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FASTFACE: TRAINING-FREE IDENTITY PRESERVA-

TION TUNING IN DISTILLED DIFFUSION VIA GUID-

ANCE AND ATTENTION

Anonymous authors
Paper under double-blind review

Figure 1: FastFace method framework: on the left - high-level idea of pipeline, enabling few-sep
id-preserving generation, on the right - effect of FastFace components on realistic and stylistic gen-
erations

ABSTRACT

The recent proliferation of identity-preserving (ID) adapters has significantly ad-
vanced personalized generation with diffusion models. However, these adapters
are predominantly co-trained with base diffusion models, inheriting their criti-
cal drawback: slow, multi-step inference. This work addresses the challenge of
adapting pre-trained ID adapters to much faster distilled diffusion models with-
out requiring any further training. We introduce FastFace, a universal framework
that achieves this via two key mechanisms: (1) the decomposition and adapta-
tion of classifier-free guidance for few-step stylistic generation, and (2) attention
manipulation within decoupled blocks to enhance identity similarity and fidelity.
We demonstrate that FastFace generalizes effectively across various distilled mod-
els and maintains full compatibility with a wide range of existing ID-preserving
methods, enabling high-fidelity personalized image generation at unprecedented
speeds.

1 INTRODUCTION

Diffusion models have emerged as a dominant paradigm in generative modeling, achieving state-of-
the-art performance in high-fidelity image synthesis, with plethora of models coming out in recent
years (Ho et al. (2020), Dhariwal & Nichol (2021), Rombach et al. (2022), Podell et al. (2023),
Esser et al. (2024), Labs (2024)). Diffusion distillation aims to to speed up inference by reducing
number of sampling steps, with a lot of approaches and versions releasing in past several years,
such as LCM, Turbo, Lightning, Hyper, and others (Luo et al. (2023), Sauer et al. (2024a), Lin
et al. (2024c), Ren et al. (2024), Sauer et al. (2024b)); common results of these distillation are 1)
architecture of diffusion model remains the same 2) inference becomes significantly more efficient
in terms of number of steps. In parallel, diffusion models have been adapted for task of id-preserving
generation, where image with face of a person cid is used as condition, and diffusion can generate
images with novel identities without further finetuning (Ye et al. (2023), Li et al. (2024), Wang et al.
(2024a), Guo et al. (2024), Jiang et al. (2025)). These methods are commonly trained with base
diffusion models and can be denoted as ID-adapters.
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Integrating image conditioning with distilled diffusion has recently emerged as a separate problem.
Several works (Zhang et al. (2023), Xiao et al. (2023), Parmar et al. (2024)) propose to adapt prior
of ControlNet towards new trajectories of distilled models through finetuning. While promising,
these works do not propose a universal approach to any model, i.e. for a new model, a completely
new algorithmic design is required. In recent work Sun et al. (2024) authors introduce training-
free adaptation of image conditioning through classifier guidance, but their approach suffers from
requirement for backpropagation during inference.

In contrast to previous work, we aim to develop general, light, training-free mechanisms that can be
used in plug-and-play manner to improve quality of id-preserving generation with any distilled dif-
fusion model. We separate identity-preserving generation scenarios and develop two contributions
- for stylistic generation we adopt and tune decoupled classifier-free guidance, where conditional
noise prediction is splitted into two parallel terms, and for realistic id preservation we introduce at-
tention manipulation in decoupled blocks is transformed via simple analytical functions to be more
focused on facial regions during generation. We denote FastFace as joint application of these mech-
anisms, and it’s effect on generated image is visualized in Figure 7 - it achieves superior identity
preservation and image fidelity while not losing prompt following.

To demonstrate the effectiveness and generality of FastFace, we conduct a comprehensive evaluation
across a range of SDXL-distilled checkpoints and identity adapters. Our empirical results, which
demonstrate robust generalization, are enabled by two technical contributions:

Decoupled Classifier-Free Guidance Mechanism: We introduce a guidance strategy that decomposes
the network output into semantically interpretable components. This decomposition is specifically
tuned to enhance performance in the few-step sampling regime characteristic of distilled models.

Attention Manipulation for Identity Enhancement: We develop an inference-time method to pre-
cisely manipulate attention maps within decoupled attention blocks. By strategically reinforcing
attention over facial regions, this approach substantially improves identity similarity without any
additional training.

We evaluate our method on subset of high-quality OmniContext dataset (Wu et al. (2025), as well as
collected and released DiverseFaces benchmark, which includes a wide variety of nationalities, age
groups, and genders and decomposes scenarios of stylistic and realistic generation, allowing to use
both for specific ablations and general evaluation. The results confirm the superior performance and
broad applicability of FastFace for efficient identity-preserving generation.

2 RELATED WORK

ID-preserving generation methods Identity-preserving generation, as we describe it, is a prob-
lem of preserving identity similarity in generation output given an image with the face. A lot of
methods came out around this problem, including IpAdapter-FaceID Ye et al. (2023), Photomaker
Li et al. (2024), PuLID Guo et al. (2024), InstantID Wang et al. (2024a). They differ in their over-
all approaches and flexibility, with later methods building on top of FaceID, however, id-adapters
trained for new diffusion models frequently rely on conventional FaceID approach and codebase
(Team (2024)). Another group of methods such as DreamBooth Ruiz et al. (2023) and similar are
also applicable to this problem, however, they are heavily limited due to need for finetuning for each
new identity.

Diffusion distillation Diffusion distillation is an approach to accelerate trained diffusion models
by training them to sample in few steps while still trying to model original pdata(x) as close as
possible (Salimans & Ho (2022), Song et al. (2023), Yin et al. (2024)). State of the art approaches
such as LCM Luo et al. (2023) and Hyper Ren et al. (2024) remain common for new model releases
(Ke et al. (2024), Chen et al. (2024)) ), but new distillation techniques are actively being developed.
In practice, these distilled versions may differ in their inference qualities and sampling procedures,
generally applicable in range of 1-8 sampling steps. Application of these distilled models to image
conditioned generation and in particular id-preserving generation is at the heart of this work.

Adaptation to new diffusion models Cheap adaptation of pretrained modules for diffusion mod-
els to new checkpoints has been explored in Lin et al. (2024a) authors train an adapter module that
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acts as a latent projection between the inner-layer connection of the original ControlNet and new
diffusion model and they achieve fast generalization. In other work Xu et al. (2024) authors con-
sider a case of efficient adaptation of ControlNet to new conditional domains. In the context of
distilled diffusion models similar problems have also been explored with ControlNet: (Xiao et al.
(2023), Parmar et al. (2024)), where in both works specific finetuning approaches are proposed ei-
ther to match distillation objective or enforce cycle-consistency. Limitations of available solutions
are either designing finetuning approach per checkpoint or tolerating baseline quality. We show that
it is possible to universally boost quality of such adaptation without any additional training.

3 METHOD

3.1 BACKGROUND

We highlight three design choices that are commonly used in construction and training of ID-
adapters. Firstly, Eq. 1 describes information flow introduced through additional cross-attention
blocks. These additional blocks are called decoupled and introduce new keys and values K ′ and V ′

(for details see Ye et al. (2023)). Importantly, a single scalar value λ controls the input of visual
information from face, and we will address this in Section 3.3.

znew = Attn(z;Q,K, V ) + λ ·Attn(z;Q,K ′, V ′) (1)

Secondly, a commonly known technique classifier-free guidance is adopted for two distinct condi-
tions as described in Eq. 2. xt is omitted for clarity. It can be seen that scale parameter w impacts
both conditioning strength on ctext and cid, not allowing any flexibility given two distinct conditions.

ϵ̂ = ϵ(∅,∅) + w · (ϵ(ctext, cid)− ϵ(∅,∅)) (2)

Lastly, we note that training id-preserving adapters trained via diffusion target (Ho et al. (2020))
are proximally trained to reconstruct identity in the image, i.e. maximize similarity between the
person in cid and x̂0 given conditional information. However, during inference, this is not strictly
the case. Given pretrained ID-adapter we identify two common generation purposes - stylistic and
realistic. By ”stylistic” we define generation that implies visual domain shift towards some priory
known style, e.g. ”pixel art” implies that generated image is expected to follow pixel-like visual
appearance; by ”realistic” setup we define generation that is not biased to any specific style or biased
explicitly towards ”realism” as specified in prompt. These cases correspond to different goals - in
”stylistic” the user is less interested in facial features similarity and more in style following, while
in realism situation is opposite, examples given in Figure 2.

Figure 2: Different cases of user intention during ID-preserving generation: (a) - stylistic, (b) -
realistic

In the following section we built components of FastFace on top of described design choices, and
then unify them in one framework.

3.2 DECOUPLED CLASSIFIER FREE GUIDANCE

CFG Decomposition Classifier-free guidance decomposition was introduced in Brooks et al.
(2023) in the following form: ϵ̂ = ϵ(∅,∅) + α · (ϵ(cimg,∅) − ϵ(∅,∅)) + β · (ϵ(ctext, cimg) −
ϵ(cimg,∅)). In this equation we split guidance between ctext and cimg which enables to tune be-
tween preservation and editing in instruct editing task. However it remains understudied, since it has

3
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not been widely adopted in later works (Labs et al. (2025), Zhang et al. (2025)) and has not applied
before for generation with ID-adapters.

In identity-preserving generation we find same decoupling also works, while instead of cimg we use
cid with reference identity. We give additional possible derivation and ablations of this expression
in in Appendix D. In this setup α corresponds to strength of id conditioning and β corresponds to
textual strength conditioning, however it is not yet applicable to distilled models.

DCG - few-step stylistic tuning Simply substituting cid and changing α and β will result in
degradation and artifacts for distilled models not suited for guidance, see Appendix D for examples.
Therefore we introduce two contributions to make it work with distilled models. Firstly we ablate
scheduling regimes of conventional classifier-free guidance for our setup. Contrary to findings in
previous works (Wang et al. (2024b), Starodubcev et al. (2024)) we find that scheduling should
be applied only to intermediate steps, see Appendix D, and use it to bias model towards prompt
following.

Secondly, to further enhance visual quality we apply rescaling to decoupled terms to balance norms
of output and predicted noises, and , which is inspired by rescaling trick introduced in Lin et al.
(2024b). Overall algorithm of DCG is given in equations below - in second expression σi and σti

correspond to standard deviation of corresponding conditional predictions ϵ(cid,∅) and ϵ(ctext, cid),
and this deviations are averaged, last equation introduces interpolation trade-off between stability
and quality, scaling hyper-parameter ϕ in practice is fixed.

ϵ̂ = ϵ(∅,∅) + α(t) · (ϵ(cid,∅)− ϵ(∅,∅))
︸ ︷︷ ︸

id guidance

+β(t) · (ϵ(ctext, cid)− ϵ(cid,∅))
︸ ︷︷ ︸

text guidance

(3)

ϵrescaled =
σi + σti

2σ̂
ϵ̂, (4)

ϵDCG = ϕ · ϵ̂rescaled + (1− ϕ)ϵdcg (5)

After applying proposed changes, we can choose coefficients α and β in wider range as demonstrated
in Figure 3a. We choose α(t) = [1.0, 1.5, 1.5, 1.0] and β(t) = [1.0, 3.0, 3.0, 1.0] and find them
applicable to all studied checkpoints with ”style” prompts, as it enhances coherence with described
style at low-level details additional ablation with stylistic part of DiverseBench is given in Table 1.

(a) Ablation grid of DCG with proposed fixes, only
intermediate step coefficients are altered

(b) Visual result of applying DCG to stylistic
generation with various models

Figure 3: DCG visualizations; (a) - ablation of coefficient demonstrate visual trade-off between tun-
ing α and β, (b) - visual result of tuned DCG added to inference across different distilled checkpoints

guidance setup CLIP (↑) IR (↑) ID (↑)

const(baseline) 0.268 0.901 0.258
schedule 0.276 1.278 0.320
schedule + rescale 0.277 1.289 0.318

Table 1: DCG components ablation with stylistic generation

4
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Figure 4: Visualization of attention maps timesteps 749 and 499 in decoupled block of SDXL in
relation to generation output

3.3 ATTENTION MANIPULATION

Motivation Attention maps in diffusion models are known to contain a lot of semantic and spatial
information, which has been applied in numerous works of image editing (Hertz et al. (2022), Cao
et al. (2023), Epstein et al. (2023), Titov et al. (2024)). Nuance of ID-adapters is that they train
new cross-attention blocks within UNet to condition on visual information from cid. We inspect
these new blocks and visualize attention maps in Figure 4 - it can bee seen that they share a lot
of information with facial features and position in generated images, while also containing a lot of
noisy signal about surrounding context, which can’t be removed by changing ip adapter scale

(see Eq. 1). Therefore we opt to work with attention maps directly.

Basic formulation We begin with formulation of general Attention Manipulation (AM) algorithm

in Equation 6. Main challenge is to construct such f(·) : A 7→ Ã, where A in attention map in

decoupled blocks, that Ã would allow achieve properties of 1) increasing face similarity/fidelity
without significantly damaging prompt following 2) steering id-preserving generation towards more
stable results, which we achieve by focusing attention on face regions.

softmax(
Q(K ′)T√

d
) −→ f(A) −→ ÃV ′ −→ z (6)

Scale-power transform First transformation is designed via simple composition of scale and power
transform applied to attention maps. Detailed ablation of this operations is given in Appendix E,
intuitevely power transformation applied to values less then 1 shifts everything closer to 0, while
scaling linearly enhances attention mainly in meaningful tail of distribution with face region.

fsp := (scale ◦ power)(A) = s ·Ap (7)

Steering scheduled-softmask transform Second transformation is designed in more tricky way
to steer generation towards more stable, portrait-like images on average. This purpose is motivated
by presence of ”failure” cases, where for some reason id-preserving generation deviates towards
unrealistic imagery or fails to preserve features in meaningful way, therefore requiring more global
transformation, examples are given in Appendix E. It is constructed of following components 1)
firstly Equation 9 performs an adaptive distribution shift of values less then Qp(A) towards 0 and
others towards 1, strength of shift is defined by parameter d 2) d is scheduled to large value at first
step to influence global structure of the image 3) smooth alignment with original attention statistics
inspired by AdaIN Huang & Belongie (2017) is applied - normalizing transformed attention maps,
modulate them using µA and σA of original maps and interpolate between modulated and trans-
formed versions, same operation is also applied to output of attention block. Complete definition of
fss() is given in Equations below.
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F(A, p) := norm(A)−Qp(A) (8)

SM(A, d, p) := s · σ(norm(σ(−dF (A, p)))) (9)

fss(A) := ws · SM(A, d, p) + (1− w)AdaIN(A, s · SM(A, d, p)) (10)

In Equation 9 norm(·) denotes normalization and Qp(·) is a p-th quantile function. In Figure 5 we
visualize effect transforms have on attention values. We validate that proposed transforms achieve
desired effect of enhancing identity similarity independently of face size in Figure 6.

Figure 5: Visualizations of fsp and fsm transforms. At the top - visual result of transformation on
the level of attention maps at certain block/step/token, bottom - distribution shift of attention values

We as well provide detailed ablations and visual results for AM setups, as well as sensitivity analysis
in Appendix E and G.

Figure 6: left - histogram of face sizes in baseline and different AM configurations, right - distribu-
tion of face sizes values in different setups (AM1 - scale-power, AM2 - scheduled-softmask)

3.4 FULL FRAMEWORK AND EVALUATION

Together, presented mechanisms formulate joint framework of FastFace - through use of DCG and
AM, which can be applied together or independently to any few-step sampling models, and are visu-
alized in Figure 7. In further sections we will demonstrate that these mechanisms work well together
in general setting of id-preserving generation, as well as their respective setups of stylistic/realistic
generations.

Open evaluation In recent works (Ye et al. (2023), Wang et al. (2024a), Guo et al. (2024)) authors
rarely provide clarity about data which was used for evaluation, not allowing to fairly compare one
method quality to another and understand their strength and weaknesses with respect to realistic
or stylized generation with detailed prompts. When evaluating these methods we find that in a lot
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Figure 7: FastFace joint pipeline with proposed mechanisms - decoupled classifier free guidance,
expanding on outputs of UNet, and attention manipulation as transform in decoupled blocks

of cases they fail completely in practical setting, see Appendix C. In this work stick to transparent
evaluation in terms of identity images and prompts used.

Dataset details We collect a synthetic dataset DiverseBench consisting of 54 high-resolution iden-
tity images from several models, ensuring diversity and filtering by mean similarity threshold within
identity groups. Prompts are constructed for two settings - 80 for realistic and 40 for stylistic. During
evaluation, fixed amount of random pairs without replacement is sampled, covering a wide range of
identity and prompts combinations. Additionally we use a subset from OmniContext dataset, which
corresponds to single character generation with detailed prompts. Detailed description of collection
and processing of DiverseBench is given in Appendix B.

4 EXPERIMENTS

In following experiments we try to answer two questions - ”does FastFace generalize across mod-
els” and ”does FastFace generalize across ID-adapters” without specific tuning of parameters per
model/adapter. We do this by comparing against multiple known baseline which are attached to
same checkpoints, and support presented metrics with multiple visual examples.

4.1 METRICS

Common metrics Metrics applied in both setups are face-similarity (ID), estimated as cosine dis-
tance between embeddings extracted by buffalo-l backbone from faces in source and generated
images, and CLIP score (CLIP) between generated images and prompt computed with clip/l-14
to estimate prompt alignment. We use LAION-Aesthetic (AE) reward model, which was trained on
LAION subset, to estimate image quality/fidelity of image in both general evaluation and with re-
alistic subset LAION (2022). Additionally we use ImageReward (IR) reward model to measure
quality of stylistic images in stylistic ablations - as it was trained on synthetic data and is biased
towards colorfulness and details and is more suited for that setting Xu et al. (2023). We account for
face fail cnt (FFC) - an integer metric which value represents amount of cases where no face
was detected in generated image - measure of how unstable certain method is.

4.2 RESULTS

Below in Table 2 we present evaluation of FastFace framework applied with FaceID-Plus-v2, as well
as other common ID-adapters applied with different checkpoints. A more technical ablation over
this and other checkpoints can be found in Appendix H. FastFace allows to achieve superior identity
preservation, while achieving CLIP and AE metrics comparable with less constrained methods like
PuLID and Photomaker and not requiring additional compute like RectifID.

In Figure 8 we present result of applying FastFace framework for both realistic and stylistic gen-
eration results. Beyond main metrics given in, FastFace is able to introduce stability into resulting
face generation. We additionally analyze sensitivity of FastFace hyperparameters in Appendix H
and show that it is robust across wide range of values.
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Table 2: Metric comparison of baseline setup against FastFace setups - FFAM1 denotes application
of DCG with scale-power transform, FFAM2 - DCG with scheduled-softmask transform

Model Method DiverseFaces OmniContext

ID (↑) CLIP (↑) AE (↑) FFC (↓) ID (↑) CLIP (↑) AE (↑) FFC (↓) time(sec)

S
D

X
L

-H
y
p
er

FaceID 0.536 0.267 5.661 1 0.643 0.268 5.422 1 2.32 ±0.03
FaceID-Portrait 0.354 0.259 5.736 25 0.581 0.251 5.328 0 2.13 ±0.01
FaceID-Plus-v2 0.588 0.259 5.889 0 0.646 0.269 5.665 0 2.41 ±0.04
PuLID 0.238 0.262 5.902 72 0.335 0.277 5.828 0 2.56 ±0.38
Photomaker 0.127 0.267 5.691 80 0.155 0.281 5.658 0 1.50 ±1.38
RectifID* 0.369 0.263 5.322 6 0.283 0.288 5.309 2 16.87 ±4.73
FastFace-AM1 (ours) 0.623 0.260 5.854 0 0.683 0.264 5.591 0 2.43 ±0.06
FastFace-AM2 (ours) 0.590 0.242 5.882 1 0.627 0.260 5.704 0 2.42 ±0.05

S
D

X
L

-L
ig

h
tn

in
g

FaceID 0.474 0.265 5.545 1 0.593 0.264 5.341 0
FaceID-Portrait 0.341 0.256 5.661 18 0.515 0.256 5.366 0
FaceID-Plus-v2 0.517 0.259 5.715 0 0.590 0.271 5.511 0
PuLID 0.218 0.257 5.752 154 0.295 0.273 5.609 1
Photomaker 0.093 0.267 5.649 86 0.141 0.282 5.580 0
FastFace-AM1 (ours) 0.568 0.261 5.747 0 0.626 0.267 5.568 0
FastFace-AM2 (ours) 0.553 0.236 5.699 2 0.589 0.258 5.477 0

∗ evaluated as in original paper with ‘perflow-sd15-dreamshaper‘

Figure 8: Demonstration of application of framework to real based identities from evaluation set

4.3 BEYOND FACEID-PLUS-V2

To further study generalization of proposed framework, we additionally evaluate it with standard
FaceID and also try applying to one of the recent ID-adapters - PuLID. In Table 3 we numerically
account for contribution of proposed methods towards better trade offs, and visual examples are
given in Fig. 9. Note that PuLID generally finds current evaluation prompts challenging to follow
while preserving any ID, but proposed framework still allows to boost methods quality.

5 CONCLUSION

This work presents lightweight and easy-to-implement FastFace framework, which solves problem
of adaptation of pretrained id-preserving generation adapter to distilled diffusion model without
additional retraining. Included methods are developed for different cases of id-preserving generation
- ”stylistic”, to better match style described in prompt, and ”realistic”, to enhance identity similarity
or fidelity of the image. Presented contributions are evaluated in general, as well in specific scenarios
on constructed evaluation dataset for id-preserving generation, showing generally better trade-offs
in terms of identity preservation, prompt following and image quality.

6 LIMITATIONS

Although proposed methods show promising results, scope of current work is limited to training-free
methods, which are ultimately bottle-necked by distilled diffusion model checkpoint, and generally
shows less impressive results in extreme cases such single-step sampling regime. It is a future work
matter to address these limitation and adapt id-preserving generation to single-step models.
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Model ID (↑) CLIP (↑) AE (↑)

Hyper + FaceID

base 0.580 0.251 6.047
FFAM1 0.595 0.258 6.125

Lightning + FaceID

base 0.508 0.246 6.002
FFAM1 0.535 0.258 6.102

Hyper + PuLID

base 0.179 0.262 6.207
FFAM1 0.227 0.261 6.261

Lightning + PuLID

base 0.172 0.258 6.096
FFAM1 0.228 0.254 6.254

Table 3: Evaluation results for other id-adapters

(a) FaceID (b) PuLID

Figure 9: Application of FastFace framework to other ID-adapters

7 REPRODUCIBILITY

This work ensures reproducibility through three primary measures: (1) detailed algorithmic descrip-
tions within the manuscript, (2) release of evaluation datasets, and (3) the use of fixed random seeds
to ensure deterministic experimental outcomes.

8 ETHICAL STATEMENT

This work presents methods for generating and manipulating human faces. All facial images used for
evaluation in our benchmark, DiverseFaces, are synthetically generated. However, we acknowledge
that the ability to realistically modify human likenesses carries inherent risks, including the potential
for misuse to create misleading or harmful content. To mitigate this, we have chosen to use only
high-quality and diverse data for our benchmark, avoiding the use of real individuals’ likenesses
without explicit consent. We strongly advocate for the responsible development and use of such
technologies, including the implementation of robust safeguards, provenance tracking, and public
education to prevent misuse.
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A APPENDIX

B DETAILS OF EVALUATION DATASET

We develop an evaluation dataset consisting of 54 high quality identity images and 120 prompts,
which are used as input conditions for generation and further evaluation. Identity images are syn-
thetic images from models such as Flux and Ideogram 3.0 (Labs (2024)), representing different
age groups (young, middle age and old), genders and ethnicities, examples are presented in Figure
11. Part of images was also synthesized using id-preserving methods with from real identities, thus
avoiding bias towards only synthetic facial features. Additionally, to ensure variance within groups
of identities of same gender and age, further cleaning was done by thresholding and replacing iden-
tity images with largest mean face similarity to others, i.e. if 1

n−1
Σj,j ̸=isim(ci, cj) > 0.3 for ci

within group, it was discarded. Prompt description were also synthetically generated using Chat-
GPT version of November 2024, generally following structure of style + ’;’ + ’Person’

+ location + action, and then additionally cleared and enriched. Prompts are categorized
into two groups - 80 ”realistic” prompts and 40 ”style” prompts with certain style. Product of id
images and prompts from category is considered as evaluation set, resulting in two sets - stylistic
with 2160 and realistic with 4320 examples. Schematic depiction of the data collection is visualized
in Figure 10.
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Figure 10: Evaluation dataset preparation pipeline

Figure 11: Evaluation dataset identity samples

C CERTAIN ID-METHODS INFERENCE FAILURE EXAMPLES

Below we provide examples of recent id-preserving generation methods that we found to have limi-
tations in terms of application with our evaluation set.

PuLID In Figure 12 we provide example common failure for PulID method. From our experi-
ments we find that it is not applicable with prompts that have description of context like location and
action, which our evaluation set prompts have. We hypothesize that this effect is rooted in aligned
training of PuLID, where inner representations of UNet are regularized to match generation without
cid condition - in our experiments we found that in baseline setup FFC metric accounts around for
50% of sampled images failing (meaning around half of images doesn’t have any identity detected).

InstantID This method is example of opposite behavior - it’s pipeline includes ControlNet-like
module that is conditioned on face key-points, which are extracted from source image by standard
CV packages (e.g. insightface Insight (2023)). However, when tested against multiple different
prompts, we observe in Fig. 13 that despite showing state of the art in terms of face preservation,
outperforming any other method, it lacks prompt following and variability, not being able to properly
follow details regarding background and person body position (additionally it has large bias towards
watermark generation with 1:1 resolutions).
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Figure 12: Demonstration of common case of failure for PuLID method - method lacks bias to
human-centric generation to perform identity preservation, especially with small faces.

Figure 13: Demonstration of common case of failure for InstantID method - generated images are
highly constrained and often omit details in the prompt, prompts used for generation: ”Person in an
ancient library reading”, ”Person in a futuristic space station repairing equipment”, ”Person in a
high-tech laboratory conducting experiments”

D DCG VARIATIONS AND DERIVATIONS

Preliminary To simplify derivation process let’s recall that reverse diffusion process is formulated
in terms of score function ∇xt

log p(xt|y) Song et al. (2020), where xt is noised latent and y is con-
ditional information, in text2image models being prompt. Then classifier guidance can be derived
as below, where in Eq. 13 w is added as a hyper-parameter to control conditioning strength.

∇xt
log p(xt|y) = ∇xt

log(
p(y|xt)p(xt)

p(y)
) (11)

= ∇xt
log p(y|xt) +∇xt

log p(xt)−∇xt
log p(y) (12)

⇒ ∇xt
log p(xt) + w · ∇xt

log p(y|xt) (13)

Then to arrive to classifier-free guidance (which removes need for learning classifier f(y|xt) for
estimation of ∇xt

log p(y|xt)), we rearrange terms in 13 and arrive to following:

∇xt
log p(xt|y) = ∇xt

log p(xt) + w · (∇xt
log(xt|y)−∇xt

log(xt)) (14)

DCG variants Now let’s derive possible decoupled classifier-free variants for two conditions,
specifically when y = [ctext, cid]. We note that ∇ log p(xt|ctext, cid)−∇ log p(xt) from classifier-
free guidance corresponds to estimation of ∇xt

log p(cid, ctext|xt) score function, which can be
expressed in following ways:

∇xt
log p(cid, ctext|xt) =







∇xt
log p(cid|xt, ctext) +∇xt

log p(ctext|xt)

∇xt
log p(ctext|xt, cid) +∇xt

log p(cid|xt)

∇xt
log p(cid|xt) +∇xt

log p(ctext|xt)

(15)
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Last expression is possible if we assume that p(cid, ctext) = p(cid)p(ctext), which generally is
not true, but since in practice choice of prompts and identities for id-preserving generation are not
dependent, it can be valid. Finally, reformulating back to noise prediction, we arrive to three possible
DCG formulations, where DCG2 is the one used in main sections of the paper:

DCG1(ϵ̂) := ϵ(∅,∅) + α · (ϵ(ctext,∅)− ϵ(∅,∅) + β · (ϵ(ctext, cid)− ϵ(ϵ(ctext,∅)) (16)

DCG2(ϵ̂) := ϵ(∅,∅) + α · (ϵ(∅, cid)− ϵ(∅,∅) + β · (ϵ(ctext, cid)− ϵ(∅, cid) (17)

DCG3(ϵ̂) := ϵ(∅,∅) + α · (ϵ(ctext,∅)− ϵ(∅,∅)) + β · (ϵ(∅, cid)− ϵ(∅,∅)) (18)

In practice we find that expression in Eq. 17 works best in terms of semantic changes in the image.
While Eq. 18 performs similarly, version in Eq. 16 suffers from image quality degradation and
doesn’t introduce smooth trade off between between identity preservation and stylization, see Figure
14.

Figure 14: Ablation grid of DCG-1 variant, which can be observed to under perform compared to
other decoupled options (same identity used as in Figure 3a)

Figure 15: Scheduling effect on DCG, from right to left - baseline generation, single step alterations
of α and β coefficients to high value. In first steps image is completely corrupted, while last step
introduces local visual artifacts

In Figure 15 we show that scaling at first and last steps results in significant artifacts, and below in
Figure 16 we additionally provide visual examples of rescaling trick contribution in terms of local
details in generated images. As it can bee seen, rescaling provides additional low-level enhance-
ments of visual images in terms of details coherence.

E AM ANALYSIS AND DETAILS

Scale-power ablation We provide visual ablation why scale-power transformation works in Fig-
ure 17. Scaling increases similarity, but alters image background, resulting in prompt following
degradation. This is expected, as plugging scaling transform into Eq. 6 instead of f() we can see
that it is same as increasing λ. When raising attention values to some power, we achieve attention
values shifting to 0, which decreases identity preservation, but increases prompt following, espe-
cially around face, since attention values in decoupled blocks stop interfering with attention from
cross-attention blocks. Combination of transforms results in power transform basically canceling
prompt following degradation of scale transform.
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Figure 16: Effect of proposed rescaling on generated images with few-step models - areas with
changes are highlighted

Figure 17: Visual ablation of scale-power transform components

Failure cases demonstration In Figure 18 we give examples of id-preserving failures with dis-
tilled diffusion model, where instead of expected outcome with human-centric generation method
fails to preserve meaningfully align identity and surrounding context, which can result in identity
morphing into background, being between multiple humans in image, unrealistic postures and etc.
Such cases often can’t be fixed by proposed scale-power transform, which serves as motivation for
a more control-nature transform that changes structure of images.

Figure 18: Generation examples with distilled model where generated image fails to successfully
preserve identity in meaningful way

Scheduled-softmask transform details Beyond details provided in main sections, we also found
that attention values for the first token in decoupled CrossAttention (see Fig.4) in FaceID-Plus-v2
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are inverted - attention is focused on background across all blocks and timesteps, and it’s values
histogram has mode closer to 1 value. Therefore, when applying transformation to first token, we
first invert it’s values, and after transform invert back so that AM transformation has same expected
effect across all tokens.

F RESULTS OF DCG IN STYLISTIC SETUP

In Figure 19 we present fronts for DCG in stylistic dataset for Hyper and Lightning. Parameters are
specified in main section of the text are shares across all models and also joint application with AM.
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Figure 19: Pareto fronts of Hyper and Lightning with DCG against baseline, stylistic setup,
lora scale= 1

In Table 4 we report metric comparisons for fixed ip adapter scale= 0.8 for all models. We
can observe that DCG achieves expected degradation of face similarity, while increasing CLIP, IR
and FCS.

Table 4: Ablation of DCG against baseline on stylistic data - DCG increases IR, CLIP score for
general image and face area, while also bringing decrease in ID preservation

Model ID (↑) CLIP (↑) IR (↑) FCS (↑)

Hyper

base 0.519 0.249 0.988 0.180
DCG 0.442 0.264 1.094 0.184

Lightning

base 0.463 0.245 0.728 0.175
DCG 0.392 0.264 0.921 0.181

LCM

base 0.439 0.259 0.540 0.180
DCG 0.336 0.270 0.639 0.181

Turbo

base 0.310 0.252 0.888 0.165
DCG 0.254 0.277 1.007 0.175

G RESULTS OF AMS IN REALISTIC SETUP

Below we present results in terms of fronts computed on realistic subset and full table computed for
fixed ip adapter scale= 0.8. AM1 denotes scale-power transform and AM2 denotes scheduled-
softmask transform. In all setups (including joint application with DCG in following sections) all
hyper-parameters are fixed across checkpoints and are following:
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AM1 - target ”up” and ”down” unet parts, power strength p = 1.3, scale strength s = 1.45 in
”down” part and s = 1.55 in ”up” part.

AM2 - target ”up” and ”down” unet parts, scale strength s = 1.55 everywhere except first step;
softmask quantile p = 0.65 softmask d = 7.5 at first step, d = 5. at other steps; AdaIN blend
coefficient w = 0.7.
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Figure 20: Pareto fronts of Hyper and Lightning with AM mechanisms against baseline, realistic
setup

Table 5: Ablation of AM transforms against baselines - Both AM transformations increase identity
preservation, aesthetic scores and stability, while slightly decreasing prompt following, AM2 results
in lower CLIP-score due to larger face bias

Model
lora scale= 1.0 lora scale= 0.5

ID ↑ CLIP ↑ AE ↑ FFC ↓ ID ↑ CLIP ↑ AE ↑ FFC ↓
Hyper

base 0.591 0.241 6.008 0 0.408 0.255 6.229 19
AM1 0.673 0.234 6.017 1 0.523 0.247 6.220 10
AM2 0.642 0.224 6.057 0 0.517 0.239 6.265 3

Lightning

base 0.525 0.240 5.929 0 0.386 0.249 6.079 18
AM1 0.612 0.233 5.930 0 0.494 0.241 6.088 12
AM2 0.589 0.218 5.971 0 0.496 0.231 6.107 1

LCM

base 0.552 0.235 5.754 3 0.380 0.249 5.927 46
AM1 0.610 0.227 5.783 1 0.477 0.240 5.942 34
AM2 0.597 0.214 5.802 1 0.476 0.231 5.974 18

Turbo

base 0.349 0.243 5.650 94 0.189 0.250 5.764 116
AM1 0.467 0.235 5.635 57 0.289 0.244 5.769 63
AM2 0.443 0.230 5.647 62 0.283 0.240 5.784 51

In Figures 21 and 22 we demonstrate examples of applying just AM during inference. It can be
seen that AM1 enhances identity similarity locally, without disrupting prompt following, while AM2
introduces larger faces and portrait like bias for generated outputs, which also results in lower prompt
following.
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(a) Hyper (b) Lightning

Figure 21: Application of AM compared to baselines

(a) Hyper (b) Lightning

Figure 22: Application of AM compared to baselines, lora scale=0.5

H ADDITIONAL FASTFACE RESULTS

H.1 PARETO FRONTS

Below in Fig. 23 and 24 we provide Pareto fronts evaluated for FastFace framework on Di-
verseBench for varying ip adapter scale ∈ {0.1, 0.35, 0.5, 0.65, 0.8, 0.95}. These plots give
additional information of scaling behaviors when trying to tune just ip-adapter scale. It can be seen
that fronts introduced by FastFace achieve superior trade offs across different models.
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Figure 23: Pareto fronts built for Hyper model metrics with different scales of LoRA

H.2 FASTFACE ABLATION

In Table 6 we report main metric evaluation for fixed value of λ across all models with full and
lower LoRA scale, common trick when applying ID-Adapters for more creative generation - as
a result FastFace enhances identity similarity, image quality and stability without loss of prompt
following.
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Figure 24: Lightning fronts for full data setup, different FastFace configurations and lora scales

Table 6: Metric comparison of baseline setup against FastFace setups - FFAM1 denotes application
of DCG with scale-power transform, FFAM2 - DCG with scheduled-softmask transform

Model
lora scale= 1.0 lora scale= 0.5

ID (↑) CLIP (↑) AE (↑) FFC (↓) ID (↑) CLIP (↑) AE (↑) FFC (↓)

Hyper

base 0.567 0.244 6.092 2 0.381 0.258 6.273 88
FFAM1 0.602 0.247 6.134 2 0.445 0.259 6.309 72
FFAM2 0.585 0.236 6.161 0 0.450 0.251 6.348 34

Lightning

base 0.504 0.242 6.014 4 0.359 0.251 6.150 89
FFAM1 0.543 0.247 6.112 2 0.427 0.256 6.254 66
FFAM2 0.542 0.232 6.120 0 0.448 0.244 6.271 33

LCM

base 0.515 0.243 5.770 53 0.344 0.258 5.911 288
FFAM1 0.525 0.244 5.796 37 0.383 0.258 5.968 202
FFAM2 0.533 0.229 5.807 20 0.406 0.246 5.979 136

Turbo

base 0.336 0.246 5.689 161 0.177 0.257 5.791 242
FFAM1 0.416 0.249 5.698 139 0.239 0.262 5.757 431
FFAM2 0.409 0.242 5.707 94 0.244 0.256 5.798 271

Additionally we provide sensitivity analysis of FastFace with respect to AM hyperparameters. It can
be seen in the figure below that hyperparameters do not affect quality of the output in random way
and can be chosen from wide range, offering optional tuning depending on the task and model.

Figure 25: Sensitivity analysis w.r.t. to AM hyperparameters; left - AM1, right - AM2, AE metric
is rescaled to match other metrics range between 0 and 1, dotted lines denote baseline quality
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Figure 26: More inference examples of FastFace pipeline with IpAdapter-FaceID-v2 in different
setups

21


	Introduction
	Related work
	Method
	Background
	Decoupled classifier free guidance
	Attention manipulation
	Full framework and evaluation

	Experiments
	Metrics
	Results
	Beyond FaceID-Plus-v2

	Conclusion
	Limitations
	Reproducibility
	Ethical statement
	Appendix
	Details of evaluation dataset
	Certain ID-methods inference failure examples
	DCG variations and derivations
	AM analysis and details
	Results of DCG in stylistic setup
	Results of AMs in realistic setup
	Additional FastFace results
	Pareto fronts
	FastFace ablation


