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ABSTRACT

The capacity of deep learning models is often large enough to both learn the un-
derlying statistical signal and overfit to noise in the training set. This noise memo-
rization can be harmful especially for data with a low signal-to-noise ratio (SNR),
leading to poor generalization. Inspired by prior observations that label noise
provides implicit regularization that improves generalization, in this work, we in-
vestigate whether introducing label noise to the gradient updates can enhance the
test performance of neural network (NN) in the low SNR regime. Specifically,
we consider the learning of a two-layer NN with a simple label noise gradient
descent (GD) algorithm, in an idealized signal-noise data setting. We prove that
adding label noise during training suppresses noise memorization, preventing it
from dominating the learning process; consequently, label noise GD enjoys rapid
signal growth while the overfitting remains controlled, thereby achieving good
generalization despite the low SNR. In contrast, we also show that NN trained
with standard GD tends to overfit to noise in the same low SNR setting and estab-
lish a non-vanishing lower bound on its test error, thus demonstrating the benefit
of label noise injection in gradient-based training.

1 INTRODUCTION

The success of deep learning across various domains (LeCun et al., 2015; Silver et al., 2016; Brown,
2020) is often attributed to their ability to extract useful features (Girshick et al., 2014; Devlin,
2018) via gradient-based training (Damian et al., 2022; Ba et al., 2022). One desirable property
of gradient-based feature learning is the algorithmic regularization that prioritizes learning of the
underlying signal instead of overfitting to noise: real-world data contains noise due to mislabeling,
data corruption, or inherent ambiguity, yet despite having the capacity to memorize noise, neural
networks (NNs) trained by gradient descent (GD) tend to identify informative features and “low-
complexity” solutions that generalize (Zhang et al., 2021; Rahaman et al., 2019). To understand this
behavior, recent theoretical works considered data models that partition the features into signal and
noise components (Ghorbani et al., 2020; Ben Arous et al., 2022; Wang et al., 2024), and studied
the performance of gradient-based training under different signal-to-noise conditions.

Among existing theoretical settings, the signal-noise model proposed in Allen-Zhu & Li (2020);
Cao et al. (2022) has been extensively studied in the feature learning theory literature. In this model,
input features are constructed by combining a label-dependent signal with label-independent noise.
The signal represents meaningful patterns relevant to the predictive task while the noise component
captures background features unrelated to the learning task. This idealized setting has shed light on
how various algorithms, neural network architectures, and other factors influence optimization and
generalization of neural networks, depending on the signal-to-noise ratio (SNR) (Frei et al., 2022;
Zou et al., 2023; Jelassi & Li, 2022; Huang et al., 2023; Xu et al., 2023; Chen et al., 2022).

In the signal-noise model, it is known that the SNR dictates a transition from benign overfitting
to harmful overfitting. In the high SNR regime, gradient-based feature learning prioritizes signal
learning over noise memorization; hence upon convergence, the trained NN recovers the signal and
generalizes to unseen data despite some degree of noise memorization, a phenomenon known as
benign overfitting (Bartlett et al., 2020; Tsigler & Bartlett, 2023; Li et al., 2023b; Sanyal et al.,
2020; Shamir, 2023). In contrast, when the SNR is low, noise memorization dominates the training
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dynamics, and the network fails to identify useful features before the training loss becomes small,
leading to harmful overfitting (Cao et al., 2022; Kou et al., 2023b).

Motivated by this observation, recent works have explored algorithmic modifications that either en-
hance signal learning or suppress noise memorization, to improve generalization in the challenging
low SNR regime. Huang et al. (2023) showed that the smoothing effect of graph convolution in
graph neural networks mitigates overfitting to noise; however, this approach requires the graph to be
sufficiently dense and exhibits high homophily. Chen et al. (2024) found that the sharpness-aware
minimization (SAM) method (Foret et al., 2020) prevents noise memorization in early stages of
training, thereby promoting effective feature learning; this being said, SAM has higher computa-
tional cost than standard GD due to the two forward and backward passes per step, and it involves
more complex hyperparameter tuning. The goal of this work is to address the following question.

Is there a simple modification of GD with no computational overhead that achieves small
generalization error in low SNR settings where standard GD fails to generalize?

1.1 OUR CONTRIBUTIONS

We provide an affirmative answer to the question above by introducing random label noise to
the training dynamics as a form of regularization, inspired by the label noise stochastic gradient
descent (SGD) method (Blanc et al., 2020; HaoChen et al., 2021; Shallue et al., 2019; Szegedy
et al., 2016). Specifically, we consider the learning of a two-layer convolutional neural network in
a binary classification problem studied in Cao et al. (2022), and show that by randomly flipping
the labels of a small proportion of training samples at each iteration, noise memorization can be
suppressed despite the low SNR, whereas signal learning experiences a period of fast growth. As a
result, neural network trained by label noise GD attains good generalization performance in regimes
where standard GD fails, as summarized in the following informal theorem:

Theorem 1.1 (Informal). Given n training samples drawn from the distribution in Definition 2.1 in
the low SNR regime where n−1SNR−2 = Ω̃(1). Then for any ϵ > 0, after a polynomial number of
training steps t (depending on ϵ), with high probability we have,

• Standard GD minimizes the logistic training loss to L
(t)
S ≤ ϵ, but the generalization error

(0-1 loss) remains large, i.e., L(t)
D = Ω(1).

• Label noise GD cannot reduce the logistic training loss to a small value L
(t)
S = Ω(1), but

achieves small generalization error (0-1 loss), i.e., L(t)
D = o(1).

We make the following remarks on our main results.

• Improved Generalization due to Label Noise. The theorem provides an upper bound on the test
error of label noise GD, as well as a lower bound on the error of standard GD. This demonstrates
that incorporating label noise into the gradient descent updates improves generalization in the low
SNR regime. We note that our conditions on label noise GD learnability are weaker than those
required for SAM as specified in Chen et al. (2024), even though our studied algorithm is arguably
simplier and more computationally efficient – see Section 3 for more comparisons.

• Analysis of Feature Learning Dynamics. We establish the main theorem via a refined character-
ization of the training dynamics of label noise GD on a two-layer convolutional NN with squared
ReLU activation. A key observation in our analysis is that label noise introduces regularization
to the noise memorization process, preventing it from growing beyond a constant level; mean-
while, signal learning continues to exhibit a rapid growth rate, allowing the model to identify the
informative features and avoid harmful overfitting in low SNR regimes.

1.2 ADDITIONAL RELATED WORKS

Label Noise SGD. Recent works have empirically shown that label noise stochastic gradient de-
scent (SGD) through label smoothing exhibits favorable generalization properties due to the regu-
larization effect of the injected noise (Shallue et al., 2019; Szegedy et al., 2016; Wen et al., 2019).
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Furthermore it has been argued that label flipping approach adopted in this work can be cast as la-
bel smoothing methods (Li et al., 2020). From a theoretical standpoint, label noise SGD has been
primarily explored in the context of linear regression or shallow neural networks, particularly in re-
gression settings (Blanc et al., 2020; Damian et al., 2021; HaoChen et al., 2021; Huh & Rebeschini,
2024; Li et al., 2021; Vivien et al., 2022; Takakura & Suzuki, 2024); these studies have highlighted
the implicit regularization benefits of label noise in SGD. For instance, Takakura & Suzuki (2024)
illustrated the implicit regularization of label noise in mean-field neural networks, while Li et al.
(2021); Damian et al. (2021) proved that label noise introduces bias towards flat minima. In con-
trast to these existing literature, our work focuses on the binary classification setting specified by the
signal-noise model, providing a quantitative analysis of the training dynamics and the generalization
benefits of label noise GD in the low SNR regime.

Signal-Noise Data Models. Recent theoretical works have studied the signal-noise model in var-
ious contexts, including (i) optimization algorithms, such as Adam (Zou et al., 2021), momentum
(Jelassi & Li, 2022), sharpness-aware minimization (Chen et al., 2023), large learning rates (Lu
et al., 2023); (ii) learning paradigms, such as ensembling and knowledge distillation (Allen-Zhu &
Li, 2020), semi-and self-supervised learning (Kou et al., 2023a; Wen & Li, 2021), Mixup (Zou et al.,
2023; Chidambaram et al., 2023), adversarial training (Allen-Zhu & Li, 2022), and prompt tuning
(Oymak et al., 2023); and (iii) neural network structures, such as convolutional neural network
(Cao et al., 2022; Kou et al., 2023b), vision transformer (Jelassi et al., 2022; Li et al., 2023a), graph
neural network (Huang et al., 2023; Li et al., 2024). Our work is in line with Chen et al. (2022);
Huang et al. (2023), with the goal of showing that a simple algorithmic modification (label noise
GD) facilitates feature learning in the challenging low SNR regime.

1.3 NOTATION

We use bold-faced letters for vectors and matrices. For a vector v, its ℓ2-norm is denoted as ∥v∥2.
For a matrix A, we use ∥A∥2 to denote its spectral norm and ∥A∥F its Frobenius norm. We employ
standard asymptotic notations O(·), o(·), Ω(·), and Θ(·) to track the limiting scaling, and Õ(·), Ω̃(·),
and Θ̃(·) to hide polylogarithmic factors. We denote [n] = 1, 2, . . . , n, and [a, b] = a, a+ 1, . . . , b,
where b ≥ a, a ̸= 1, and a, b ∈ N.

2 PROBLEM SETUP

In this section, we describe the signal-noise data model, the neural network architecture used for
training, and the label noise gradient descent algorithm considered in this work.

Data generating process. We consider the signal-noise data model from Cao et al. (2022); Chen
et al. (2023). Let µ ∈ Rd be a fixed signal vector, and for each data point (x, y), the feature x is
composed of two patches, denoted as x = {x(1),x(2)} ∈ R2d. The target variable y is a binary
label, taking values in {±1}. Then the data is generated according to the following process.

Definition 2.1. We consider the following generating process for (x, y),

1. The true label y is drawn from a Rademacher distribution, i.e., P[y = 1] = P[y = −1] = 1/2.

2. One of the patches, x(1) or x(2) is randomly selected to be yµ (representing the signal), while
the other is set to be ξ ∼ N (0, σ2

p(Id − µµ⊤∥µ∥−2
2 )) (representing the noise). Here, σ2

p
denotes the strength of the noise vector.

We make the following remarks on the data distribution.

• The data model simulates a setting where the input features are composed of both signal and
noise components. Specifically, each data point is divided into two patches, and one of these
patches contains meaningful information (signal) related to the classification label, while the other
patch only contains random noise that is independent of the label. The noise covariance σ2

p(Id −
µµ⊤∥µ∥−2

2 ) is set to ensure that the noise vector is orthogonal to the signal vector for simplicity.
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• This setup is designed to reflect real-world scenarios where data contains a mix of relevant and
irrelevant features (see (Allen-Zhu & Li, 2020, Appendix A) for discussions). Note that in high
dimensions (n ≪ d), the NN can achieve small training loss just by overfitting to the noise
component. Therefore, the challenge for the learning algorithm in the low SNR regime is to
identify and learn the signal patch while ignoring the noisy patch.

• We use the minimum number of patches in the multi-patch model for concise presentation. Our
results can be extended to more general cases where the number of patches is greater than 2;
see Allen-Zhu & Li (2020); Shen et al. (2022) for such extension.

Neural network and loss function. Following Cao et al. (2022), we consider a two-layer convo-
lutional neural network with squared ReLU activation and shared filters applied separately to each
patch. The network is defined as f(W ,x) = F+1(W+1,x)− F−1(W−1,x), where

Fj(Wj ,x) =
1

m

m∑
r=1

2∑
p=1

σ
(
⟨wj,r,x

(p)⟩
)
=

1

m

m∑
r=1

(
σ
(
⟨wj,r, yµ⟩

)
+ σ

(
⟨wj,r, ξ⟩

))
,

in which m denotes the size of the hidden layer, and σ(z) = (max{0, z})2. Note that j ∈ {−1,+1}
corresponds to the fixed second-layer. The symbol Wj represents the collection of weight vectors
in the first layer, i.e.,

Wj = [wj,1,wj,2, . . . ,wj,m] ∈ Rd×m,

where wj,r ∈ Rd is the weight vector of the r-th neuron. Here, j ∈ {−1,+1} indicates the fixed
value in the second layer. The initial weights W±1 has entries sampled from N (0, σ2

0).
Remark 2.1. Since we do not optimize the 2nd-layer parameters, we expect the 2-homogeneous
squared ReLU activation to mimic the behavior of training both layers simultaneously in a ReLU
network; such higher-order homogeneity amplifies feature learning (e.g., see (Chizat & Bach, 2020;
Glasgow, 2023)) and creates more significant gap between signal learning and noise memorization.
A similar effect can be achieved by a smoothed ReLU activation with local polynomial growth as in
Allen-Zhu & Li (2020); Shen et al. (2022).

We use the logistic loss computed over n training samples, denoted as S = {(xi, yi)}i∈[n]:

LS(W ) =
1

n

∑
i∈[n]

ℓ(yif(W ,xi)), where ℓ(z) = log(1 + exp(−z)).

To evaluate the generalization performance of the trained network, we measure its expected 0-1 loss
on unseen data, defined as

L0−1
D (W ) = E(x,y)∼D[1(y ̸= sign(f(W ,x))], (1)

where D denotes the data distribution specified in Definition 2.1, and 1(·) is the indicator function.

Label noise GD for binary classification. We train the above neural network by gradient descent
on either (i) the original loss function (standard GD), or (ii) the loss function with label-flipping
noise defined as

Lϵ
S(W

(t)) ≜
1

n

∑
i∈[n]

ℓ
(
ϵ
(t)
i yif(W

(t),xi)
)
.

Here ϵ
(t)
i is a random variable that takes value 1 with probability 1 − p and −1 with probability p,

represented by ϵ
(t)
i ∼ Rademacher(1 − p, p). In other words, the sign of the labels is flipped with

probability p independently at each step. The generalization benefit of this label-flipping strategy
has been studied both theoretically (Damian et al., 2021) and empirically (Xie et al., 2016; HaoChen
et al., 2021) as an extension of label noise GD to classification settings.

The label noise GD update is then given as follows:

w
(t+1)
j,r = w

(t)
j,r −

η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)ϵ
(t)
i jµ− η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)ϵ
(t)
i yijξi, (2)
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Algorithm 1 Label noise gradient descent
1: Initialize W0, step size η, flipping probability p ∈ [0, 1]
2: for t = 0, ..., T − 1 do
3: Sample ϵ

(t)
i ∼ Rademacher(1− p, p), ∀i ∈ [n].

4: W (t+1) = W (t) − η∇WLϵ
S(W

(t)), where Lϵ
S(W

(t)) = 1
n

∑
i∈[n] ℓ

(
ϵ
(t)
i yif(W

(t),xi)
)
.

5: end for

where η is the learning rate, and we defined ℓ̃
′(t)
i = ℓ′(ϵ

(t)
i yif(W

(t),xi)) as the derivative of the
loss function. This label noise GD training procedure is outlined in Algorithm 1. Observe that
the proposed algorithm is computationally efficient, as the introduced label noise does not modify
the original gradient descent framework. Hence this method is simple to implement, does not add
significant computational overhead, and requires no complex hyperparameter tuning.

3 MAIN RESULTS

In this section, we quantify the benefits of label noise gradient descent by comparing its generaliza-
tion performance against standard gradient descent (GD) training without label noise. We begin by
outlining the assumptions that apply to both label noise GD and standard GD.

Assumption 3.1. Define SNR = ∥µ∥2

σp

√
d

.We consider the following setting for both algorithms:

(i) data dimension d = Ω̃(max{n2, n∥µ∥22/σ2
p}); signal-to-noise ratio SNR = Õ(1/

√
n).

(ii) network width m = Ω̃(1); number of training samples n = Ω̃(1).

(iii) learning rate η ≤ Õ(σ−2
p d−1).

(iv) initialization variance Õ(nσ−1
p d−3/4) ≤ σ0 ≤ Õ(min{∥µ∥−1

2 d−5/8, σ−1
p d−1/2}).

(v) flipping rate of label noise 0 < p < 1/C, where C is a sufficient large constant.

We make the following remarks on the above assumption.

• The high-dimensional assumption (i) is standard in the benign overfitting analysis of NNs (e.g.,
see Cao et al. (2022); Frei et al. (2022)). The low SNR condition is derived from the compari-
son between the magnitude of signal learning and noise memorization – see Section 4.1; similar
conditions has been established in Cao et al. (2022); Kou et al. (2023b) for different activations.

• The requirements on the hidden layer size m and the sample size n being at least polylogarithmic
in the dimension d ensure that certain statistical properties regarding weight initialization and the
training data hold with high probability at least 1− 1/d.

• The upper bound on the learning rate η ensures that the iterates in (4-6) remain bounded, which is
required for standard GD to reach low training loss; see Proposition 4.1 for details.

• The upper bound on the initialization scale σ0 is used to ensure convergence of GD, whereas the
lower bound is used for anti-concentration upon initialization. Similar requirements on σ0 can be
found in (Cao et al., 2022, Condition 4.2).

• The upper bound on label flipping rate p prevents the label noise from dominating the true signal.

We first state the negative result for standard gradient descent (GD) without label noise.

Theorem 3.1 (GD fails to generalize under low SNR). Under Assumption 3.1, for any ϵ > 0, there
exists t = Θ(

nm log(1/(σ0σp

√
d))

ησ2
pd

+ m3n
ηϵσ2

pd
), such that with probability at least 1−d−1/4, it holds that

• The training error converges, i.e., LS(W
(t)) ≤ ϵ.

• The test error is large, i.e., LD(W
(t)) ≥ 0.24.
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Theorem 3.1 indicates that even though standard GD can minimize the training error to an arbitrarily
small value, the generalization performance remains poor. This is mainly because the neural network
overfits to the noise components in the input data instead of learning the useful features.

Next, we present the positive result for label noise gradient descent.

Theorem 3.2 (Label Noise GD generalizes under low SNR). Under Assumption 3.1, there exists
t = Θ(

nm log(1/(σ0σp

√
d))

ησ2
pd

+ m log(6/(σ0∥µ∥2))
η∥µ∥2

2
) and constants C > 0, such that with probability at

least 1− d−1/4, it holds that

• The training error is at constant order, i.e., LS(W
(t)) = Θ(1).

• The test error is small, i.e., LD(W
(t)) ≤ 2 exp

(
−Cd

n2

)
.

Theorem 3.2 shows that label noise GD achieves vanishing generalization error when the input
dimensionality is large (i.e., d = Ω(n2)) despite the low SNR.

Remark 3.1. Theorems 3.2 and 3.1 present contrasting outcomes for standard GD and label noise
GD in the low SNR regime. In particular,

• Standard GD minimizes the training error effectively but does so by primarily overfitting to noise
in the training data. This significant noise memorization leads to harmful overfitting.

• In contrast, label noise GD introduces a regularization effect through label noise, which prevents
the network from fully memorizing the noise components. This allows the network to focus on
learning the true signal, resulting in a phase of accelerated signal learning. Consequently, the
model generalizes even though the training loss does not vanish (due to noise injection).

Comparison with sharpness-aware minimization (Chen et al., 2023). We briefly discuss the
differences between our findings and those in Chen et al. (2023) for the sharpness-aware minimiza-
tion (SAM) method, where the authors established conditions on the SNR under which SAM can
generalize better than stochastic gradient descent (SGD). However, their analysis requires the addi-
tional condition that the signal norm satisfies ∥µ∥2 ≥ Ω̃(1), indicating the necessity of a sufficiently
strong signal. In contrast, we show that label noise GD enjoys good generalization without this
strong signal condition. This highlights the robustness of label noise GD in low SNR regimes (even
when the signal strength is considerably weaker compared to the noise).

4 PROOF SKETCH

In this section, we give an overview of of our analysis of the optimization dynamics of standard GD
and label noise GD . Our key technical contributions are summarized as follows:

• Boundary characterization in low SNR regimes. Unlike previous studies Cao et al. (2022); Kou
et al. (2023b); Chen et al. (2024) that focus on the higher polynomial or standard ReLU activa-
tion, we analyze the 2-homogeneous squared ReLU activation, leading to a different boundary
characterization of the low SNR regime for standard GD – see Section 4.2.

• Upper bound via supermartingale. We introduce a novel application of supermartingale argu-
ments combined with Azuma’s inequality to analyze the boundedness of noise memorization for
label noise GD. This probabilistic approach provides high-probability guarantees on the training
dynamics that were not previously established in this context.

4.1 SIGNAL-NOISE DECOMPOSITION

To analyze the training dynamics, we adopt a parameter decomposition technique from (Cao et al.,
2022; Kou et al., 2023b): there exist {γ(t)

j,r} and {ρ(t)j,r,i} such that

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi. (3)
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This decomposition originates from the observation that the gradient descent update always evolves
in the direction of µ and ξi for i ∈ [n]. In particular, γ(t)

j,r ≈ ⟨w(t)
j,r,µ⟩ serves as the signal learning

coefficient, whereas ρ(t)j,r,i ≈ ⟨w(t)
j,r, ξi⟩ characterizes the noise memorization during training.

Next we let ρ(t)j,r,i = ρ
(t)
j,r,i1(yi = j) and ρ(t)

j,r,i
= ρ

(t)
j,r,i1(yi = −j). Combined with the gradient

descent update given by Equation (2), we obtain the iteration rules for these coefficients:

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)∥µ∥
2
2ϵ

(t)
i , (4)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ̃
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2ϵ

(t)
i 1(yi = j), (5)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
ℓ̃
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2ϵ

(t)
i 1(yi = −j). (6)

where the initial values of the coefficients are given by γ
(0)
j,r = 0 and ρ

(0)
j,r,i = 0 for all i ∈ [n],

j ∈ {−1, 1} and r ∈ [m].

To analyze the optimization trajectory, we track the dynamics of signal learning coefficients (γ(t)
j,r)

and noise memorization coefficients (ρ(t)j,r,i) using the iteration rules in Equations (4-6). To facilitate
a detailed analysis, we first provide upper bounds on the absolute value of both the signal learning
and noise memorization coefficients throughout the entire training process.

Proposition 4.1. Given Assumption 3.1 and ϵ > 0. Let β = 2maxj,r,i{|⟨w(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|}

and α = 4 log(T ∗). For 0 ≤ t ≤ T ∗, where T ∗ = η−1poly(n,m, d, ∥µ∥−1
2 , (σ2

pd)
−1, σ−1

0 , ϵ−1),
for all i ∈ [n], r ∈ [m] and j ∈ {−1, 1}, it holds that

0 ≤ γ
(t)
j,r ≤ α, 0 ≤ ρ

(t)
j,r,i ≤ α, (7)

0 ≥ ρ(t)
j,r,i

≥ −β − 16

√
log(4n2/δ)

d
nα ≥ −α. (8)

The proof can be found in the Appendix B. Proposition 4.1 indicates that during the entire training
stage, there is a logarithmic upper bound on the absolute values of both the signal learning and noise
memorization coefficients. This result is crucial for a detailed stage-wise characterization of the
training dynamics. Note that the upper bound provided in this proposition holds for both standard
GD and label noise GD.

4.2 PROOF SKETCH FOR THEOREM 3.1

We first establish the negative result for standard GD based on a two-stage analysis. As previously
mentioned, we consider the 2-homogeneous σ(z) = ReLU2(z) which differs from Cao et al. (2022);
Kou et al. (2023b); Chen et al. (2023). This leads to a key difference in the boundary characterization
of the low SNR regime.

First stage. Notice that starting from small initialization, the loss derivative remains close to a con-
stant. Based on this observation, we establish the difference in magnitude between the coefficients
of signal learning and noise memorization.

According to the update rule for the signal learning coefficient given by Equation (4) and by setting
ϵ
(t)
i = 1 for all t and i ∈ [n] (i.e., no label flipping), the upper bound of signal learning can be

achieved as γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
( 2η∥µ∥2

2

m t
)
|⟨w(0)

j,r ,µ⟩|. Meanwhile, the bounds for the noise
memorization coefficients can be derived from the update rules (5) and (6). The results are given as

maxj,r |ρ(t)j,r,i
| ≤ 3ησ2

ptd

nm

√
log(8mn/δ)σ0σp

√
d, and maxj,r ρ

(t)
j,r,i ≥ exp

(ηC1σ
2
pd

2nm t
)
σ0σp

√
d/4 −

0.6β, for all i ∈ [n], where we define β̄ = mini∈[n] maxr∈[m]⟨w
(0)
yi,r, ξi⟩, and use |ℓ̃

′(t)
i | ≥ C1. In

the low SNR setting, where σp

√
d is much larger than ∥µ∥2, we observe that noise memorization

dominates the feature learning process during the first stage, as shown in the following lemma.
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Lemma 4.1. Under the same condition as Theorem 3.1, and let T1 = Θ(
nm log(1/(σ0σp

√
d))

ησ2
pd

), the

following results hold with high probability at least 1 − d−1: (i) maxj,r ρ
(T1)
j,r,i ≥ 1, for all i ∈ [n];

(ii) maxj,r,i |ρ(t)j,r
| ≤ Õ(σ0σp

√
d), for all t ∈ [T1]; (iii) maxj,r γ

(t)
j,r ≤ Õ(σ0∥µ∥2), for all t ∈ [T1].

Lemma 4.1 indicates that when the SNR is sufficiently low, i.e., SNR = Õ(1/
√
n), noise memo-

rization dominates the training dynamics during the early phase of standard GD optimization. We
highlight that this “low-SNR” condition differs from that of Cao et al. (2022); Kou et al. (2023b) due
to the choice of activation function. In particular, Cao et al. (2022) assumed σ(z) = (max{0, z})q
with q > 2 and established a low-SNR boundary n−1SNR−q = Ω̃(1), whereas Kou et al. (2023b)
considered the ReLU activation and derived the condition n

∥µ∥4
2

σ4
pd

≤ O(1).

Second stage. After the first stage, the loss derivative is no longer bounded by a constant value. To
prove convergence of the training loss L(t) ≤ ϵ, we build upon the analysis from the first stage and
define w∗

j,r = w
(0)
j,r + 2m log(2/ϵ)

∑n
i=1 ∥ξi∥

−2
2 ξi. We show that, as gradient descent progresses,

the distance between W (t) and W ∗ decreases until L(t) ≤ ϵ: ∥W (t) − W ∗∥2F − ∥W (t+1) −
W ∗∥2F ≤ ηLS(t) − ηϵ. Moreover, we show that the difference between signal learning and noise
memorization still holds in the second stage, as summarized below.

Lemma 4.2. Let T2 = η−1σ−2
p d−1nm log(1/(σ0σpd)) + η−1ϵ−1m3nσ−2

p d−1. Under the same

assumptions as Theorem 3.1, for training step t ∈ [T1, T2], it holds that γ
(t)
j,r ≤ Õ(σ0∥µ∥2),

|ρ(t)
j,r,i

| ≤ Õ(σ0σp

√
d), and ρ

(t)
j,r,i ≥ 1. Besides, there exists a step t ∈ [T1, T2], such that LS(t) < ϵ.

Lemma 4.2 shows that standard GD achieves low training error after polynomially many steps, and
noise memorization dominates the entire training process, which results in harmful overfitting.

4.3 PROOF SKETCH FOR THEOREM 3.2

We also divide the training dynamics of label noise GD into two phases. In the first phase, both
signal learning and noise memorization increase exponentially despite the presence of random label
noise. In the second phase, label noise suppresses the growth of noise memorization, causing it to
oscillate within a constant range; meanwhile, signal learning continues to grow exponentially until
stabilizing at constant value, which leads to beneficial feature learning and low generalization error.

First stage. Leveraging the fact that the derivative of the loss function remains within a constant
range due to small initialization, we demonstrate that both signal learning and noise memoriza-
tion exhibit exponential growth rates, even in the presence of label noise. According to the it-
erative update of the signal learning coefficient in Equation (4), the upper and lower bounds are
given as γ

(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
( 2η∥µ∥2

2

m t
)
|⟨w(0)

j,r ,µ⟩|, and maxr∈[m]{γ
(t)
j,r + j⟨w(0)

j,r ,µ⟩} ≥
exp(

C0η∥µ∥2
2

8m )
(
maxr∈[m]⟨w

(0)
j,r ,µ⟩

)
, respectively. Here C0 is the lower bound for the absolute

loss derivative. These bounds indicate that signal learning grows exponentially with the number of
training iterations. On the other hand, from the update equation (5), we characterize the behavior
of noise memorization. Despite the injected label noise, we can show a lower bound on the noise

memorization rate: maxj,r{ρ(t)j,r,i + 0.6|⟨w(0)
j,r , ξi⟩|} ≥ exp(

ηC0σ
2
pd

2nm )|⟨w(0)
j,r , ξi⟩|. The main results

for the first stage are summarized in the following lemma.

Lemma 4.3. Under the same condition with Theorem 3.2, and let T1 = Θ(
nm log((1/σ0σpd))

ησ2
pd

). Then

the following holds with probability at least 1 − d−1: (i) maxj,r ρ
(T1)
j,r,i ≥ 0.1, for all i ∈ [n]; (ii)

maxj,r,i |ρ(t)j,r
| ≤ Õ(σ0σp

√
d), for all t ∈ [T1]. (iii) maxj,r γ

(t)
j,r ≥ Õ(σ0∥µ∥2), for all t ∈ [T1].

Lemma 4.3 states that both signal learning and noise memorization grow exponentially during the
first stage. For the analysis of label noise GD, one additional technical challenge is the instability
of training dynamics caused by the injected random noise, which we address as follows. For signal
learning, we make use of the small label flipping rate p and aggregate information across all sam-
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ples via concentration. Whereas for noise memorization (which is tied to individual samples), we
leverage the broad range of time steps in the first stage to establish the overall increment rate.

Second stage. As shown in Lemma 4.3, at the end of the first phase, noise memorization has
reached a significant level, dominating the model’s output. However, label noise introduces ran-
domness in the labels, which affects the updates of noise memorization coefficients. We track the
evolution of ρ(t)j,r,i via the following approximation. Define ι

(t)
i ≜ 1

m

∑m
r=1 ρ

(t)
yi,r,i

. The evolution of
noise memorization under label noise GD can be approximated as

ι
(t+1)
i ≈


(1 +

ησ2
pd

(1+exp((ι
(t)
i )2))nm

)ι
(t)
i , with prob 1− p.

(1− ησ2
pd

(1+exp(−(ι
(t)
i )2))nm

)ιi, with prob p.

Unlike conventional approaches such as (Cao et al., 2022; Kou et al., 2023b), we analyze this pro-
cess using a supermartingale argument and apply Azuma’s inequality with a union bound over the
second-stage training period. Via a martingale argument, we show that noise memorization remains
at a constant level with high probability. While noise memorization stabilizes, signal learning con-
tinues to grow exponentially. This discrepancy enables signal learning to eventually dominate the
generalization. The analysis of the second stage is summarized by the following lemma.
Lemma 4.4. Under the same condition as Theorem 3.2, during t ∈ [T1, T2] with T2 = T1 +
log(6/(σ0∥µ∥2))4m(1 + exp(c2))η

−1∥µ∥−2
2 , there exist a sufficient large positive constant Cι

and a constant ι∗i depending on sample index i such that the following results hold with proba-
bility at least 1 − 1/d: (i) |ι(t)i − ι∗i | ≤ Cι; (ii) γ

(t)
j,r ≤ 0.1 for all j ∈ {−1, 1} and r ∈ [m]

(iii) 1
2m (

∑m
r=1 ρ

(t)
yi,r,i

)2 ≤ f
(t)
i ≤ 2

m (
∑m

r=1 ρ
(t)
yi,r,i

)2 and (iv) maxr∈[m](γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩|) ≥
exp

(η∥µ∥2
2

16m (t− T1)
)
maxr∈[m] |γ

(T1)
j,r + ⟨w(0)

j,r ,µ⟩|.

Lemma 4.4 demonstrates that label noise introduces a regularizing effect preventing the noise mem-
orization coefficients from growing unchecked, while simultaneously allowing signal learning to
grow to a sufficiently large value. Building on this result, we show that both signal learning and
noise memorization reach a constant order of magnitude. Consequently, the population loss can be
bounded by LD(W

(t)) ≤ 2 exp
(
−Cd

n2

)
, corresponding to the second bullet point of Theorem 3.2.

5 SYNTHETIC EXPERIMENTS

We conduct experiments using synthetic data to validate our theoretical results. The samples are
generated according to Definition 2.1. The number of training and test sample is n = 200 and
ntest = 2000, respectively, and the input dimension is set to d = 2000. The label noise flip rate is
p = 0.1. We train the two-layer network with squared ReLU activation using standard GD and label
noise GD for t = 2000 steps. The network width is m = 20 and the learning rate is η = 0.5. The
signal vector is defined as µ = [2, 0, 0, . . . , 0] ∈ Rd and the noise variance is set to σ2

p = 0.25.

Dynamics of signal and noise coefficients. In Figure 1, we present the feature learning coeffi-
cients defined in Section 4.1, the training loss and test accuracy for both algorithms. We observe
that GD successfully minimizes the training loss to a near-zero value; however, noise memoriza-
tion (ρ) significantly exceeds signal learning (γ), leading to poor test performance. In contrast, label
noise GD does not fully minimize the training loss, as it oscillates around 0.5; consistent with our
theoretical analysis, this behavior causes noise memorization to remain constant in the second stage,
while signal learning continues to grow rapidly. As a result, the test accuracy of label noise GD
steadily improves in the second stage.

Heatmap of generalization error. Next we explore a range of SNR values from 0.03 to 0.10 and
sample sizes n ranging from 100 to 700. For each combination of SNR and sample size n, we train
the NN for 1000 steps with η = 1.0 using standard GD or label noise GD. The resulting test error is
visualized in Figure 2. Observe that standard GD (left) fails to generalize when SNR = O(n−1/2),
which is consistent with our theoretical prediction in Theorem 3.1. On the other hand, label noise GD
(right) achieves perfect test accuracy across a broader range of SNR, which agrees with Theorem 3.2.
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Figure 1: Ratio of noise memorization over signal learning, training loss, and test accuracy, of standard GD
and label noise GD. See Section 4.1 for definitions of signal learning (γ) and noise memorization (ρ).

(a) Performance of standard GD (b) Performance of Label Noise GD

Figure 2: Test accuracy heatmap of standard GD (left) and Label Noise GD (right) after training.

6 CONCLUSION AND LIMITATION

We presented a theoretical analysis of gradient-based feature learning in the challenging low SNR
regime. Our main contribution is to demonstrate that label noise gradient descent (GD) can effec-
tively enhance signal learning while suppressing noise memorization; this implicit regularization
mechanism enables label noise GD to generalize in low SNR settings where standard GD suffers
from harmful overfitting. Our theoretical findings are supported by experiments on synthetic data.

Limitations. We highlight a few limitations and future directions. Our current analysis applies to
a specific choice of activation function (squared ReLU) and architecture (two-layer convolutional
neural network); it would be interesting to extend this framework to more complex architectures
such as deeper neural networks. Additionally, analyzing label noise GD under other optimization
schemes, such as stochastic gradient descent (SGD) and adaptive optimizers like Adam, could pro-
vide a deeper understanding of the implicit regularization effects in practical settings.
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A PRELIMINARY LEMMAS

Lemma A.1 (Cao et al. (2022)). Suppose that δ > 0 and d = Ω(log(4n/δ))). Then with probability
1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p

√
d log(4n2/δ),

for all i, i′ ̸= i ∈ [n].

Lemma A.2 (Cao et al. (2022)). Suppose that d ≥ Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with
probability at least 1− δ, it satisfies that for all r ∈ [m], j ∈ {±1}, i ∈ [n] ,

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(8m/δ)σ0∥µ∥2

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ)σ0σp

√
d

and for all j ∈ {±1}, i ∈ [n]

σ0∥µ∥2/2 ≤ max
r∈[m]

j⟨w(0)
j,r ,µ⟩ ≤

√
2 log(8m/δ)σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j⟨w(0)

j,r , ξi⟩ ≤ 2
√
log(8mn/δ)σ0σp

√
d.

Lemma A.3. Let S(t)
± = {i : ϵ(t)i = ±1} and Sj = {i : yi = j}. Then ∀t ≥ 0, we have following

with probability at least 1− δ,

1. ||S(t)
+ | − n(1− p)| ≤

√
n
2 log

(
4T∗

δ

)
, and ||S(t)

− | − np| ≤
√

n
2 log

(
4T∗

δ

)
.

2. The size of set follows, ∀j ∈ {±1}∣∣∣∣|S(t)
+ ∩ Sj | −

(1− p)n

2

∣∣∣∣ ≤
√

n

2
log
(8T ∗

δ

)
,
∣∣∣|S(t)

− ∩ Sj | −
pn

2

∣∣∣ ≤√n

2
log
(8T ∗

δ

)
.

Suppose n ≥ 8 log(8T∗/δ)
p2 ≥ 8 log(8T∗/δ)

(1−p)2 , we have

|S(t)
+ ∩ Sj | ∈

[
(2− 3p)n

4
,
(2− p)n

4

]
, |S(t)

− ∩ Sj | ∈
[
pn

4
,
3pn

4

]
.

Proof of Lemma A.3. By independence, we have E|S(t)
+ | = (1− p)n and E|S(t)

− | = pn. By Hoeffd-
ing’s inequality, we have for arbitrary τ > 0,

P
(
||S(t)

+ | − (1− p)n| ≥ τ
)
≤ 2 exp

(
− 2τ2

n

)
, P

(
||S(t)

− | − pn| ≥ τ
)
≤ 2 exp

(
− 2τ2

n

)
.

Setting τ =
√
(n/2) log(4/δ) and taking the union bound over [T ∗] gives

||S(t)
+ | − (1− p)n| ≤

√
n

2
log
(4T ∗

δ

)
, ||S(t)

− | − pn| ≤
√

n

2
log
(4T ∗

δ

)
,

which holds with probability at least 1− δ.

Similarly, by the same argument, we can show the result for |S(t)
+ ∩ Sj | and |S(t)

− ∩ Sj |.

Suppose n ≥ 8 log(8T∗/δ)
p2 ≥ 8 log(8T∗/δ)

(1−p)2 , then we have with probability at least 1 − δ, we have

|S(t)
+ ∩ Sj | ∈

[
(2−3p)n

4 , (2−p)n
4

]
, |S(t)

− ∩ Sj | ∈
[
pn
4 , 3pn

4

]
.

Lemma A.4. Let S(t)
i,± := {s ≤ t : ϵ

(s)
i = ±1}. Then for any i ∈ [n], t > 0, with probability at

least 1− δ,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. ||S(t)
i,+| − (1− p)t| ≤

√
t
2 log(

4n
δ ) and ||S(t)

i,−| − pt| ≤
√

t
2 log(

4n
δ ).

2. In addition, suppose t ≥ 2 log(4n/δ)
p2 , we have |S(t)

i,+| ∈ [ (2−3p)t
2 , (2−p)t

2 ], |S(t)
i,−| ∈ [pt2 ,

3pt
2 ].

Proof of Lemma A.4. By independence, we have E|S(t)
i,+| = (1− p)t and E|S(t)

i,−| = pt. By Hoeffd-
ing’s inequality, we have for arbitrary τ > 0,

P
(
||S(t)

i,+| − (1− p)t| ≥ τ
)
≤ 2 exp

(
− 2τ2

t

)
, P

(
||S(t)

i,−| − pt| ≥ τ
)
≤ 2 exp

(
− 2τ2

t

)
.

Setting τ =
√
(t/2) log(4/δ) and taking the union bound gives

||S(t)
i,+| − (1− p)t| ≤

√
t

2
log
(4n

δ

)
, ||S(t)

i,−| − pt| ≤
√

t

2
log
(4n

δ

)
,

which holds with probability at least 1− δ.

Suppose t ≥ 2 log(4n/δ)
p2 ≥ 2 log(4n/δ)

(1−p)2 , then we have with probability at least 1− δ, we have |S(t)
i,+| ∈

[ (2−3p)t
2 , (2−p)t

2 ], |S(t)
i,−| ∈ [pt2 ,

3pt
2 ].

B PROOF OF PROPOSITION 4.1

In this section, we provide a proof for Proposition 4.1, which establishes upper bounds for the
absolute values of the signal learning and noise memorization coefficients throughout the entire
training stage. Additionally, we present some preliminary lemmas that will be used in the proof of
Proposition 4.1 as well as in other results in the subsequent sections.

Lemma B.1. Suppose that inequalities (7) and (8) hold for all r ∈ [m], j ∈ {−1, 1}, i ∈ [n] and
t ∈ [0, T ∗]. For any δ > 0, with probability at least 1− δ, it holds that

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i| ≤ 8

√
log(4n2/δ)

d
nα,

|⟨w(t)
j,r −w

(0)
j,r , jµ⟩ − γ

(t)
j,r | = 0.

Proof of Lemma B.1. From the signal-noise decomposition of w(t)
j,r, we have

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i|

(a)
= |jγ(t)

j,r⟨µ, ξi⟩∥µ∥
−2
2 +

∑
i′ ̸=i

ρ
(t)
j,r,i⟨ξi′ , ξi⟩∥ξi′∥

−2
2 |

(b)

≤ 8

√
log(4n2/δ)

d
nα,

where (a) follows from the weight decomposition (see Equation 3), and inequality (b) is due to
Lemma A.1 and the upper bound of ρ(t)j,r,i based on inequalities (7) and (8).

Next, for the projection of the weight difference onto the signal vector, we have:

|⟨w(t)
j,r −w

(0)
j,r , jµ⟩ − γ

(t)
j,r | = |

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ⟨ξi,µ⟩| = 0,

where the equality holds because ⟨ξi,µ⟩ = 0 for i ∈ [n] due to the covariance property of the noise
vector distribution.

With Lemma B.1 in place, we are now prepared to prove Proposition 4.1. The general proof strategy
follows the approach outlined in Cao et al. (2022). However, we present a complete proof here for
the sake of clarity and to provide a unified analysis for both gradient descent and label noise GD.
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Proof of Proposition 4.1. The proof uses induction and covers both gradient descent and label noise
gradient descent.

At t = 0, it is straightforward that the results hold for all coefficients, as they are initialized to zero.
Now, assume that there exists a time step T̂ such that for t ∈ [1, T̂ ] the following inequalities hold:

0 ≤ γ
(t)
j,r ≤ α, 0 ≤ ρ

(t)
j,r,i ≤ α,

0 ≥ ρ(t)
j,r,i

≥ −β − 16

√
log(4n2/δ)

d
nα ≥ −α.

To complete the induction, we need to show that the above inequalities hold for t = T̂ + 1. First,
we examine ρ(T̂+1)

j,r,i
for j = −yi, since ρ(T̂+1)

j,r,i
= 0 when j = yi by definition. Using Lemma B.1,

if ρ(T̂ )
j,r,i

≤ −0.5β − 8
√

log(4n2/δ)
d nα, we have

⟨w(T̂ )
j,r , ξi⟩ ≤ ρ(T̂ )

j,r,i
+ 8

√
log(4n2/δ)

d
nα+ ⟨w(0)

j,r , ξi⟩ ≤ 0.

Thus,

ρ(T̂+1)
j,r,i

= ρ(T̂ )
j,r,i

+
η

nm
ℓ
′(T̂ )
i σ′(⟨w(T̂ )

j,r , ξi⟩)∥ξi∥22ϵ
(T̂ )
i

= ρ(T̂ )
j,r,i

≥ −β − 16

√
log(4n2/δ)

d
nα,

where we have used σ′(⟨w(T̂ )
j,r , ξi⟩) = 0. On the other hand, if ρ(T̂ )

j,r,i
≥ −0.5β − 8

√
log(4n2/δ)

d nα,
the update function implies:

ρ(T̂+1)
j,r,i

(a)

≥ ρ(T̂ )
j,r,i

+
η

nm
ℓ
′(T̂ )
i ⟨w(T̂ )

j,r , ξi⟩∥ξi∥22
(b)

≥ −0.5β − 8

√
log(4n2/δ)

d
nα−

3ησ2
pd

2nm
(0.5β + 8

√
log(4n2/δ)

d
nα)

(c)

≥ −β − 16

√
log(4n2/δ)

d
nα,

where (a) is due to choosing ϵ
(T̂ )
i = 1 and ⟨w(T̂ )

j,r , ξi⟩ > 0, follows from Lemma A.1, and (c) holds
when η ≤ 2nm

3σ2
pd

.

Next, consider ρ(T̂+1)
j,r,i for j = yi. Let T̂1 to be the last time that ρ(t)j,r,i ≤ 0.5α. By propagation, we

have:

ρ
(T̂+1)
j,r,i = ρ

(T̂1)
j,r,i −

η

nm
ℓ
′(T̂1)
i σ′(⟨w(T̂1)

j,r , ξi⟩)∥ξi∥22ϵ
(T̂1)
i −

∑
T̂1<t≤T̂

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2ϵ

(t)
i

(a)

≤ 0.5α+
η

nm
⟨w(T̂1)

j,r , ξi⟩∥ξi∥22 +
∑

T̂1<t≤T̂

η

nm
ℓ
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2
2

(b)

≤ 0.5α+
3ησ2

pd

2nm
(0.5α+ β + 16

√
log(4n2/δ)

d
nα)

+
∑

T̂1<t≤T̂

exp(−4α2 + 1)
3ησ2

pd

2nm
(α+ β + 16

√
log(4n2/δ)

d
nα)

(c)

≤ 0.5α+ 0.25α+ 0.25α = α,

where (a) holds since ℓ
′(T̂1)
i ≥ −1 and ϵ

(t)
i ≤ 1 for all t ∈ [T̂1, T̂ ], (b) is by Lemma A.1, Lemma B.1,

and −ℓ̃
′(t)
i ≤ exp(−Fyi

+1) ≤ exp(−4α2+1). Here we have used that β+16
√

log(4n2/δ)
d nα ≤ 2α
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with the condition that d = Ω̃(n2) and σ0 ≤ Õ(1)min{∥µ∥−1
2 , σ−1

p d−1/2}. The final inequality (c)
holds because η = O( nmσ2

pd
) and exp(−4α2 + 1)α < 1 with α = 4 log(T ∗).

Similarly, we can prove that γ(T̂+1)
j,r ≤ α using η = O( nm

∥µ∥2
2
), which completes the induction

proof.

C STANDARD GD FAILS TO GENERALIZE WITH LOW SNR

C.1 PROOF OF LEMMA 4.1

In this section, we provide a proof for the result obtained in the first stage of gradient descent
training. Several preliminary lemmas are established to facilitate the analysis.

Lemma C.1 (Upper bound on γ
(t)
j,r). Under Assumption 3.1, in the first stage, where 0 ≤ t ≤ T1 =

nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists an upper bound for γ(t)
j,r , for all j ∈ {−1, 1}, r ∈ [m]:

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m
t
)
|⟨w(0)

j,r ,µ⟩|.

Proof of Lemma C.1. By the iterative update rule of signal learning, we have:

γ
(t+1)
j,r

(a)

≤ γ
(t)
j,r +

η

nm

n∑
i=1

σ′(⟨w(t)
j,r, yiµ⟩)∥µ∥

2
2

(b)
= γ

(t)
j,r +

η

nm

n∑
i=1

σ′(yi⟨w(0)
j,r ,µ⟩+ jyiγ

(t)
j,r)∥µ∥

2
2

(c)

≤ γ
(t)
j,r +

2η

m
(γ

(t)
j,r + |⟨w(0)

j,r ,µ⟩|)∥µ∥
2
2.

where (a) follows from |ℓ
′(t)
i | ≤ 1, (b) is derived using Lemma B.1, and (c) is due to the properties

of the squared ReLU activation function.

Define A(t) := γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩|. Then, we have:

A(t+1) ≤
(
1 +

2η∥µ∥22
m

)
A(t) ≤

(
1 +

2η∥µ∥22
m

)(t)
A(0) ≤ exp

(2η∥µ∥22
m

t
)
A(0),

where we use 1 + x ≤ exp(x). This suggests:

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m
t
)
|⟨w(0)

j,r ,µ⟩|.

Lemma C.2 (Upper bound on ρ(t)
j,r,i

). Under Assumption 3.1, in the first stage, where 0 ≤ t ≤ T1 =

nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists an upper bound for |ρ(t)
j,r,i

|, for all j, r, i:

|ρ(t)
j,r,i

| = Õ(σ0σp

√
d).

Proof of Lemma C.2. The proof uses the induction method. By the iterative update rule for noise
memorization, we have:

|ρ(t+1)
j,r,i

|
(a)

≤ |ρ(t)
j,r,i

|+ η

nm
σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2

(b)

≤ |ρ(t)
j,r,i

|+
3ησ2

pd

2nm
σ′(⟨w(0)

j,r , ξi⟩+ 16

√
log(4n2/δ)

d
nα+ ρ(t)

j,r,i
)

(c)

≤ |ρ(t)
j,r,i

|+
3ησ2

pd

nm

√
log(8mn/δ)σ0σp

√
d,
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where the inequality (a) is by the upper bound on |ℓ
′(t)
i | ≤ 1; Inequality (b) is derived using Propo-

sition 4.1, Lemma A.1, and Lemma B.1. Finally, the inequality (c) uses the fact that ρ(t)
j,r,i

< 0 and
Lemma A.2.

Taking a telescoping sum over t form 0 to T1, we obtain:

|ρ(T1)
j,r,i

| ≤
3ησ2

pdT1

nm

√
log(8mn/δ)σ0σp

√
d = Õ(σ0σp

√
d),

where we substituted T1 = Θ(
nm log(1/(σ0σp

√
d))

ησ2
pd

), thereby completing the proof.

Lemma C.3. Let β̄ = mini∈[n] maxr∈[m]⟨w
(0)
yi,r, ξi⟩. Suppose that σ0 ≥

160n
√

log(4n2/δ)
d (σp

√
d)−1α. Then it holds that β̄ ≥ 40n

√
log(4n2/δ)

d α.

Proof of Lemma C.3. The proof follows directly from Lemma A.2. With high probability, we have:
β ≥ σ0σp

√
d/4. Substituting the condition on σ0, we obtain:

β ≥ 40n

√
log(4n2/δ)

d
α.

Lemma C.4 (Lower bound on ρ
(t)
j,r,i). Under Assumption 3.1, in the first stage, where 0 ≤ t ≤ T1 =

nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists a lower bound for maxj,r ρ
(t)
j,r,i, for all i ∈ [n]:

max
j,r

ρ
(t)
j,r,i + β ≥ exp

(ηC1σ
2
pd

2nm
t
)
σ0σp

√
d/4.

Proof of Lemma C.4. By the iterative update rule for noise memorization, we have:

max
j,r

ρ
(t+1)
j,r,i

(a)

≥ max
j,r

ρ
(t)
j,r,i +max

j,r

ηC1

nm
σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2

(b)

≥ max
j,r

ρ
(t)
j,r,i +max

j,r

ησ2
pdC1

2nm
σ′(⟨w(0)

j,r , ξi⟩ − 16

√
log(4n2/δ)

d
nα+ ρ

(t)
j,r,i)

(c)

≥ max
j,r

ρ
(t)
j,r,i +

ησ2
pdC1

nm
(max

j,r
ρ
(t)
j,r,i +

2

5
β),

where the inequality (a) is by the lower bound on |ℓ
′(t)
i | ≥ C1 in the first stage; Inequality (b) is by

Lemma A.1 and Lemma B.1. Finally, the inequality (c) is by Lemma C.3.

Define B
(t)
i := maxj,r ρ

(t)
j,r,i + 0.6β. Then

B
(t+1)
i ≥

(
1 +

ηC1σ
2
pd

nm

)
B

(t)
i ≥

(
1 +

ηC1σ
2
pd

nm

)(t)
B

(0)
i ≥ exp

(ηC1σ
2
pd

2nm
t
)
B

(0)
i ,

where we used 1 + x ≥ exp(x/2) for x ≤ 2.

With the above lemmas in place, we are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. We choose the end of stage 1 as T1 = 4nm
ησ2

pd
log(1/(σ0σp

√
d)). Then by

Lemma C.4, we conclude that maxj,r ρ
(T1)
j,r,i ≥ 1, for all i ∈ [n]. Besides, by Lemma C.2, we

directly obtain the result that

|ρ(T1)
j,r,i

| ≤
3ησ2

pdT1

nm

√
log(8mn/δ)σ0σp

√
d = Õ(σ0σp

√
d).

Finally, Lemma C.1 yields

γ
(T1)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m

4nm

ησ2
pd

log(1/(σ0σpd))
)
|⟨w(0)

j,r ,µ⟩| ≤ 2|⟨w(0)
j,r ,µ⟩|,

where we have used the condition of low SNR, namely nSNR2 ≤ 1/ log(σ0σpd). By Lemma A.2,
we conclude the proof for maxj,r γ

(T1)
j,r = Õ(σ0∥µ∥2).
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C.2 PROOF OF LEMMA 4.2

In this section, we provide a complete proof for Lemma 4.2 based on Lemma 4.1 and an it-
erative analysis of the training dynamics. We introduce several necessary preliminary lemmas
that will be used in the proof for t ∈ [T1, T2] with T2 = η−1σ−2

p d−1nm log(1/(σ0σp

√
d)) +

η−1ϵ−1m3nσ−2
p d−1.

Lemma C.5 (Cao et al. (2022)). Under the same condition as Theorem 3.1, for all t ∈ [T1, T2] and
i ∈ [n], the following properties hold:

∥∇LS(W
(t))∥2F = O(σ2

pd)LS(W
(t)),

∥W (T1) −W ∗∥F = Õ(m3/2n1/2σ−1
p d−1/2),

yi⟨∇f(W (t),xi),W
∗⟩ ≥ 2 log(2/ϵ).

With the above lemmas at hand, we are now ready to provide the complete proof for Lemma 4.2.

Proof of Lemma 4.2. We start by showing the convergence of gradient descent. The key idea is to
construct a reference weight matrix W ∗ defined as w∗

j,r = w
(0)
j,r + 2m log(2/ϵ)

∑n
i=1 ∥ξi∥

−2
2 ξi.

Summing the above inequality from W (t) and W ∗:

∥W (t) −W ∗∥2F − ∥W (t+1) −W ∗∥2F
= ∥W (t) −W ∗∥2F − ∥W (t) − η∇LS(W

(t))−W ∗∥2F
= 2η⟨∇LS(W

(t)),W (t) −W ∗⟩ − η2∥∇LS(W
(t))∥2F

(a)
=

2η

n

n∑
i=1

ℓ
′(t)
i [2yif(W

(t),xi)− ⟨∇f(W (t),xi),W
∗⟩]− η2∥∇LS(W

(t))∥2F

(b)

≥ 2η

n

n∑
i=1

ℓ
′(t)
i [2yif(W

(t),xi)− 2 log(2/ϵ)]− η2∥∇LS(W
(t))∥2F

(c)

≥ 4η

n

n∑
i=1

[ℓ
(t)
i − ϵ/2]− η2∥∇LS(W

(t))∥2F

(d)

≥ 2η(LS(W
(t))− ϵ),

where in equation (a), we have applied the homogeneity property of the squared ReLU activation.
The inequality (b) is by ⟨∇f(W (t),xi),W

∗⟩ ≥ 2 log(2/ϵ) as stated in Lemma C.5, and the in-
equality (c) is due to the convexity of the logistic function. Finally, the inequality (d) is by Lemma
C.5 and the condition on the learning rate.

Taking a summation over the above inequality from T1 to T2, we have
T2∑

t=T1

LS(W
(t)) ≤ ∥W (T1) −W ∗∥2F + ηϵ(T2 − T1 + 1)

2η

≤ ∥W (T1) −W ∗∥2F
η

≤ Õ(η−1m3nσ−2
p d−1), (9)

where in the second inequality, we have applied Lemma C.5. Finally, plugging in the T2 =
η−1ϵ−1m3nσ−2

p d−1 + η−1σ−2
p d−1nm log(1/(σ0σp

√
d)), we achieve LS(W

(t)) ≤ ϵ.

Next, we provide the lower bound for the noise memorization coefficient ρ(t)j,r,i and the upper bound

for the signal learning coefficient γ(t)
j,r in the second stage. For the noise memorization coefficient,

using its update equation:

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2 ≥ ρ

(t)
j,r,i.
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Here, we have used ℓ
′(t)
i ≥ 0 and property of the squared ReLU activation. This implies that

ρ
(t)
j,r,i never decreases during training. Therefore, we have maxj,r ρ

(t)
j,r,i ≥ 1, for all i ∈ [n] and

t ∈ [T1, T2].

For the signal learning coefficient, we use the induction method. From Lemma 4.1, we know that
maxj,r γ

(T1)
j,r = Õ(σ0∥µ∥2) ≜ β̂. Suppose that there exists T ∈ [T1, T2] such that maxj,r γ

(t)
j,r ≤ 2β̂

for all t ∈ [T1, T ]. Then we analyze:

γ
(T+1)
j,r = γ

(T1)
j,r − η

nm

T∑
t=T1

n∑
i=1

ℓ
′(t)
i σ′(⟨wj,r,µ⟩)∥µ∥22

(a)

≤ γ
(T1)
j,r +

2ηβ̂

nm
∥µ∥22

T∑
t=T1

n∑
i=1

|ℓ
′(t)
i |

(b)

≤ γ
(T1)
j,r +

2ηβ̂

nm
∥µ∥22

T∑
t=T1

LS(W
(t))

(c)

≤ γ
(T1)
j,r +

2ηβ̂

nm
∥µ∥22Õ(η−1m3nσ−2

p d−1)

≤ γ
(T1)
j,r + Õ(nSNR2)

(d)

≤ 2β̂.

where the inequality (a) is due to Lemma B.1, the inequality (b) is by |ℓ′i| ≤ ℓi for i ∈ [n], and
the inequality (c) is due to the inequality (9). Finally, the inequity (d) is by the condition that
n−1SNR−2 = Ω̃(1). Similarly, with the induction method, we can show that |ρ(t)

j,r,i
| ≤ Õ(σ0σp

√
d).

C.3 PROOF OF THEOREM 3.1

To complete the proof of Theorem 3.1, we provide a proof for the generalization result.

Lemma C.6. Define g(ξ) = 1
mj
∑

j,r σ(⟨w
(t)
j,r, ξ⟩). Under Assumption 3.1, there exists a fixed

vector v with ∥v∥2 ≤ 0.02σp such that∑
j∈{±1}

[g(jξ + v)− g(ξ)] ≥ 4Ω̃(σ2
0∥µ∥22).

Proof of Lemma C.6. To proceed with the proof, we construct the vector v ≜ λ
∑

i:yi=1 ξi, where
λ = 0.01/

√
nd. Then we show that

∥v∥22 = ∥λ
∑

i:yi=1

ξi∥22 = λ2⟨
∑

i:yi=1

ξi,
∑

i:yi=1

ξi⟩

= λ2
∑

i:yi=1

∥ξi∥22 + 2λ2
∑
i

∑
j ̸=i

⟨ξi, ξj⟩

≤ λ2nσ2
pd+ 4n2λ2σ2

p

√
2d log(4n2/δ)

≤ 4λ2nσ2
pd = 0.022σ2

p,

where the first inequity is by Lemma A.1, the second inequality is by d ≥ Ω̃(n2), and the final
equality is by λ = 0.01/

√
nd, which confirms that ∥v∥2 ≤ 0.02σp.

By the convexity property of the squared ReLU function, we have that

σ(⟨w(t)
1,r, ξ + v⟩)− σ(⟨w(t)

1,r, ξ⟩) ≥ σ′(⟨w(t)
1,r, ξ⟩)⟨w

(t)
1,r,v⟩,

σ(⟨w(t)
1,r,−ξ + v⟩)− σ(⟨w(t)

1,r,−ξ⟩) ≥ σ′(⟨w(t)
1,r,−ξ⟩)⟨w(t)

1,r,v⟩.
With the above inequalities, we have that almost surely for all ξ:

σ(⟨w(t)
1,r, ξ + v⟩)− σ(⟨w(t)

1,r, ξ⟩) + σ(⟨w(t)
1,r,−ξ + v⟩)− σ(⟨w(t)

1,r,−ξ⟩)
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≥ 4|⟨w(t)
1,r, ξ⟩|⟨w

(t)
1,r,v⟩.

On the other hand, using the properties of the squared ReLU function and the triangle inequality, we
have:

σ(⟨w(t)
−1,r, ξ + v⟩)− σ(⟨w(t)

−1,r, ξ⟩) + σ(⟨w(t)
−1,r,−ξ + v⟩)− σ(⟨w(t)

−1,r,−ξ⟩)

≤ (⟨w(t)
−1,r, ξ⟩+ |⟨w(t)

−1,r,v⟩|)2 + (−⟨w(t)
−1,r, ξ⟩+ |⟨w(t)

−1,r,v⟩|)2 − ⟨w(t)
−1,r, ξ⟩2

≤ |⟨w(t)
−1,r, ξ⟩|2 + 2|⟨w(t)

−1,r,v⟩|2.

Next, we compare |⟨w(t)
1,r,v⟩| and |⟨w(t)

−1,r,v⟩| with |⟨w(t)
1,r, ξ⟩| and |⟨w(t)

−1,r, ξ⟩|. We show that

|⟨w(t)
−1,r,v⟩| = λ|(

∑
i:yi=1

ρ(t)−1,r,i
+ ⟨w(0)

−1,r,
∑

i:y1=1

ξi⟩)|

≤ λ(n
√
log(12mn/δ))σ0σp

√
d) ≤ λn/4,

where the first inequality is by Lemma A.2 and Lemma 4.2, and the second inequality is by the
condition on σ0 from Assumption 3.1. Besides,

|⟨w(t)
1,r,v⟩| = λ|(

∑
i:yi=1

ρ
(t)
1,r,i + ⟨w(0)

1,r ,
∑

i:y1=1

ξi⟩)|

≥ λ(n− n
√
log(12mn/δ))σ0σp

√
d) ≥ λn/2,

where the first inequality is by Lemma A.2 and Lemma 4.2; and the second inequality is by the
condition on σ0 from Assumption 3.1.

Finally, by Lemma A.2, Proposition 4.1, and Lemma A.1 it holds that

|⟨w(t)
1,r, ξ⟩| = |⟨w(0)

1,r , ξ⟩+
n∑

i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ⟨ξi, ξ⟩|

≤
√
log(12mn/δ))σ0σp

√
d+ 8

√
log(4n2/δ)

d

√
nα.

On the other hand, it is observed that ⟨w(t)
1,r −w

(0)
1,r , ξ⟩ ∼ N (0, σ2

w), where the variance σw follows

σ2
w = σ2

p

d∑
k=1

(

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi,k)

2

(a)

≥ 1

2
σ2
p

d∑
k=1

n∑
i=1

(ρ
(t)
j,r,i)

2∥ξi∥−4
2 ξ2i,k

=
1

2
σ2
p

n∑
i=1

(ρ
(t)
j,r,i)

2∥ξi∥−2
2

≥ 1

3d

n∑
i=1

(ρ
(t)
j,r,i)

2 ≥ n

6d
,

where (a) is by Lemma A.1 and condition on d from Assumption 3.1, (b) is due to Lemma A.1, and
(c) is by Lemma 4.2.

By the anti-concentration inequality of Gaussian variance, we have

P(|⟨w(t)
1,r −w

(0)
1,r , ξ⟩| ≤ τ) ≤ 2erf(

τ√
2σw

) ≤ 2erf(
τ
√
6d√
2n

)

≤ 2

√
1− exp(−12dτ2

πn
).

Then with probability at least 1− δ, it holds that

|⟨w(t)
1,r −w

(0)
1,r , ξ⟩| ≥

√
πn

12d
log(

1

1− (δ/2)2
) ≥

√
πnδ2

96d
,
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where we have used log(1 + x) ≥ x
1+x for x > −1 and δ2 ≤ 1/8.

Together, we conclude that∑
j∈{±1}

[g(jξ + v)− g(ξ)] ≥ 4|⟨w(t)
1,r, ξ⟩||⟨w

(t)
1,r,v⟩|+ |⟨w(t)

−1,r, ξ⟩|2 + 2|⟨w(t)
−1,r,v⟩|2

≥ 4(λ/2)

√
πnδ2

96d
≥ 4Ω̃(σ2

0∥µ∥22),

where the final inequality holds by σ2
0 ≤ Õ( 1

d5/4∥µ∥2
2
) with δ chosen as d−1/4, thus completing the

proof.

Proof of Theorem 3.1. For the population loss, we expand the expression

L0−1
D (W (t)) = E(x,y)∼D[1(y ̸= sign(f(W ,x))] = P(yf(W (t),x) < 0)

= P
( 1

m

m∑
r=1

σ(⟨w(t)
−y,r, ξ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
y,r, ξ⟩) ≥

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

)
.

Recall the weight decomposition:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi +

n∑
i=1

ρ(t)
j,r,i

∥ξi∥−2
2 ξi.

Then we conclude that:

⟨w(t)
−y,r, yµ⟩ = ⟨w(0)

−y,r, yµ⟩ − γ
(t)
−y,r,

⟨w(t)
y,r, yµ⟩ = ⟨w(0)

y,r, yµ⟩+ γ(t)
y,r.

First, we provide the bound for the signal learning part:

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

≤ 1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩) =

1

m

m∑
r=1

σ(⟨w(0)
y,r, yµ⟩+ γ(t)

y,r)

≤ (⟨w(0)
y,r, yµ⟩+ γ(t)

y,r)
2

≤ Õ(σ2
0∥µ∥22),

where the first and second inequalities follow from the properties of the squared ReLU function, and
the last inequality is by Lemma A.2 and Lemma 4.2.

Denote that g(ξ) = 1
mj
∑

j,r σ(⟨w
(t)
j,r, ξ⟩). It follows that:

P(yf(W (t),x) < 0)

= P
( 1

m

m∑
r=1

σ(⟨w(t)
−y,r, ξ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
y,r, ξ⟩) ≥

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

)
≥ 0.5P

(
|g(ξ)| ≥ Ω̃(σ2

0∥µ∥22)
)
.

Define the set A = {ξ : |g(ξ)| ≥ Ω̃(σ2
0∥µ∥22)}. By Lemma C.6, we have:∑

j∈{±1}

[g(jξ + v)− g(ξ)] ≥ 4Ω̃(σ2
0∥µ∥22).
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Thus, there must exist at least one of ξ, ξ+ v, −ξ and −ξ+ v that belongs to A and the probability
is larger than 0.25. Furthermore, we have:

|P(A)− P(A− v)| = |Pξ∼N (0,σ2
pI)

(ξ ∈ A)− Pξ∼N (v,σ2
pI)

(ξ ∈ A)|

≤ ∥v∥2
2σp

≤ 0.02,

where the first inequality is by Proposition 2.1 in Devroye et al. (2018) and the second inequality
is by ∥v∥2 ≤ 0.01σp according to Lemma C.6. Combined with that P(A) = P(−A), we finally
achieve that P(A) ≥ 0.24, corresponding to the second bullet result. Combined with Lemma 4.2,
which establishes the first bullet point, this completes the proof of 3.1

D LABEL NOISE GD SUCCESSFULLY GENERALIZES WITH LOW SNR

D.1 PROOF OF LEMMA 4.3

Lemma D.1 (Lower bound on γ
(t)
j,r). Under Assumption 3.1, during the first stage, where 0 ≤ t ≤

T1 =
nm log(1/(σ0σp

√
d))

ησ2
pd

, there exists an lower bound for γ(t)
j,r , for all j:

max
r∈[m]

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≥ exp
(C0η∥µ∥22

8m
t
)
max
r∈[m]

|⟨w(0)
j,r ,µ⟩|.

where C0 is the lower bound on |ℓ̃′(t)| ≥ C0 is the first stage.

Proof of Lemma D.1. If ⟨w(t)
j,r,µ⟩ ≥ 0, then

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)∥µ∥
2
2ϵ

(t)
i

= γ
(t)
j,r −

η

nm

[ ∑
i∈S(t)

+

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)−
∑

i∈S(t)
−

ℓ̃
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)
]
∥µ∥22

= γ
(t)
j,r −

2η

nm

[ ∑
i∈S(t)

+ ∩S1

ℓ̃
′(t)
i −

∑
i∈S(t)

− ∩S1

ℓ̃
′(t)
i

]
⟨w(t)

j,r,µ⟩∥µ∥
2
2

≥ γ
(t)
j,r +

2η

nm

(
C0|S(t)

+ ∩ S1| − |S(t)
− ∩ S1|

)
⟨w(t)

j,r,µ⟩∥µ∥
2
2.

Note that we have defined S(t)
± = {i : ϵ(t)i = ±1} and Sj = {i : yi = j} in Lemma A.3.

On the other hand, when ⟨w(t)
j,r,µ⟩ < 0,

γ
(t+1)
j,r = γ

(t)
j,r −

2η

nm

[ ∑
i∈S(t)

+ ∩S−1

ℓ̃
′(t)
i −

∑
i∈S(t)

− ∩S−1

ℓ̃
′(t)
i

]
⟨−w

(t)
j,r,µ⟩∥µ∥

2
2

≥ γ
(t)
j,r +

2η

nm

(
C0|S(t)

+ ∩ S−1| − |S(t)
− ∩ S−1|

)
⟨−w

(t)
j,r,µ⟩∥µ∥

2
2.

By Lemma A.3, we have

|S(t)
+ ∩ S1|

|S(t)
− ∩ S1|

,
|S(t)

+ ∩ S−1|
|S(t)

− ∩ S−1|
≥

(1− p)n−
√
2n log(8T ∗/δ)

pn+
√
2n log(8T ∗/δ)

,

|S(t)
+ ∩ S1|, |S(t)

+ ∩ S−1| ≥ (1− p)n−
√
2n log(8T ∗/δ).

These hold with probability at least 1 − δ. This suggests that when p < C0/6, n ≥
72C−2

0 log(8T ∗/δ), we have:

|S(t)
+ ∩ S1| ≥

2

C0
|S(t)

− ∩ S1|, |S(t)
+ ∩ S−1| ≥

2

C0
|S(t)

− ∩ S−1|,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

|S(t)
+ ∩ S1|, |S(t)

+ ∩ S−1| ≥
n

4
.

Hence, we have:

γ
(t+1)
j,r ≥ γ

(t)
j,r +

C0η∥µ∥22
4m

⟨w(t)
j,r,µ⟩ = γ

(t)
j,r +

C0η∥µ∥22
4m

(
⟨w(0)

j,r ,µ⟩+ jγ
(t)
j,r

)
, if ⟨w(t)

j,r,µ⟩ ≥ 0

γ
(t+1)
j,r ≥ γ

(t)
j,r −

C0η∥µ∥22
4m

⟨w(t)
j,r,µ⟩ = γ

(t)
j,r −

C0η∥µ∥22
4m

(
⟨w(0)

j,r ,µ⟩+ jγ
(t)
j,r

)
, if ⟨w(t)

j,r,µ⟩ < 0.

When j = 1, due to the increase of γ(t)
j,r , we have

γ
(t+1)
1,r ≥ γ

(t)
1,r +

C0η∥µ∥22
4m

(
⟨w(0)

1,r ,µ⟩+ γ
(t)
1,r

)
.

Let B(t)
j = maxr∈[m]{γ

(t)
j,r + j⟨w(0)

j,r ,µ⟩}, then we have

Bt+1
1 ≥

(
1 +

C0η∥µ∥22
4m

)
B

(t)
1 ≥

(
1 +

C0η∥µ∥22
4m

)(t)
B

(0)
1

≥ exp
(C0η∥µ∥22

8m
t
)
max

r
⟨w(0)

1,r ,µ⟩

≥ exp
(C0η∥µ∥22

8m
t
)σ0∥µ∥2

2
,

where we use the fact that 1 + x ≥ exp(x/2) for x ≤ 2.

Similarly when j = −1, we have γ
(t+1)
−1,r ≥ γ

(t)
−1,r −

C0η∥µ∥2
2

4m (⟨w(0)
−1,r,µ⟩ − γ

(t)
−1,r) and

B
(t+1)
−1 ≥

(
1 +

C0η∥µ∥22
4m

)
B

(t)
−1 ≥

(
1 +

C0η∥µ∥22
4m

)(t)
B

(0)
−1

≥ exp
(C0η∥µ∥22

8m
t
)
max

r
⟨−w

(0)
−1,r,µ⟩

≥ exp
(C0η∥µ∥22

8m
t
)σ0∥µ∥2

2
.

Thus, we obtain B
(t)
j ≥ exp

(C0η∥µ∥2
2

8m t
)σ0∥µ∥2

2 , ∀j ∈ {±1}.

Lemma D.2. Let β̄ = mini∈[n] maxr∈[m]⟨w
(0)
yi,r, ξi⟩. Suppose that σ0 ≥

160n
√

log(4n2/δ)
d (σp

√
d)−1αd1/4 . Then we have that β̄/d1/4 ≥ 40n

√
log(4n2/δ)

d α.

Proof of Lemma D.2. The proof follows from Lemma A.2. It is known that, with high probability,
we have β ≥ σ0σp

√
d/4. By substituting the condition for σ0, we obtain

β/d1/4 ≥ 40n

√
log(4n2/δ)

d
α.

Lemma D.3 (Lower bound on ρ
(t)
j,r,i). Let β̄ = mini∈[n] maxr∈[m]⟨w

(0)
yi,r, ξi⟩ and A

(t)
yi,r,i

:=

ρtj,r,i + ⟨w(0)
j,r , ξi⟩ − 0.4β̄/d1/4. Under Assumption 3.1, if ⟨w(0)

j,r , ξi⟩ ≥ β̄, then at time step

T1 =
nm log(1/(σ0σp

√
d))

ησ2
pd

, with high probability, it holds that

A
(T1)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)T1A

(0)
yi,r,i

.

Proof of Lemma D.3. First, consider yi = j as the case of ρ(t)j,r,i. By Lemma B.1 and Lemma C.3,
when yi = j,

|⟨w(t)
j,r,, ξi⟩ − ⟨w(0)

j,r , ξi⟩ − ρ
(t)
j,r,i| ≤ 16n

√
log(4n2/δ)

d
≤ 0.4β̄/d1/4. (10)
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From the update of ρ(t)j,r,i, when ϵ
(t)
i = 1 and ⟨w(t)

j,r, ξi⟩ > 0,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

2η

nm
ℓ̃
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2
2ϵ

(t)
i ≥ ρ

(t)
j,r,i +

ηC0σ
2
pd

nm

(
ρ
(t)
j,r,i + ⟨w(0)

j,r , ξi⟩ − 0.4β̄/d1/4
)
,

On the other hand, when ϵ
(t)
i = −1 and ⟨w(t)

j,r, ξi⟩ > 0,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

2η

nm
ℓ̃
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2
2ϵ

(t)
i ≥ ρ

(t)
j,r,i −

3ησ2
pd

nm

(
ρ
(t)
j,r,i + ⟨w(0)

j,r , ξi⟩+ 0.4β̄/d1/4
)
.

For simplification of notations, denote ζ = 0.8β̄/d1/4. Let A(t)
yi,r,i

:= ρtj,r,i+⟨w(0)
j,r , ξi⟩−0.4β̄/d1/4.

Then when ϵ
(t)
i = 1, we have

A
(t+1)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)A

(t)
yi,r,i

,

and when ϵ
(t)
i = −1, we have

A
(t+1)
yi,r,i

≥ (1−
3ησ2

pd

nm
)A

(t)
yi,r,i

−
3ησ2

pdζ

nm
.

Here we prove when ⟨w(0)
j,r , ξi⟩ ≥ β̄, A(t)

yi,r,i
> ζ. The proof is by the induction method.

First it is clear that A(0)
yi,r,i

= ⟨w(0)
j,r , ξi⟩ − 0.5ζ > ζ because d ≫ Θ(1). Then we consider when

t ≤ 2 log(4n/δ)
p2 (where the condition for Lemma A.4 does not hold). In this case, |S(t)

+ | ≥ (1−p)t−√
t
2 log(

4n
δ ), |S(t)

− | ≤ pt+
√

t
2 log(

4n
δ ). In addition, the worst case lower bound is achieved by the

case where all the S(t)
− events happen at the first few iterations. This gives

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)(1−p)t−

√
t
2 log( 4n

δ )(1−
3ησ2

pd

nm
)pt+

√
t
2 log( 4n

δ )A
(0)
yi,r,i

− (1 +
ηC0σ

2
pd

nm
)(1−p)t−

√
t
2 log( 4n

δ )

[ pt+
√

t
2 log( 4n

δ )∑
s=0

(
1−

3ησ2
pd

nm

)s]ζησ2
pd

3nm

≥ (1 +
ηC0σ

2
pd

nm
)(1−p)t−

√
t
2 log( 4n

δ )
(
(1−

3ησ2
pd

nm
)pt+

√
t
2 log( 4n

δ )A
(0)
yi,r,i

− ζ
)

≥ (1 +
ηC0σ

2
pd

nm
)(1−p)t−

√
t
2 log( 4

δ )ζ ≥ ζ,

where the last inequality follows from the fact that d ≫ Θ(1). To see this, suppose there exists a
t ≤ 2 log(4n/δ)

p2 such that

(1−
3ησ2

pd

nm
)pt+

√
t
2 log( 4n

δ )A
(0)
yi,r,i

≤ 2ζ,

then we have

pt+

√
t

2
log(

4n

δ
) ≥ log(d1/4/2)

log

(
1

1−
3ησ2

pd

nm

) ,

while t ≤ 2 log(4/δ)
p2 raises a contradiction by the choice of d. This proves for all t ≤ 2 log(4/δ)

p2 , we

have (1− 3ησ2
pd

nm )pt+
√

t
2 log( 4n

δ )A
(0)
yi,r,i

≥ 2ζ and thus A(t)
yi,r,i

≥ ζ.

Then we consider the case when t ≥ 2 log(4/δ)
p2 where the condition for Lemma A.4 holds. Now

suppose for all s ≤ t − 1, we have A
(s)
yi,r,i

≥ ζ, which clearly holds for t = 2 log(4n/δ)
p2 . For all
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s ≤ t−1, we have A(s)
yi,r,i

≥ (1− 3ησ2
pdζ

nm )A
(s)
yi,r,i

when ϵ
(s)
i = −1. This leads to the following lower

bound for A(t)
yi,r,i

as

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)(1−1.5p)t(1−

3ησ2
pd

nm
)1.5ptA

(0)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)tA

(0)
yi,r,i

≥ ζ,

where the second last inequality follows from the choice of

p ≤ 2

3

log(1 +
ηC0σ

2
pd

nm )− log(1 +
ηC0σ

2
pd

2nm )

log(1 +
ηC0σ2

pd

nm )− log(1− 3ησ2
pd

nm )
.

We can verify that p = C0

24 satisfies the above inequality. This concludes the proof that, for all t, we
have A

(t)
yi,r,i

≥ ζ and thus for all t. Finally, we conclude that

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

nm
)(1−1.5p)t(1−

2ησ2
pd

3nm
)1.5ptA

(0)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)tA

(0)
yi,r,i

.

With the above lemmas at hand, we are ready to prove Lemma 4.3:

Proof of Lemma 4.3. By Lemma D.3, at t = T1, taking the maximum over r yields

max
r

A
(t)
yi,r,i

≥ (1 +
ηC0σ

2
pd

2nm
)t0.6β̄

≥ (1 +
ηC0σ

2
pd

2nm
)t0.15σ0σp

√
d

≥ exp
(ηC0σ

2
pd

4nm
t
)
0.15σ0σp

√
d,

where the first inequality is by maxr⟨w(0)
j,r , ξi⟩ ≥ β̄ and 0.4β̄d−1/4 ≤ 0.4β̄. In the last inequality,

we use (1 + z) ≥ exp(z/2) for z ≤ 2.

Then we see maxr A
(t)
yi,r,i

≥ 1 in at least T1 =
log(20/(σ0σp

√
d))4nm

ηC0σ2
pd

and because maxj,r ρ
T1
j,r,i ≥

AT1
yi,r,i

−maxj,r |⟨w(0)
j,r , ξi⟩|+ 0.4β̄ ≥ 1.

Besides, by Lemma C.2, we directly obtain the result that

|ρ(T1)
j,r,i

| ≤
3ησ2

pdT1

nm

√
log(8mn/δ)σ0σp

√
d = Õ(σ0σp

√
d).

Furthermore, Lemma C.1 yields

γ
(T1)
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m

4nm

ησ2
pd

log(1/(σ0σp

√
d))
)
|⟨w(0)

j,r ,µ⟩| ≤ 2|⟨w(0)
j,r ,µ⟩|,

where we have used the condition of low SNR, namely nSNR2 ≤ 1/ log(20/(σ0σp

√
d)). By

Lemma A.2, we conclude the proof for maxj,r γ
(T1)
j,r = Õ(σ0∥µ∥2).

Lastly, according to Lemma D.1, at the end of stage1, we have the lower bound on signal learning
coefficient

max
r∈[m]

γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩| ≥ exp
(C0η∥µ∥22

8m
t
)
max
r∈[m]

|⟨w(0)
j,r ,µ⟩|

= exp
(C0η∥µ∥22

8m

log(20/(σ0σp

√
d))4nm

ηC0σ2
pd

)
max
r∈[m]

|⟨w(0)
j,r ,µ⟩|

≥ exp(nSNR2 log(20/(σ0σp

√
d))σ0∥µ∥2 ≥ σ0∥µ∥2.
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D.2 PROOF OF LEMMA 4.4

The key idea is to show ρ
(t)
j,r,i oscillates during the second stage, where the growth tends to offset the

drop over a given time frame. This would suggest the f(W (t),x) is both upper and lower bounded
by a constant, which is crucial to ensuring that γ(t)

j,r increases exponentially during the second stage.

Without loss of generality, for each i with ⟨w(t)
j,r,i, ξi⟩ > 0 and j = yi = 1, the evolution of ρt+1

j,r,i is
written as

ρt+1
j,r,i = ρ

(t)
j,r,i −

2η

nm
ℓ̃
′(t)
i ⟨w(t)

j,r, ξi⟩∥ξi∥
2ϵ

(t)
i

≈

(1 + 2η∥ξi∥2

nm(1+exp(f
(t)
i ))

)ρ
(t)
j,r,i, if ϵ(t)i = 1

(1− 2η∥ξi∥2

nm(1+exp(−f
(t)
i ))

)ρ
(t)
j,r,i if ϵ(t)i = −1

where we denote f
(t)
i = f(W (t),xi). Note that f (t)

i ≈ 1
m

∑m
r=1(ρ

(t)
+1,r,i)

2 when γ
(t)
j,r ≪ 1.

To simplify the notation, we define that ι(t)i ≜ 1
m

∑m
r=1 ρ

(t)
+1,r,i. Then the dynamics can be approxi-

mated to

ι
(t+1)
i ≈

(1 +
2η∥ξ∥2

2

nm(1+exp((ι
(t)
i )2))

)ι
(t)
i with prob 1− p

(1− 2η∥ξ∥2
2

nm(1+exp(−(ι
(t)
i )2))

)ι
(t)
i with prob p

Lemma D.4 (Restatement of Lemma 4.4). Under the same condition as Theorem 3.2, during t ∈
[T1, T2] with T2 = T1 + log(6/(σ0∥µ∥2))4m(1 + exp(c2))η

−1∥µ∥−2
2 , there exist a sufficient large

positive constant Cι and a constant ι∗i depending on sample index i such that the following results
hold with high probability at least 1− 1/d:

• |ι(t)i − ι∗i | ≤ Cι

• γ
(t)
j,r ≤ 0.1 for all j ∈ {−1, 1} and r ∈ [m]

• 1
2m (

∑m
r=1 ρ

(t)
yi,r,i

)2 ≤ f
(t)
i ≤ 2

m (
∑m

r=1 ρ
(t)
yi,r,i

)2

• maxr∈[m](γ
(t)
j,r + |⟨w(0)

j,r ,µ⟩|) ≥ exp
(η∥µ∥2

2

16m (t− T1)
)
maxr∈[m] |γ

(T1)
j,r + ⟨w(0)

j,r ,µ⟩|.

Proof of Lemma D.4. The proof is based on the method of induction. Without loss of generality, we
consider all i with yi = 1. We first check that at time step t = T1, by Lemma 4.3, there exists a
constant C such that

| 1
m

m∑
r=1

ρ
(T1)
+1,r,i − ι∗i | ≤ C.

Besides, by Lemma 3.2, it is straightforward to check that γ(T1)
j,r ≤ 1 for all j ∈ {−1, 1} and r ∈ [m],

and maxj γ
(T1)
j,r ≥ 0. Next, we can show the following result at time t = T1:

f
(T1)
i = F+1(W

(T1)
+1 ,xi)− F−1(W

(T1)
−1 ,xi)

=
1

m

m∑
r=1

σ
(
⟨w(0)

+1,r,µ⟩+ γ
(T1)
+1,r

)
+

1

m

m∑
r=1

σ
(
⟨w(0)

+1,r, ξi⟩+ ρ
(T1)
+1,r,i +

∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T1)
+1,r,i′

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r,µ⟩ − γ
(T1)
−1,r

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r, ξi⟩+ ρ(T1)
−1,r,i

+
∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T1)
−1,r,i′

)
≥ −Ω̃(σ2

0∥µ∥22)− Ω̃(σ0σp

√
d) +

1

m
(

m∑
r=1

ρ
T1)
+1,r,i − β − 16

√
log(4n2/δ)

d
nα)2

≥ 1

2m
(

m∑
r=1

ρ
(T1)
+1,r,i)

2,
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where the first inequality is by Lemma 4.4, Proposition 4.1, and Lemma A.1, The second inequality
follows from the condition on σ0 and d in Assumption 3.1. Similarly, we have

f
(T1)
i = F+1(W

(T1)
+1 ,xi)− F−1(W

(T1)
−1 ,xi)

≤ Õ(σ2
0∥µ∥22) + Õ(σ0σp

√
d) +

1

m
(

m∑
r=1

ρ
(T1)
+1,r,i + β + 16

√
log(4n2/δ)

d
nα)2

≤ 2

m
(

m∑
r=1

ρ
(T1)
+1,r,i)

2.

Next, we assume that all the results hold for T1 < t ≤ T . By the induction hypothesis, we can bound
c1 ≤ f

(T )
i ≤ c2 for all i ∈ [n]. Then we can show that γ(T+1)

j,r continues to exhibit exponential
growth:

γ
(T+1)
j,r = γ

(T )
j,r − 2η

nm

( ∑
i∈S(T )

+ ∩S1

ℓ̃
′(t)
i −

∑
i∈S(T )

− ∩S1

ℓ̃
′(t)
i

)
⟨w(T )

j,r ,µ⟩∥µ∥22

≥ γ
(T )
j,r +

2η

nm

(
|S(T )

+ | 1

1 + exp(c2)
− |S(T )

− | 1

1 + exp(−c2)

)
⟨w(T )

j,r ,µ⟩∥µ∥22

≥ γ
(T )
j,r +

2η

m

(2− 3p

4

1

1 + exp(c2)
− 3p

4

1

1 + exp(−c2)

)
⟨w(T )

j,r ,µ⟩∥µ∥22

= γ
(T )
j,r +

η

m

( 1

1 + exp(c2)
− 3p

2

)
(⟨w(T )

j,r ,µ⟩+ jγ
(T )
j,r )∥µ∥22

≥ γ
(T )
j,r +

η∥µ∥22
2m(1 + exp(c2))

(⟨w(T )
j,r ,µ⟩+ jγ

(T )
j,r ),

where the last inequality is by 3
2p ≤ 1

2
1

1+exp(c2)
. Next, define B(t) = maxr∈[m](γ

(t)
j,r+ |⟨w(0)

j,r ,µ⟩|),
we have:

B(T+1) ≥ B(T )(1 +
η∥µ∥22

2m(1 + exp(c2))
)

≥ exp(
η∥µ∥22

4m(1 + exp(c2))
(t− T1))B

(T1)

≥ exp
(η∥µ∥22
16m

(t− T1)
)
B(T1).

At the same time, there exists an upper bound on the signal learning:

γ
(T )
j,r + |⟨w(0)

j,r ,µ⟩| ≤ exp
(2η∥µ∥22

m
(T − T1)

)
|γ(T1)

j,r + ⟨w(0)
j,r ,µ⟩| ≤ 0.01,

where we used the condition that T < T2.

To show that ι(T+1)
i remains within a constant range, we define M

(t)
i ≜ (ι

(t)
i − ι∗i )

2 where ι∗i
is a sufficiently large constant depending on i. Using the relation 1

2m (
∑m

r=1 ρ
(T )
yi,r,i

)2 ≤ f
(T )
i ≤

2
m (
∑m

r=1 ρ
(T )
yi,r,i

)2 we have:

E[ι(T+1)
i |ι(T )

i ] ≥ (1− p)
(
1 +

2η∥ξi∥22
(1 + 2 exp((ι

(T )
i )2))nm

)
ι
(T )
i

+ p
(
1− 2η∥ξi∥22

(1 + 1/2 exp(−(ι
(T )
i )2))nm

)
ι
(T )
i .

At the same time,

E[(ι(T+1)
i )2|ι(T )

i ] ≤ (1− p)
(
1 +

2η∥ξi∥22
(1 + 1/2 exp((ι

(T )
i )2))nm

)2
(ι

(T )
i )2
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+ p
(
1− 2η∥ξi∥22

(1 + 2 exp(−(ι
(T )
i )2))nm

)2
(ι

(T )
i )2.

Then we show that

E[M (T+1)
i |ι(T )

i ] = E[(ι(T+1)
i )2|ι(T )

i ]− 2ι∗E[ι(T+1)
i |ι(T )

i ] + (ι∗)2

≤ (1− p)
(
1 +

2η∥ξi∥22
(1 + 1/2 exp((ι

(T )
i )2))nm

)2
(ι

(T )
i )2

+ p
(
1− 2η∥ξi∥22

(1 + 2 exp(−(ι
(T )
i )2))nm

)2
(ι

(T )
i )2

− 2ι∗(ι
(T )
i +

2η∥ξi∥2

nm

( 1

1 + 2 exp((ι
(T )
i )2))

− p
)
ι
(T )
i ) + (ι∗)2.

Subtracting M
(T )
i yields

E[M (T+1)
i |ι(T )

i ]−M
(T )
i

≤ (1− p)
[ 4η∥ξi∥22
(1 + 1/2 exp((ι

(T )
i )2))nm

+ (
2η∥ξi∥22

(1 + 1/2 exp((ι
(T )
i )2))nm

)2
]
(ι

(T )
i )2

+ p
[
− 4η∥ξi∥22

(1 + 2 exp(−(ι
(T )
i )2))nm

+ (
2η∥ξi∥22

(1 + 2 exp(−(ι
(T )
i )2))nm

)2
]
(ι

(T )
i )2

− 2ι∗
2η∥ξi∥2

nm

( 1

1 + 2 exp((ι
(T )
i )2)

− p
)
ι
(T )
i

= −p
4η∥ξi∥22(ι

(T )
i )2

(1 + 2 exp(−(ι
(T )
i )2))nm

+ (1− p)
4η∥ξi∥22(ι

(T )
i )2

(1 + 1/2 exp((ι
(T )
i )2))nm

− 2ι∗
2η∥ξi∥2

nm

( 1

1 + 2 exp((ι
(T )
i )2)

− p
)
ι
(T )
i +O(η2)

=
4η∥ξi∥22
nm

[
1− p(1 + 1/2 exp((ι

(T )
i )2))

1 + 1/2 exp((ι
(T )
i )2)

(ι
(T )
i )2 − 1− p(1 + 2 exp((ι

(T )
i )2))

1 + 2 exp((ι
(T )
i )2)

ι
(T )
i ι∗

]
+O(η2)

≤ 0,

where the final inequality is by ι
(T )
i ≤ 4ι∗ and p < 1/(1 + 2 exp((ι

(T )
i )2)) and condition the

learning rate from Assumption 3.1, which confirms that {M (t)
i }t∈[T1,T+1] is a super martingale. By

one-sided Azuma inequality, with probability at least 1− δ, for any τ > 0, it holds that

P (M
(T+1)
i −M

(T1)
i ≥ τ) ≤ exp

(
− τ2∑t

k=1 c
2
k

)
,

where,

ck = |M (k)
i −M

(k−1)
i | = |(ι(t)i − ι∗)2 − (ι

(t−1)
i − ι∗)2|

= |(ι(t)i − ι
(t−1)
i )(ι

(t)
i + ι

(t−1)
i − 2ι∗i )| ≤ ηC2.

Taking the upper bound of ck ≤ ηC2 yields

P ((ι
(T+1)
i − ι∗i )

2 − C2
0 ≥ τ) ≤ exp

(
− τ2

tη2C2
2

)
,

where we define C0 ≜ (ι
(T1)
i − ι∗i )

2 > 0. Therefore, we conclude with probability at least 1− δ,

|ι(T+1)
i − ι∗i | ≤

√
C2

0 +
√
η2tC2

2 log(1/δ) ≤ Cι,
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where the last inequality is by η ≤ Õ(σ−2
p d−1) and T < T2.

Finally, we check that

f
(T+1)
i = F+1(W

(T+1)
+1 ,xi)− F−1(W

(T+1)
−1 ,xi)

=
1

m

m∑
r=1

σ
(
⟨w(0)

+1,r,µ⟩+ γ
(T+1)
+1,r

)
+

1

m

m∑
r=1

σ
(
⟨w(0)

+1,r, ξi⟩+ ρ
(T+1)
+1,r,i +

∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T+1)
+1,r,i′

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r,µ⟩ − γ
(T+1)
−1,r

)
− 1

m

m∑
r=1

σ
(
⟨w(0)

−1,r, ξi⟩+ ρ(T+1)
−1,r,i

+
∑
i′ ̸=i

⟨ξi, ξi′⟩
∥ξi′∥22

ρ
(T+1)
−1,r,i′

)
≥ −Ω̃(σ2

0∥µ∥22)− 0.01 + (
1

m

m∑
r=1

ρ
(T+1)
+1,r,i − β − 16

√
log(4n2/δ)

d
nα)2

≥ 1

2
(
1

m

m∑
r=1

ρ
(T+1)
+1,r,i )

2,

where the first inequality is by Lemma 4.3 and the induction claim, and the second inequality is by
condition on d from Assumption 3.1. Similarly, by the same argument, we conclude that:

f
(T+1)
i = F+1(W

(t)
+1 ,xi)− F−1(W

(t)
−1 ,xi)

≤ Õ(σ2
0∥µ∥22) + 0.01 + Õ(σ0σp

√
d) + (

1

m

m∑
r=1

ρ
(t)
+1,r,i + β + 16

√
log(4n2/δ)

d
nα)2

≤ 2(
1

m

m∑
r=1

ρ
(t)
+1,r,i)

2.

Let T2 = T1 + log(6/(σ0∥µ∥2))4m(1 + exp(c2))η
−1∥µ∥−2

2 , then by lemma 4.3 we can show that

γ
(T2)
j,r ≥ exp(

η∥µ∥22
4m(1 + exp(c2))

t)γ
(T1)
j,r

= exp(
η∥µ∥22

4m(1 + exp(c2))
log(6/(σ0∥µ∥2))4m(1 + exp(c2))η

−1∥µ∥−2
2 )γ

(T1)
j,r

= C0/(σ0∥µ∥2)γ(T1)
j,r

≥ 0.01.

D.3 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. For the population loss, we expand the expression as follows:

L0−1
D (W (t)) = E(x,y)∼D[y ̸= f(W (t),x))] = P(yf(W (t),x) < 0)

= P
( 1

m

m∑
r=1

σ(⟨w(t)
−y,r, ξ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
y,r, ξ⟩) ≥

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

)
.

Recall the weight decomposing

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi +

n∑
i=1

ρ(t)
j,r,i

∥ξi∥−2
2 ξi.

From this, we obtain:

⟨w(t)
−y,r, yµ⟩ = ⟨w(0)

−y,r, yµ⟩ − γ
(t)
−y,r,
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⟨w(t)
y,r, yµ⟩ = ⟨w(0)

y,r, yµ⟩+ γ(t)
y,r.

By Lemma 4.4, we conclude that

⟨w(t)
y,r, yµ⟩ = Θ(1), ⟨w(t)

−y,r, yµ⟩ = −Θ(γ(t)
y,r) < 0.

Therefore, it holds that

1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−y,r, yµ⟩)

=
1

m

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)

=
1

m

m∑
r=1

σ(⟨w(0)
y,r, yµ⟩+ γ(t)

y,r)

= Θ(1),

where the last inequity is by Lemma 4.4.

Next, we provide the bound for the noise memorization part. Define that g(ξ) =∑m
r=1 σ(⟨w

(t)
−y,r, ξ⟩). By Theorem 5.2.2 in Vershynin (2018), for any τ > 0, it holds

P(g(ξ)− E[g(ξ)] ≥ τ) ≤ exp(− cτ2

σ2
p∥g∥2Lip

),

where c is a constant and ∥g∥Lip is the Lipschitz norm of function g(ξ), which can be calculated as
follows:

|g(ξ)− g(ξ′)| = |
m∑
r=1

σ(⟨w(t)
−y,r, ξ⟩)−

m∑
r=1

σ(⟨w(t)
−y,r, ξ

′⟩)|

≤
m∑
r=1

|σ(⟨w(t)
−y,r, ξ⟩)− σ(⟨w(t)

−y,r, ξ
′⟩)|

≤ 2

m∑
r=1

|⟨w(t)
−y,r, ξ⟩| · |⟨w

(t)
−y,r, ξ − ξ′⟩|

≤ 2

m∑
r=1

∥w(t)
−y,r∥22 · ∥ξ∥2 · ∥ξ − ξ′∥2

≤ 3

m∑
r=1

∥w(t)
−y,r∥22σp

√
d∥ξ − ξ′∥2,

where the first inequality is by the triangle inequality, the second inequality follows from the the
convexity of the activation function, the third inequality is by the Cauchy-Schwarz inequality, and
the last inequality follows from A.1. Therefore we conclude that

∥g∥Lip ≤ 3

m∑
r=1

∥w(t)
−y,r∥22σp

√
d.

Furthermore, given that ⟨w(t)
−y,r, ξ⟩ ∼ N (0, σ2

p∥w
(t)
−y,r∥22) we have:

E[g(ξ)] =
m∑
r=1

E[σ(⟨w(t)
−y,r, ξ

′⟩)] =
m∑
r=1

σ2
p/2∥w

(t)
−y,r∥22.

To obtain the the upper bound of g(ξ), we show that:

∥w(t)
−y,r∥22 = ∥

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi∥22
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=

n∑
i=1

(ρ
(t)
j,r,i)

2∥ξi∥−2
2 ξi + 2

n∑
i=1

∑
j ̸=i

ρ
(t)
j,r,iρ

(t)
j,r,j∥ξi∥

−2
2 |ξj∥−2

2 ⟨ξi, ξj⟩

≤ 3nC(σ2
pd)

−1 + 2n2(σ2
pd)

−2σ2
p

√
d log(4n2/δ)

≤ 4nC(σ2d)−1,

where the first inequality is by Lemma A.1, and the second inequality is by the condition on d in
Assumption 3.1. With the results above, we conclude that

L0−1
D (W (t)) = E(x,y)∼D[y ̸= f(W (t),x))] = P(yf(W (t),x) < 0)

≤ P(
m∑
r=1

σ(⟨w(t)
−y,r, ξ⟩) ≥

m∑
r=1

σ(⟨w(t)
y,r, yµ⟩))

= P(g(ξ)− E[g(ξ)] ≥
m∑
r=1

σ(⟨w(t)
y,r, yµ⟩)−

m∑
r=1

σ2
p/2∥w

(t)
−y,r∥22)

≤ exp

(
−
c(
∑m

r=1 σ(⟨w
(t)
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∑m
r=1 σ

2
p/2∥w

(t)
−y,r∥22)2

σ2
p(3
∑m

r=1 ∥w
(t)
−y,r∥22σp

√
d)2

)

≤ exp

−

(
C1 − σ2

p/2 · 4nC(σ2
pd)

−1

3σ2
p

√
d4nC(σ2

pd)
−1

)2


≤ exp(
1

36d
) exp(− C2

1d

122n2C2
)

≤ 2 exp

(
− C2

1d

122n2C2

)
,

which corresponds to the second bullet point of Theorem 3.2. Combined with Lemma 4.4, which
establishes the first bullet point, this completes the proof of Theorem 3.2.

E ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to further support our theoretical findings.

E.1 DEEPER NEURAL NETWORK

Figure 3: Performance of a 3-layer ReLU neural network: The ratio of noise memorization to signal learning,
along with training loss and test accuracy, for standard GD and label noise GD.

We have conducted additional experiments using a 3-layer neural network with ReLU activation.
The network is defined as f(W ,x) = F+1(W+1,W ,x)− F−1(W−1,W ,x), where

Fj(Wj ,W ,x) =
1

m

m∑
r=1

2∑
p=1

σ
(
⟨wj,r, z

(p)⟩
)
, z(p) = σ(W⊤x(p)),

in which σ(·) is the ReLU activation, W ∈ Rd×m denotes the weight in the first layer, and W±1 ∈
Rm×m are weights in the second layer. The last layer is fixed.
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Specifically, we train the first two layers. The number of training samples is n = 200, and the
number of test samples is ntest = 2000. The input dimension was set to d = 2000. We set the
width to m = 20, the learning rate to η = 0.5, and the noise flip rate to p = 0.1. The data
model follows our theoretical setting, where µ = [1, 0, 0, · · · , 0] and the noise strength is σp = 1.
The experimental results, shown in Figure 3, are consistent with our original findings: compared
to standard gradient descent, label noise GD boosts signal learning (as shown in the first plot) and
achieves better generalization (as shown in the last plot).

E.2 REAL WORLD DATASET

Figure 4: Performance on the modified MNIST dataset: The ratio of noise memorization to signal learning,
along with training loss and test accuracy, for standard GD and label noise GD.

We conducted an experiment using the MNIST dataset, in which Gaussian noise was added to the
borders of the images while retaining the digits in the middle. The noise level was set to σp = 5.
Moreover, the original pixel values of the digits ranged from 0 to 255, and we chose a normalization
factor of 80. In this setup, the added noise formed a “noise patch” and the digits formed a “signal
patch”. We focused on the digits ‘0’ and ‘1’, using n = 100 samples for training and 200 samples for
testing. The learning rate was set to η = 0.001, and the width was set to m = 20, with a label noise
level of p = 0.15. The results, shown in Figure 4, were consistent with our theoretical conclusions,
reinforcing the insights derived from our analysis.

To assess the sensitivity of the methods to the choice of noise parameters and signal normalization,
we conducted additional experiments on a modified MNIST dataset. The signal normalization values
were varied from 60 to 140, while the noise levels ranged from 4 to 8. For each combination of noise
level and signal normalization, we trained the neural network for 200,000 steps with a learning rate
η = 0.001, using either standard gradient descent (GD) or label noise GD.

The resulting test errors are visualized in Figure 5. Notably, label noise GD (right) consistently
achieves higher test accuracy than standard GD (left) across all configurations. This demonstrates
the robustness of label noise GD to variations in noise and signal normalization parameters.

The motivation behind using MNIST was its clearer signal, which allows us to more directly ob-
serve the effects of label noise without other confounding factors. However, we also conducted
experiments on a subset of CIFAR-10, using two classes: airplane and automobile. Gaussian noise
was added to a portion of the images, following a similar setup to MNIST. For these experiments,
we set q = 2, the number of neurons m = 20, the learning rate η = 0.001, the signal norm
signal norm = 64, the noise level noise level = 5, the number of samples n = 100, the label noise
probability p = 0.15, and the input dimension d = 6144.

The results shown in Figure 6 indicate that label noise GD continues to provide benefits in terms
of generalization compared to standard GD. We believe these extended experiments help establish a
broader applicability of our findings to more complex benchmarks.

E.3 DIFFERENT TYPE OF LABEL NOISE

To validate the robustness of label noise GD under different noise forms, we varied p across different
values. For example, we show the results for p = 0.3 in Figure 7 and p = 0.4 in Figure 8. The results
consistently indicate that label noise helps reduce overfitting and boost generalization, especially in
low SNR settings.
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(a) Performance of standard GD (b) Performance of Label Noise GD

Figure 5: Test accuracy heatmap of standard GD (left) and Label Noise GD (right) after training on modified
MNIST dataset.

Figure 6: Performance on the modified CIFAR-10 dataset: The ratio of noise memorization to signal learning,
along with training loss and test accuracy, for standard GD and label noise GD.

In addition, we extended our empirical analysis to include Gaussian noise and uniform distribution
noise added to the labels. For Gaussian noise, we used two examples, namely ϵ

(t)
i ∼ N (1, 1) and

ϵ
(t)
i ∼ N (1, 1), with the results shown in Figures 9 and 10, respectively. Furthermore, for the

uniform distribution, we simulated the noise with ϵ
(t)
i ∼ unif[−1, 2] and ϵ

(t)
i ∼ unif[−2, 3]. The

results are shown in Figures 11 and 12, respectively.

Our results indicate that label noise GD still performs effectively, achieving better generalization
compared to standard GD, providing further evidence of the robustness of label noise GD under
different noise forms.

Figure 7: Performance with flip noise p = 0.3: The ratio of noise memorization to signal learning, training
loss, and test accuracy of standard GD and label noise GD.

E.4 HIGHER ORDER POLYNOMIAL RELU

In this work, we set the activation function as squared ReLU. This choice makes q = 2 a particularly
interesting and challenging case to analyze, as it allows us to study the interaction between signal
and noise in a setting that closely resembles practical two-layer ReLU networks.
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Figure 8: Performance with flip noise p = 0.4: The ratio of noise memorization to signal learning, training
loss, and test accuracy of standard GD and label noise GD.

Figure 9: Performance with Gaussian noise N (1, 1): The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.

Figure 10: Performance with Gaussian noise N (0.6, 1): The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.

Figure 11: Performance with uniform distribution noise unif[−1, 2]: The ratio of noise memorization to signal
learning, training loss, and test accuracy of standard GD and label noise GD.

For higher values of q, we also conducted experiments with q = 3 and q = 4. For q = 3, we set the
learning rate η = 0.5, the number of neurons m = 20, the number of samples n = 200, the signal
mean µ = [2, 0, 0, · · · , 0], and the noise strength σp = 0.5. The results are shown in Figure 13. For
q = 4, the parameters were set as η = 0.1, m = 20, n = 50, µ = [5, 0, 0, · · · , 0], and σp = 0.5.
The results are shown in Figure 14.

In all these cases, the experimental results consistently show that using a higher polynomial ReLU
activation helps label noise GD suppress noise memorization while enhancing signal learning. This
ultimately leads to improved test accuracy compared to standard GD.
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Figure 12: Performance with uniform distribution noise unif[−2, 3]: The ratio of noise memorization to signal
learning, training loss, and test accuracy of standard GD and label noise GD.

Figure 13: Performance with q = 3 for polynomial ReLU: The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.

Figure 14: Performance with q = 4 for polynomial ReLU: The ratio of noise memorization to signal learning,
training loss, and test accuracy of standard GD and label noise GD.
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