing an algorithm that founds on DPP often leads
to precise optimal solutions that perform better than other methods.

We introduce the dynamical form of the social cost (9) as:

T

R . —— : D,V,n p,v,n
Vo (v) := pelgf,T J(p(x),v) = pel%fﬂ Z Z vBr ™Mz, a)®(z, pb: ™) apm (), (10)
m=n (z,a)eS
where P, r is the set of all possible function p : {n,..., T} x X — [0,1] and v”*" denotes the
distribution of the process that starts at time n with a given distribution v; it satisfies (7) but starting
at time n instead of 0 with #£"*"™ = v. The optimal value at time 0 will be denoted: V*(v) = V,(v),
which is also equal to inf,, J(p, v). We can now state and prove the following DPP.

Theorem 4.1 (Dynamic Programming Principle). For the dynamics given by (5) and the value
function given by (10) the following dynamic programming principle holds:

{VT(V) =Y (z.a)es V(T a)2(z, vx)a,

. - an

Va(v) = infren Y-, 0yes V(@ a)@(2, vx)ah(z) + Vi1 (F (v, b)), n<T,
where vx is the first marginal of the distribution v, i.e., vx(x) = v(z,0) + v(x,1). The
sequence of optimizers define an optimal stopping decision that we will denote by h* :
{0,....,T — 1} x X x P(S) — [0,1] and satisfies: for every n € {0,...,T — 1} and ev-

eryv € P(S), Va(v) = 3o 0yes V(@) @(z, vx)ahy (z,v) + Vay1 (F (v, by (2, v))).

To prove this result, we will show that we can reduce the problem to a mean field optimal control
problem in discrete time and continuous space. See details in Appx. B. Dynamic programming for
MEFC problem (Lauriere and Pironneau, 2014; Pham and Wei, 2017) and mean field MDPs (Gu et al.,
2023; Motte and Pham, 2022; Carmona et al., 2023) have been extensively studied, and DPP for
continuous time MFOS has been established by Talbi et al. (2023) using a PDE approach. However,
to the best of our knowledge, this is the first DPP result for MFOS problems in discrete time. It
serves as a building block for one of the deep learning methods proposed below.

Under review as a conference paper at ICLR 2025

Actually we can show that this DPP still holds for a restricted class of randomized stopping times in
which all the agents (regardless of their own state) have the same probability of stopping. Let 75"7T
be the setof p : {0,...,T} — [0, 1]. Notice that here p,, does not depend on the individual state .
At every time step n = m every agent has the same probability to stop p,,, i.e for every x € X at
time n = m, p,(x) = p,. We call this set as synchronous stopping times. Let us define the value:

T
Vaw):= inf J(p,v):= inf Y pm Y BV (@ a)®(x, b a.

PEPn,T PEPnT Ji—n (z,0)€S

Theorem 4.2. For the setting of synchronous stopping times, the value function satisfies:

{VT(V) = > (z.)es V(@,0) (2, vx)a,

- _ (12)
Vi (v) = infhepo,1) Z(x,a)es v(z,a)®(xz,vx)ah + Vi1 (F (v, h)), n<T

The proof follows the same argument as the one of Theorem 4.1 so we omit it.

5 ALGORITHMS

To address the MFOS problem numerically, we propose two approaches based on two different
formulations. As the most naive approach, we can attempt to directly minimize the mean-field
social cost J(p) stated in (9), where we optimize over all the possible stopping probability functions
p:{0,..., 7T} x X — [0,1]. A more ideal treatment is to leverage the Dynamic Programming
Principle (DPP) discussed in Theorem 4.1 and solve for the optimal stopping probability using
induction backward in time. For each of the timestep n, we implicitly learn the true value function
V..(v) by solving the optimization problem in (11), where we search over all possible one-step
stopping probability function » : X — [0, 1] for each time n. We refer to the method of directly
optimizing mean-field social cost as the direct approach (DA) and the attempt to solve MFOS via
backward induction of the DPP approach. Short versions of the pseudocodes are presented in Alg. 1
and 2. Long versions are in Appx. C (see Alg. 3 and 4). To alleviate the notations, we denote:
Q(v,h) =3 cxv(x,1)®(z, vx)h(x), which represents the one-step mean field cost. In the code,
optim_up denotes one update performed by the optimizer (e.g. Adam in our simulations).

Algorithm 2 Dynamic Programming (DP)

Require: stopping decision neural networks: v : X X P(S) — [0, 1]

Algorithm 1 Direct ApproaCh (DA) forn € {0,...,T — 1}, max training iteration Nic..
. T
Require: time-dependent stopping decision neural network: L: Set Py =1
o : {0,..., T} x X X P(S) — [0,1], max num- 2: forn =T —1,...,0do
ber of training iteration N, : fork =0,..., Niter — 1do
l: fork=0,...,Niter — 1do 4: Sample v
2: Sample initial v/{ 5 form=mn,...,Tdo
3: forn =0,...,T do 6: if m = n then
4. pn(x) = Yo(z, vl ,n;0).x € X ;3 Pm (x) = Py (z, v ;07)
5: Ly = (P, py) else
6: VP = F(v%, pn) 9: P (2) = 5" (2, 15, 0™")
7: =5T 10: b = >, VP (2, 1)®(x, fim) Dm ()
. - n=0"" 11. Vp — F\(yp P)
8: Ok4+1 = optimup(Oy, £(0k)) : 'mﬁ%l m> Pm
10: return g+ 13: Ok y1 = optim.up (6}, £(6}))

14: Seto™* =0}

15: return (¥gn,«)n=o,....T

iter

6 EXPERIMENTS

In this section, we present 6 experiments of increasing complexity to validate our proposed method
and demonstrate its potential applications. Due to space constraints, two of them have been included
in Appx. E. It is important to emphasize that each experiment reflects a distinct scenario, varying
both in dynamics (random, deterministic; with or without mean-field interactions) and in the cost

Under review as a conference paper at ICLR 2025

function (with or without mean-field dependence). This provides a comprehensive overview of the
method’s versatility and potential applications. Eventually, we present a task of spatial dimension
300 (i.e., neural network’s input dimension) and time horiwon 50 with a random obstacle dynamics,
motivated by applications to a fleet of drones which have to match a target distribution. We solve all
6 environments with both algorithms (the details are in Appx. E).

Problem Dimensions: For the problem dimension, we count it as the sum of the dimension of the
information input to the neural network. Since the state is in X', which is finite, we encode it as a one-
hot vector in RI?*| before passing it to the neural network to ensure differentiability. For the mean-
field distribution with stopped and non-stopped parts, it is an element of the (2|X'| — 1)-simplex, and
is represented as a non-negative vector in R2/%!. Therefore, MFOS tasks are intrinsically of spatial
dimension |X| 4+ 2|X| = 3|X|, where | X| is the dimension of an individual agent’s state space.

Comparison of the Two Proposed Algorithms: While in theory both algorithms are equally capa-
ble of tackling MFOS problems, in practice these algorithms have advantages in different settings.
Empirically, we found that the optimal stopping decision is learned faster by DA than by DP, when
compute power is not a restriction. However, DA requires differentiating through the whole trajec-
tory at each gradient step, which requires a large amount of memory when the dimension is high.
The minimum required memory for training with DA increases with ', whereas DP requires only
constant order memory that is independent of the time horizon, since it trains time step per time
step. Therefore, when targeting an MFOS problem with a long time horizon 7', DPP becomes more
efficient, at least memory-wise. Similar observations were made in the context of continuous time
optimal control by Germain et al. (2022).

Example 1 (Towards the uniform) and Example 2 (Rolling a die), on a 1D gridworld state space,
are described in details in Appx. E.1 and Appx. E.2 respectively due to space constraint.

Example 3: Crowd Motion with Congestion. This example extends the setting of Example 2
by incorporating a congestion term into the dynamics. The outcome of the die takes the role of
the noise € ~ U(X) where X = {1,2,3,4,5,6}. The system starts in the initial distribution
n = 101+ 1824 185, and evolves according to the dynamics (5) with po = 7, and F(n,z, j1,€) = €
where we are going to introduce a term of congestion multiplying the probability of moving by
(1 — Ceongft()) to model the fact that it is difficult to move from a state x if the distribution is
concentrated in that state (details in Appx. E.3). The social cost function associated to this scenario
is ®(x, 1) = x. Time horizon is set to T' = 4. We executed the experiment without congestion (see
Appx. E.2) and we expect congestion to slow down the movement. DR results are shown in Fig. 2.

This example demonstrates that two classes of stopping times (synchronous and asynchronous) can
lead to very different optimal stopping decisions and induce distributions. Although the true value
is unknown, the results indicate that synchronous stopping times yield a higher value, while asyn-
chronous stopping times lead to a significant reduction in the cost. Additionally, in the asynchronous
case, congestion leads to reduced movement, as observed between time 0 and time 1 in state 4. See
Appx. E.3 for the DPP results.

Training Loss Testing Loss
3500 frrfrre] [T T e gtoss

3 3 Time 0 Time 1 Time 2 Time 3 Time 4 Time 5 Final State

Probability Mass

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 T T T T T T T
Iterations terations x x X x X X X

Training Loss Testing Loss

3 Time 0 Time 1 Time 2 Time 3 Time 4 Time 5 Final Stat

53300 =

3200

Probability Mass

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 T
Iterati terations X x X x X x X

Figure 2: Example 3. DA results, asynchronous vs synchronous stopping times. Left: comparison
of training and testing losses for asynchronous stopping times (top) and synchronous stopping times
(bottom). Right: Comparison of the evolution of the distribution after training (asynchronous stop-
ping class on top, synchronous stopping class on bottom).

4 3 2 10

Under review as a conference paper at ICLR 2025

Example 4: Distributional Cost. This example extends, at the mean field level, the motivating
example described at the end of Section 2.1. Based on Theorem 3.2, the mean field solution provides
a good approximation of the N-agent problem. DR and DPP results are shown in Fig. 3 and 4
respectively. The results for synchronous stopping time are shown in Appx. E.4.

Training Loss Testing Loss

Testing Loss - X
= = Optimal Cost Training Loss Testing Loss

0.300 §
0.200 1k

0.000

0.300 0.300

— Testing Loss
— = Optimal Cost

0.200

Loss

0.250 4

Loss

S 0250

Time 0
Loss

0.100 0.200

0.200

0000 = mm e —] 0.140] i i
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 | L 0.250 §¢
Iterations Iterations
0.120
Time 0 Time 1 Time 2 Time 3 Final State 0.200

0.250

Time 1
Loss
Loss

0.140

80225

Time 2
Loss

£275 Target dist. 0.120 0.200

o ™ o 0 1000 2000 3000 4000 0 1000 2000 3000 4000
X X X X X Iterations Iterations

Figure 3: Example 4. DA results, asynchronous Figure 4: Example 4. DPP results, asyn-
stopping. Top: training and testing losses. Bot- chronous stopping. Training and testing losses.
tom: evolution of the distribution after training.

Example 5: Towards Uniform in Dimension 2. This example extends Example 1 (see Appx. E.1)
to two dimensions, demonstrating how the algorithm performs in higher-dimensional settings. We
take state space X = {0,1,2,3,4} x {0,1,2,3,4}, time horizon T' = 4, transition function
F(n,z, i, €) = z+(1,0) which means that the agent deterministically moves to the state on the right
on the same row, with boundary at x = 4, and cost function ®(z, u) = u(x) which depends on the
mean field only through the state of the agent (this is sometimes called local dependence). For the
testing distribution, we take a distribution concentrated on state x = 0, denoted as pg = Jo. Fig. 5
shows that the distribution evolves towards a uniform distribution across each row, as expected, and
also illustrates the optimal strategy (decision probability) required to achieve this outcome. Results
for the DPP algorithm and the synchronous stopping are in Appx. E.S5.

Time: 0 Time: 1 Time: 2 Time: 3

012 3 4 012 3 4 012 3 4 012 3 4

Figure 5: Example 5. DA results, asynchronous stopping. Left: stopping decision probability.
Right: evolution of the distribution after training.

Example 6: Matching a Target with a Fleet of Drones. We conclude with a more realistic and
complex example to showcase the potential applications of our algorithms. This example aims to
align a fleet of drones with a given target distribution at terminal time 7', starting from a random
initial distribution. To make this experiment more interesting, we expand the framework described
so far by considering a different type of cost and by including a noisy obstacle hindering the drones’
movements (see Appx. E.6 for the mathematical formulation). We take X = {0, ...,9} x{0,...,9}
that represents a 10 x 10 grid. Hence, the neural network’s input is of dimension 3|X| = 300.
The system follows the dynamics that diffuse uniformly over the possible neighbors, where the
possible neighbors of € X are defined as = £ (0,1) or x & (1, 0) if the resulting state is still an
element of X'. Moreover, we introduce extra stochasticity into the dynamics by placing an obstacle
at a random state on the grid at each time step. The location is uniformly selected from X" and
is viewed as a common noise affecting the dynamics of all the agents. This introduces additional
complexity in the learning problem because even for a fixed stopping decision rule, the evolution
of the population is stochastic. We consider the target distribution p to be the uniform distribution
over the grid of the letter “M”, “F”, “O”, and “S” respectively, and we set the terminal cost gp(z/) =
> ex [v(@) — p(x)]2. We choose the time horizon 7' = 50. Fig. 6 shows that the learned stopping
probability from Algorithm 2 successfully drives the initial distribution into the shape of the letter

Under review as a conference paper at ICLR 2025

“M”. Another important aspect of the algorithms’ outcome is that the learned stopping decisions
are agnostic to the initial distribution in the sense that the same stopping decision rule can be used
on different initial distributions and always leads to matching the target distribution. Fig. 7 shows
the terminal distributions under random initial testing distribution: the learned stopping probability
function is robust to any test distribution used at inference time. Results for the DA algorithm are
shown in Appx. E.6.

Time: 1 Time: 1 Time: 2 Time: 2 Tim Ti Final State

9876543210

0.759
eso«
0.257

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

Figure 6: Example 6. DPP results, asynchronous stopping. Match the Letter “M” in 10x 10 grid with
common noise. We plot the stopped distribution, continuing distribution, and decision probability
function every 5 timestep. The marked red square indicates the random obstacles (common noise).

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4 Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0.05
0.04
0.03

0 2 4 6 8 02 46 8 02 46 8 02 46 8
Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0.07

0.04

0 8
0 8

0.03

=)
o
N

2
2

0.02

4

4
=)
o
2

0.01

6

Terminal Dist.
6

Terminal Dist.

8
8

0 2 46 8 02 46 8 02 46 8 02 46 8

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

4 2

6

Terminal Dist.
6 4 2
EEE——
S o o o
o © o o
2 8 & g

Terminal Dist.

8
8

0 2 46 8 02 46 8 02 46 8 02 46 8

0 2 46 8 02 46 8 02 46 8 02 46 8

Figure 7: Example 6. DPP results, asynchronous stopping. Match the Letter “M”, “F”, “O”, and
“S”. Tested with the randomly sampled initial distribution.

7 CONCLUSION

We proposed a discrete-time, finite state MAOS problem with randomized stopping times and its
mean field version. We proved that the latter is a good approximation of the former, and we estab-
lished a DPP for MFOS. These new problems cannot be tackled using traditional PDE approaches
or adapting previous methods for single-agent OS problems. To overcome these challenges, we
proposed two deep learning methods and evaluated their performance over six different scenarios.
When an analytical solution is available, we demonstrated that our methods recover this solution
in only a few iterations. In more complex environments, our approach is able to effectively solve
the task with high performance. The approach presented in this work can be effectively extended to
other contexts and applications, especially given the growing importance of MAOS problems.

Limitations and Future Works: First, we did not prove convergence of the algorithms due to
the difficulty of analyzing deep networks. We also left for future work a detailed analysis of the
comparison between synchronous and asynchronous stopping. Last, we would like to continue the
numerical experimentation on more complex, real-world examples.

10

Under review as a conference paper at ICLR 2025

Reproducibility Statement: All the experimental details about computational resources and hy-
perparameters choices are provided in the appendix due to space limitation.

REFERENCES

Yves Achdou and Jean-Michel Lasry. Mean field games for modeling crowd motion. Contributions
to partial differential equations and applications, pages 17-42, 2019.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A unified
algebraic perspective on Lipschitz neural networks. In The Eleventh International Conference on
Learning Representations, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214-223. PMLR, 2017.

Nicole Béuerle. Mean field markov decision processes. Applied Mathematics & Optimization, 88
(1):12,2023.

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping. Journal of Machine
Learning Research, 20(74):1-25, 2019.

Alain Bensoussan, Jens Frehse, and Sheung Chi Phillip Yam. Mean field games and mean field type
control theory. Springer Briefs in Mathematics. Springer, New York, 2013. ISBN 978-1-4614-
8507-0; 978-1-4614-8508-7.

Graeme Best, Shoudong Huang, and Robert Fitch. Decentralised mission monitoring with spa-
tiotemporal optimal stopping. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4810-4817. 1EEE, 2018.

René Carmona and Frangois Delarue. Probabilistic theory of mean field games with applications.
I, volume 83 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018. ISBN
978-3-319-56437-1; 978-3-319-58920-6. Mean field FBSDEs, control, and games.

René Carmona and Mathieu Lauriere. Deep learning for mean field games and mean field control
with applications to finance. Machine Learning and Data Sciences for Financial Markets: A
Guide to Contemporary Practices, page 369, 2023.

René Carmona, Frangois Delarue, and Aimé Lachapelle. Control of McKean-Vlasov dynamics
versus mean field games. Math. Financ. Econ., 7(2):131-166, 2013. ISSN 1862-9679.

René Carmona, Mathieu Lauriere, and Zongjun Tan. Model-free mean-field reinforcement learning:
mean-field MDP and mean-field Q-learning. The Annals of Applied Probability, 33(6B):5334—
5381, 2023.

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International Con-
ference on Learning Representations, 2023.

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International Con-
ference on Learning Representations, 2024.

Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. Bayesian optimization
meets Bayesian optimal stopping. In International conference on machine learning, pages 1496—
1506. PMLR, 2019.

Niranjan Damera Venkata and Chiranjib Bhattacharyya. Deep recurrent optimal stopping. Advances
in Neural Information Processing Systems, 36, 2024.

Ibrahim Ekren, Nizar Touzi, and Jianfeng Zhang. Optimal stopping under nonlinear expectation.
Stochastic Processes and Their Applications, 124(10):3277-3311, 2014.

Massimo Fornasier and Francesco Solombrino. Mean-field optimal control. ESAIM: Control, Opti-
misation and Calculus of Variations, 20(4):1123-1152, 2014.

11

Under review as a conference paper at ICLR 2025

Maximilien Germain, Joseph Mikael, and Xavier Warin. Numerical resolution of mckean-vlasov
fbsdes using neural networks, 2022.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field controls with Q-learning for co-
operative MARL: convergence and complexity analysis. SIAM Journal on Mathematics of Data
Science, 3(4):1168-1196, 2021.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Dynamic programming principles for mean-
field controls with learning. Operations Research, 71(4):1040-1054, 2023.

Calypso Herrera, Florian Krach, Pierre Ruyssen, and Josef Teichmann. Optimal stopping via ran-
domized neural networks. Frontiers of Mathematical Finance, pages 0-0, 2023.

Magdalena Kobylanski, Marie-Claire Quenez, and Elisabeth Rouy-Mironescu. Optimal multiple
stopping time problem. The Annals of Applied Probability, 21(4):1365 — 1399, 2011.

Mathieu Lauriere and Olivier Pironneau. Dynamic programming for mean-field type control. C. R.
Math. Acad. Sci. Paris, 352(9):707-713, 2014. ISSN 1631-073X.

Yong Liang and Bingchang Wang. Robust mean field social optimal control with applications to
opinion dynamics. In 2019 IEEE 15th International Conference on Control and Automation
(ICCA), pages 1079-1084, 2019. doi: 10.1109/ICCA.2019.8899655.

Steven A Lippman and John J McCall. The economics of job search: A survey. Economic inquiry,
14(2):155-189, 1976.

Washim Uddin Mondal, Mridul Agarwal, Vaneet Aggarwal, and Satish V Ukkusuri. On the approx-
imation of cooperative heterogeneous multi-agent reinforcement learning (MARL) using mean
field control (MFC). Journal of Machine Learning Research, 23(129):1-46, 2022.

Médéric Motte and Huyén Pham. Mean-field Markov decision processes with common noise and
open-loop controls. The Annals of Applied Probability, 32(2):1421-1458, 2022.

Barna Péasztor, Andreas Krause, and Ilija Bogunovic. Efficient model-based multi-agent mean-field
reinforcement learning. Transactions on Machine Learning Research, 2023.

Huyén Pham and Xiaoli Wei. Dynamic programming for optimal control of stochastic McKean-
Vlasov dynamics. SIAM J. Control Optim., 55(2):1069-1101, 2017. ISSN 0363-0129.

A Max Reppen, H Mete Soner, and Valentin Tissot-Daguette. Neural optimal stopping boundary.
arXiv preprint arXiv:2205.04595, 2022.

Albert N Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media, 2007.

Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour
XIX—1989, pages 165-251. Springer, 1991.

Mehdi Talbi, Nizar Touzi, and Jianfeng Zhang. Dynamic programming equation for the mean field
optimal stopping problem. SIAM Journal on Control and Optimization, 61(4):2140-2164, 2023.

Mehdi Talbi, Nizar Touzi, and Jianfeng Zhang. From finite population optimal stopping to mean
field optimal stopping. The Annals of Applied Probability, 34(5):4237 — 4267, 2024.

Cédric Villani. The Wasserstein distances. Optimal transport: old and new, pages 93—111, 20009.

Changfeng Wang, Santosh Venkatesh, and J Judd. Optimal stopping and effective machine com-
plexity in learning. Advances in neural information processing systems, 6, 1993.

12

Under review as a conference paper at ICLR 2025

A N-AGENT COOPERATIVE OPTIMAL STOPPING

A.1 WHY DO WE NEED RANDOMIZATION IN THE CONTROL? AN EXAMPLE

We want to show with an example that the extension to randomized stopping times is necessary
in the mean-field formulation, because when we try to plug an optimal strategy into the N-agent
problem, we notice that the latter is no longer optimal.

Example 1 (Randomized is better). Let consider the following scenario: we take the state space
X = {T,C} and initial distribution 1o = 3/49r + 1/4d¢; transition function F (T, z, u,€) = C,
F(C,z,u,e) = T, meaning that the system at any time step, can stop or switch the state. We take
as social cost:

1 ifu(x) <1/2

1) = {5 if p(x) > 1/2. (13)

Notice that without allowing the randomized stopping the value is V* = 3/4-5+1/4-1 = 4, which
corresponds to stop all the distribution (in every state) at time n = 0. In the end, this formulation
cannot reflect the optimum in the association of NV agents. Indeed when we plug this policy into the
N agent formulation we obtained the value V¥ = 1/N(3N/4 -5+ N/4 - 1) = 4, which is not
optimal since we can use the strategy (which is going to be optimal for the N-agent problem) to
stop, at time 0, only the 1/3 of players in state T, allowing the others to change state. This leads to
a final Icvonﬁguration of my = 1/267 + 1/25¢ and a value of V*» = 1/N(N/4-5+3N/4-1) =
2<VY =4

In particular, we want to emphasize the fact that, without allowing a randomized stopping time in the
MF formulation, we find an optimal state-dependent strategy, which corresponds , in the problem
with finite agents, to the fact that every player in the same state will have the same stopping time.

A.2 PROOF OF THEOREM 3.2

This section demonstrates that solving the optimal control problem at the asymptotic regime for
the number of agents tending to infinity allows one to find the solution to the multi-agent problem
by including the solution found at the regime in the latter. This is of fundamental importance in
applications as it allows a simpler and clearer situation to be analyzed for the purpose of solving a
complicated problem. Let us recall the /NV-agent formulation. We are going to work in the framework
where the central planner use the same policy p to control each agent. We suppose Assumption 3.1
holds.

Let us fix the following notation vy ? := L ™V Oyie and vF, == L(Y7) .

D .
m

X5% ~ po, A5 =1
o~ (| XEY) = Be(pn (X))
Ay = AL (1 -) (1
e _ {F(”’ Xio LS (Oyran€hy), if AL (1—al)=1
n+1 X:L,a ’ otherwise.

13

Under review as a conference paper at ICLR 2025

The social cost is defined as:

N
> BN D) Al | =

- N (15)

=FE

The asymptotic problem is written as:
Xg ~po, Ag =1
an ~ ([X7) = Be(pa (X))
i1 =An (1 —ay) (16)
Yo _ {F(n,X;’;,L(Xg),enH), ifA2Y - (1—ay) =1
et X2, otherwise,

where the social cost is defined as:

T
Tp) =Y > vh (@ a) (e, vk,)apm(z) =
m=n (z,a)€S
T
=D Vh,pa(Vh)).
m=n
Let us recall that P := {p : {0,..., T} x X x P(S) — [0,1] : pis L,-Lipschitz}, the set of
all possible admissible policies p. From now we are going to use the notation || - || for the norm
associated to the total variation distance. Firstly we want to prove the at time time n the distributions
N

v,»’P and V2, are close in the following sense (see Cui et al. (2023) for a similar setting).

a7

Lemma A.1 (Convergence of the measure). Suppose Assumption 3.1 holds. Given the dynamics
(14) and (16) for everyn = 0, ..., T it holds:

supE [|[v)? — vB|] = O(1/VN). (18)
P

pe

Proof. We are going to follow an induction argument over the time steps:

Initialization: for n = 0, since we have indipendent samples at the starting point, by the law of large
numbers (LLN) we have:

sup E [HV(])VP — VgH] -0
peP

with rate of convergence O (1> :

VN

In particular, let us denote S := {y1, -, yx b, V2 (4s) = pis O P (1) = + o8 | Sy a(y;) = Sl
5) ’ s Yo \Yi s Y0 % N i=1 Y} Yi N
where C(y;) is defined as the number of agent that are in the state y; at time 0. We can write:
1/2
S| S| 2
1 C Yi S C Yi
o -] - 3o 35002 | < e [()

i=1 i=1

14

Under review as a conference paper at ICLR 2025

by Cauchy-Schwarz inequality. Notice now that C'(y;) ~ Bin(N, p;) and so

15|

ZVar(

since the quantity 1 — Z‘_l p? has its max when p; = ST

IS|
Yi) _Zpi(l_pi) _ 1*2‘13‘1]% < S| -1
= N N " NS

Eventually we obtain the explicit constant:

Np . p |S|_1
E [l = All] < ¥

Remark A.2. Notice that the bound depends on the cardinality of the state space: more states lead to
a larger upper bound, meaning possibly a larger discrepancy between the empirical and mean field
distributions. This is due to the fact that we used as metric the total variation distance, which sums
over all possible states. In continuous space this metric is not feasible and so usually the Wasserstein
distance is used for convergence analysis (see Carmona and Delarue (2018)). Actually in the finite
space and discrete time setting we have the following inequality:

dm,’i,’n,H/L - V”TV S Wl(#a V) S DHH - VHTV7

where dy,ipn, = ming, d(x,y) and D := max,+, d(z,y). Notice that the Wasserstein distance in
finite space and discrete time is defined as:

S l=

= (i, 33,)

=1 j5=1

where C(u, v) is the set of couplings defined as:

Cluv) =T eR™™ | YT, 5 = Vi, Y _Tij=v;Vj, Tij > 0Vi, j

j=1 i=1

and d(z;, z;) is the distance between points x; and xz; in the metric space. More details on Wasser-
stein distances are described in Villani (2009) and Arjovsky et al. (2017).

Induction step: assume now that (18) holds at time n. Using triangle inequality, at time n + 1 we
have, for any p € P,

[”VnJrl £+1||} <
<E[IvN8 = FY2 pal)| +E [IF@A, pu(vh?)) = o2,]

where we recall the expression of F' described by (8).

For the second term, by Lipschitz property of F' and p(v), we can write :

B [|FA,pn(2) ~ v]

=B [|FGA. palv) ~ F0pu)]

< LB [21 + Ion2®) ~ pa)I]
< LB ([l A + Lyl — 2]

= (Lp(L+ L) [=~ w21] < (L1 + L) Bl - 1)
< (Le(1+ L)Y 0

by induction step, and the upper bound is independent of p € P (since the constant L,, is the same
for all the control p € P).

15

Under review as a conference paper at ICLR 2025

For the first term we have:
E|vn - F(uﬁp,pnwﬂ))m -

st
*E Z Z 6Y71f1 — (yjlv’papn(yrlzv’p))(y) =

: ; |

Nz(swa F@?,pu(vh"))(y)

n+1

_ 1 Vo N,p @
yeES
The interpretation of F gives us:
Fh? pa(v Zv PPV =ylYE =)

=N ZP = ylY =)
=¥ ZIP’ Yo = y|YiP)

Z E[5yF | (y)[Yi?]

where we used that the ¢ particles are indlstmgulshable and have the same transition functions. So

we can conclude the argument as:
st
Yll
1 ‘ 1] 4N

E[||lr - e o)] =
Indeed, given the past history Y, the random variables (5},1 « become conditionally independent

1
:521@ E[N25Y;ﬁ - lNZ‘SYﬁﬁ

yeS
by the LLN, where again the bound is independent of p € P.

for every ¢ = 1,..., N. Furthermore each 5yl = (y) isa Bernoulh random variable, therefore its
variance VaT((SYz,oz (y)|Y,*) < 2. Summing over all agents, the variance of the empirical mean
n+1

becomes ﬁ. Using Cauchy—Schwarz inequality, for any random variable Z with finite variance
E[|Z —E[Z]|] € v/Var(Z), so in our case we obtained the constant L "We have thus proved by

. . 4N’
induction that:

VISI—=1 |S]] 1
supE [|[vY? — 2| < |[(Lp(1 + L ”*17| + —|—=
el I < |(@p+ L)t S — + S —
for every time stepn =0,...,T. O

This result allows us to prove the following main theorem on the optimal cost approximation in the
N-agent problem. This is a precise version of the informal statement in Theorem 3.2.

Theorem A.3 (c-approximation of the N-agent problem). Suppose Assumption 3.1 holds. Given
the dynamics (14) and (16) and the social cost associated (15), (17), let us denote by p* the optimal
policy for the mean field problem and by p the optimal policy for the N-agent problem. It holds:

INW*, . p*) = IV, ..., p) = O(1/VN). (19)

16

Under review as a conference paper at ICLR 2025

Proof. We can write:
IO) = TN) = (P00 = 960)+ (160 = 56)+ (10) - V)

Notice first that we can bound this term simply deleting the second term in the r.h.s noticing J (p*) —
J(p) < 0 since p* is optimal for the mean field cost J(p). For the first term we can write:

T T
—E | Y wh” ,p:;(uﬁvp*»] = 3wk i)
m=0 m=n
T
LI LR AR B (AN A)]
n=0 .
< Ly SR 2| + o) - pr0)|]
n=0 .
< L‘l,(l +Lp) Z]E H yfl\’,p — 1/5* }

<TLy(1+L,) sup E {Hu,iv’p* -
ne{0,...,T'}

| <TLe(1+1L,) [(LF(I + L]f,))TiV'Sz'*1 + m \/%

by Lemma A.1. For the last term J(p) — JV(p) we can apply the same argument that we just
described. In the folliwng way we obtain:

TN p) = TN (B, p) < 2TLy(1+ L) {(LF(l + L]D))ffi\/wz'*1 L |45|]

2l

B PROOF OF THEOREM 4.1
Let us prove Theorem 4.1.

Proof. To prove this result, we will show that we can reduce the problem to a mean field optimal
control problem in discrete time and continuous space. Then we can apply the well-studied dynamic
programming principle for mean field Markov decision processes (MFMDPs) (see e.g. Motte and
Pham (2022); Carmona et al. (2023); Bauerle (2023)). We have:

T

Vn(V) B PEi%E,T mzzn (maZ)ES Vg{y,n (x’ a)q)(x’ Mﬁy,Tl)apm(x)

T
= inf Z \P(Vgiutnapm,)a

PEPn,T
m=n

where ¥ : P(X x {0,1}) x P(X) — R and it is defined as:
\D(an) = Z V(x7a>q)($7VX)QQ(‘r)'
(z,a)€S

Then we can define the process Z taking value in P(X x {0, 1}):

Zr =z =v; Zb =vh" Ym >n
such that it follows the dynamics Zf;H = F(Z2 pn) foreverym =n, ..., T — 1. We can write:
T
Vo(2) = inf W(ZP pm),
(2) = dnf P (Z5., pm)

17

Under review as a conference paper at ICLR 2025

and we recognize a well studied control problem for which the DPP is:

Va(z) = hlgf{ U(z, h) + Voy1(F(z, h)).

where H is the set of all functions h : X — [0, 1]. Finally we can recover our result:

Va(v) = }3161;’_[Z v(z,a)®(z, vx)ah(z) + Vi1 (F (v, h)). (20)
(z,a)€S
where vy is the first marginal of the distribution v. O

C ALGORITHMS

Alg. 3 and 4 present respectively the direct approach and the DP-based method.

Algorithm 3 Direct Approach for MFOS

Require: Time-dependent stopping decision neural network: g : {0,..., T} x X xP(S) — [0,1],
cost function ®, mean-field dynamic transition F', time horizon 7', max training iteration N cy.
/I TRAINING

1: fork=0,...,Niter — 1 do

2 Uniformly sample initial distribution v/ from the probability simplex on R2I%!

3 forn=20,...,7 do

4 Pn(x) = Yo(z, V0, n;0f) forany z € X > Compute stopping probability
S by =3 e Vh(2, 1) (2, n)pn () > Compute loss at time n
6 Vi = F(h,pn) > Simulate MF dynamic
7 C=3"0_oln > Compute the total loss
8: Orp+1 = optimizer_update(fy,¢(0))) > AdamW optimizer step

9: Setf* = GNKQI
10: return g«

Algorithm 4 Dynamic Programming Approach for MFOS

Require: A sequence of stopping decision neural network: g : X x P(S) — [0,1] forn €

{0, T = 1}, cost function ®, mean-field dynamic transition F', time horizon 7', max training
iteration N .
/I TRAINING
1: Set 1/);{ = 1 since all distribution stopped at time 7.
2: forn=T-1,...,0do > Train backward in time
3 fork=0,...,Niter —1do
4 Uniformly sample initial distribution ©2 from the probability simplex on R2I%!
5: form=mn,...,T do
6 if m = n then
7 P (x) = Y5 (x, V8, 07) > Compute with NN for current time
8 else
9: pm(x) = gt (z, V8, 0™%) > Compute with trained NN from future time
10: b =D ex Vh (2, 1)@(2, thm) pm () > Compute loss at time m
11: vh = F(h, pm) > Simulate MF dynamic
12: {= Zzl:n b > Compute the total loss from time n to T’
13: Ohy 1 = optimizer update(0}*, £(0})) > AdamW optimizer step

14: Set ™" = 0%, > Stored trained weight

iter

D IMPLEMENTATION DETAILS

In this section, we will discuss the choice of neural networks, training batch size, learning rate, and
iterations, and all the related hyperparameters as well as computational resources used.

18

Under review as a conference paper at ICLR 2025

Neural Network Architectures: We have 4 variants of neural networks.

For the direct approach, the neural network takes an input time ¢, while for the DPP approach, the
neural network does not need time input.

For the asynchronous stopping problem, besides time, the neural network has two spatial inputs 1)
the state x, represented as an integer, goes through an embedding layer with learnable parameters
and the results are fed to other operations. 2) the distribution v, represented as a vector, is inputted
to the neural net directly. For the synchronous stopping problem, the neural network only has one
spatial input, which is the distribution v, and is treated as the same way as discussed before.

In general, our neural network has the following structure. Our neural network takes an input pair
(x,t), where x is the spatial input, ¢ is the time. If ¢ is a needed input, then it is passed through
a module to generate a standard sinusoidal embedding and then fed to 2 fully connected layers
with Sigmoid Linear Unit (SiLU) and generate an output t,,. Spatial input x is passed through an
MLP with k residual blocks, each containing 4 linear layers with hidden dimension D and SiLU
activation. This generates an output ¥,,.. Our final output out is computed through,

out = Outmod(GroupNorm (you + tou))

where Outmod is an out module that consists of 3 fully connected layers with hidden dimension D
and SiLU activation, GroupNorm stands for group normalization. If ¢ is not a needed input, then
set tou = 0.

For all the test cases we have experimented with, we use k = 3, D = 128 for all the 1D experiments
and k = 5, D = 256 for the 2D experiments.

Computational Resources: We run all the numerical experiments on an RTX 4090 GPU and a
Macbook Pro with M2 Chip. For any of the test cases, one run took at most 3 minutes on GPU and
7 minutes on CPU.

Training Hyperparameters: For all the experiments, we choose an initial learning rate 10~* of
the AdamW optimizer. Each training is at most 10* iterations, with a batch size 128. The number
of training iterations is chosen based on numerical evidence and trial and error. We start with a
moderate number and then increase it if the model shows signs of undertraining and is far from
convergence.

E NUMERICAL EXPERIMENTS DETAILS

This section aims to complete the results of the 6 numerical experiments conducted. While some of
the following plots have been previously discussed in Section 6, we provide the full descriptions of
Example E.1 and Example E.2 here for the sake of completeness.

E.1 EXAMPLE 1: TOWARDS THE UNIFORM

We take state space X = {0, 1,2, 3,4}, time horizon T' = 4, transition function F'(n, x, u, €) = z+1
which means that the agent deterministically moves to the state on the right, with boundary at x = 4
(meaning that once at 4, the agent does not move anymore), and cost function ®(x, 1) = u(x)
which depends on the mean field only through the state of the agent (this is sometimes called local
dependence). For the testing distribution, we take a distribution concentrated on state = 0, denoted
as o = dp. It can be seen that the optimal strategy consists in spreading the mass to make it as
close as uniform as possible (hence the name of this example). Fig. 8 shows that the testing loss
decays towards the true optimal value, and the distribution evolves towards a uniform distribution
as expected. Fig. 9 shows the losses with DPP: there is one curve per time step. At time 0, the
value is close to the optimal value. First, we explain how the optimal value is computed. Since the
agents move deterministically to the right, the only option to freeze some mass at a state z is to do
it at time n. It can be seen that: for every n = 0,...,7 and for every z € X, we want to have
pn(x =n) = ﬁ]lxzn for n < T and p,(z) = 1 for n = T. Actually notice that for all z # n
the choice of p,, is arbitrary so, at every time-step n we can apply the same p,, for every state x.
This brings us to optimize over the set of synchronous stopping times.

19

Under review as a conference paper at ICLR 2025

T42
AT+

Then we can compute the optimal value and obtain: V*:% :=

Figs. 10 and 11 show the result for synchronous stopping.

Training Loss

Testing Loss

0.320

0.310

%0300
0.290
0.280 1

o

0.725
0.700
0.675
0.650
0.625
0.600

Testing Loss
= = Optimal Cost

0.270

2000 4000 6000 8000 10000
Iterations

Time 1 Time 2

2000 4000 6000 8000 10000
Iterations

Final State

Training Loss

Testin:

g Loss

— Testing Loss
— - Optimal Cost

Loss

0.650

0.600

Loss

0.680

0.660

Loss

0.680

0.660

0.680

s

0.670

0.660

0 1000 2000 3000

4000

0 1000 2000 3000 4000

Figure 8: Example 1. DA results, asynchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training.

Iterations Iterations

Figure 9: Example 1. DPP results, asyn-
chronous stopping. Training and testing losses.

Training Loss Testing Loss

0.340 Testing Loss

= = Optimal Cost

Training Loss

Testin:

g Loss

0.700

0.650

0.600

— Testing Loss
= = Optimal Cost

0.320

Loss
Loss

0.680

0.300
0.660

Time 1
Loss
e °
[
s 3
Loss

0.640

0.280
0 2000 4000 6000 8000 10000 0
Iterations

2000 4000 6000 8000 10000
Iterations

0.680

Time 1

0.660

Time 2
Loss
o o o
=R I~
5 38
Loss

0.680

Time 3
Loss
Loss

0.660

2000
Iterations

1000 2000 3000 4000

Iterations

3000 4000 1000

Figure 10: Example 1. DA results, synchronous
stopping. Top: training and testing losses. Bot-
tom: evolution of the distribution after training. =~ Figure 11: Example 1. DPP results, syn-

chronous stopping. Training and testing losses.

E.2 EXAMPLE 2: ROLLING A DIE

In this example, at every time step, a fair six-sided die is rolled. This takes the role of the noise € ~
U(X) where X = {1,2,3,4,5,6}. The system starts in the initial distribution n = i51 + iéz + %65,
and evolves according to the dynamics (5) with: pg = 7, F(n,x, tt, €,+1) = €n+1. The social cost
function associated to this scenario is ®(z,) = x. DR and DPP results are shown in Figs. 12 and
13 respectively. Here again we observe convergence to the true optimal value. The optimal value is
computed as follows. Using the dynamic programming principle described in (11) we can compute
the optimal strategy and the optimal value:

pO() = (17070a05070)
p?() = (17 170a0a0a0)
p4() = (17 13 17 0) 070)

pl() = (1717070a070)
p3() = (171707()’0’0)
p5() = (1? 17 1a 17 la 1)

V1 =1,6525.

For our considered initial distribution, this is one of the possible optimal strategies, since we have no
mass on some states and thus can assign any stopping probability to them. However, the solution we
have presented is the only optimal solution for all possible initial distributions. Note that if we opti-
mize on the class of synchronous stop times, we do not reach the same optimal value, but we reach a
higher value, concluding that for this type of problem, it is better to optimize on asynchronous stop
times. In fact, when you narrow the decision only to the class of synchronous stop times is better to

20

Under review as a conference paper at ICLR 2025

stop everyone at the first initial state reaching a value of Vs =3,25>1,6525 = V*. Synchronous
stopping results are shown in Fig. 14 and 15.

Training Loss Testing Loss
2500 — Testing Loss.
s 2300 « — = Optimal Cost
s 8 @
£ 200 = 2.000
Training Loss Testing Loss
3.500 Testing Loss
— - Optimal Cost
3.000 3.000
3.000 ., 1.250 «
% % 500 g3 § 2800
3 3 F 7 1.000 . —
3 2500 =] 2,600 -
2.000 2000 1500 3.300
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 S 81250 12 3.200
Iterations Iterations E ST S 1
£ 3.100
Tme 0 Tme 1 Tme 2 Tme 3 Tme s e 5 s st 1.000 B
H _— 1.600
H Conamang o ., 3.350
: : 3 1.400 [
< x x x x x X X = 1.200
3250
. 1.800
Figure 12: Example 2. DA results, asyn- s gieo 4 3400
. . P . g g K]
chronous stopping. Top: training and testing F 1400 2350
losses. Bottom: evolution of the distribution af- o 100 a0 3000 ao00 0 100 2000 3000 4000
Iterations Iterations

ter training.

Figure 13: Example 2. DPP results, asyn-
chronous stopping. Training and testing losses.

Training Loss Testing Loss
© 4, 3.400 T w 3.000 "
g s 8
= 3.200 1™ 20001 . ;E::.':\iwLEZz
Training Loss Testingloss ~ —— EE=S=== me—————
3.500 - 3.380
3.000 o & [
§ 2 . £ 3370
LI 2. S oo
3.200 2.000 3380
2000 4000 6000 8000 10000 __20;0_ :0;0_ _60;0_ _BEOD_ _10- 00 é’ § § 3.370
Iterations Iterations
" 1.800 3.380
% YYYYYYYYYY g § 1.600 § 3.370
1.800 3.380
Figure 14: Example 2. DA results, synchronous e 3 8.
. . . . S 1.600
stopping. Top: training and testing losses. Bot-
. 1000 2000 3000 4000 1000 2000 3000 4000
tom: evolution of the distribution after training. Kerations erations

Figure 15: Example 2. DPP results, syn-
chronous stopping. Training and testing losses.

21

Under review as a conference paper at ICLR 2025

E.3 EXAMPLE 3: CROWD MOTION WITH CONGESTION.

This example extends the previous one, adding a congestion factor. The transition probabilities are:

51— %Ccongu(a:)), if z # x,

1
) 21
é(l—l—C’mngu(m)), if z=x. D

pn(z,2) = P(X1 = 2| X, =2) = {

Let us set Ceong = 0.8. However, the reasoning regarding the differences between scenarios in
which the central planner optimizes the set of asynchronous stopping times or the set of synchronous
stopping times is similar.

DPP testing and training losses are shown in Fig. 16.

Training Loss Testing Loss Training Loss Testing Loss
2.500 — Testing Loss. 3.400 —— Testing Loss
o, 2500 . ° .
s 8 8 o 8
g 8 83300
£ 200 = 2000 £ = L | 11
3.200
3.000
o 2% -, 3390
9 4 2.800 @ 2
é E 3 § S 3.380
1.000 L TS —————p— 2.600 3370
3390
1.400
P g > 9 H
E 8 1.200 S i E S 3380
1.000 3.000 1=
1.800
-, 1500 % 3300 m o, i | ! ., 3385
g 3 g g g k!
P 1.250 E 1.600 " 3.380
3.200 3375
1.800 1.800
3.400
T % 1.600 9 Ty i | | , 3385
E S 3 E S S 3380
F 7 1400 F ~ 1.600
3.300 3375
1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000
Iterations Iterations Iterations Iterations

Figure 16: Example 3. DPP results. Training and testing losses. Left: asynchronous stopping.
Right: synchronous stopping.

E.4 EXAMPLE 4: DISTRIBUTIONAL COST

Synchronous stopping results are shown in Fig. 17.

Training Loss Testing Loss
0.325 0.200 - ?:5‘:1‘“22; Training Loss Testing Loss
0.300 0.150 ° 0.300 0.200 — 'lr)es:mg ‘L:ss
80215 0100 g 3 § 0.100 P
o5 . E 0.250 “m 0.000 - " W
0.225 [R e e e |
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 : @9 0.220
Iterations Iterations £ s [FmeTe
£ 0.200
Time 0 Time 1 Time 2 Time Final State
1 0.240
2 ~ L, 0140 »
= Stopped o o @« 0.220
2o Continuing £ S 3
H £275 Target dist. = 0.200
= 0.120
g o 1000 2000 3000 4000 0 1000 2000 3000 4000
Iterations Iterations
Figure 17: Example 4. DA results, synchronous Figure 18: Example 4. DPP results, syn-
stopping. Top: training and testing losses. Bot- chronous stopping. Training and testing losses.

tom: evolution of the distribution after training.

E.5 EXAMPLE 5: TOWARDS THE UNIFORM IN 2D
Asynchronous stopping results, including training losses, testing losses, distribution evolution, and

stopping probability are shown in Figs. 19 and 20. Synchronous stopping results are shown in Figs.
21 and 22.

22

Under review as a conference paper at ICLR 2025

Training Loss Testing Loss
0. —— Testing Loss
b4 w 0. 20,
£ 50060 Nam L
E e o e VY
Training Loss Testing Loss 0.066
0.077 Testing Loss. 0.027 0.265
0300
0075 7 Joos [N
£ 3 3 N g
0.072 0.280 F 7 oo 0255
S 0.070 3
0.260
0.027
0.068 ~ o, m0263
g ooz go
0.065 0.240 £ P
0.025 o
o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Iterations Iterations 0.028 0.263
Time: 1 Time: 2 Time: 3 Time: 4 Final State e 8 £ o260
0.5 L 0.026
o
e 2000 4000 6000 8000 2000 4000 6000 8000
Iterations Iterations
o3 Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State
° 05
oz &~
B~ 04
o1 £,
a 03
0.0 v — —
5o 0.2
0123401234012 340123401234 01234 3.
Time: 0 Time: 1 e > Time: 3 N o1
£" oo
0.8g °%
2 01234 0123401234 0123401234071234
~ 1 0.63 Time: 0 Time: 1 Time: 2 Time: 3
m 1 0.4%
<
012 34 012 34 01234 012 3 4

°
- 0.759
~ || 0.508
™ | | 0.25%
“ N

012 3 4 012 3 4 01 2 3 4

01 2 3 4

Figure 19: Example 5. DA results, asyn-

chronous stopping. Top: training and testing

losses. Bottom: evolution of the distribution and Figure 20: Example 5. DPP results, asyn-

stopping probability after training. chronous stopping. Top: training and testing
losses. Bottom: evolution of the distribution and
stopping probability after training.

Training Loss Testing Loss
0300 — Testing Loss
? 0.275
0.250
Training Loss Testing Loss
0.078 0320 Testing Loss 0.270
0.076 0.300 o @
£ 3 S 02601}
v 0.074 "
K § o280
0.072
0.260
0.070 0.265
0.068 0.240 2 2 e
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 = = 0260 7=
Iterations Iterations
Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State
05
o, 002 : : : i ,, 0.263
0.4 E 8 0.028 & 0260
s 0.027 0258
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
02 Iterations. Iterations
0.1 o st

b N
0.6 "
< 0.2
12 3 4 i 2 3 4
Figure 21: Example 5. DA results, synchronous "

stopping. Top: training and testing losses. Bot- o 1 2 3 4 123 4

tom: evolution of the distribution and stopping __

probability after training. Figure 22: Ex.ample 5. DPP results, syn-
chronous stopping. Top: training and testing
losses. Bottom: evolution of the distribution and
stopping probability after training.

N
=

o
W,

qofuossiad’

23

Under review as a conference paper at ICLR 2025

E.6 EXAMPLE 6: MATCHING A TARGET WITH A FLEET OF DRONES.

In this example, we extend our framework by incorporating a terminal cost and common noise.
This allows us to consider a richer and more realistic class of MFOS environments. We extend the
dynamics defined in (5) in the following way:

Xg ~po, Ag=1

an ~ (| X7) = Be(pn(X7))

A=Ay - (1—an) (22)
o F(n, X2 p8, ent1,€0,q), ifA2-(1—a,) =1
ntl X otherwise.

where, € is the common noise that affects the dynamics of all agents equally. Note that with the
presence of common noise the mean field distribution v is not deterministic, but it is a random
variable that evolves conditionally with respect to the common noise.

Furthermore the social cost defined in (9) can be extended by adding a terminal cost:

T
J(p) = E° Z Z (Vﬁ(x,a)@(z,uf(vn)apn(x))Jrg(Vf(’T) , (23)

n=0 (z,a)€S

where g : P(X) — R is the terminal cost and [E” is the expectation with respect the common noise
realization.

The results for DA for different target distributions are provided in Fig. 23. The results for DPP for
different target distributions are provided in Fig. 24.

It is evident that, unlike the DPP, the optimal strategy in the DA tends to stop with high probability
at the final time steps, as clearly illustrated for the target distributions corresponding to the letters
KGO” and 4‘S’7.

F HYPERPARAMETERS SWEEP

In this section, we show the results of a sweep over the learning rate for Example 1 with the two
methods and the two types of stopping times. We consider learning rates 10~2, 10~2 and 10~% in
this order in the plots from top to bottom.

Direct method stopping: Figs. 25 and 26 show the losses for the asynchronous and the synchronous
stopping times respectively.

Direct method stopping: Figs. 27 and 28 show the losses for the asynchronous and the synchronous
stopping times respectively.

24

Under review as a conference paper at ICLR 2025

Time: 10 Final State

°
0.04
0.03
0.02
0.01
0.00
[2 2 2 4 2

Tine:s e 14 e 19 T 23 e 29 o3 e 39 e s T 49

2
0.75,
0.508
0.25%

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

2

4

6

a
s
3
g
g

0 8

2

6 4

Continuting Dist.
8

el

9375543210

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State
o 0.04
o<
g
2o
g 0.03
e
.2 0.02
Bn
= 0.01
EN
s 0.00
S
e o e s s e 14 gy T2t e 29) e 3o e e io
- 0.759
o (]
© 025
o
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
Time Time: 5 Time: 1 Time Time: Time Final State
fe 0.04
a
o
geo 0.03
Ao
° 0.02
Bn
Ze 0.01
H
Sw 0.00

0.759
0.503

3
0.25%

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Final State

0.04

0.03

0.02

0.01

0.00
2 4

2 4 6 8 24 6 8

98765A32]n

Stopped Dist.
4208 6 4 2

Continuting Dist.
6

8

_ _ o
u 0.755
0.503
| | 0.25%

_ _ _

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

9876543210

Figure 23: Example 6. DA results, asynchronous stopping. Match the Letter “M”, “F”, “O”, “S”,
a 10 x 10 grid with common noise.

25

Under review as a conference paper at ICLR 2025

Time: 0 Time: 5 Time: 10 Time: 15 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State
°
a
Eh 0.04
3
g
go
2 0.03
@
P 0.02
e
£+ 0.01
EN
& 0.00
o
0 2 2 2 4 8 0 2 4 2
e o e s e o e 1o Tine: 1 e 20 T30 e 3 T30 i s e 45
°
3 o757
s 0,503
N 0.25%
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
Time: 0 Time: 5 Time: 15 Time: 20 Time: 25 Time: 30 Time: 40 Time: 45 Final State
°
i 0.05
o<
g
g 0.04
B
0.03
@ 0.02
Bn
N 0.01
Zo
s 0.00
S
0 2
e o e s s e 14 gy T2t e 29) e 3o e e io
- 0.759
o (]
© 025
o
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
Time Time: 5 Time: 1 me: 30 Time: 35 Time: 40 Final State
. 0.04
a
o
g 0.03
geo
Ao
o 0.02
Bn
3 0.01
£e
H
Sw 0.00

0759
0.505

3
0.25%

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Final State

0.04

0.03

0.02

0.01

0.00
2 4

2468 0246 8

98765A32]n

Stopped Dist.
4 2 0 8 6 4 2 0

Continuting Dist.
6

8

0.75
0.503
0.25%

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

9876543210

Figure 24: Example 6. DPP results, asynchronous stopping. Match the Letter “M”, “F”, “O”, “S”,
in a 10 x 10 grid with common noise

26

Under review as a conference paper at ICLR 2025

Training Loss

Testing Loss

0.400 1.000 Testing Loss |
== = Optimal Cost
0.375 0.900
» 0.350 0
g 8 0.800
—0.325 -
0.300 1 0.700
0.275 ¢ i 06500 oo em s
0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations
(a) Learni . -2
earning rate 10
Training Loss Testing Loss
0.750 Testing Loss |
= = Optimal Cost
0.320
0.700
2 2
S 0.300 5
0.650
0.280
0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations
(b) Learning rate 1073
Training Loss Testing Loss
0.340
Testing Loss
0.7004——————d === Optimal Cost |
0.320
0.675 1~
g g
—0.300 1 - 0.650
0.625 1
0.280
| | [L e e — w——
0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations

(¢) Learning rate 104

Figure 25: Example 1: Sweep of learning rates. DA results,
asynchronous stopping.

Training Loss

Testing Loss

0.600 1.000 :
Testing Loss
= = Optimal Cost
0.900
0.500
2 2 0.8001
S S
0.400
0.700
03004 : : [T) . S SN S ——
0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations
. —2
a) Learning rate 10
Training Loss Testing Loss
0.340 0.800 Testing Loss |
= = Optimal Cost
0.750
0.320
2 # 0.700
3 e
0.300 4 0.650
| | [TA [LR S S ———
T T
0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations
b i -3
Learning rate 10
Training Loss Testing Loss
Testing Loss
0.330 0.750 = = Optimal Cost |
0.320
P i 0.700
& 03104 8
0.300 7 0.650
0.290
0280 ; i [0 A S ———
0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations

(¢) Learning rate 104

Figure 26: Example 1: Sweep of learning rates. DA results,
synchronous stopping.

27

Under review as a conference paper at ICLR 2025

Training Loss Testing Loss Training Loss Testing Loss
i i i i —— Testing Loss — Testing Loss
° , 0800 — - Optimal Cost o 0350 ” 0.800 — - Optimal Cost
E ! | E »
0.600 - - 0.300 0.600 e
-, " 0.700 -, @ 0.700
v 8 g P 2
E S s E 3 g ot
= 0.650 F Pt e e
0.650
0.700 0.690
P % 0.675 P g 0.680
35 £ 3 S B N At e, L)
£ 3 E - = 0.670 : = =
0,650
0.140 T T T T 0.700 T T T T 0.680
S 8 g 0680 5 oo 4
£ 501201~ i : i - s £ 3 30670
F i i 0.660 =
{ | | 0.120 T T T T
0.660
o 200 400 600 800 1000 0 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 800 1000
Iterations. Iterations Iterations Iterations
Learni 1072 Learni 1072
a) Learning rate a) Learning rate
Training Loss Testing Loss Training Loss Testing Loss
0.320 T T T T 0.320 T T T T
— Testing Loss — Testing Loss
° g 4 0650 Optiml Cost S g 4 0.700 = - Optimal Cost
E S s | E S 3]]
E =
0.600 ” . 0.600
0.700 T 0.700
S @ 9 0.675 Rl T P 9 0.680
g 8 4 g2 8 ly 4
F - ~ 0.650 £~ 0120 = 0.660 .
0.110
0.680
Now «» 0.680 :‘, " o
IR 8 [2 B 0,670 T e o
g3 = 0.660 E S S
0.660
0.140 : : B T 0140 T T T T 0.680
o | | | | « 0-680 o 90130 | i i + @
v 8 8 v 80 8
g 8 g g g 8 0.670
E Soa ~ 0660 F " o120 -
; ; ; ; ; ; ; ; 0.660 F
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iterations. Iterations Iterations. Iterations
b) Learni 107° b) Learni 107°
earning rate earning rate
Training Loss Testing Loss Training Loss Testing Loss
i i i i k — Testing Loss | i i —— Testing Loss
S w0300 « 0-650 \ — - Optimal Cost o 0-700 = = Optimal Cost
o §o. @ ; @ 2 : i
g 3 S o625 _ ; £ 3 0.650 ; :
0.280 1
0.600 0.600
0.680 0.700
= 3 I 3 h
: § goeo : § Boeno s
F F -
0.640 0.660
0.680
. ~ 0130 4 oes0
v 8 P 8 -
g 3 £ 3oz S -
0.110 0.660
0.680
0.140 0.140 0.690
S @ 2 S #0130 AURNLALIE AR R U % 0.680
v 8 4 ° o 2
£ 50120 S 0.660 E S
F F T o120 ; ! ! ! 0.670
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iterations Iterations Iterations Iterations
Learni 10-* Learning rate 10™*
¢) Learning rate ¢) Learning rate

Figure 27: Example 1: Sweep of learning rates. ~ Figure 28: Example 1: Sweep of learning rates.
DPP results, asynchronous stopping. DPP results, synchronous stopping.

28

	Introduction
	Model
	Motivation: finite agent model
	Mean field model
	Mean field model with extended state

	purpleApproximate optimality for finite-agent model
	Dynamic programming
	Algorithms
	Experiments
	Conclusion
	N-agent cooperative optimal stopping
	Why do we need randomization in the control? An Example
	Proof of Theorem 3.2

	Proof of Theorem 4.1
	Algorithms
	Implementation details
	Numerical Experiments details
	Example 1: Towards the Uniform
	Example 2: Rolling a Die
	Example 3: Crowd Motion with Congestion.
	Example 4: Distributional Cost
	Example 5: Towards the Uniform in 2D
	Example 6: Matching a Target with a Fleet of Drones.

	Hyperparameters sweep

