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Abstract001

Large Language Models (LLMs) have achieved002
remarkable performance in simultaneous ma-003
chine translation (SimulMT) via attention mask004
and positional reordering strategies. However,005
these approaches have strict constraints on posi-006
tional encoding methods, such as ALiBi, which007
limit their general application. In this work, we008
introduce ExPosST, a simple and general frame-009
work to apply decoder-only LLMs to SimulMT010
tasks. ExPosST explicitly allocates the posi-011
tion range in the source and translation tokens,012
allowing decoding with KV cache under all013
positional methods. Experiments on multiple014
models show that ExPosST has comparable015
performance with state-of-the-art approaches016
in LLMs using ALiBi, while outperforming017
them in mainstream RoPE-based LLMs.018

1 Introduction019

Simultaneous Machine Translation (SimulMT) gen-020

erates target language output in real time as por-021

tions of the source sentence are received. Due022

to its significant application value in real-world023

scenarios, such as international conferences and024

academic lectures, it has garnered much attention025

recently (Ma et al., 2019; Zhang and Feng, 2023;026

Agostinelli et al., 2024). As Large Language Mod-027

els (LLMs) have achieved great performance in028

Neural Machine Translation (NMT) (Alves et al.,029

2023; Xu et al., 2024), some studies have at-030

tempted to leverage LLMs for SimulMT (Wang031

et al., 2024b; Agostinelli et al., 2024). Prior work032

usually constructs prefix-to-prefix datasets for fine-033

tuning (Koshkin et al., 2024). Nevertheless, as034

shown in Figure 1, when a new source word ar-035

rives, the positions of target tokens shift, and the036

KV cache must be recomputed due to the positional037

information no longer matching actual ones, lead-038

ing to increased computational overhead. To solve039

this issue, Raffel et al. (2024) propose SimulMask,040

which uses a modified ALiBi positional embed-041
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Figure 1: An example of attention score computing in
a certain step of SimulMT in Prior works, SimulMask,
and ExPosST methods. The Key cache is marked as
dark green.

ding (Press et al., 2022) to store positional infor- 042

mation separately from the KV cache. However, 043

mainstream LLMs such as LLaMA 3 (Dubey et al., 044

2024) and Qwen 2.5 (Yang et al., 2024) often adopt 045

Rotary Positional Embedding (RoPE) (Su et al., 046

2024), in which positional information is encoded 047

directly into the KV cache. Therefore, SimulMask 048

does not apply to mainstream LLMs. 049

To address this issue, we propose ExPosST, 050

an Explicit Positioning Allocation Framework for 051

Simultaneous Machine Translation with LLM. Dur- 052

ing inference, we pre-allocate a fixed-length chunk 053

for source-language tokens and generate the trans- 054

lation after the chunk. When the number of source 055

tokens exceeds the length of the current chunk, a 056

new chunk is allocated after the latest target output. 057

We also adjust the format and attention mask dur- 058

ing fine-tuning to avoid a mismatch between fine- 059

tuning and inference. This framework prevents the 060

target positions from shifting as the source input 061

increases. 062

1



The contributions of this paper are summarized063

as follows:064

• We propose ExPosST, a novel framework that065

avoids output token shifts caused by the ex-066

pansion of source language input. This frame-067

work is applicable across all LLMs.068

• Experiments on different LLMs show that069

our method achieves better performance in070

mainstream RoPE-based LLMs, and achieves071

comparable performance with SimulMask in072

ALiBi-based LLMs.073

2 Background074

Simultaneous Machine Translation (SimulMT)075

aims to generate target translations in real-time076

as the source sentence is being received. Formally,077

given a full source sentence (s1, . . . , s|S|) and a078

target sentence (t1, . . . , t|T |), SimulMT needs to079

generate each target token tj based only on a prefix080

of the source sentence (s1, . . . , si), where i ≤ |S|.081

To balance translation quality and latency,082

SimulMT employs a policy to decide whether to083

wait for additional source words (READ) or to gen-084

erate translations (WRITE). An example of such085

a policy is wait-k (Ma et al., 2019), which reads k086

words at first, then alternates between writing one087

target word and reading one source word.088

To apply LLMs to SimulMT, previous works089

usually construct prefix-to-prefix training data090

from offline translation pairs to train the LLM’s091

ability to begin translating with partial input.092

These methods often adopt an offline translation093

prompt format <user> s1, . . . , s|S| <assistant>094

t1, . . . , t|T | (Agostinelli et al., 2024; Koshkin et al.,095

2024). However, Raffel et al. (2024) points out096

that this method introduces mismatches between097

fine-tuning and inference in KV cache usage, target098

tokens shifting during incremental decoding, and099

additional computational overhead.100

To overcome these limitations, Raffel et al.101

(2024) introduces SimulMask, which uses an102

attention mask scheme to mimic real-time103

READ/WRITE decisions, and integrates a mod-104

ified ALiBi positional encoding method. However,105

this method cannot be used in other position em-106

beddings, such as RoPE.107

3 Methodology108

In this section, we propose ExPosST, a novel frame-109

work designed for all decoder-only LLMs. Ex-110

·

𝑡3

LLM

<u> 𝑠1 𝑠2 𝑠3 𝑠4 <a> 𝑡1 𝑡2 <u> 𝑠5 <a>

1 2 3 4 5 6 7 8 9 10 14

𝑡2

s4 s5READ

WRITE

 

 

…

…
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Figure 2: The two-step examples of the inference pro-
cess in ExPosST.

PosST allocates the range of positions of input to- 111

kens to avoid the shift of positions in target tokens. 112

3.1 Inference 113

To avoid the shift of positions in target tokens when 114

using the KV cache during Simultaneous Transla- 115

tion, we allocate chunk_size positions to input to- 116

kens. The newly source input words will be added 117

in the chunk, while the target word will be gener- 118

ated after the previous output (step ➀ in Figure 2). 119

Once the length of the new received source word 120

exceeds the chunk size (step ➁ in Figure 2), we will 121

allocate another source input chunk after the target 122

output, and set the new start position of the target 123

after the chunk. To help LLM separate between 124

the source and target languages, we use the conver- 125

sational prompt format of LLM, where the source 126

language is in <user> segment and the target lan- 127

guage is generated in <assistant> segment. 128

3.2 Fine-tuning 129

Based on the inference process in Section 3.1, to 130

avoid the mismatch between fine-tuning and infer- 131

ence, we first segment the source language sentence 132

into multiple parts based on the predefined chunk 133

size. Then, for each part, we collected the new 134

output tokens generated during the input of the en- 135

tire chunk based on the policy, and put them in 136

the output in this round. If the source token has 137

not yet been received when the target token for the 138

next prediction during inference, the keys of these 139

source tokens will be masked in the query of the 140

output tokens, similar to Raffel et al. (2024). 141

4 Experiments 142

4.1 Settings 143

We conducted experiments on English-French, 144

English-Italian, English-Dutch, English-Romanian, 145

and English-German language pairs from IWSLT 146

2017 (Cettolo et al., 2017). And we used 147
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Figure 3: Translation quality plotted against latency for Qwen2.5-1.5B-Instruct on the English-French, English-
Italian and English-Dutch language pairs.

Qwen2.5-1.5B-Instruct (Yang et al., 2024) with148

RoPE as the base model. We evaluated with the149

following baselines. The hyperparameters and150

prompts are shown in Appendix A.151

• ExPosST: We used the wait-k policy and set152

chunk_size to 16 during fine-tuning and in-153

ference.154

• SimulMask: Raffel et al. (2024) utilizes a155

novel attention mask approach that models si-156

multaneous translation during fine-tuning by157

masking attention for a desired decision pol-158

icy. We chose the wait-k policy. Specifically,159

for the models without the ALiBi position160

embeddings, we did not use modified ALiBi161

during fine-tuning.162

• Conversational: Wang et al. (2024a) builds163

up a conversational prompt structure for incre-164

mental decoding, and creates supervised fine-165

tuning training data by segmenting parallel166

sentences using an alignment tool and a novel167

augmentation technique to enhance general-168

ization. It uses "read-n & incremental decod-169

ing" policy (Wang et al., 2024b) during eval-170

uation, which reads n words at each step and171

subsequently continues translating until the172

end-of-sequence token is generated. In this173

experiment, n is selected from {2,3,5,7,9,11}.174

• offline: We conducted experiments on fine-175

tuning on full sentence pairs and offline trans-176

lation during evaluation as a reference.177

We used greedy search for all methods. For ap-178

proaches with wait-k policy, we set k to {1,3,5,7}179

during evaluation, and the fine-tuning configura-180

tion employed k four higher than those used in the181

evaluation, as referred to in Ma et al. (2019).182
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Figure 4: Translation quality plotted against latency for
falcon-rw-1b on the English-French language pairs.

Our fine-tuning process was implemented in the 183

Simul-LLM (Agostinelli et al., 2024) framework. 184

Inference was in the Simul-LLM agent (Agostinelli 185

et al., 2024) integrated with the SimulEval toolkit 186

(Ma et al., 2020). We used detokenized BLEU with 187

SacreBLEU (Post, 2018) and COMET1 (Bosselut 188

et al., 2019) for the quality metric. Latency was de- 189

termined using Length-Adaptive Average Lagging 190

(LAAL) (Papi et al., 2022). 191

4.2 Main Results 192

Figure 3 shows the results of BLEU and LAAL 193

on English-French, English-Dutch, and English- 194

Italian language pairs, and other results are shown 195

in Appendix B. ExPosST comprehensively outper- 196

formed both SimulMask and Conversational ap- 197

proaches, delivering the best results while preserv- 198

ing the original KV cache without recomputation. 199

Specifically, compared to (Wang et al., 2024a), 200

ExPosST has longer input and output sequences 201

within a single conversational round during training 202

and evaluation. The longer sequence brings more 203

1https://huggingface.co/Unbabel/
wmt22-cometkiwi-da
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Figure 5: Effect of Inference Process in English-French
language pair.
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Figure 6: The result of different chunk_size on the
English-France language pairs.

semantically coherent text, which is better aligned204

with natural conversational structure.205

Figure 4 shows results on falcon-rw-1b with206

ALiBi position embedding. ExPosST achieved re-207

sults comparable to those of SimulMask, indicating208

that the format modifications did not cause perfor-209

mance degradation.210

5 Analysis211

5.1 Effect of Inference process212

To further evaluate the impact of the inference213

framework, we compare ExPosST with two vari-214

ants: one using offline training with a causal mask215

and conversational prompt, and another using Ex-216

PosST fine-tuning with a causal mask. As shown in217

Figure 5, even without a modified attention mask,218

the framework leads to strong performance, which219

has the ability to understand the conversational220

prompt. By adding a simultaneous mask, the per-221

formance is further improved.222

5.2 Effect of Chunk Size223

We examined how varying the chunk_size pa-224

rameters affects translation performance. Fig-225

ure 6 shows experiments with chunk_size in226

{2,4,8,16,32} during both fine-tuning and infer-227

ence. The experiment reveals that performance228
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Figure 7: The result of the mismatch in chunks between
training and testing in the English-French language pair.
The training chunk size is fixed at 16.

will be stable when chunk_size is larger than a 229

threshold. However, larger chunk_size brings 230

more <pad> tokens during batch processing in 231

training, giving more computational cost. What’s 232

more, if chunk_size is too small, more <user> 233

and <assistant> tokens will be added, leading to 234

an increased length in the prompt. Therefore, the 235

length of the chunk will be set to the mid value. A 236

detailed analysis is provided in Appendix C. 237

5.3 Effect of Mismatch in Chunk Size 238

We also evaluate the impact of the mismatch of 239

chunk size during fine-tuning and inference. We 240

set the chunk_size to 16 for training, and test 241

{8,16,32,128} for testing. From the result in Fig- 242

ure 7, we find that the mismatch of chunks in fine- 243

tuning and inference leads to a drop in translation 244

quality. Moreover, the performance drop becomes 245

more severe as the mismatch increases. 246

6 Conclusion 247

In this work, we proposed ExPosST, a novel frame- 248

work for applying decoder-only Large Language 249

Models (LLMs) to Simultaneous Machine Transla- 250

tion (SimulMT). By explicitly allocating the posi- 251

tion range of source language input, our approach 252

ensures stable KV-cache utilization while maintain- 253

ing compatibility with different LLMs. Experimen- 254

tal results show that ExPosST achieves comparable 255

performance to SimulMask on ALiBi-based LLMs 256

and significantly outperforms existing approaches 257

on mainstream RoPE-based LLMs. 258

Limitations 259

Due to computational limits, we conducted exper- 260

iments primarily on Qwen2.5-1.5B-Instruct and 261

falocn-rw-1b without evaluating our method on 262

other models or across different parameter scales. 263
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Appendix386

A Hyperparameters387

A.1 Training Hyperparameters388

The fine-tuning hyperparameters of each baseline389

are shown in Table 1. Empirically, we find that the390

second epoch achieves the best performance in all391

methods, so we use the second epoch for evaluation.392

Hyperparameter Value
Weight Precision bfloat16

Optimizer AdamW
Learning Rate 2 · 10−4

LR Scheduler Inverse Sqrt
Weight Decay 0.1

Warmup Ratio 0.03
Max Gradient Norm 1

Max Sequence Length 512
Epochs 3

Batch size 64

Table 1: Fine-tuning hyperparameters for all models
and all methods.

393

For the Conversational baseline, we use the Iter-394

max method from the SimAlign toolkit, leverag-395

ing XLM-RoBERTa base (Conneau et al., 2020) to396

align words. The hyperparameter in Conversational397

is shown in Table 2.398

Hyperparameter Value
δmax 10
β 0.5

ρmin 0.5
ρmax 0.9

Table 2: hyperparameters in Conversational baseline.

A.2 Prompts399

In SimulMask, offline baseline, when using400

falcon-rw-1b, the prompt structure is in the fol-401

lowing format:402

Translate the following sentence from 403

[SRC] to [TGT]: [SRC-Sentence] 404

Assistant:[TGT-Sentence]<|endoftext|> 405

And when using Qwen2.5-1.5B-Instruct, the 406

prompt structure: 407

Translate the following sentence from 408

[SRC] to [TGT]: [SRC-Sentence] 409

<|im_start|>assistant 410

[TGT-Sentence]<|im_end|> 411

Alternatively, the prompt of Conversational 412

baseline is in the following format when using 413

falcon-rw-1b: 414

Translate the following sentence from 415

[SRC] to [TGT]: 416

User:[SRC-1]<|endoftext|> 417

Assistant:[TGT-1]<|endoftext|> 418

... 419

User:[SRC-n]<|endoftext|> 420

Assistant:[TGT-n]<|endoftext|> 421

And in Qwen2.5-1.5B-Instruct, the prompt 422

structure in Conversational baseline is: 423

Translate the following sentence from 424

[SRC] to [TGT]:<|im_start|>user 425

[SRC-1]<|im_end|><|im_start|>assistant 426

[TGT-1]<|im_end|> 427

... 428

<|im_start|>user 429

[SRC-n]<|im_end|><|im_start|>assistant 430

[TGT-n]<|im_end|> 431

In ExPosST, because the end-of-sentence token 432

means end of translation in the wait-k policy, 433

in falcon-rw-1b model, the prompt structure is 434

changed to: 435

Translate the following sentence from 436

[SRC] to [TGT]: 437

User:[SRC-1] 438

Assistant:[TGT-1] 439

... 440

User:[SRC-n] 441

Assistant:[TGT-n]<|endoftext|> 442

And in Qwen2.5-1.5B-Instruct, the prompt 443

structure in ExPosST is: 444

Translate the following sentence from 445

[SRC] to [TGT]:<|im_start|>user 446

[SRC-1]<|im_start|>assistant 447

[TGT-1] 448

... 449

<|im_start|>user 450

[SRC-n]<|im_start|>assistant 451

[TGT-n]<|im_end|> 452
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Figure 8: The effect of chunk size on average data length
on the IWSLT2017 dataset.

B Numerical Results453

We show the numerical BLEU, COMET,454

and LAAL results in falcon-rw-1b and455

Qwen2.5-1.5B-Instruct for ExPosST, Simul-456

Mask (Raffel et al., 2024), and Conversa-457

tional (Wang et al., 2024a) in Table 3, Table 4,458

Table 5, and Table 6.459

C Effect of Chunk Size on Training Data460

Length461

As mentioned in Section 5.2, both small and large462

chunk sizes can increase the length of training463

data. So we tested the average training data length464

by different chunk_size in English-French (en-465

fr), English-Italian (en-it), English-Dutch (en-nl),466

English-Romanian (en-ro), and English-German467

(en-de) of the IWSLT 2017 dataset (Cettolo et al.,468

2017). As the result shown in Figure 8, the relation-469

ship between chunk size and average training data470

length follows a U-shaped pattern, with the shortest471

effective length observed when the chunk_size is472

around 16.473
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Baseline en-fr en-it en-nl en-ro en-de
ExPosST wait-1 29.06 (1.96) 7.67 (1.29) 10.61 (1.28) 7.86 (1.29) 17.20 (1.59)
ExPosST wait-3 36.60 (3.63) 22.35 (3.26) 24.95 (3.31) 21.37 (3.32) 24.12 (3.23)
ExPosST wait-5 38.86 (5.39) 27.93 (5.07) 29.05 (5.13) 25.38 (5.13) 27.17 (4.91)
ExPosST wait-7 39.16 (7.02) 29.37 (6.73) 30.19 (6.77) 26.36 (6.81) 28.15 (6.57)
SimulMask wait-1 28.67 (1.92) 13.86 (1.47) 14.60 (1.36) 9.85 (1.36) 17.61 (1.62)
SimulMask wait-3 36.91 (3.62) 23.76 (3.28) 26.26 (3.33) 21.48 (3.32) 24.14 (3.23)
SimulMask wait-5 39.10 (5.36) 27.97 (5.10) 29.76 (5.14) 25.30 (5.15) 27.28 (4.91)
SimulMask wait-7 39.25 (7.01) 29.48 (6.75) 31.22 (6.77) 26.64 (6.82) 28.29 (6.57)
Conversational read-2 24.04 (1.74) 15.57 (1.93) 16.18 (1.87) 12.87 (1.91) 16.56 (1.82)
Conversational read-3 29.14 (2.29) 20.82 (2.62) 21.41 (2.53) 17.70 (2.53) 20.36 (2.40)
Conversational read-5 33.73 (3.40) 24.53 (3.83) 26.19 (3.77) 22.36 (3.75) 23.97 (3.56)
Conversational read-7 35.52 (4.54) 26.65 (4.95) 28.18 (4.93) 24.22 (4.90) 25.45 (4.72)
Conversational read-9 36.40 (5.70) 27.43 (6.09) 28.70 (6.09) 24.71 (6.09) 26.45 (5.86)
Conversational read-11 36.61 (6.82) 27.67 (7.21) 29.00 (7.21) 24.51 (7.33) 26.67 (7.01)

Table 3: Translation quality and latency results in BLEU and LAAL in falcon-rw-1b.

Baseline en-fr en-it en-nl en-ro en-de
ExPosST wait-1 70.94 (1.96) 55.31 (1.29) 59.18 (1.28) 57.31 (1.29) 65.28 (1.59)
ExPosST wait-3 79.26 (3.63) 74.94 (3.26) 76.54 (3.31) 77.28 (3.32) 75.06 (3.23)
ExPosST wait-5 81.43 (5.39) 80.47 (5.07) 80.97 (5.13) 81.55 (5.13) 78.21 (4.91)
ExPosST wait-7 81.67 (7.02) 81.80 (6.73) 82.03 (6.77) 82.86 (6.81) 79.06 (6.57)
SimulMask wait-1 71.10 (1.92) 62.76 (1.47) 64.89 (1.36) 59.83 (1.36) 65.68 (1.62)
SimulMask wait-3 79.67 (3.62) 76.55 (3.28) 78.01 (3.33) 77.22 (3.32) 75.57 (3.23)
SimulMask wait-5 81.47 (5.36) 80.42 (5.10) 81.23 (5.14) 81.93 (5.15) 78.33 (4.91)
SimulMask wait-7 81.77 (7.01) 81.97 (6.75) 82.21 (6.77) 82.84 (6.82) 79.22 (6.57)
Conversational read-2 68.89 (1.74) 69.33 (1.93) 68.98 (1.87) 68.30 (1.91) 65.63 (1.82)
Conversational read-3 74.21 (2.29) 75.24 (2.62) 74.92 (2.53) 75.23 (2.53) 70.66 (2.40)
Conversational read-5 77.80 (3.40) 78.27 (3.83) 78.99 (3.77) 79.45 (3.75) 74.86 (3.56)
Conversational read-7 79.09 (4.54) 79.72 (4.95) 79.97 (4.93) 80.81 (4.90) 76.34 (4.72)
Conversational read-9 79.76 (5.70) 80.34 (6.09) 80.62 (6.09) 81.31 (6.09) 77.01 (5.86)
Conversational read-11 79.95 (6.82) 80.71 (7.21) 80.76 (7.21) 80.03 (7.33) 76.77 (7.01)

Table 4: Translation quality and latency results in COMET and LAAL in falcon-rw-1b.

Baseline en-fr en-it en-nl en-ro en-de
ExPosST wait-1 29.14 (1.94) 10.93 (1.34) 11.44 (1.29) 7.97 (1.29) 17.94 (1.54)
ExPosST wait-3 37.53 (3.64) 24.51 (3.24) 26.35 (3.33) 22.79 (3.31) 25.31 (3.17)
ExPosST wait-5 40.39 (5.38) 28.86 (5.06) 29.62 (5.12) 26.89 (5.16) 28.44 (4.90)
ExPosST wait-7 40.55 (7.03) 30.89 (6.75) 30.97 (6.76) 28.62 (6.82) 29.38 (6.56)
SimulMask wait-1 12.98 (1.65) 3.51 (1.65) 3.55 (1.19) 1.37 (1.09) 8.70 (1.14)
SimulMask wait-3 33.21 (3.56) 12.21 (3.07) 12.98 (3.11) 12.38 (3.11) 20.19 (2.99)
SimulMask wait-5 37.40 (5.36) 22.82 (4.99) 18.17 (5.00) 19.68 (5.05) 25.78 (4.83)
SimulMask wait-7 38.32 (7.00) 26.48 (6.69) 22.08 (6.69) 22.29 (6.77) 28.62 (6.54)
Conversational read-2 19.97 (1.49) 11.76 (1.72) 14.88 (1.60) 11.31 (1.62) 13.81 (1.63)
Conversational read-3 24.94 (2.08) 17.44 (2.42) 19.49 (2.25) 16.13 (2.31) 17.27 (2.18)
Conversational read-5 29.44 (3.23) 21.54 (3.68) 23.24 (3.63) 19.91 (3.61) 20.84 (3.36)
Conversational read-7 31.76 (4.40) 23.58 (4.86) 24.43 (4.81) 22.23 (4.76) 22.70 (4.53)
Conversational read-9 32.82 (5.57) 25.17 (6.01) 24.57 (6.03) 22.93 (5.93) 23.76 (5.68)
Conversational read-11 33.48 (6.69) 25.27 (7.11) 25.26 (7.12) 23.49 (7.08) 24.52 (6.81)

Table 5: Translation quality and latency results in BLEU and LAAL in Qwen2.5-1.5B-Instruct.
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Baseline en-fr en-it en-nl en-ro en-de
ExPosST wait-1 73.99 (1.94) 62.62 (1.34) 61.85 (1.29) 57.48 (1.29) 71.04 (1.54)
ExPosST wait-3 81.05 (3.64) 77.79 (3.24) 79.13 (3.33) 79.98 (3.31) 79.05 (3.17)
ExPosST wait-5 83.45 (5.38) 81.87 (5.06) 82.82 (5.12) 84.08 (5.16) 81.58 (4.90)
ExPosST wait-7 83.84 (7.03) 83.49 (6.75) 83.91 (6.76) 85.22 (6.82) 82.28 (6.56)
SimulMask wait-1 53.34 (1.65) 42.44 (1.65) 48.86 (1.19) 44.80 (1.09) 55.07 (1.14)
SimulMask wait-3 76.66 (3.56) 66.19 (3.07) 67.59 (3.11) 67.50 (3.11) 70.01 (2.99)
SimulMask wait-5 80.41 (5.36) 76.64 (4.99) 73.92 (5.00) 76.50 (5.05) 76.10 (4.83)
SimulMask wait-7 81.67 (7.00) 79.75 (6.69) 76.74 (6.69) 79.21 (6.77) 79.49 (6.54)
Conversational read-2 71.41 (1.49) 72.10 (1.72) 74.47 (1.60) 72.23 (1.62) 70.14 (1.63)
Conversational read-3 75.69 (2.08) 76.94 (2.42) 77.80 (2.25) 77.31 (2.31) 74.04 (2.18)
Conversational read-5 79.16 (3.23) 79.94 (3.68) 80.51 (3.63) 81.17 (3.61) 77.47 (3.36)
Conversational read-7 80.59 (4.40) 80.96 (4.86) 81.55 (4.81) 82.38 (4.76) 79.18 (4.53)
Conversational read-9 81.31 (5.57) 82.19 (6.01) 81.70 (6.03) 83.25 (5.93) 79.95 (5.68)
Conversational read-11 81.71 (6.69) 82.32 (7.11) 82.63 (7.12) 83.58 (7.08) 80.41 (6.81)

Table 6: Translation quality and latency results in COMET and LAAL in Qwen2.5-1.5B-Instruct.
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