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Abstract

Large Language Models (LLMs) have achieved
remarkable performance in simultaneous ma-
chine translation (SimulMT) via attention mask
and positional reordering strategies. However,
these approaches have strict constraints on posi-
tional encoding methods, such as ALiBi, which
limit their general application. In this work, we
introduce ExPosST, a simple and general frame-
work to apply decoder-only LLMs to SimulMT
tasks. ExPosST explicitly allocates the posi-
tion range in the source and translation tokens,
allowing decoding with KV cache under all
positional methods. Experiments on multiple
models show that ExPosST has comparable
performance with state-of-the-art approaches
in LLMs using ALiBi, while outperforming
them in mainstream RoPE-based LLMs.

1 Introduction

Simultaneous Machine Translation (SimulMT) gen-
erates target language output in real time as por-
tions of the source sentence are received. Due
to its significant application value in real-world
scenarios, such as international conferences and
academic lectures, it has garnered much attention
recently (Ma et al., 2019; Zhang and Feng, 2023;
Agostinelli et al., 2024). As Large Language Mod-
els (LLMs) have achieved great performance in
Neural Machine Translation (NMT) (Alves et al.,
2023; Xu et al.,, 2024), some studies have at-
tempted to leverage LLMs for SimulMT (Wang
et al., 2024b; Agostinelli et al., 2024). Prior work
usually constructs prefix-to-prefix datasets for fine-
tuning (Koshkin et al., 2024). Nevertheless, as
shown in Figure 1, when a new source word ar-
rives, the positions of target tokens shift, and the
KV cache must be recomputed due to the positional
information no longer matching actual ones, lead-
ing to increased computational overhead. To solve
this issue, Raffel et al. (2024) propose SimulMask,
which uses a modified ALiBi positional embed-
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Figure 1: An example of attention score computing in
a certain step of SimulMT in Prior works, SimulMask,
and ExPosST methods. The Key cache is marked as
dark green.

ding (Press et al., 2022) to store positional infor-
mation separately from the KV cache. However,
mainstream LLMs such as LLaMA 3 (Dubey et al.,
2024) and Qwen 2.5 (Yang et al., 2024) often adopt
Rotary Positional Embedding (RoPE) (Su et al.,
2024), in which positional information is encoded
directly into the KV cache. Therefore, SimulMask
does not apply to mainstream LLMs.

To address this issue, we propose ExPosST,
an Explicit Positioning Allocation Framework for
Simultaneous Machine Translation with LLM. Dur-
ing inference, we pre-allocate a fixed-length chunk
for source-language tokens and generate the trans-
lation after the chunk. When the number of source
tokens exceeds the length of the current chunk, a
new chunk is allocated after the latest target output.
We also adjust the format and attention mask dur-
ing fine-tuning to avoid a mismatch between fine-
tuning and inference. This framework prevents the
target positions from shifting as the source input
increases.



The contributions of this paper are summarized
as follows:

* We propose ExPosST, a novel framework that
avoids output token shifts caused by the ex-
pansion of source language input. This frame-
work is applicable across all LLMs.

» Experiments on different LLMs show that
our method achieves better performance in
mainstream RoPE-based LLLMs, and achieves
comparable performance with SimulMask in
ALiBi-based LLMs.

2 Background

Simultaneous Machine Translation (SimulMT)
aims to generate target translations in real-time
as the source sentence is being received. Formally,
given a full source sentence (sy,...,s|g|) and a
target sentence (t1,...,t7|), SimulMT needs to
generate each target token ¢; based only on a prefix
of the source sentence (si,...,s;), where ¢ < |S)|.

To balance translation quality and latency,
SimulMT employs a policy to decide whether to
wait for additional source words (READ) or to gen-
erate translations (WRITE). An example of such
a policy is wait-k (Ma et al., 2019), which reads k
words at first, then alternates between writing one
target word and reading one source word.

To apply LLMs to SimulMT, previous works
usually construct prefix-to-prefix training data
from offline translation pairs to train the LLM’s
ability to begin translating with partial input.
These methods often adopt an offline translation
prompt format <user> si,..., 5|5 <assistant>
t, -ty (Agostinelli et al., 2024; Koshkin et al.,
2024). However, Raffel et al. (2024) points out
that this method introduces mismatches between
fine-tuning and inference in KV cache usage, target
tokens shifting during incremental decoding, and
additional computational overhead.

To overcome these limitations, Raffel et al.
(2024) introduces SimulMask, which uses an
attention mask scheme to mimic real-time
READ/WRITE decisions, and integrates a mod-
ified ALiBi positional encoding method. However,
this method cannot be used in other position em-
beddings, such as RoPE.

3 Methodology

In this section, we propose ExPosST, a novel frame-
work designed for all decoder-only LLMs. Ex-
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Figure 2: The two-step examples of the inference pro-
cess in ExPosST.

PosST allocates the range of positions of input to-
kens to avoid the shift of positions in target tokens.

3.1 Inference

To avoid the shift of positions in target tokens when
using the KV cache during Simultaneous Transla-
tion, we allocate chunk_size positions to input to-
kens. The newly source input words will be added
in the chunk, while the target word will be gener-
ated after the previous output (step @ in Figure 2).
Once the length of the new received source word
exceeds the chunk size (step @ in Figure 2), we will
allocate another source input chunk after the target
output, and set the new start position of the target
after the chunk. To help LLM separate between
the source and target languages, we use the conver-
sational prompt format of LLM, where the source
language is in <user> segment and the target lan-
guage is generated in <assistant> segment.

3.2 Fine-tuning

Based on the inference process in Section 3.1, to
avoid the mismatch between fine-tuning and infer-
ence, we first segment the source language sentence
into multiple parts based on the predefined chunk
size. Then, for each part, we collected the new
output tokens generated during the input of the en-
tire chunk based on the policy, and put them in
the output in this round. If the source token has
not yet been received when the target token for the
next prediction during inference, the keys of these
source tokens will be masked in the query of the
output tokens, similar to Raffel et al. (2024).

4 Experiments

4.1 Settings

We conducted experiments on English-French,
English-Italian, English-Dutch, English-Romanian,
and English-German language pairs from IWSLT
2017 (Cettolo et al., 2017). And we used
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Figure 3: Translation quality plotted against latency for Qwen2.5-1.5B-Instruct on the English-French, English-

Italian and English-Dutch language pairs.

Qwen2.5-1.5B-Instruct (Yang et al., 2024) with
ROPE as the base model. We evaluated with the
following baselines. The hyperparameters and
prompts are shown in Appendix A.

* ExPosST: We used the wait-k policy and set
chunk_size to 16 during fine-tuning and in-
ference.

e SimulMask: Raffel et al. (2024) utilizes a
novel attention mask approach that models si-
multaneous translation during fine-tuning by
masking attention for a desired decision pol-
icy. We chose the wait-k policy. Specifically,
for the models without the ALiBi position
embeddings, we did not use modified ALiBi
during fine-tuning.

* Conversational: Wang et al. (2024a) builds
up a conversational prompt structure for incre-
mental decoding, and creates supervised fine-
tuning training data by segmenting parallel
sentences using an alignment tool and a novel
augmentation technique to enhance general-
ization. It uses "read-n & incremental decod-
ing" policy (Wang et al., 2024b) during eval-
uation, which reads n words at each step and
subsequently continues translating until the
end-of-sequence token is generated. In this
experiment, n is selected from {2,3,5,7,9,11}.

* offline: We conducted experiments on fine-
tuning on full sentence pairs and offline trans-
lation during evaluation as a reference.

We used greedy search for all methods. For ap-
proaches with wait-k policy, we set k to {1,3,5,7}
during evaluation, and the fine-tuning configura-
tion employed k four higher than those used in the
evaluation, as referred to in Ma et al. (2019).
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Figure 4: Translation quality plotted against latency for
falcon-rw-1b on the English-French language pairs.

Our fine-tuning process was implemented in the
Simul-LLM (Agostinelli et al., 2024) framework.
Inference was in the Simul-LLM agent (Agostinelli
et al., 2024) integrated with the SimulEval toolkit
(Ma et al., 2020). We used detokenized BLEU with
SacreBLEU (Post, 2018) and COMET! (Bosselut
et al., 2019) for the quality metric. Latency was de-
termined using Length-Adaptive Average Lagging
(LAAL) (Papi et al., 2022).

4.2 Main Results

Figure 3 shows the results of BLEU and LAAL
on English-French, English-Dutch, and English-
Italian language pairs, and other results are shown
in Appendix B. ExPosST comprehensively outper-
formed both SimulMask and Conversational ap-
proaches, delivering the best results while preserv-
ing the original KV cache without recomputation.
Specifically, compared to (Wang et al., 2024a),
ExPosST has longer input and output sequences
within a single conversational round during training
and evaluation. The longer sequence brings more

1https: //huggingface.co/Unbabel/
wmt22-cometkiwi-da
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Figure 6: The result of different chunk_size on the
English-France language pairs.

semantically coherent text, which is better aligned
with natural conversational structure.

Figure 4 shows results on falcon-rw-1b with
ALiBi position embedding. ExPosST achieved re-
sults comparable to those of SimulMask, indicating
that the format modifications did not cause perfor-
mance degradation.

5 Analysis

5.1 Effect of Inference process

To further evaluate the impact of the inference
framework, we compare ExPosST with two vari-
ants: one using offline training with a causal mask
and conversational prompt, and another using Ex-
PosST fine-tuning with a causal mask. As shown in
Figure 5, even without a modified attention mask,
the framework leads to strong performance, which
has the ability to understand the conversational
prompt. By adding a simultaneous mask, the per-
formance is further improved.

5.2 Effect of Chunk Size

We examined how varying the chunk_size pa-
rameters affects translation performance. Fig-
ure 6 shows experiments with chunk_size in
{2,4,8,16,32} during both fine-tuning and infer-
ence. The experiment reveals that performance
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Figure 7: The result of the mismatch in chunks between
training and testing in the English-French language pair.
The training chunk size is fixed at 16.

will be stable when chunk_size is larger than a
threshold. However, larger chunk_size brings
more <pad> tokens during batch processing in
training, giving more computational cost. What’s
more, if chunk_size is too small, more <user>
and <assistant> tokens will be added, leading to
an increased length in the prompt. Therefore, the
length of the chunk will be set to the mid value. A
detailed analysis is provided in Appendix C.

5.3 Effect of Mismatch in Chunk Size

We also evaluate the impact of the mismatch of
chunk size during fine-tuning and inference. We
set the chunk_size to 16 for training, and test
{8,16,32,128} for testing. From the result in Fig-
ure 7, we find that the mismatch of chunks in fine-
tuning and inference leads to a drop in translation
quality. Moreover, the performance drop becomes
more severe as the mismatch increases.

6 Conclusion

In this work, we proposed ExPosST, a novel frame-
work for applying decoder-only Large Language
Models (LLMs) to Simultaneous Machine Transla-
tion (SimulMT). By explicitly allocating the posi-
tion range of source language input, our approach
ensures stable KV-cache utilization while maintain-
ing compatibility with different LLMs. Experimen-
tal results show that ExPosST achieves comparable
performance to SimulMask on ALiBi-based LLMs
and significantly outperforms existing approaches
on mainstream RoPE-based LLMs.

Limitations

Due to computational limits, we conducted exper-
iments primarily on Qwen2.5-1.5B-Instruct and
falocn-rw-1b without evaluating our method on
other models or across different parameter scales.
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Appendix
A Hyperparameters
A.1 Training Hyperparameters

The fine-tuning hyperparameters of each baseline
are shown in Table 1. Empirically, we find that the
second epoch achieves the best performance in all
methods, so we use the second epoch for evaluation.

Hyperparameter Value
Weight Precision bfloat16
Optimizer AdamW
Learning Rate 2.1074
LR Scheduler Inverse Sqrt
Weight Decay 0.1
Warmup Ratio 0.03
Max Gradient Norm 1
Max Sequence Length 512
Epochs 3
Batch size 64

Table 1: Fine-tuning hyperparameters for all models
and all methods.

For the Conversational baseline, we use the Iter-
max method from the SimAlign toolkit, leverag-
ing XLLM-RoBERTza base (Conneau et al., 2020) to
align words. The hyperparameter in Conversational
is shown in Table 2.

Hyperparameter Value
0 max 10
I5; 0.5
Pmaz 0.9

Table 2: hyperparameters in Conversational baseline.

A.2 Prompts

In SimulMask, offline baseline, when using
falcon-rw-1b, the prompt structure is in the fol-
lowing format:

Translate the following sentence from
[SRC] to [TGT]: [SRC-Sentence]
Assistant:[TGT-Sentence]<|endoftext|>

And when using Qwen2.5-1.5B-Instruct, the
prompt structure:

Translate the following sentence from
[SRC] to [TGT]: [SRC-Sentence]
<|im_start]|>assistant
[TGT-Sentence]<|im_end]|>
Alternatively, the prompt of Conversational
baseline is in the following format when using
falcon-rw-1b:

Translate the following sentence from
[SRC] to [TGT]:
User:[SRC-1]<|endoftext|>
Assistant:[TGT-1]<|endoftext|>

User:[SRC-n]<]|endoftext|>
Assistant:[TGT-n]<|endoftext|>
And in Qwen2.5-1.5B-Instruct, the prompt
structure in Conversational baseline is:

Translate the following sentence from
[SRC] to [TGT]:<|im_start|>user

[SRC-1]<]im_end|><|im_start|>assistant
[TGT-11<|im_end|>

<|im_start|>user
[SRC-nl<|im_end|><|im_start|>assistant
[TGT-nI<|im_end|>
In ExPosST, because the end-of-sentence token
means end of translation in the wait-k policy,
in falcon-rw-1b model, the prompt structure is
changed to:

Translate the following sentence from
[SRC] to [TGTI:

User:[SRC-1]

Assistant:[TGT-1]

User:[SRC-n]
Assistant:[TGT-nJ]<|endoftext|>
And in Qwen2.5-1.5B-Instruct, the prompt
structure in ExPosST is:

Translate the following sentence from
[SRC] to [TGT]:<|im_start]|>user
[SRC-11<|im_start|>assistant

[TGT-1]

<|im_start|>user
[SRC-n]<|im_start|>assistant
[TGT-n]<|im_end|>
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Figure 8: The effect of chunk size on average data length
on the IWSLT2017 dataset.

B Numerical Results

We show the numerical BLEU, COMET,
and LAAL results in falcon-rw-1b and
Qwen2.5-1.5B-Instruct for ExPosST, Simul-
Mask (Raffel et al., 2024), and Conversa-
tional (Wang et al., 2024a) in Table 3, Table 4,
Table 5, and Table 6.

C Effect of Chunk Size on Training Data
Length

As mentioned in Section 5.2, both small and large
chunk sizes can increase the length of training
data. So we tested the average training data length
by different chunk_size in English-French (en-
fr), English-Italian (en-it), English-Dutch (en-nl),
English-Romanian (en-ro), and English-German
(en-de) of the IWSLT 2017 dataset (Cettolo et al.,
2017). As the result shown in Figure 8, the relation-
ship between chunk size and average training data
length follows a U-shaped pattern, with the shortest
effective length observed when the chunk_size is
around 16.



Baseline en-fr en-it en-nl en-ro en-de

ExPosST wait-1 29.06 (1.96) 7.67 (1.29) 10.61(1.28) 7.86(1.29) 17.20(1.59)
ExPosST wait-3 36.60 (3.63) 22.35(3.26) 2495 (3.31) 21.37(3.32) 24.12(3.23)
ExPosST wait-5 38.86(5.39) 27.93(5.07) 29.05(5.13) 25.38(5.13) 27.17 (4.91)
ExPosST wait-7 39.16 (7.02) 29.37(6.73) 30.19 (6.77) 26.36(6.81) 28.15(6.57)
SimulMask wait-1 28.67 (1.92) 13.86(1.47) 14.60(1.36) 9.85(1.36) 17.61(1.62)
SimulMask wait-3 36.91 (3.62) 23.76 (3.28) 26.26 (3.33) 21.48(3.32) 24.14 (3.23)
SimulMask wait-5 39.10(5.36) 27.97 (5.10) 29.76 (5.14) 25.30(5.15) 27.28 (4.91)
SimulMask wait-7 39.25 (7.01) 29.48 (6.75) 31.22(6.77) 26.64 (6.82) 28.29 (6.57)
Conversational read-2 | 24.04 (1.74) 15.57(1.93) 16.18 (1.87) 12.87(1.91) 16.56 (1.82)
Conversational read-3 | 29.14 (2.29) 20.82 (2.62) 21.41(2.53) 17.70(2.53) 20.36 (2.40)
Conversational read-5 | 33.73 (3.40) 24.53 (3.83) 26.19(3.77) 22.36(3.75) 23.97 (3.56)
Conversational read-7 | 35.52 (4.54) 26.65(4.95) 28.18(4.93) 24.22(490) 25.454.72)
Conversational read-9 | 36.40 (5.70) 27.43 (6.09) 28.70(6.09) 24.71(6.09) 26.45 (5.86)
Conversational read-11 | 36.61 (6.82) 27.67 (7.21) 29.00 (7.21) 24.51(7.33) 26.67 (7.01)

Table 3: Translation quality and latency results in BLEU and LAAL in falcon-rw-1b.

Baseline en-fr en-it en-nl en-ro en-de

ExPosST wait-1 7094 (1.96) 55.31(1.29) 59.18 (1.28) 57.31(1.29) 65.28(1.59)
ExPosST wait-3 79.26 (3.63) 7494 (3.26) 76.54(3.31) 77.28 (3.32) 75.06 (3.23)
ExPosST wait-5 81.43(5.39) 80.47(5.07) 8097 (5.13) 81.55(5.13) 78.21(4.91)
ExPosST wait-7 81.67 (7.02) 81.80(6.73) 82.03(6.77) 82.86 (6.81) 79.06 (6.57)
SimulMask wait-1 71.10(1.92) 62.76 (1.47) 64.89(1.36) 59.83(1.36) 65.68 (1.62)
SimulMask wait-3 79.67 (3.62) 76.55(3.28) 78.01(3.33) 77.22(3.32) 75.57 (3.23)
SimulMask wait-5 81.47 (5.36) 80.42(5.10) 81.23(5.14) 81.93 (5.15) 78.33(4.91)
SimulMask wait-7 81.77 (7.01) 81.97 (6.75) 82.21(6.77) 82.84 (6.82) 79.22 (6.57)
Conversational read-2 | 68.89 (1.74) 69.33(1.93) 68.98 (1.87) 68.30(1.91) 65.63 (1.82)
Conversational read-3 | 74.21 (2.29) 75.24 (2.62) 74.92 (2.53) 75.23(2.53) 70.66 (2.40)
Conversational read-5 | 77.80 (3.40) 78.27 (3.83) 78.99 (3.77) 79.45(3.75) 74.86 (3.56)
Conversational read-7 | 79.09 (4.54) 79.72 (4.95) 79.97 (4.93) 80.81(4.90) 76.34 (4.72)
Conversational read-9 | 79.76 (5.70) 80.34 (6.09) 80.62 (6.09) 81.31(6.09) 77.01 (5.86)
Conversational read-11 | 79.95 (6.82) 80.71 (7.21) 80.76 (7.21) 80.03 (7.33) 76.77 (7.01)

Table 4: Translation quality and latency results in COMET and LAAL in falcon-rw-1b.

Baseline en-fr en-it en-nl en-ro en-de

ExPosST wait-1 29.14 (1.94) 10.93(1.34) 11.44(1.29) 7.97(1.29) 17.94(1.54)
ExPosST wait-3 37.53 (3.64) 24.51(3.24) 26.35(3.33) 22.79(3.31) 25.31(3.17)
ExPosST wait-5 40.39 (5.38) 28.86 (5.06) 29.62(5.12) 26.89 (5.16) 28.44 (4.90)
ExPosST wait-7 40.55 (7.03) 30.89 (6.75) 30.97 (6.76) 28.62 (6.82) 29.38 (6.56)
SimulMask wait-1 1298 (1.65) 3.51(1.65) 3.55(1.19) 1.37(1.09) 8.70(1.14)
SimulMask wait-3 33.21 (3.56) 12.21(3.07) 1298 (3.11) 12.38(3.11) 20.19(2.99)
SimulMask wait-5 37.40 (5.36) 22.82(4.99) 18.17(5.00) 19.68 (5.05) 25.78 (4.83)
SimulMask wait-7 38.32 (7.00) 26.48 (6.69) 22.08 (6.69) 22.29 (6.77) 28.62(6.54)
Conversational read-2 | 19.97 (1.49) 11.76 (1.72) 14.88 (1.60) 11.31(1.62) 13.81 (1.63)
Conversational read-3 | 24.94 (2.08) 17.44 (2.42) 19.49 (2.25) 16.13(2.31) 17.27 (2.18)
Conversational read-5 | 29.44 (3.23) 21.54 (3.68) 23.24(3.63) 19.91 (3.61) 20.84 (3.36)
Conversational read-7 | 31.76 (4.40) 23.58 (4.86) 24.43(4.81) 22.23(4.76) 22.70(4.53)
Conversational read-9 | 32.82 (5.57) 25.17 (6.01) 24.57 (6.03) 22.93(5.93) 23.76(5.68)
Conversational read-11 | 33.48 (6.69) 25.27 (7.11) 25.26(7.12) 23.49 (7.08) 24.52 (6.81)

Table 5: Translation quality and latency results in BLEU and LAAL in Qwen2.5-1.5B-Instruct.



Baseline en-fr en-it en-nl en-ro en-de

ExPosST wait-1 73.99 (1.94) 62.62(1.34) 61.85(1.29) 57.48(1.29) 71.04 (1.54)
ExPosST wait-3 81.05(3.64) 77.79 (3.24) 79.13(3.33) 79.98 (3.31) 79.05(3.17)
ExPosST wait-5 83.45(5.38) 81.87(5.06) 82.82(5.12) 84.08 (5.16) 81.58 (4.90)
ExPosST wait-7 83.84 (7.03) 83.49(6.75) 83.91(6.76) 85.22(6.82) 82.28 (6.56)
SimulMask wait-1 53.34 (1.65) 42.44 (1.65) 48.86(1.19) 44.80(1.09) 55.07 (1.14)
SimulMask wait-3 76.66 (3.56) 66.19 (3.07) 67.59 (3.11) 67.50(3.11) 70.01 (2.99)
SimulMask wait-5 80.41 (5.36) 76.64(4.99) 73.92(5.00) 76.50(5.05) 76.10(4.83)
SimulMask wait-7 81.67 (7.00) 79.75(6.69) 76.74 (6.69) 79.21 (6.77) 79.49 (6.54)
Conversational read-2 | 71.41(1.49) 72.10(1.72) 74.47 (1.60) 72.23(1.62) 70.14 (1.63)
Conversational read-3 | 75.69 (2.08) 76.94 (2.42) 77.80(2.25) 77.31(2.31) 74.04 (2.18)
Conversational read-5 | 79.16 (3.23) 79.94 (3.68) 80.51 (3.63) 81.17 (3.61) 77.47 (3.36)
Conversational read-7 | 80.59 (4.40) 80.96 (4.86) 81.55(4.81) 82.38(4.76) 79.18 (4.53)
Conversational read-9 | 81.31 (5.57) 82.19 (6.01) 81.70(6.03) 83.25(5.93) 79.95 (5.68)
Conversational read-11 | 81.71 (6.69) 82.32 (7.11) 82.63(7.12) 83.58 (7.08) 80.41 (6.81)

Table 6: Translation quality and latency results in COMET and LAAL in Qwen2.5-1.5B-Instruct.
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