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Abstract

With the rapid discovery of emergent phenomena in deep learning and large lan-
guage models, understanding their cause has become an urgent need. Here, we
propose a rigorous entropic-force theory for understanding the learning dynamics
of neural networks trained with stochastic gradient descent (SGD) and its vari-
ants. Building on the theory of parameter symmetries and an entropic loss land-
scape, we show that representation learning is crucially governed by emergent
entropic forces arising from stochasticity and discrete-time updates. These forces
systematically break continuous parameter symmetries and preserve discrete ones,
leading to a series of gradient balance phenomena that resemble the equipartition
property of thermal systems. These phenomena, in turn, (a) explain the univer-
sal alignment of neural representations between AI models and lead to a proof of
the Platonic Representation Hypothesis, and (b) reconcile the seemingly contra-
dictory observations of sharpness- and flatness-seeking behavior of deep learning
optimization. Our theory and experiments demonstrate that a combination of en-
tropic forces and symmetry breaking is key to understanding emergent phenomena
in deep learning.

1 Introduction

Modern neural networks trained with stochastic gradient descent (SGD) exhibit a complex plethora
of emergent behaviors – emergence of capabilities [1, 2, 3], progressive sharpening and flattening
[4, 5], phase-transition like behaviors [6, 7], and universal representational alignment across models
[8, 9, 10, 11] – that are difficult to explain through loss minimization alone. These behaviors mirror
phenomena found in physical systems at finite temperature, suggesting that deep learning dynamics
are shaped not just by explicit optimization but also by implicit forces arising from stochasticity
and discrete updates. These implicit forces have long been associated with the phenomenon of
“implicit bias” in deep learning [12, 13, 14, 15], but their precise mathematical nature remains
elusive. In physics, such effects are often captured by entropic forces—macroscopic forces that
emerge from the system’s statistical tendencies rather than its energy landscape alone [16]. The
power of this framework lies in the notion of an effective entropy, which plays the role of a potential
whose gradients define the entropic force. Identifying this effective entropy not only reveals what
the system is implicitly optimizing, but also opens the door to leveraging theoretical tools from
statistical physics to analyze and improve AI models.

Contributions. We formalize this connection between stochastic learning dynamics and entropic
forces through the lens of symmetry and representation learning to:
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1. Derive an entropic loss function and show that the entropic forces of SGD break continuous
parameter symmetries while preserving discrete ones (Section 3).

2. Show that the symmetry breaking due to entropic forces gives rise to a family of equipartition
theorems that predict the gradient alignment phenomena (Section 4).

3. Explain and unify two seemingly disparate but universal observations – progressive sharpen-
ing of the loss landscape and the emergence of universal representations – as consequences of
entropic forces (Section 5).

Our theory establishes a principled framework – akin to a thermodynamics of deep learning – that
unifies several universal phenomena under a single formalism. The results suggest that the entropic
loss landscape, shaped by both optimization and entropy, plays a foundational role in understand-
ing learning dynamics and emergent phenomena. Full derivations and experimental validations are
provided in the appendix.

2 Related Work

Modified Loss and Effective Landscape. The concept of modified or effective losses has
emerged as a critical framework for understanding the implicit biases induced by stochastic gra-
dient descent (SGD) in deep learning, which differs from another line of work [17, 18, 19, 20, 21]
which leverages the property of stationarity to analyze the stationary distribution of SGD. Ref. [22]
introduced the notion of a modified loss to analyze the discrete-time dynamics of SGD, demonstrat-
ing how discretization implicitly alters the optimization landscape. Similarly, Refs. [23] and [24]
extended the modified loss formulation to where there is a gradient noise due to minibatch sampling.
These works conducted numerical simulations to show that training on the effective loss really ap-
proximates the original dynamics [23, 25, 26] and leads to similar generalization performances. In
this work, we refer to this type of losses as entropic losses for their associations with theoretical
physics. Still, these entropic losses remain poorly understood, and their significance for understand-
ing emergent phenomena in deep learning is not yet appreciated. Our work finds the crucial link
between the entropic loss and symmetry-breaking dynamics, which is important for understanding
the various intriguing nonlinear phenomena of representation learning.

Parameter Symmetry in Neural Networks. Parameter symmetries are shown to play a funda-
mental role in shaping neural network training dynamics and their emergent properties [27, 28, 29,
7, 30, 31]. A series of works showed that continuous symmetries in the loss function give rise to
conservation laws, which imply that the learning result of SGD training is strongly initialization-
dependent [32, 28, 33]. More recent works showed how any stochasticity or discretization effect
could break the symmetries in a systematic way such that the learned solution is no longer depen-
dent on the initialization, a hint of universality [34, 29, 7, 31]. Particularly, Ref. [29] developed the
formalism of exponential symmetries and proved that any loss function with an exponential symme-
try leads to a symmetry-breaking dynamics that converges to unique fixed points. This point can be
seen as the dynamical equivalence of our Theorem 2, which states that there is essentially no contin-
uous symmetry in the entropic loss. In comparison, our framework takes a different perspective: we
study the symmetry from a loss landscape perspective and identify these symmetry-breaking ten-
dencies as entropic forces. This unified perspective enables us to understand the universal learning
phenomena with a greatly simplified analysis.

3 Effective Energy for Stochastic Gradient Learning

Define ℓ(x, θ) to be the per-sample loss function. We can define the empirical risk as

L(θ) = EB[Ex∈Bℓγ(x, θ)], (1)

where ℓγ(x, θ) ∶= ℓ(x, θ) + γ∣∣θ∣∣2, B represents the minibatch and γ represents the weight decay.
From a dynamical-system perspective, for an infinitesimal learning rate, the loss function coincides
with the Bregman Lagrangian of this dynamics, and so one can leverage the Lagrangian formalism
to understand the training of gradient flow [35]. This is particularly attractive from a theory per-
spective because modern theoretical physics are also founded on the Lagrangian formalism and this
connection allows one to borrow physics intuitions to understand deep learning.

However, simply studying this loss function is insufficient to understand the learning dynamics of
SGD at various learning rates η due to the stochastic discrete-time nature of SGD. This motivates the
definition of an entropic loss ϕη such that running n steps of update on ϕη(θ) with learning rate η/n
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is the same as running one step of update on ℓγ for any x. Taking the limit n→∞, one can obtain a
“renormalized” loss function for which running gradient flow is the same as running gradient descent
for the original loss. With this loss, it becomes possible again to leverage Lagrangian formalism to
understand SGD training with discrete-time and stochastic learning. Because ϕ0 coincides with
running gradient flow on ℓγ , one must have that

ϕη ∶= ℓγ + ηϕ1 + η2ϕ2 +O(η3). (2)

We can also consider the more general case where the learning rate is a fixed symmetric matrix
Λ with ∣∣Λ∣∣ = η. The following theorem derives the entropic loss for this case. Many common
algorithms, such as Adam, natural gradient descent, and even a wide range of biologically plausible
learning rules [36] can be seen as having matrix learning rate.

Theorem 1. (Entropic Loss) For fixed x, starting from θ0 run one-step gradient descent with Λ on
ℓγ(x, θ) to obtain θ1. Run n−step gradient descent with Λ/n on ϕΛ(x, θ) ∶= ℓγ(x, θ) + ϕ1Λ(x, θ) +
ϕ2Λ(x, θ) to obtain θ′n. Then, assuming ∣∣∇3ℓγ(x, θ)∣∣ ≤M ,

1. if ϕ1Λ(x, θ) = 1
4
∇ℓγ(x, θ)TΛ∇ℓγ(x, θ), then, θ′n = θ1 +O(∣∣Λ∣∣3 + ∣∣Λ∣∣2/n);

2. moreover, if ϕ2Λ(x, θ) = 1
2
∇ℓγ(x, θ)TΛ∇2ℓ(x, θ)Λ∇ℓγ(x, θ), then θ′n = θ1+O(∣∣Λ∣∣4+∣∣Λ∣∣2/n+

∣∣Λ∣∣3/n + ∣∣Λ∣∣3M).

This ϕη also needs to hold in expectation with respect to the sampling of data points, and so one can
define the expected entropic loss Fη,γ(θ) = E[ϕη(x, θ)], which is, up to the first order in Λ and γ:

Fη,γ(θ) = Exℓ(x, θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

learning, symmetry

+ γ∣∣θ∣∣2
²

regularization

+ 1

4
EB ∣∣
√
ΛEx∈B∇ℓ(x, θ)∣∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
effective entropy due to discretization error, noise, ∶= S(θ)

+O(∣∣Λ∣∣2). (3)

Specializing to the first order and with a scalar learning rate, this equation reduces to the “modified
loss” previously derived in different contexts [22, 23, 24]. The derivation has a thermodynamic
flavor as it essentially computes the degree to which the dynamics is irreversible, and the entropy
term is the part that cannot be microscopically reversed. In Theorem 1, the first-order term in
Λ encourages the model to have a small gradient fluctuation. The second-order term, on top of
gradient regularization, encourages the model to move to flatter solutions; this term has been found
to play a role in the edge of stability phenomenon [5]. However, since the first-order term is not yet
well-understood, our work focuses on the first-order term in Λ. We also focus on a scalar learning
rate Λ = ηI and will comment on the differences when the difference is essential.

Now, treating the original loss plus regularization as an energy, the dynamics of gradient flow on
F contains an energy force and and an entropic force: θ̇ = −η(∇L + γθ + ∇S). The ∇S term, the
gradient of the effective entropy, will be called the “entropic force.” See Figure 1 for an illustration
of the entropic force and an example of how entropy evolves during training.

We prove that the entropic force term breaks almost any continuous symmetry of L, a key result that
we will leverage to study progressive sharpening and universal representation learning.

Definition 1. A loss function ℓ(x, θ) is said to be K-invariant if items 1-3 are satisfied:

1. locality: K(θ, λ) = θ + λQ(θ) +O(λ2) for a differentiable Q;
2. consistency: K(K(θ, λ), λ′) =K(θ, λ + λ′);
3. invariance: ℓ(x,K(θ, λ)) = ℓ(x, θ) for all x, θ and λ ∈ R.

An entropic loss Fη,γ is said to have the (robust) K-invariance if there exists a neighborhood around
η, γ such that Fη,γ is K-invariant.

Theorem 2. (Symmetry Breaking Under the Entropic Loss) Let ℓ be K-invariant. If F is also
robustly K-invariant, then, (1) ∥K(θ, λ)∥ = ∥θ∥ and (2) ∇T ℓ∇Q(θ)∇ℓ = 0 for all θ.

This means that any symmetry or invariance that Fη,γ has must be norm-preserving transforma-
tions. Essentially, this means that any invariance that is not rotation invariance must disappear. The
following theorem shows that orthogonal discrete symmetries are preserved.

Theorem 3. Let OOT = I . If ℓ(x,Oθ) = ℓ(x, θ) for any θ and x, then Fη,γ(Oθ) = Fη,γ(θ) for any
θ.
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Figure 1: Entropic forces due to discretization error and stochasticity. Left: The learning dynamics of SGD at
a large learning rate (LLR) and a small learning rate (SLR) is different. One can view the difference between
LLR and SLR training as coming from an entropy term, which is an order η force. After entropic correction,
the difference between SLR and LLR is reduced to O(η2

) and it becomes possible to analyze LLR SGD with
gradient flow. Right: An example of entropic effect in neural network training. ResNet18 trained on CIFAR-10
with learning rate decay at 100 and 150 epochs. At the first learning rate drop (black dashed lines), the gradient
(entropy) increases. This is unexpected and can only be explained by the entropic loss, where a large learning
rate penalizes the entropy, and thus decreasing the learning rate leads to an increase in entropy. The second
drop does not create too much effect because the learning rate is too small after the first drop.

Together with the previous result, this shows that when gradient noise or regularization is taken
into account, the only relevant remaining symmetries are discrete symmetries. This implies that the
results that are based on conservation laws for understanding SGD are questionable and can only
hold in the toy setting of an infinitesimal learning rate. The reason is simple: Fη,γ does not have
robust invariances at η = γ = 0. Also, note that had we used a generic matrix learning rate (e.g., with
Adam), the orthogonal invariances would also be broken. The meaning of these discrete symmetries
can be understood through a framework similar to that proposed in Ref. [7] and is left to a future
work.

4 Emergence of Gradient Balance and Equipartition Property

Lie group symmetries exist abundantly in nature and in modern neural networks1 [27, 28, 29, 7, 32].
In thermodynamics, the existence of symmetries is a crucial fact that leads to the emergence of
hierarchical phenomena and phase transitions between them. In a sense, symmetry can be argued
to be the “first-order” approximation of the level of hierarchies in the system [37]. The following
theorem states that the entropic loss F breaks any nontrivial noncompact Lie group symmetries (also
known as exponential symmetries [29]). For formality, we say that ℓ (and L) has a A-exponential
symmetry if for any λ ∈ R, any x and θ, and any matrix A, ℓ(x, θ) obeys ℓ(x, eλAθ) = ℓ(x, θ).
Theorem 4. (Master Balance Theorem) If ℓ(x, θ) has an A-exponential symmetry, then any local
minimum θ∗ of Eq.(3) satisfies

−ηEB[Ex∈B(∇θℓ(x, θ∗))]T Ã[Ex∈B∇θℓ(x, θ∗)] + 4γ(θ∗)T Ãθ∗ = 0, (4)

where Ã ∶= A+AT

2
. In addition, either (1) Fη,γ(eλAθ∗) = Fη,γ(θ∗) for all λ, or (2) there exists no

λ ≠ 0 such that eλAθ∗ is a local minimum.

If we had chosen a symmetric A, we would have Ã = A. For an anti-symmetric A, this theorem is
trivial, consistent with Theorem 2. Therefore, this theorem is a statement about non-compact Lie
group symmetries that extends to infinity. The fact that every point is connected to a point that satis-
fies Eq (4) means that SGD can reach this condition easily. The meaning of this theorem is a general
gradient balance and alignment phenomenon. When γ = 0, this equation states that the gradient
along the positive spectrum of Ã must balance with the gradient along the negative spectrum. When
γ ≠ 0, there is, additionally, a tradeoff between gradient balance and weight balance. We apply this
result to various neural networks in this section.

Many works have shown that when training with weight decay or when the model has a small
initialization, the weights of the layers become balanced, especially in homogeneous networks [38,

1See Ref. [31] for a detailed review.
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39, 40]. Theorem 4 shows that the SGD in discrete-time or with stochasticity leads to a completely
different bias where the gradient noise between all layers must be balanced.

ReLU Layers Consider a deep ReLU network trained on an arbitrary task:

f(x) =WDRD−1...R1W1x, (5)

where R(x) is a piece-wise constant the zero-one activation matrix functioning as the ReLU activa-
tion. The entropy term can be written as

S(θ) =
D

∑
i=1

TrE[gig⊺i ], (6)

where gi = Ex∈B∇Wiℓ(θ, x) and E is a shorthand of EB. Namely, we can group the gradient
covariance according to layer index i. The following theorem states that all layers must have a
balanced gradient. The proof shows that while the learning term L is invariant to a class of symmetry
transformations, the entropy term is not – and this creates a systematic tendency for the parameters
to reduce the entropy.
Theorem 5. (Layer Balance) For all local minimum of Eq. (3),

η(ETr[gigTi − gjgTj ]) = 4γ(Tr[WiW
T
i −WjW

T
j ]). (7)

Specifically, for γ = 0 we have gradient balance ETr[gig⊺i ] = ETr[gjg⊺j ]. For η = 0, we have the
standard weight balance Tr[WiW

T
i ] = Tr[WjW

T
j ]. Otherwise, the solution interpolates between

gradient balance and weight balance.

Similarly, within every two neighboring layers, one can group the parameters into neurons:

Tr[gig⊺i ] +Tr[gi+1g⊺i+1] = ∑
j

(Tr[gi,j,∶g⊺i,j,∶] +Tr[gi+1,∶,jg⊺i+1,∶,j]) , (8)

where gi,j,∶ is the incoming weights to the j-the neuron of the i-th layer, and gi+1,∶,j is the outgoing
weights of the same neuron. The gradient for each neuron must also be balanced because there is a
rescaling symmetry in every neuron.
Theorem 6. (Neuron Balance) For all local minimum of Eq. (3) and any i, j,

ηETr[gi,j,∶g⊺i,j,∶ − gi+1,∶,jg⊺i+1,∶,j] = 4γTr[wi,j,∶w
T
i,j,∶ −wi+1,∶,jw

T
i+1,∶,j]. (9)

From a physics perspective, we have proved an equipartition theorem (ET). The elements in the
matrix E[gigTi ] can be seen as the temperature (or, the average energy) felt by each parameter. The
trace TrE[gigTi ] thus gives the temperature of the layer. That different layers emerge to have the
gradient second momentum is an explicit form of the ET and means that the entropy S must be
evenly spread out across every layer. Because the standard ET in physics is a property of thermal
equilibrium, our result may be seen as an extension of the physical law to the out-of-equilibrium
dynamics of learning. See Figure 2 for the emergence of layer and neuron balances in a ReLU
network. We train on the MNIST dataset, but the labels are generated by a teacher ReLU network
and trained with an MSE loss. Also, see Appendix A for examples of training trajectories and for an
example with a self-attention net.

Polynomial Network Now, consider the case where R(h) is a diagonal matrix such that Rii(h) =
hd corresponds to a polynomial activation. This type of network is also a variant of homogeneous
networks [38]. For these networks, one can show that the converge to a state where every layer’s
gradient norm is d times that of the previous layer, leading to a gradient exploding or vanishing
problem (See Appendix B.8).

Self Attention Consider the case when a model has a generic form: ℓ(x,W,U) = ℓ(x,WU),
where W and U are matrices. The loss can contain other trainable parameters, which we ignore.
Define GW = Ex∈B∇W ℓ(x,W,U), GU = Ex∈B∇U ℓ(x,W,U), and one can prove the following
relation:
Theorem 7. (Gradient Alignment) For all local minimum of Eq.(3), we have

ηE[GT
WGW −GUG

T
U ] = 4γ(WTW −UUT ). (10)
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Figure 2: Layer and neuron gradient balance during training of a two-layer ReLU network. Here, every dot
is a fixed time during training, where bluer dots are closer to the initialization, and redder dots are closer to
convergence. Left 1-2: The entropy is strongly correlated with the neuron balance. As entropy decreases, the
neuron balance improves. In contrast, the loss is not correlated to entropic effects at all. Right: Similarly, the
layer balance is also correlated with entropy and not with loss function value.

This theorem is thus applicable to matrix factorization, deep linear networks, and, more importantly,
self-attention layers. The self-attention logit is computed as aij = XT

i WUXj , where W is the key
matrix, U is the query matrix. The loss function is a function of aij viewed as a matrix: ℓ({aij}).
Let V =W2W1. Then, applying this theorem reveals an intriguing relation:

W1E[GT
V GV ]WT

1 =WT
2 E[GV G

T
V ]W2. (11)

Interpolating Weight Balance and Gradient Balance For all the theorems above, we have also
studied how weight decay affects the balance conditions. We see that the weight decay creates
something analogous: instead of gradient balance, weight decay encourages weight balance, and
this effect often cannot be achieved together with gradient balance. Thus, there is a tradeoff between
gradient balance and weight balance. In reality, the network is somewhere in between, where the
weight balance and gradient balance has to “balance” with each other. Also, this is a generalized
form of an equipartition theorem. If we regard the sum of the regularization and S as a “total”
entropic potential Γ, then this means that every layer will contribute an equal amount to Γ.2

5 Implications

Next, we apply these results to study the emergence of universal representations in neural networks,
and the progressive sharpening phenomena in deep learning optimization.

5.1 Universal Representation Learning

Recent works found that the representations of learned models are almost universally aligned to
different models trained on similar datasets [41, 42], and even to the biological brains [43]. This
interesting phenomenon has a rather philosophical undertone and has been termed “Platonic Rep-
resentation Hypothesis” [8]. Here, we say that the two neural networks have learned a universal
representation if for all x1, x2,

hA(x1)ThA(x2) = hB(x1)ThB(x2), (12)

where hA is the activation of network A in one of the hidden layers, and hB for network B. This
is an idealization of what people have observed – and the difference between the two sides is the
“degree of alignment.” We leverage the entropic force formalism to identify an exact solution to the
embedded deep linear network (EDLN) model:

ℓ(θ, x) = ∣∣M1WD⋯W1M2x − y(x)∣∣2. (13)

on datasets DM3 = {(M3xi, yi)}i, where M1,M2,M3 are fixed but arbitrary invertible matrices.
They have the following meaning:

• M1 can be seen as a model of the layers coming after the deep linear network;
2Now, it is helpful to clarify the role of the L2 regularization term. Conceptually, it can either be regarded

as a part of the loss function ℓ, which we have done so far, or as a part of the entropic term. Treating it as a part
of entropy is sometimes conceptually preferred because, like the entropy, it also functions as a regularization
of the parameter space, limiting the accessible states.
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Figure 3: The representations of two 6-layer networks independently trained on randomly transformed MNIST
become perfectly aligned for every pair of layers. The figure shows the average alignment between the same
or different layers of two networks. This alignment does not weaken even if the input is arbitrarily transformed
(Theorem 8). The black dashed line shows the average alignment to the input data, which is significantly
weaker. Left: linear network. Right: tanh network.

Figure 4: Alignment of representations of two ViT models pretrained on ImageNet. Net A: ViT-B (#param:
86M). Net-B: ViT-H (300M). We see that both mlp layers and the self-attention layers have mutually aligned
representations both with itself and the other with each other. In particular, the alignment with itself is slightly
better than with the different model, and the alignment of later layers is better than that of the first layers. A
similar result with larger models is shown in Appendix A.5.

• M2 models the layers coming after the embedded network;
• M3 models different views of the data, which is common in multimodal learning – therefore, the

two models are trained on two different (but related) datasets.

In Theorem 8, we will train two different models, each with their own and potentially different M1,
M2, M3. The arbitrariness of these three matrices implies universality.

The data is generated by yi = V xi + ϵi for i.i.d. noise ϵi. Assuming that Exi = Eϵi = 0 and
Σϵ ∶= EϵiϵTi , Σx ∶= Exix

T
i , the following theorem characterizes the global minimum of the entropic

loss for this network in the case γ = 0 and η → 0+.
Theorem 8 (Perfect Platonic Representation Hypothesis). Consider two deep linear networks A and
B with weights of arbitrary dimensions larger than rank(

√
ΣϵV
√
Σx). Let model A train on DM3

and model B on DM ′

3
. Moreover, the outputs of models are multiplied by M1,M

′
1, and the inputs

are multiplied by M2,M
′
2, respectively. Then, at the global minimum of Eq. (3), every hidden layer

of A is perfectly aligned with every hidden layer of B for any x, in the sense that

hLA

A (x) = c0RhLB

B (x) (14)

for 1 ≤ LA < DA and 1 ≤ LB < DB and any x, where c0 is a scalar and R = U1U
T
2 satisfying

UT
1 U1 = UT

2 U2 = I . hLA

A (x) ∶= Π
LA

i=1W
A
i M2M3x, hLA

A (x) ∶= Π
LA

i=1W
A
i M ′

2M
′
3x denote the output

of the LA, LB−the layer of network A and B, respectively.

Here, a perfect alignment means that hLA

A (x) differs from hLB

B (x) only by a scaling and a rotation.
Because of symmetry, SGD converges to a state where all possible pairs of the intermediate layers
of two different networks are mutually aligned, independent of the initialization. This is an extraor-
dinary fact because there exist infinitely many solutions that are not perfectly aligned, also due to
symmetry. For example, take hB to be any hidden layer, and transform its incoming weight by A
and its outgoing weight by A−1. This remains a global minimum for L, but it is no longer the case
that there exists an orthogonal transformation R such that hA = hB . Therefore, for almost all global
minima of L, there is no universal alignment between layers – yet, SGD prefers a universal solution
due to the entropy term. The following theorem shows that weight decay will lead to a nonuniversal
representation.
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From a physics and thermodynamics perspective, it is quite reasonable that the irreversibility of
the dynamics leads to the emergence of universal structures. A state is not universal if it contains
information about its initial condition. Therefore, the irreversibility of the learning dynamics helps
erase information about the parameter initialization, thereby enabling the learning of a universal
solution. The following hypothesis can summarize this perspective:

Irreversibility enables universal representation learning.

Now, it is worthwhile to remark on the connection and difference between this result and the original
PRH [8]. First, our theory provides strong support for the PRH. The original PRH only hypothe-
sizes a positive similarity between models, and it is unclear whether the alignment score can reach
1 (which implies a perfect alignment) or will only be a small positive value. Our result shows that,
in principle, it is possible to reach the perfect alignment limit. Secondly, this result also offers an
alternative perspective on the representation alignment phenomenon to that of the original PRH pa-
per. In the old perspective, one regards having no alignment as the default expectation, and positive
alignment as something to be explained and understood. In our new perspective, the perfect align-
ment is the default, and breaking away from it is something to be explained and understood – which
is exactly what we will demonstrate in the next theorem. We also refer to Ref. [44] for a more in-
structive derivation of the proof and for a detailed discussion of different ways to break the perfect
PRH.
Theorem 9. Consider the deep linear network (13) with widths larger than d ∶= rank(V ). Let η = 0
and γ → 0+. At the global minimum of (3), we have

Wi = UiPiΣU
T
i−1 (15)

for i = 1,⋯,D. UD and U0 are given by the SVD of M−1
1 VM−1

3 M−1
2 ∶= UDSU0, where S ∈ Rd×d

contains the singular values. For i = 2,⋯,D − 1, Ui are arbitrary matrices satisfying UT
i Ui = Id×d.

Moreover, Σ = S1/D. {Pi}Di=1 ⊂ Rd×d are diagonal matrices containing ±1 and satisfy ΠD
i=1Pi = Id.

The universal representation property (Theorem 8) does not hold anymore. Therefore, gradient
balances lead to universal representations, whereas weight balances do not. See Figure 3 for an
experiment with deep linear and nonlinear networks. A surprising aspect is that every layer can be
aligned with every other layer. Because any deep nonlinear network is approximated by a linear
network for a small weight norm [45], one could say that any nonlinear network is, to first order
in ∥θ∥, a universal representation learner. In Figure 4, we compare the alignment between different
self-attention layers of two differently sized vision transformers pretrained on ImageNet. Note that
different layers of the same network and different networks also have significantly positive align-
ments, consistent with the solution for the embedded deep linear net. That using weight decay does
not lead to universal representations is supported by the result in Figure 10.

Theorem 8 is a direct (perhaps the first) proof of the Platonic representation hypothesis, implying
that for any x1, x2, Eq. (12) holds. Importantly, the mechanism does not belong to any previously
conjectured mechanisms (capacity, simplicity, multitasking [8]). This example has nothing to do
with multitasking. The result holds for any deep linear network, all having the same capacity and
the same level of simplicity, because all solutions parametrize the same input-output map. Here, the
cause of the universal representation is symmetry alone: in the degenerate manifold of solutions, the
training algorithm prefers a particular and universal one. This example showcases how symmetry is
indeed an overlooked fundamental mechanism in deep learning.

5.2 The Sharpness Paradox

The tendency towards learning universal representations can imply a curse for training. For exam-
ple, the sharpness of the loss landscape really depends on the distribution of the data, whereas the
solution the model finds is independent of these distributions – this could imply that these solutions
can be quite bad in terms of, say, optimization properties. Meanwhile, a paradox of the sharpness-
seeking behavior of SGD has become explicit. On the one hand, the edge of stability (EOS) states
that learning typically leads to sharper solutions, whereas a vast majority of works have shown that
SGD training leads to flatter solutions [46, 47]. These two cannot happen simultaneously – and the
solution must be that the sharpness-seeking behavior of SGD is situation-dependent. This section
formalizes this intuition and shows that universal representation learning can be intrinsically related
to the edge of stability phenomenon, which is also ubiquitous in deep learning.

8



Figure 5: The entropic theory predicts the boundary for the edge of stability (EOS) phenomenon [4]. The
theory shows that the imbalance of features and the uncertainty of labels make the model converge to sharper
solutions. We run a two-layer linear network trained on a regression task. The Left panel plots the quantity
ηλmax at convergence. For stability, ηλmax must stay (approximately) below 2, and the black dotted line plots
the theoretical boundary for ηλmax = 2. Middle: The same figure that emphasizes the phase boundary. The
blue-red boundary empirically defined by the condition ηλmax = 2 − ϵ with ϵ = 0.1 – due to random sampling,
the actual edge of stability is slightly smaller than 2 [20]. Right: We control the learning rate and balance of the
label noise for this experiment. As predicted, as the data noise becomes more balanced, the sharpness metric
ηλmax gets smaller, indicating better dynamical stability during training.

Figure 6: Example of a trajectory of training during the progressive flattening (Left 1, 2) and sharpening
(Right 1, 2) of the experiment in Figure 5. Here, blue dots correspond to earlier in the training, and red
dots correspond to later in the training. During progressive flattening, the decrease in sharpness correlates
directly with the entropy term (Left 1), whereas the training loss is independent of the sharpness (Left 2). For
progressive sharpening (Right), the picture is more complicated. The training trajectory follows three phases.
Phase I: flattening correlates with a decrease in entropy; phase II: sharpening correlates with a decreasing
entropy; phase III: sharpening correlates with an increasing entropy. The phase III cannot be explained by
the leading-order entropic loss because, as the landscape becomes sharper, higher-order effects in η start to
dominate training. At the same time, the loss is never correlated with these effects (Right 4).

Definition 2. The total sharpness is defined as T (θ) = TrE∇2ℓ(x, θ).

This definition is chosen for analytical tractability and has been used in prior works [48, 29]. T
upper bounds the largest eigenvalue, and T /d lower bounds it, so it is a good metric of stability
and sufficient for the theorem we will prove. The following lemma shows that if there is an expo-
nential symmetry in ℓ, every local minimum of ℓ connects without barrier to a local minimum with
arbitrarily high sharpness. It can be seen as a generalization of the result of Ref. [49] to general
symmetries.
Lemma 1. (Sharpness Lemma) Assume that A is a symmetric matrix and ℓ(x, eλAθ) = ℓ(x, θ).
Moreover, assume that AE∇2ℓ(x, θ) ≠ 0. Then, lim sup∣λ∣→+∞ ∣T (eλAθ)∣ = +∞.

One can analytically solve for the sharpness of two-layer linear networks, and identify a precise
cause of the progressive sharpening effect.
Theorem 10. For a two-layer linear network ℓ(x, θ) = ∣∣y(x)−W1W2x∣∣2 with y(x) = V x+ϵ ∈ Rdy

and Ex = Eϵ = 0, Σx = ExxT , Σϵ = EϵϵT . Denote ŨS′Ṽ to be the SVD of V ′ ∶=
√
ΣϵV
√
Σx and

assume that the width of the network is larger than rank(V ′). Then we have

T (θ) = dy

¿
ÁÁÀTr[Σx]

Tr[Σϵ]
Tr[S′] +

√
Tr[Σx]Tr[Σϵ]Tr[Σ−1ϵ ŨS′ŨT ] (16)

at the global optimum of (3). Meanwhile, the minimal sharpness of the global minimum of ℓ is

minT (θ) = 2
√
dyTrΣxTrŜ, (17)

9



where Ŝ is the singular values of V
√
Σx.

This result implies that SGD has no inherent preference for flatter minima. See Figure 5-6, where
we train a two-layer linear network on a linear regression task with a 2d label y ∈ R2. The labels
y = V ∗x + ϵ, for a ground truth matrix V ∗ and iid zero-mean noise ϵ such that Σϵ = diag(1, ϕx),
where ϕx ∈ (0,1) is called the “data balance.” In Appendix A.6, we also train a deep nonlinear
network, and we see the same trend where improving balance in the label noise leads to flatter
solutions.

As an example, we can choose Σx = I , V = I (dx = dy = d), which gives V ′ =
√
Σϵ = ŨS′ŨT , and

thus
T (θ) = d3/2Tr[Σϵ]−1/2Tr[Σ1/2

ϵ ] + d1/2Tr[Σϵ]1/2Tr[Σ−1/2ϵ ], (18)
which can be arbitrarily large. Recall that the minimum of T (θ), on the other hand, does not
depend on Σϵ, the label noise covariance. Thus, the imbalance of the noise spectrum can lead to
arbitrarily high sharpness. This could especially be a problem for language model training because
there is a large variation in the randomness of tokens. Some words, like “the,” could have a very
low conditional entropy, while nouns or verbs can have high entropy, especially when there exist
synonyms. Another example is to choose Σϵ = I , which gives V ′ = V

√
Σx = ŨS′ŨT , and thus

T (θ) = 2
√
dTr[Σx]1/2Tr[V Σ1/2

x ], (19)

which is exactly the same as the minimal sharpness. This suggests that without the imbalance of the
label noise alone, SGD indeed converges to the flattest solution.

Thus, an imbalance in the input feature can lead to different sharpness-seeking behaviors. At the
same time, if the loss function has scale invariance (ℓ(x, θ) = ℓ(x,λθ) for any λ ∈ R), the learning
dynamics leads to a flattening of the curvature during training (See Section B.1). Thus, entropic
forces and symmetry are strong factors deciding the sharpness-seeking behavior of SGD.3

6 Conclusion

In this work, we have proposed an entropic-force perspective on neural network learning. We de-
rive an entropic loss, which breaks continuous symmetries and preserves discrete ones, leading to
universal behaviors such as gradient balance and alignment. The entropic loss suggests a poten-
tial unifying perspective for understanding training: learning algorithms prefer solutions with the
minimal gradient fluctuation. This perspective provides a unifying framework that explains several
emergent phenomena in deep learning, including sharpness-seeking behavior and universal feature
structure, as consequences of underlying symmetries and entropic forces. The framework offers
predictive and explanatory power across architectures and scales, and points toward a more princi-
pled, physics-inspired understanding of learning dynamics and emergent phenomena. Future work
may extend this foundation to encompass higher-order corrections, richer architecture structures,
and nonequilibrium dynamics of modern training procedures. A major limitation of our work is that
we focused only on problems with explicit symmetries; an important future direction is to extend
the results to cases with only approximate symmetries. Our experiments show that symmetry-free
systems qualitatively agree with symmetry-preserving systems, suggesting that there are underlying,
hidden concepts yet to be discovered.

An implication of Theorem 2 is that discrete symmetries such as Z2 still remain in the loss function.
This enables the possibilities of spontaneous symmetry breaking and phase transitions in neural
networks. Prior works have studied phase transitions [7] without the entropy term and are inherently
zero-temperature phase transitions. It may be possible to develop a theory of phase transitions based
on entropic loss, similar to the classical Landau theory. Also, a striking aspect of our construction
is its similarity to the actual formalism of thermodynamics in physics; our result motivates the
development of a robust thermodynamics theory of deep learning.

3Viewed together with the result in Section 5, one reaches an interesting and surprising conjecture: pro-
gressive sharpening and universal representation alignment, with entirely different phenomenology, may have
the same underlying cause, and could be two sides of the same coin.
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Figure 7: 4-layer linear networks and no weight decay trained on a teacher-student setting. Left: Layer
imbalance for each layer, which verifies Theorem 5. Middle: Neuron balance for each layer, which verifies
Theorem 6. The curves are smoothed and averaged over 5 runs for better visualization. Right: Loss and
entropy.

Figure 8: The same setting as Figure 7, but for ReLU activation.

A Experiment

A.1 ResNet

For Figure 1, we train ResNet18 on CIFAR 10 using SGD with momentum 0.9, batchsize 128
and weight decay 5 × 10−4. The learning rate is 0.1 at the beginning, 0.01 after the 100−th epoch
and 0.001 after the 150−th epoch. The entropy is calculated by summing the gradient norm of all
parameters. We obtain training accuracy 98% and test accuracy 88% at the end.

A.2 Gradient Balance

For Figure 2, we train on the MNIST dataset but the labels are generated by a teacher ReLU network
and trained with an MSE loss. Namely, the loss is

∥f(θ) − y(x) − ϵx∥2, (20)

where y(x) is a parameterized by a random ReLU teacher network and ϵx is an i.i.d. Gaussian noise
with 0.2 standard deviation. The training proceeds with SGD for 104 steps with a learning rate of
0.01 and batchsize of 200. Layer balance is calculated by ∣ETr[gigTi −gTi+1gi+1]∣ and neuron balance
is calculated by ∑j ∣ETr[gi,j,∶g⊺i,j,∶ − gi+1,∶,jg⊺i+1,∶,j]∣ for the i−th layer.

Additional experiments on layer balance and neuron balance are presented in Figures 7, 8 and 9
for 4-layer linear networks, ReLU networks and simple self-attention networks, still for the teacher-
student setting. The hidden dimensions are 256,128,64 for linear and ReLU networks, and 256
for self-attention. We present the evolution of layer and neuron balance along training. Figures 7
and 8 suggest that layer balance and neuron balance approach zero during training, which verifies
Theorems 5 and 6.
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Figure 9: A self attention networks y = (xTUV x)wTx and no weight decay trained on a teacher-student
setting. The gradient imbalance is evaluated by ∣∣GT

UGU − GV GT
V ∣∣F . Left: Gradient imbalance is strongly

correlated with the entropy. Middle: Gradient imbalance is weakly correlated with the entropy. Right: The
evolution of entropy along training, which is averaged over 5 runs.

A.3 Gradient Balance in Self-Attention Nets

Figure 9 suggests that GT
UGU −GV G

T
V approaches zero during training, and it is correlated with the

entropy rather than the loss, which verifies Theorem 7.
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Figure 10: The alignment of two 2−layer ReLU networks independently trained on a teacher-student setting.
We measure the alignment for different batchsizes and weight decay. Left: SGD. Right: Adam.

Figure 11: Universal alignment is strongly correlated with the entropy but not the loss. The setting is the same
as Figure 10, where we use SGD, weight decay 0 and batchsize 100.

Figure 12: The same setting as Figure 10, but for two-layer linear networks. Left: SGD. Right: Adam.

A.4 Unversal Representation Learning in MLP

For Figure 3, we train two independent 6-layer networks on MNIST. The networks have linear or
tanh activation and 128 neurons in each hidden layer, and for the second network, the input MNIST
data is transformed by a random Gaussian matrix. We train the networks with Adam optimizer,
learning rate 10−4 for 5 epochs. During training, we measure the representation alignment between
every pair of layers, defined as the cosine similarity between the two sides of (12), averaged over the
test set. We then plot the average alignment between the same or different layers of two networks.
The input alignment denotes the average alignment between every layer representation and the input
data.

In Figures 10 and 12, we test the influence of batchsize and weight decay on universal representa-
tion in a teacher-student setting. In Figure 10, both the teachers and students are two-layer ReLU
networks. In Figure 12, the student is replaced by a linear network. Their hidden dimensions are
100. Similar to Figure 3, we measure the representation alignment between the middle layers of
two independently trained networks, and the input of the second network is rotated by a Gaussian
matrix. We use random Gaussian data, and the labels are generated by the teacher network. We train
the student networks with SGD, learning rate 5 × 10−2 or with Adam, learning rate 10−4. For both
SGD and Adam optimizers, Figures 10 and 12 suggest that universal alignment does not rely on the
batchsize as predicted, but disappears for large weight decay, which verifies Theorem 9. In Figure
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11, we show that the increase of alignment is more correlated with the decrease of the entropy rather
than the loss.
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Figure 13: Alignment of representations of two larger ViT models pretrained on ImageNet. Net A: ViT-L
(#param: 304M). Net-B: ViT-H (633M). This is similar to Figure 4

A.5 Universal Representation in ViT

See Figure 13 for the alignment in Vision Transformer. The pretrained weights are taken from
https://docs.pytorch.org/vision/main/models.html. We measure the CKA
alignment between the two models or with itself with a minibatch size of 300 images from the
ImageNet dataset.
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Figure 14: Sharpness at convergence for a two-hidden-layer ReLU network. The setting is identical
to that of Figure 5. Again, we see that higher imbalance in the label leads to a sharper solution.

A.6 Edge of Stability

See Figure 5 and 6, where we train a two-layer linear network on a linear regression task with a 2d
label y ∈ R2. The labels y = V ∗x + ϵ, for a ground truth matrix V ∗ and iid zero-mean noise ϵ such
that Σϵ = diag(1, ϕx), where ϕx ∈ (0,1) is called the “data balance.”

We train with different learning rates and data balance. The training proceeds with SGD with a
batchsize of 32 for 4 × 104 iterations. Input x ∈ R2 is drawn from a standard Gaussian distribution,
and the model has dimensions 2→ 10→ 2.

See Figure 14 for an experiment with ReLU. Here, the architecture is has dimensions 2 → 10 →
10→ 2.
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B Theory

B.1 Scale Invariance Leads to Flattening

The symmetry generator is A = I . We have

d

dλ
Fη,0(eλθ) = −ηEx(∇θℓ(x, θ)T∇θℓ(x, θ) = −S < 0 (21)

by Theorem 4. As d
dλ

Fη,γ(eλθ)∣λ=0 = θT∇Fη,0. Therefore, when we do gradient descent along
−∇Fη,0, λ monotonously increases. Meanwhile,

T (eλθ) = Tr[e−2λE∇2ℓ(x, θ)] (22)

decreases with λ, and thus the sharpness decreases along training.

B.2 Proof of Theorem 1

Proof. For notational simplicity we drop the subscript γ in the proof. When running gradient descent
on ℓ(x, θ), we have

θ1 = θt −Λ∇ℓ(x, θ0). (23)
When running gradient descent on ϕΛ, we have

θ′1 = θ0 −
Λ

n
(∇ℓ(x, θ0) + ∇ϕ1Λ(x, θ0) + ∇ϕ2Λ(x, θ0)) +O(∣∣Λ∣∣3) (24)

and
θ′2 = θ′1 −

Λ

n
(∇ℓ(x, θ′1) + ∇ϕ1(x, θ′1) + ∇ϕ2(x, θ′1)) +O(∣∣Λ∣∣4)

= θ0 −
2Λ

n
∇ℓ(x, θ0) +

Λ

n2
∇2ℓ(x, θ0)Λ∇ℓ(x, θ0) −

Λ

n
∇ϕ1(x, θ0)

+ Λ

n2
∇2ϕ1(x, θ0)Λ∇ℓ(x, θ0) −

Λ

n
∇ϕ2(x, θ0) +O(∣∣Λ∣∣4).

(25)

Similarly we can obtain

θ′n = θ0 −Λ∇ℓ(x, θ0) +
Λ

2
∇2ℓ(x, θ0)Λ∇ℓ(x, θ0) −Λ∇ϕ1(x, θ0)

+ Λ

2
∇2ϕ1(x, θ0)Λ∇ℓ(x, θ0) −Λ∇ϕ2(x, θ0) +O(∣∣Λ∣∣4 + ∣∣Λ∣∣2/n + ∣∣Λ∣∣3/n).

(26)

Therefore, we have θ′n = θ1 +O(∣∣Λ∣∣3 + ∣∣Λ∣∣2/n) if we choose ϕ1(x, θ) = 1
4
∇ℓ(x, θ)TΛ∇ℓ(x, θ).

For small ∇3ℓ(x, θ), we have

∇2ϕ1(x, θ0)Λ∇ℓ(x, θ0) = ∇2ℓ(x, θ0)Λ∇2ℓ(x, θ0)Λ∇ℓ(x, θ0) +O(∣∣Λ∣∣2∣∣∇3ℓ(x, θ)∣∣)

= 1

2
∇[∇ℓ(x, θ0)TΛ∇2ℓ(x, θ0)Λ∇ℓ(x, θ0)] +O(∣∣Λ∣∣2∣∣∇3ℓ(x, θ)∣∣).

(27)
Therefore, we can choose

ϕ2(x, θ) ∶=
1

2
∇ℓ(x, θ)TΛ∇2ℓ(x, θ)Λ∇ℓ(x, θ) (28)

to obtain θ′n = θ1 +O(∣∣Λ∣∣4 + ∣∣Λ∣∣2/n + ∣∣Λ∣∣3/n + ∣∣Λ∣∣3∣∣∇3ℓ(x, θ)∣∣).

B.3 Proof of Theorem 4

Proof. By the definition of the exponential symmetry,

ℓ(x, eλAθ) = ℓ(x, θ), (29)

Taking derivative w.r.t. λ on (29), we have that ∇θℓ(x, θ)TAθ = 0. Then taking derivative w.r.t. θ,
we have that AT∇θℓ(x, θ) + ∇2

θℓ(x, θ)Aθ=0.

20



Let I(λ) ∶= d
dλ

Fη,γ(eλAθ∗) and θλ ∶= eλAθ∗. Then we have

I(λ) = η

2
(θλ)TATEB[Ex∈B∇2ℓ(x, θλ)][Ex∈B∇ℓ(x, θλ)] + 2γ(θλ)TAθλ

= −η
2
EB(Ex∈B∇θℓ(x, θλ))TAEx∈B∇θℓ(x, θλ) + 2γ(θλ)TAθλ

= −η
2
Tr[Σ(θλ)A] + 2γ(θλ)TAθλ

= −η
2
Tr[Σ(θλ)Ã] + 2γ(θλ)T Ãθλ,

(30)

where Σ(θλ) ∶= EB[Ex∈B∇θℓ(x, θλ)][Ex∈B∇θℓ(x, θλ)]T is positive semi-definite. We also use
Tr[Σ(θλ)A−A

T

2
] = 0 and (θλ)T A−AT

2
θλ = 0. By [29, Lemma B.1], we have Tr[Σ(θλ)Ã] =

Tr[e−2λΣ(θ∗)Ã], and thus

I(λ) = −η
2
Tr[Ãe−2λÃΣ(θ∗)] + 2γ(θ∗)T e2λÃÃθ∗

= ∑
i

−η
2
µie

−2λµi(nT
i Σ(θ∗)ni) + 2γµie

2λµi(nT
i θ
∗
i )2,

(31)

where µi, ni are eigenvalues of eigenvectors of the symmetric matrix Ã. Therefore,

I ′(λ) = ∑
i

µ2
i (ηe−2λµinT

i Σ(θ∗)ni + 4γe2λµi(nT
i θ
∗
i )2) ≥ 0. (32)

We have I(λ) ≡ 0 (which happens only if Ã is not full rank) or I(λ) strictly monotonic. As θ∗ is a
local minimum, we have I(0) = 0, which gives (4). Then we have I(λ) ≡ 0 or I(λ) = 0 iff λ = 0,
which finishes the proof.

B.4 Proof of Theorem 2

Proof. By the definition of K-invariance, and taking derivative ∇θ of both sides of ℓ(x,K(θ, λ)) =
ℓ(x, θ), we have

∇θK(θ, λ)T∇K(θ,λ)ℓ(x,K(θ, λ)) = ∇θℓ(x, θ), (33)

where the l.h.s. follows from the chain rule. This imlies that

(I + λ∇Q +O(λ2))∇K(θ,λ)ℓ(x,K(θ, λ)) = ∇θℓ(x, θ), (34)

and so
∇K(θ,λ)ℓ(x,K(θ, λ)) = (I − λ∇Q +O(λ2))∇θℓ(x, θ), (35)

If F is K-invariant, the following Equation holds:

ℓ(x,K(θ, λ)) + ∣∣∇K(θ,λ)ℓ(x,K(θ, λ))∣∣2 + ∣∣K(θ, λ)∣∣2 = ℓ(x, θ) + ∣∣∇θℓ(x, θ)∣∣2 + ∣∣θ∣∣2. (36)

By the assumption, ℓ(x,K(θ, λ)) = ℓ(x, θ), and (36), we have that

∣∣∇θℓ(x, θ)∣∣2 + ∣∣θ∣∣2 = ∣∣∇K(θ,λ)ℓ(x,K(θ, λ))∣∣2 + ∣∣K(θ, λ)∣∣2 (37)

= ∣∣∇θℓ(x, θ)∣∣2 + ∣∣θ∣∣2 + 2λ(∇T ℓ∇QT∇ℓ − γQT θ) +O(λ2). (38)

Thus,
η∇T ℓ∇QT∇ℓ − γQT θ = 0. (39)

There are two cases: (1) η∇T ℓ∇QT∇ℓ − γQT θ = 0, and (2) η∇T ℓ∇QT∇ℓ − γQT θ ≠ 0.

For case (1), we are done. For case (2), the equation cannot hold for γ + dγ because the first term is
independent of γ. Thus, we can only have case (1).

This means that for any θ

∥K(θ, λ)∥2 = ∥θ∥2 +O(λ2), (40)

which is only possible if ∥K(θ, λ)∥2 = ∥θ∥2. This completes the proof.
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B.5 Proof of Theorem 3

Proof. By definition we have ∣∣Oθ∣∣2 = ∣∣θ∣∣2. Take derivative on both sides of ℓ(x,Oθ) = ℓ(x, θ),
we have

OT∇Oθℓ(x,Oθ) = ∇θℓ(x, θ). (41)
Thus we have

∇Oθℓ(x,Oθ) = O−T∇θℓ(x, θ), (42)

which gives ∣∣∇Oθℓ(x,Oθ)∣∣2 = ∣∣O−T∇θℓ(x, θ)∣∣2 = ∣∣∇θℓ(x, θ)∣∣2. Combining the above results we
have Fη,γ(Oθ) = Fη,γ(θ).

B.6 Proof of Theorem 5

Proof. Rescaling symmetry implies that if we make the transform

Wi → eλWi, Wj → e−λWj , (43)

L does not change.

This corresponds to the choice of

Ak̃l̃m̃
klm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 k = k̃ = i
−1 k = k̃ = j
0 otherwise

(44)

in Theorem 4, where the index klm corresponds to the m−th element of the l−th unit of the k−th
layer. Then we have

η(ETr[gigTi − gjgTj ]) = 4γ(Tr[WiW
T
i −WjW

T
j ]). (45)

This finishes the proof by setting γ = 0.

B.7 Proof of Theorem 6

Proof. We can choose A to be a rescaling matrix w.r.t. the j−th neuron of the i−th layer. Specifically,
we choose

Ak̃l̃m̃
klm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 k = k̃ = i, l = l̃ = j
−1 k = k̃ = i + 1,m = m̃ = j
0 otherwise

(46)

in Theorem 4, which gives

ηETr[gi,j,∶g⊺i,j,∶ − gi+1,∶,jg⊺i+1,∶,j] = 4γTr[wi,j,∶w
T
i,j,∶ −wi+1,∶,jw

T
i+1,∶,j]. (47)

B.8 Gradient Imbalance in Polynomial Networks

Theorem 11. (Neuron Balance) For all local minima of Eq. (3) and any i, j,

ηETr[gi,j,∶g⊺i,j,∶ − dgi+1,∶,jg⊺i+1,∶,j] = 4γTr[wi,j,∶w
T
i,j,∶ − dwi+1,∶,jw

T
i+1,∶,j]. (48)

This means that unless d = 1, these networks will either have a noise or weight explosion problem.
If γ = 0, the gradient fluctuation grows like dD, exponential in depth D. When d < 1, later layers
will have an exploding noise; when d > 1, earlier layers will have an exploding noise. When both η
and γ ≠ 0, the sum of the noise and gradient norm will explode exponentially. In some sense, this
implies that linear or sublinear types of activations are the only stable activations for deep neural
networks.

Proof. We can still choose A to be a rescaling matrix, but this time we should rescale the i + 1−th
layer more

wi,j,∶ → eλwi,j,∶, wi+1,∶,j → e−dλwi+1,∶,j . (49)
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This corresponds to

Ak̃l̃m̃
klm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 k = k̃ = i, l = l̃ = j
−d k = k̃ = i + 1,m = m̃ = j
0 otherwise

(50)

in Theorem 4, which gives

ηETr[gi,j,∶g⊺i,j,∶ − dgi+1,∶,jg⊺i+1,∶,j] = 4γTr[wi,j,∶w
T
i,j,∶ − dwi+1,∶,jw

T
i+1,∶,j]. (51)

This gives
ETr[gi,j,∶g⊺i,j,∶] = dETr[gi+1,∶,jg⊺i+1,∶,j] (52)

by choosing γ = 0.

B.9 Proof of Theorem 7

Proof. The double rotation symmetry can be written as

U → eλAU, W → e−λAW, (53)
where A is an arbitrary matrix. We can thus choose the following generator

Ak̃l̃m̃
klm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 k = k̃ = 1, l = i, l̃ = j, or l = j, l̃ = i
−1 k = k̃ = 2, l = i, l̃ = j, or l = j, l̃ = i
0 otherwise

(54)

in Theorem 4, where k = 1 corresponds to W and k = 2 corresponds to U . This gives

∑
k

η[GWki
GWkj

−GUik
GUjk

] = ∑
k

4γ[WkiWkj −UikUjk], (55)

which finishes the proof.

B.10 Proof of Lemma 1

Proof. By definition, we have

eλA∇2
eλAθℓ(x, e

λAθ)eλA = ∇2ℓ(x, θ), (56)
and thus

T (eλAθ) = Tr[e−2λAE∇2ℓ(x, θ)]. (57)
Let A ∶= ∑i µinin

T
i , and thus

T (eλAθ) = ∑
i

e−2λµi(nT
i E∇2ℓ(x, θ)ni). (58)

As AE∇2ℓ(x, θ) ≠ 0, there exists i such that µi ≠ 0 and nT
i E∇2ℓ(x, θ)ni ≠ 0. Therefore, we have

limλ→+∞ ∣T (eλAθ)∣ = +∞ if µi < 0, and limλ→−∞ ∣T (eλAθ)∣ = +∞ if µi > 0.

B.11 Proof of Theorem 8

We first prove the following theorem, which we will leverage to prove Theorem 8.

Theorem 12. Let V ′ =
√
ΣϵV
√
Σx such that V ′ = ŨS′Ṽ is its SVD and rank(V ′) = d. Assume

that every layer has more than d hidden units. Then if γ = 0 and η = 0+, at any global minimum of
(3), we have

√
ΣϵM1WD = ŨΣDUT

D−1, Wi = UiΣiU
T
i−1, W1M2M3

√
Σx = U1Σ1Ṽ , (59)

for i = 2,⋯,D − 1, where Ui are arbitrary matrices satisfying UT
i Ui = Id×d, and Σx = E[xxT ],

Σϵ = E[ϵϵT ]. Moreover,

Σ1 = (TrS′)−
D−2
2D

Tr[M2M3ΣxM
T
3 MT

2 ]
D−1
2D

Tr[MT
1 ΣϵM1]

1
2D

√
S′,

ΣD = (TrS′)−
D−2
2D

Tr[MT
1 ΣϵM1]

D−1
2D

Tr[M2M3ΣxMT
3 MT

2 ]
1

2D

√
S′,

Σi = (TrS′)1/D(Tr[MT
1 ΣϵM1]Tr[M2M3ΣxM

T
3 MT

2 ])−
1

2D Id.

(60)
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Proof. Consider two consecutive layers Wi and Wi+1. Using Theorem 7, we have

ηE[GT
Wi+1

GWi+1 −GWiG
T
Wi
] = 0. (61)

By the MSE loss ℓ(x, y) = ∣∣y −M1WD⋯W1M2M3x∣∣2, this gives

WihiE[∣∣ξTi+1r̃∣∣2x̃x̃T ]hT
i W

T
i =WT

i+1ξ
T
i+1E[∣∣hix̃∣∣2r̃r̃T ]ξi+1Wi+1, (62)

where x̃ = Ex∈Bx and r̃ ∶= Ex∈B[y−M1WD⋯W1M2M3x] satisfy Ex̃ = Er̃ = 0, and thus Ex̃x̃T = Σx

∣B∣

and Eϵ̃ϵ̃T = Σϵ

∣B∣
. We use the fact that at the global minimum we have M1WD⋯W1M2M3 = V ,

and thus y −M1WD⋯W1M2M3x is independent of x. We denote ξi+1 ∶= M1WD⋯Wi+2, hi ∶=
Wi−1⋯W1M2M3 for i = 2,3,⋯,D − 2, and ξD ∶=M1, h1 ∶=M2M3.

Finally denote W ′
1 =W1M2M3

√
Σx and W ′

D =
√
ΣϵM1WD, which gives W ′

D⋯W ′
1 = V ′ and

W ⊺
i+1

W ⊺
i+2⋯W ′⊺

DW ′
D⋯Wi+2

Tr [W ⊺
i+2⋯W ′⊺

DW ′
D⋯Wi+2]

Wi+1 =Wi
Wi−1⋯W ′

1W
′⊺
1 ⋯W ⊺

i−1

Tr [Wi−1⋯W ′
1W

′⊺
1 ⋯W ⊺

i−1]
W ⊺

i (63)

for i = 2,3,⋯,D − 2. For i = 1 we have

W ⊺
2

W ⊺
3⋯W ′⊺

DW ′
D⋯W3

Tr [W ⊺
3⋯W ′⊺

DW ′
D⋯W3]

W2 =
W ′

1W
′⊺
1

Tr [M2M3ΣxM
⊺
2M

⊺
3 ]

(64)

and for i =D − 1 we have
W ′⊺

DW ′
D

Tr [MT
1 ΣϵM1]

=WD−1

WD−2⋯W ′
1W

′⊺
1 ⋯W ⊺

D−2

Tr [WD−2⋯W ′
1W

′⊺
1 ⋯W ⊺

D−2]
W ⊺

D−1. (65)

Lemma 2 proves that we can decompose the matrices W ′
1,W2,⋯,WD−1,W

′
D as

W ′
D = UDΣDUT

D−1, WD−1 = UD−1ΣD−1U
T
D−2,⋯, W ′

1 = U1Σ1U0. (66)

By minimizing (3) at η = 0+, we need to minimize

E∣∣y −WD⋯W1x∣∣2 = E∣∣ϵ∣∣2 + ∣∣(V −WD⋯W1)
√
Σx∣∣2. (67)

Thus we have
(V −WD⋯W1)

√
Σx = 0, (68)

which gives
W ′

D⋯W ′
1 =
√
ΣϵV
√
Σx = V ′. (69)

Then we obtain UD = Ũ , U0 = Ṽ and

ΣDΣD−1⋯Σ1 = S′. (70)

We can assume ΣD,⋯,Σ1 ∈ Rd×d because their ranks are the same by (63), (64) and (65).

(63) gives
Σ2

i+1Σ
2
i+2⋯Σ2

D

Tr[Σ2
i+2⋯Σ2

D]
= Σ2

1⋯Σ2
i−1Σ

2
i

Tr[Σ2
1⋯Σ2

i−1]
, (71)

and thus Σi = cId for i = 2,3,⋯,D − 2 and

Σ2
1

Tr[Σ2
1]
= Σ2

D

Tr[Σ2
D]

. (72)

(64) and (65) give

Σ2
2Σ

2
3⋯Σ2

D

Tr[Σ2
3⋯Σ2

D]
= Σ2

1

Tr[M2M3ΣxMT
3 MT

2 ]
,

Σ2
D

Tr[MT
1 ΣϵM1]

= Σ2
1⋯Σ2

D−1

Tr[Σ2
1⋯Σ2

D−2]
, (73)

and thus

c2
Σ2

D

Tr[Σ2
D]
= Σ2

1

Tr[M2M3ΣxMT
3 MT

2 ]
,

Σ2
D

Tr[MT
1 ΣϵM1]

= c2 Σ2
1

Tr[Σ2
1]
. (74)

Combining (70), (72) and (74), we finish the proof.
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Now, we are ready to prove Theorem 8.

Proof. By Theorem 12, at any global minimum of (3), the solution of a DA-layer network for the
dataset DM is given by

√
ΣϵM1W

A
DA
= ŨΣDUT

DA−1
, WA

i = UiΣiU
T
i−1, W

A
1 M2M3

√
Σx = U1Σ1Ṽ (75)

for i = 2,⋯,D − 1, where Ui are arbitrary matrices satisfying UT
i Ui = Id×d, and

Σ1 ∝
√
S′, ΣD ∝

√
S′, Σi ∝ Id (76)

for some constants c1, c2, c3. The solution suggests that

hLA

A (x) = Π
LA

i=1W
A
i M2M3x∝ ULA

√
S′Ṽ Σ−1/2x x. (77)

Similarly
hLB

B (x) = Π
LB

i=1W
B
i M ′

2M
′
3x∝ ULB

√
S′Ṽ Σ−1/2x x. (78)

The proof is complete by comparing (77) and (78).

One might also consider the case where the minimal width of network B is dB < d. In this case, we
denote S̄′ ∈ RdB×dB containing top dB values of S′. Then we have

hLB

B (x) = Π
LB

i=1W
B
i M ′

2M
′
3 ∝ ULB

√
S̄′Ṽ Σ−1/2x x. (79)

It is now not fully aligned with hA(x). To calculate the alignment, the corresponding kernels are

KA(x1, x2) = hLA

A (x1)ThLA

A (x2) = c1xT
1 Σ
−1/2
x Ṽ TS′Ṽ Σ−1/2x x2 (80)

and
KB(x1, x2) = hLB

B (x1)ThLB

B (x2) = c2xT
1 Σ
−1/2
x Ṽ T S̄′Ṽ Σ−1/2x x2 (81)

for some constants c1, c2 > 0. We then have

⟨KA,KA⟩F = EKA(x1, x2)2 = c21Tr[(S′)2]. (82)

Similarly we have
⟨KB ,KB⟩F = c22Tr[(S̄′)2] (83)

and
⟨KA,KB⟩F = EKA(x1, x2)KB(x1, x2) = c1c2Tr[S̄′S′]. (84)

Therefore, the alignment is given by

⟨KA,KB⟩F√
⟨KA,KA⟩F ⟨KB ,KB⟩F

= Tr[S̄′S′]√
Tr[(S′)2]Tr[(S̄′)2]

=

¿
ÁÁÀTr[(S̄′)2]

Tr[(S′)2] , (85)

which is some value between 0 and 1.

In the end of this section we proves the following technical lemma.
Lemma 2. Suppose that matrices W1,W2,⋯,WD satisfy

WT
i+1W

T
i+2...W

T
DWD...Wi+2Wi+1 = λiWiWi−1...W1W

T
1 ...WT

i−1Wi (86)

for some λi > 0 and i = 1,2,⋯,D − 1, then we have write the SVD of W1,W2,⋯,WD as

WD = UDΣDUT
D−1, WD−1 = UD−1ΣD−1U

T
D−2,⋯, W1 = U1Σ1U0, (87)

where ΣD,⋯,Σ1 are the singular values.

Proof. Denote Pi ∶= (Wi⋯W1)(Wi⋯W1)T . We then have

WT
i+1W

T
i+2...W

T
DWD...Wi+2Wi+1 = λiPi (88)

and
WT

i+2...W
T
DWD...Wi+2 = λi+1Wi+1PiW

T
i , (89)
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which gives

Pi =
λi+1

λi
Si+1PiSi+1, (90)

where Si+1 ∶=WT
i+1Wi+1.

Suppose that Si+1 = V ΛV T , and thus we have

A = cΛAΛ, (91)

where c ∶= λi+1

λi
and A ∶= V TPiV . The (j, k) element gives

Ajk(1 − cλjλk) = 0. (92)

If Ajk ≠ 0, as A is semi-definite, we also have Ajj ,Akk ≠ 0, which gives cλ2
i = cλ2

j = 1. Therefore,
we have AΛ = ΛA, and thus

PiSi+1 = Si+1Pi. (93)
This shows that Pi and Si+1 share the same eigenspace. Moreover, we have Pi = WiPi−1W

T
i .

Denote Wi = UiΣiU
T
i−1 and Wi+1 = Ui+1Σi+1V . As Pi−1 share the same eigenspace with WT

i Wi,
we have Pi−1 = Ui−1ΛU

T
i−1 for some diagonal matrix Λ, which gives Pi = UiΣiΛΣiUi. As Pi share

the same eigenspace with WT
i+1Wi+1 = V TΣ2

i+1V , we obtain V = Ui, which finishes the proof.

B.12 Proof of Theorem 9

Proof. By Theorem 7 we have
WT

i+1Wi+1 =WiW
T
i (94)

for i = 1,⋯,D − 1, which suggests that Wi = UiΣiU
T
i−1 with Σ2

i = Σ2
i+1. At the global minimum

we have UD(ΠD
i=1Σi)UT

0 = ΠD
i=1Wi = M−1

1 VM−1
2 , which shows that the left side is the SVD of

M−1
1 VM−1

2 . This finishes the proof.

B.13 Proof of Theorem 10

Proof. By Theorem 12 we have

√
ΣϵU =

Tr[Σϵ]
1
4

Tr[Σx]
1
4

Ũ
√
S′UT

1 , W
√
Σx =

Tr[Σx]
1
4

Tr[Σϵ]
1
4

U1

√
S′Ṽ . (95)

By [31, Proposition 5.3] we have

S(θ) = dyTr[WΣxW
T ] + ∣∣U ∣∣2FTr[Σx]

= dy

¿
ÁÁÀTr[Σx]

Tr[Σϵ]
Tr[S′] +

√
Tr[Σx]Tr[Σϵ]Tr[Σ−1ϵ ŨS′ŨT ]

(96)

This finishes the proof of (17).

Meanwhile we can also calculate

U∗,W ∗ = argmin
U,W

dy ∣∣WΣ1/2
x ∣∣2F + ∣∣U ∣∣2FTr[Σx]. (97)

As UWΣ
1/2
x = V Σ

1/2
x ∶= Û ŜV̂ , the minimum is given by

U∗ = (TrΣx

dy
)
1/4

Û
√
ŜÛ1, W

∗Σ1/2
x = (TrΣx

dy
)
−1/4

Û1

√
ŜV̂ (98)

and
minS(θ) = 2

√
dyTrΣxTrŜ (99)

where Û1 is an arbitrary orthogonal matrix.

26



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract explicitly states that out main contribution is a theoretical frame-
work for understanding the learning dynamics and emergent phenomena of neural networks
trained with stochastic gradient descent (SGD) based an entropic loss landscape.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed this in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theorems are stated with the full set of assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present all experiment details in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The experiments are only for demonstration and are straightforward to repro-
duce following the description.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We disclose all hyperparameters of experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We plot the standard error as the shaded area.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Personal computers are sufficient for all our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We closely follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use pytorch. We use MNIST and CIFAR datasets, and the publically
available pretrained weights from the pytorch website.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.
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