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Abstract
Increasing the throughput of the Transformer architecture, a foundational com-
ponent used in numerous state-of-the-art models for vision and language tasks
(e.g., GPT, LLaVa), is an important problem in machine learning. One recent and
effective strategy is to merge token representations within Transformer models,
aiming to reduce computational and memory requirements while maintaining ac-
curacy. Prior works have proposed algorithms based on Bipartite Soft Matching
(BSM), which divides tokens into distinct sets and merges the top k similar tokens.
However, these methods have significant drawbacks, such as sensitivity to token-
splitting strategies and damage to informative tokens in later layers. This paper
presents a novel paradigm called PITOME, which prioritizes the preservation of
informative tokens using an additional metric termed the energy score. This score
identifies large clusters of similar tokens as high-energy, indicating potential candi-
dates for merging, while smaller (unique and isolated) clusters are considered as
low-energy and preserved. Experimental findings demonstrate that PITOME saved
from 40-60% FLOPs of the base models while exhibiting superior off-the-shelf per-
formance on image classification (0.5% average performance drop of ViT-MAEH
compared to 2.6% as baselines), image-text retrieval (0.3% average performance
drop of CLIP on Flickr30k compared to 4.5% as others), and analogously in visual
questions answering with LLaVa-7B. Furthermore, PITOME is theoretically shown
to preserve intrinsic spectral properties to the original token space under mild
conditions. Our implementation is available at this link.

1 Introduction
Vision Transformers (ViTs) [1] have been integral to recent advancements in computer vision,
leading to state-of-the-art deep learning architectures for representing images and videos [2–5].
However, these transformer-based architectures incur substantial memory costs and have a quadratic
time complexity in the number of tokens due to the self-attention layers. This challenge becomes
particularly severe as model sizes increase, as observed in Large Language Models (LLMs) [6].

To address such limitations, several efforts focus on designing a more efficient attention mechanism
by making it linearly scale with input tokens [7, 8], integrating vision or language domain-specific
modules [9, 10], or pruning the head numbers in ViT [11, 12]. Others propose dynamically pruning
less important tokens w.r.t. pre-defined metrics using learnable masks [13, 14]. However, a primary
downside of these novel methodologies lies in the necessity to retrain the model from scratch,
therefore hindering the leveraging of well-trained models such as LLMs. Moreover, most pruning-
based techniques may not accelerate the training process, which arises from the dynamic removal
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Figure 1: A comparison of token merging methods. Patches of the same color are merged. Green
arrows highlight incorrect merges, avoided by PITOME. Position of tokens with high attention scores
(cyan borders, zoom for clarity) in PITOME are maintained proportionality akin to ViT-base 384.

of tokens in each sample, resulting in a mismatch of dimensions and consequently preventing the
batching of samples with consistent dimensions.

Recent research has introduced a novel token merging technique. Instead of pruning, this method
combines tokens with high semantic similarity, removing background tokens and merging less
informative foreground ones. Its versatility extends to training and non-training scenarios, drastically
reducing compute and memory usage. A notable example is ToMe [15], which introduced the
Bipartite Soft Matching (BSM) algorithm, prominent for its simplicity and effectiveness in merging
highly similar tokens. Since ToMe, several works, including ToFu [16], Pumer [17], LTPM [18], and
DiffRate [19], have built upon BSM with various adaptations in vision and language domains. In
BSM, tokens representing image patches are separated into sets A and B, and their pairwise cosine
similarity is computed. The top k similar pairs of tokens between the sets A and B are merged.
However, the performance of this algorithm is sensitive to the token-splitting strategy. For instance,
ToMe’s approach, which first splits tokens based on index parity, can lead to incorrect merging since
tokens in A can subsequently only be merged with those in B (Figure 1). Moreover, while BSM
excels in initial layers with many redundant tokens, deeper layers risk merging informative tokens due
to latent object correlations. Though current enhancements [19] mitigated this by considering token
attention scores in BSM [20], their adaptability to different ViT architectures, each with potentially
distinct attention score distributions [21], remains a challenge.

In this work, we propose PITOME (Protect Informative Tokens before Merging), a method designed
to safeguard crucial information-bearing tokens prior to the merging step. Our method prioritizes
preserving informative tokens by utilizing an additional metric termed the energy score inspired
by connections to graph energy in spectral graph theory [22, 23] (Theorem 1). Specifically, our
energy score assesses large clusters of similar tokens as possessing high energy (like background
and repeated textures), thereby marking them as suitable candidates for merging, while smaller,
distinct regions (foreground) are deemed low-energy and thus treated as protected informative tokens.
The proposed energy term operates on the graph built for input tokens, taking into account their
relationships and aggregating information from nearby neighbors when their similarities exceed
certain thresholds. This approach facilitates a deeper contextual comprehension compared to previous
works [15–17, 19] that rely solely on attention scores or feature embedding per token. Subsequently,
we only select the highest-scoring tokens and pass them on for merging in the next steps, ensuring
the preservation of important tokens, particularly in the latter stages when only a few remaining ones.
During the merging process, we continue leveraging sorted energy vectors from earlier stages by
distributing tokens with similar energy into two sets, A and B, resulting in candidates in A having
a high probability of finding compatible matches in B. Matched tokens are then merged using a
weighted average feature embedding to create a new token representation.

The empirical results demonstrate that despite the increased computational cost associated with
energy score calculations, PITOME exhibits comparable speed to other BSM-based approaches since
the matching is performed on a smaller, high-energy token set. At the same time, it consistently
shows superior accuracy across various experimental scenarios. Additionally, we present theoretical
insights into PITOME, showing that, under moderate assumptions — such as the discriminative
nature of feature embeddings generated by ViT for node pairs within and across distinct objects —
our algorithm efficiently preserves the spectral properties of the initial input tokens, maintaining
the eigenvalues derived from normalized Laplacian matrices of the original tokens [24–26]. To
summarize, our contributions encompass:

• A new token merging procedure for accelerating ViT architectures is designed to protect
crucial yet small-region tokens while identifying redundant ones for merging based on
contextual token correlations captured by our energy score functions.
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• Our PITOME runs as fast as other BSM-based approaches while achieving SOTA per-
formance on diverse tasks, ranging from image-text retrieval (Sec. 4.1), visual question
answering with LLMs (Sec. 4.2), image classification (Sec. 4.3), and text classification
(Sec. 4.4). In several cases, PITOME is shown to reduce up to 40 − 60% FLOPs of base
models while only dropping performance around 0.3− 0.5% (CLIP model on Flick30k).

• We also present theoretical findings indicating that, given reasonable assumptions, PITOME
can effectively approximate the spectral distance between the initial token spaces and the
merged token set. This sheds light on why PITOME tends to outperform baselines in
practical applications and contributes to a better understanding of the potential limitations
inherent in BSM-based methods, such as those in [15, 16, 19, 17, 27].

2 Related Work
Efficient Attention Mechanisms. Various efforts have sought to enhance the efficiency of trans-
formers in both NLP and Vision domains. Some concentrate on accelerating attention computation
[28, 29, 8] through approximation techniques involving hashing [30], low-rank [31], or sparse approx-
imations [32]. Others explore strategies such as head or feature pruning [11, 33] or the integration
of domain-specific modules [9, 5, 34, 10]. However, many of them necessitate joint training with
the backbone model from scratch. For instance, DynamicViT [35] runs approximately 150 hours
of fine-tuning on an NVIDIA A100 GPU to prune the DeiT-S model [36]. In contrast, we focus
on accelerating existing ViT models by token merging, which applies to training and non-training
scenarios.

Dynamic Token Pruning. Several studies have explored token pruning in transformer models
across NLP [37–39] and vision domains [40–42, 27]. However, like efficient transformers, these
methods typically require training. Additionally, most pruning techniques are dynamic, meaning the
number of tokens varies across different inputs, which improves accuracy but complicates batching
for practical deployment. To address this, numerous pruning methods employ masks during the
training phase rather than directly eliminating tokens; however, it yields to cancel out the speed
advantages associated with pruning.

Token Merging. Leading techniques such as ToMe [15] and its improvements [17, 43, 18, 19, 16, 44],
build upon lightweight Bipartite Soft Matching (BSM). These methods exhibit speeds comparable
to pruning while achieving superior performance. They have demonstrated the ability to double the
throughput of state-of-the-art Vision Transformers (ViT) on both images and videos with minimal
accuracy degradation in various scenarios. However, BSM-based approaches are sensitive to the
selection of sets in the matching process, potentially resulting in the loss of informative tokens due
to heuristic merging procedures. To address these issues, methods like DiffRate [19] and Crossget
[44] leverage attention scores in ViT or cross-modal guidance to identify important tokens during the
matching process, though they remain sensitive to the distribution of the token space, especially with
imbalanced clusters. Another direction involves adapting more intricate algorithms, such as k-means
[45], spectral clustering [46], graph pooling [47], or graph coarsening [24, 48], to merge similar
tokens. While these strategies offer some guarantees and well-controlled outputs, their iteration
schemes are highly complex and may not align with the goal of reducing model complexity in ViT
layers. Our PITOME, on the other hand, enables the advantages of both approaches. It maintains
efficiency comparable to BSM, remains robust to token partitioning strategies, and offers a reasonable
trade-off between speed and accuracy. Moreover, PITOME is theoretically proved to approximate the
spectral spectrum of the original token space under reasonable assumptions, resembling the behavior
of other spectral clustering methods.

3 Methodology
3.1 Token Merging Formulation
We apply token merging to each transformer block of the ViT architecture (Figure 2-a). Given the
input token of the l-th block Xl ∈ RN×h where N and h are the token length and token hidden
embeddings, a forward step in one Transformer block can be formulated as follows:

X̂l = Xl + Attention(XlWQ,X
lWK ,XlWV ), X

l+1 = X̂l + MLP(X̂l) (1)
where Attention and MLP are the self-attention and multiple layer perceptron components. We then
apply merge operations on X̂l and compute the output of the reduced MLP block as:

Xl+1 = X̂l
m + MLP(X̂l

m), where X̂l
m = Fmer(X̂

l,XlWK , r). (2)
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Figure 2: a) PITOME can be inserted inside transformer block; b) Energy scores are computed to
identify mergeable and protective tokens; c) Our algorithm gradually merges tokens in each block.

Here Fmer(.) is the merging operation that receives X̂l as input for compressing, XlWK (key
matrices) as the token features of X̂l following prior work [15, 43, 18, 19], and r is the fraction
of remaining tokens. The output X̂l

m ∈ RrN×h serves as input for the MLP layer to produce
Xl+1 ∈ RrN×h. We present the PITOME Fmer(.) function in the next section.

3.2 Energy-based Merging
We propose to use a new term called energy score to evaluate the redundancy of each token, which is
then used to protect informative or isolated tokens (low energy scores) while considering tokens that
are in the large cluster as high energy scores and characterizing them as merging candidates. Figure
2-b illustrates the main steps in PITOME.

Token Graph Construction: Given a set of N token inputs in X̂l, we build a weighted graph
G(V, E ,W) with V a set of N = |V| nodes, E a set of M = |E| edges defined by connecting one
token to the remaining ones in G, W ∈ RN×N be a weighted adjacency matrix. We opt for using the
key vectors K = XlWK ∈ RN×h as node features of V , i.e., vi ∈ V has h feature dimensions. The
weight W[i, j] assigned to an edge eij ∈ E connects vi and vj is computed by cosine distance:

W[i, j] = 1− cos(vi, vj), where cos(vi, vj) =
vi · vj
∥vi∥∥vj∥

, ∀vi ∈ V, vj ∈ V. (3)

For simplicity, W[i, :] and W[:, i] denote the i-th row and column, resp.; [N ] stands for {1, . . . , N}.
Token Energy Scores: In this step, the energy score, denoted as E = (Ei)i∈[N ], is computed for
each node (Figure 2-a, Step 2). The term is inspired by the concept of graph energy in spectral graph
theory [22, 23], defined as the sum of the absolute eigenvalues of the adjacency matrix W. We also
leverage such structures of W to find correlations among tokens and to estimate token redundancy.
Instead of using independent token values such as attention scores [19], our energy leads to better
performance (Figure 6, Appendix) and provides theoretical connections to the spectral properties of
the original token graphs (Theorem 1).

Let i be the index of the current node andN (i) represent the set of neighbor nodes. The energy score
Ei ≡ Ei(vi,W[i, :]) of node vi is calculated using the following equation:

Ei(vi,W[i, :]) =
1

N

∑
j∈N (i)

fm(cos(vi, vj)), fm(x) =

{
x if x ≥ m

α(exp(x−m)− 1) otherwise
. (4)

Rather than accumulating all cos(vi, vj) values, the function fm(.) in Eq.(4) mimics the exponential
linear unit activation function [49], focusing on similar tokens even if they are far apart, while
ignoring dissimilar ones. Here, m is a dynamic margin value varying at each layer in the ViT model.
Nodes within this margin, i.e., (x > m) with high cosine similarity cos(vi, vj) are considered true
neighbors, potentially representing tokens belonging to the same object. Nodes outside this margin
have cos(vi, vj) replaced by a constant α, providing a lower bound for minimal edge weights. The

4



term exp(x−m)− 1 < 0 smooths the function f(x) for neighboring nodes near the margin m. In
experiments, we set α = 1.0 and m = 0.9− 0.9× li/l, where li is the current layer index and l is
the total number of encoder layers, indicating an increasing margin as tokens move to deeper layers.
The ablation studies for the α and m values are presented in Section 4.5.

Intuitively, Eq.(4) reflects the number of tokens potentially representing the same object. Tokens
belonging to large objects (e.g., background) will have high energy scores, indicating potential
candidates for merging, while smaller ones (e.g., foreground) will have low energy scores and are
considered to be protected. This guides us to sort the energy vectors E in descending order and
choose only the top 2k nodes with the highest scores as mergeable candidates and the remaining ones
as protective tokens, i.e, s = argsort(E), merge← s[: 2k], protect← s[2k :], k = N −Nr.

Ordered Energy-based Bipartite Soft Matching: Having identified mergeable tokens in the merge
set, we continue exploit the sorted order in E to form two sets A and B in BSM, each containing k
nodes. Specifically, tokens with odd and even indices in merge are selected for A and B, resp. given
the fact that those in the same object should have similar energy scores, resulting in likely distributing
in consecutive positions in argsort(E). In other words, our choosing has a high probability that
one token in A always finds its best match in the same object in B. This sets us apart with random
partitions based on spatial indices in images like [15, 16].

Tracking Token Sizes All nodes in set A are then merged with their nearest neighbors in
set B through the fast BSM algorithm. Following prior works [15, 16], we also add propor-
tional attention to balance the effect of the merged token on the output of the softmax function:
A = Softmax

(
XlWQ · (XlWK)T /

√
h+ logm

)
where m is a row vector containing the size of

each token, i.e., the number of data patches the token represents. The pseudo-code for our method is
provided in Algorithm 1 (Appendix) with complexity analysis.

3.3 Connection to Graph Coarsening with Spectral Preservation
In this section, we employ tools from spectral graph theory to show a spectral distance preservation
of PITOME. We note that similar properties can be obtained by using more complicated clustering
algorithms such as K-mean [45] or spectral clustering [46, 47, 24]; however, these methods are
typically loop-based algorithms, which are computationally expensive and not suitable for batch-type
data. Our PITOME, in contrast, is as fast as BSM methods but theoretically preserves spectral
properties of input token graphs.

We begin by introducing Definitions 1 and 2 of graph coarsening and lifting, resp., to justify the
spectral distance constructed in equation (5), measuring the similarity between the original and coarse
graphs. For more thorough coverage of the mathematics of graph coarsening and graph lifting, we
refer the reader to [50–53]. In short, we treat the result of token merging as a graph coarsening
process (Figure 8, Appendix). We then create the lifted graph as a reconstruction from this coarsened
version to assess the spectral distance to the original token graph.

Definition 1 (Graph Coarsening). Given a weighted graph G(V, E ,W), we denote P = {Vi}i∈[n]

where V = ∪i∈[n]Vi, be a partition of its node into n disjoint sets. The coarsened graph of G
w.r.t. P is the weighted graph Gc, where each partition in P is aggregated into a single node, denoted
{νi}i∈[n], by averaging the elements within each partition. The elements of the adjacency matrix
are given by Wc[i, j] =

∑
vi∈Vi

∑
vj∈Vj

W[i, j]/(|Vi||Vj |). We denote the combinatorial and
normalized Laplacians of G by L = D−W and L = IN −D−1/2WD−1/2, resp., where D is the
diagonal degree matrix with D[i, i] = di :=

∑N
j=1 W[i, j]. Similarly, the definition of the coarsened

Laplacian matrices follows directly: Lc = Dc −Wc and Lc = In −D
−1/2
c WcD

−1/2
c . Finally, the

eigenvalues and eigenvectors of L (resp. Lc) are denoted as λ and u (resp. λc and uc).

Definition 2 (Graph Lifting). We call Gl(Vl, El,Wl) the lifted graph of G if the adjacency matrix
elements are given by Wl[i, j] = Wc[i, j]. We denote the node degree of vli ∈ Vl by dli =∑N

j=1 Wl[i, j]. The combinatorial and normalized Laplacians of Gl is then defined as Ll = Dl−Wl

and Ll = IN −D
−1/2
l WlD

−1/2
l , resp., where Dl is the diagonal degree matrix with D[i, i] = dli.

Then, we denote, resp., the eigenvalues and eigenvectors of Ll by λl and ul.
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Lemma 1 (Eigenvalue Preservation, see e.g., [50, 51, 54, 55]). The normalized Laplacian eigenvalues
of the lifted graph λl contain all the eigenvalues of the coarse graph λc and additional eigenvalues 1
with (N − n) multiplicity.

Through Lemma 1, we can use the lifted graph Gl as a proxy for the coarse graph Gc, and define:

SD(G,Gc) = ∥λ− λl∥1 =

N∑
i=1

|λi − λli| as a spectral distance. (5)

Next, we present our main theoretical result demonstrating how spectral distance characterizes the
superiority of our novel PITOME paradigm over the state-of-the-art approaches as ToMe [15, 16].
The Theorem 1 quantifies how similar the original G is to its coarsened counterpart Gc, and is proved
in Appendix E.

Theorem 1 (Spectrum Consistent of Token Merging). Suppose the graphs G(s)0 , G(s)PITOME, and G(s)ToMe
are coarsened from the original graph G by iteratively merging pairs of nodes vas

and vbs w.r.t. the
true partition P(s)

0 = {V(s)
0i }i∈[s], the PITOME-partition P(s)

PITOME = {V(s)
PITOMEi}i∈[s], defined by

PITOME in Algorithm 1, and the ToMe-partition [15, 16], P(s)
ToMe = {V

(s)
ToMei}i∈[s], for s = N, . . . , n+

1. We assume some standard mild assumptions: (A1) E[cos(vas
, vbs)]→ 1, ∀vas

∈ V(s)
0i ,∀vbs ∈

V(s)
0i , i ∈ [s]; (A2) there exists a margin m s.t., cos(vas , vbs) ≥ m > cos(vas , vcs), ∀vas ∈
V(s)
0i ,∀vbs ∈ V

(s)
0i ,∀vcs ∈ V

(s)
0j ,∀i ̸= j ∈ [s]; and (A3) there is an order of cardinality in the

true partition, without loss of generality, we assume N
(s)
1 ≥ N

(s)
2 ≥ . . . ≥ N

(s)
s , where N

(s)
i =

|V(s)
0i |,∀i ∈ [s]. Then it holds that:

1. The spectral distance between the original G ≡ G(N)
0 and the PITOME-coarse G(n)PITOME

graphs converges to 0, i.e., SD(G,G(n)PITOME)→ 0,

2. The spectral distance between the original G and the ToMe-coarse G(n)ToMe graphs converges
to a non-negative constant C, with a high probability that C > 0.

Intuitively, Theorem 1 states that, given assumptions (i) tokens are closely embedded within classes
and distinct between classes (A1, A2), and (ii) the number of tokens per class follows certain orders
(A3), the spectral distance between PITOME and the original tokens in Eq.(5) will converge to 0. In
contrast, with ToMe partitions, a non-eliminable constant likely remains.

4 Experiments
We focus on two settings: Off-the-Shelf Performance , where we evaluate the models’ performance
immediately after compression without training, and Retrained , where we treat the compression
algorithms as pooling functions and retrain the models on downstream tasks. The experiments cover
four tasks: (i) image & text retrieval, (ii) visual question answering (VQA), (iii) image classification,
and (iv) text classification. We use the number of floating-point operations (FLOPS) needed for
inference on one sample as the main metric to benchmark memory footprint and speed. Higher
FLOPS indicate greater memory requirements and longer training and inference times.

4.1 Image & Text Retrieval
We evaluate PITOME on the image-text retrieval task using three different backbone models CLIP
[56], ALBEF [57], and BLIP [58] on two frequently used Flickr30k [59] and MSCOCO [60] datasets.
Our experiment is benchmarked using recall@k [61], where a higher recall@k indicates the model’s
effectiveness in retrieval. In Figure 3, we benchmarked PITOME against other SOTA merging or
pruning-based methods such as ToMe [15], ToFu [16], DiffRate [19], and DCT [62] on off-the-shelf
setting when varying amount of merged tokens at each layer. Given the same FLOPS, it is clear
that PITOME consistently outperforms previous compression algorithms across all backbones. The
performance gap increases as we decrease the percentage r of tokens retained in each layer. The same
behavior remains consistent in Table 2, where we set r = 0.925 and retrain pre-trained checkpoints
of BLIP and CLIP. For more details about the training method, please refer to Li et al. [58].

In Table 1, we compare PITOME using compression ratios of r ∈ {0.95, 0.975} on BLIP and
BLIP-2 against other advanced architectures such as ViLT [63], LightningDOT [64], UNITER [65],
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METER [66], CLIP-L [67], and ALBEF [68]. The results show that PITOME consistently surpasses
those architectures by a significant margin. Moreover, the performance drop on the base BLIP/BLIP-2
is minimal while achieving substantial reductions in memory footprint and rerank times—nearly
halving for BLIP and tripling for BLIP-2. Additionally, the speedup can further improve with
increased batch and model sizes.

4.2 Visual Question Answering (VQA) with Large Vision-Language Models
This experiment focuses on assessing the off-the-shelf performance of large vision-language models
like LLaVa [2]. We extensively conduct experiments across six VQA datasets: VQA-v2 [69],
GQA [70] (academic questions), VizWiz [71] (visually impaired individuals), ScienceQA [72] (zero-
shot scientific question answering), TextVQA [73] (text-rich VQA tasks), and MME-Perception [74]
(visual perception with yes/no question). More details on the number of samples in each dataset are
in the Appendix. All experiments are conducted using LLAVA-1.5 7B and LLAVA-1.5 13B with the
lmms_eval library [75] provided by the LMMs-Lab team.

Figure 3: Off-the-shell Image-Text Retrieval comparison between PITOME v.s. merging/pruning
methods on different backbones on tasks when varying the number of merged tokens. Here, Recall
sum =Rt@1+Rt@5+Rt@10+Ri@1+Ri@5+Ri@10 is close to 600, indicating recall scores at
top 1,5, and 10 for retrieving image and text reached close to 100%. PITOME curves, in most cases,
are above other baselines.

Table 1: Image-Text Retrieval comparison. PITOME with-
out training are in blue , and with training in gray . PITOME

achieves SOTA while saving 36%− 56% in FLOPS and speed-
ing up by ×1.4 to ×1.6 compared to the base models.

Datasets Methods Rt@1 ↑ Ri@1 ↑ ZS Retrieval
Rsum ↑

Reranked
Rsum ↑

ViT
FLOPS ↓

Total
FLOPS ↓

ZS Retrieval
Time ↓

Total
Time ↓

Flickr30k

ViLT 83.50 64.40 490.60 525.70 - 55.90 - -
LightingDOT 83.90 69.90 532.26 - - - - -
UNITER 92.87 83.73 521.90 542.80 - 949.9 - -
METER 94.30 82.22 560.54 570.72 - - - -
CLIP-L 92.90 81.34 568.23 - 80.85 - 25s -
ALBEF 94.91 85.32 564.58 575.00 55.14 65.54 16s 58s
PITOMEBLIP

r=0.95 95.72 86.32 567.58 577.81 38.55 47.65 13s 56s
PITOMEBLIP

r=0.95 96.61 87.18 569.98 579.35 38.55 47.65 13s 56s
BLIP 96.86 87.48 572.24 580.76 55.14 65.54 16s 1m17s

PITOMEBLIP2
r=0.95 96.83 87.84 566.25 580.77 296.93 390.77 45s 1m21s

PITOMEBLIP2
r=0.975 97.55 89.04 572.81 583.72 434.50 564.78 1m5s 1m54s

BLIP2 97.61 89.79 572.72 584.76 678.45 900.77 1m37s 3m15s

MS-COCO

ViLT 61.50 42.70 420.20 439.20 - 55.90 - -
CLIP-L 70.78 53.79 478.18 - 80.85 - 2m10s -
METER 76.16 57.08 - 495.95 - - - -
ALBEF 76.94 60.24 478.39 500.44 55.14 65.54 43s 5m29s
PITOMEBLIP

r=0.95 79.46 62.50 485.99 506.65 38.85 47.65 51s 4m30s
PITOMEBLIP

r=0.95 80.44 63.91 493.33 512.66 38.85 47.65 51s 4m30s
BLIP 81.82 64.36 494.34 516.03 55.14 65.54 1m3s 7m10s

PITOMEBLIP-2
r=0.95 82.29 65.54 494.92 518.44 296.93 390.77 3m33s 6m34s

PITOMEBLIP-2
r=0.975 84.12 67.37 504.95 527.06 434.50 564.78 5m13s 9m24s

BLIP-2 85.32 68.26 507.46 528.63 678.45 900.77 7m52s 16m12s

Table 2: Retrained Image-Text
Retrieval comparison when retrain-
ing from scratch on CLIP and BLIP
backbones. Rk = Rk@1+Rk@5+
Rk@10, k ∈ {t, i},

Models Algo. Rt ↑ Ri ↑ GFLOPS ↑ Eval
Speed↑

Train
Speed↑

CLIPFlickr

Baseline 291.80 275.52 x1.00 x1.00 x1.00
ToMe 287.30 270.52 x2.10 x1.39 x1.79
ToFu 288.32 269.68 x2.10 x1.39 x1.76
DCT 279.70 258.24 x2.10 x1.30 x1.37
DiffRate 289.33 266.45 x2.10 x1.39 x1.78
PITOME 291.50 270.94 x2.10 x1.39 x1.78

BLIPFLickr

Baseline 296.70 284.06 x1.00 x1.00 x1.00
ToMe 294.80 280.64 x1.57 x1.66 x1.60
ToFu 296.46 281.04 x1.57 x1.65 x1.59
DCT 291.79 275.22 x1.57 x1.61 x1.45
DiffRate 292.77 279.46 x1.57 x1.65 x1.59
PITOME 296.00 282.36 x1.57 x1.66 x1.59

CLIPcoco

Baseline 256.30 222.21 x1.00 x1.00 x1.00
ToMe 248.64 215.03 x2.10 x1.38 x1.79
ToFu 248.99 216.56 x2.10 x1.39 x1.79
DCT 240.04 211.28 x2.10 x1.34 x1.37
DiffRate 248.87 215.45 x2.10 x1.39 x1.79
PITOME 250.70 217.01 x2.10 x1.39 x1.79

BLIPcoco

Baseline 273.72 241.30 x1.00 x1.00 x1.00
ToMe 266.86 234.67 x1.57 x1.90 x1.85
ToFu 266.18 233.87 x1.57 x1.90 x1.85
DCT 264.38 230.19 x1.57 x1.86 x1.78
DiffRate 265.45 235.11 x1.57 x1.84 x1.85
PITOME 268.42 236.25 x1.57 x1.88 x1.85
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Let L denote the number of layers in the CLIP encoder and N the number of visually encoded tokens.
In our experiment, we apply PITOME to the ViT vision encoder of LLAVA, retaining only r percent
of tokens in each layer. This results in rLN tokens being fed into the LLM, significantly enhancing
inference speed. We used LLaVA-1.5-7B and LLaVA-1.5-13B checkpoints to run off-the-shelf
settings. Tables 3 and 4, along with Figure 4, illustrate that the PITOME algorithm consistently
achieves superior performance compared to other merging and pruning methods, as well as existing
SOTA models such as BLIP-2 [76], InstructBLIP [77], IDEFICS-9B/80B [78], with inference time
nearly halved. Remarkably, in some datasets like VisWiz and ScienceQA, the compressed model
even surpasses the baseline model. We contend that this improvement stems from the merging of less
significant tokens in PITOME, potentially enhancing the robustness of the language model (LLM).

4.3 Image Classification on Imagenet-1k

In this task, we employed five ViT backbones of varying sizes—tiny (ViT-T), small (ViT-S), base
(ViT-B), large (ViT-L), and huge (ViT-H) - which are pre-trained using either MAE [79] or DEIT
[80] styles. These backbones were utilized to assess both off-the-shelf and retrained performance.
All experiments were conducted on the ImageNet-1k dataset, which is a subset of ImageNet [81]
containing labeled images spanning 1000 categories.

Table 3: Off-the-shelf LLaVA-1.5 7B (r=0.9) and LLaVA-
1.5 13B (r=0.925) performance vs. PITOME and other token
pruning/merging methods on six VQA datasets: VQA-v2 [69],
GQA [70], VisWiz [71], TextVQA [73], MME [74] ScienceQA
image (ScienceQAI) [72].

Model LLM VQAv2↑ GQA ↑ VisWiz↑ ScienceQAI↑ TextVQA ↑ MME↑
BLIP-2 Vicuna-13B 41.0 41.0 19.6 61.0 42.5 1293.8
InstructBLIP Vicuna-7B - 49.2 34.5 60.5 50.1 -
InstructBLIP Vicuna-13B - 49.5 33.4 63.1 50.7 1212.8
IDEFICS-9B LLaMA-7B 50.9 38.4 35.5 - 25.9 -
IDEFICS-80B LLaMA-65B 60.0 45.2 36.0 - 30.9 -

LLaVA-1.5-7B

Vicuna-7B

76.6 62.0 54.4 70.4 46.0 1514.7
ToMe 75.2 59.5 55.9 68.7 41.1 1412.4
ToFu 75.1 59.4 55.8 68.5 41.2 1405.3
DCT 67.8 56.2 55.7 65.8 26.3 1193.9
DiffRate 72.0 57.9 55.4 66.4 30.6 1341.0
PITOME 75.4 59.9 55.9 69.0 43.0 1448.1

LLaVA-1.5-13B

Vicuna-13B

78.3 63.2 56.7 72.8 48.7 1522.6
ToMe 76.0 59.9 55.9 73.8 43.1 1470.3
ToFu 76.1 60.1 56.1 74.0 43.0 1471.0
DCT 70.8 57.3 56.1 70.3 23.9 1355.8
DiffRate 73.4 58.5 54.6 70.6 32.8 1395.4
PITOME 76.8 60.2 56.1 74.0 45.6 1490.1

Table 4: Inference time of LLaVA-1.5-7B and LLaVA-1.5-
13B models when running on five V100-GPUs and five A100-
GPUs.

Model VQAv2 ↓ GQA ↓ VisWiz ↓ ScienceQAI↓ TextVQA↓ MME↓
LLava-1.5-7B 09h:05m 10m:25s 04m:36s 01m:50s 10m:12s 02m:32s
ToMe 05h:38m 06m:34s 03m:26s 01m:07s 07m:37s 01m:24s
ToFu 05h:35m 06m:32s 03m:29s 01m:06s 07m:40s 01m:24s
DCT 05h:59m 06m:41s 03m:28s 01m:08s 08m:16s 01m:27s
DiffRate 05h:39m 06m:39s 03m:26s 01m:06s 07m:36s 01m:21s
PITOME 05h:44m 06m:37s 03m:26s 01m:07s 07m:37s 01m:23s

LLava-1.5-13B 13h:11m 13m:05s 07m:36s 04m:54s 15m:04s 02m:59s
ToMe 09h:28m 09m:35s 05m:58s 03m:31s 11m:48s 02m:16s
ToFu 09h:26m 09m32s 05m:58s 03m:26s 11m:45s 02m:15s
DCT 10h:02m 10m:53s 06m:46s 03m:45s 12m:57s 02m:34s
DiffRate 09h:33m 09:m44s 06m:01s 03m:37s 11m:52s 02m:18s
PITOME 09h:32m 09m:39s 06m:03s 03m:35s 12m:08s 02m:17s

Figure 4: Off-the-shelf per-
formance of PITOME on
LLaVA-1.5-7B with different
compressing ratio r.

Table 5 and Figure 5 present our experimental results, comparing PITOME with recent works, includ-
ing SOTA efficient transformers such as Swin-B [82], CSWin-B [82], MViT-B/L [83], MAE [79],
and other token merging/pruning methods [84, 85, 41]. We observe that PITOME maintains high
accuracy with an average performance drop of only 0.5% after reducing up to 44% of FLOPS
(MAE-H), showcasing superior performance with comparable throughput. It is important to note that
dynamic pruning-based methods such as A-ViT [85], Dynamic ViT [84], and SP-ViT [13] do not
accelerate training speed due to using additional masks for padding tokens into a same dimension. On
the retraining settings, we note that models compressed by PITOME also surpass merging/pruning
methods by a large margin and approach the performance of the original models.
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4.4 Text Classification
While previous studies have focused on benchmarking BSM-based algorithms within the vision
or vision-language domain, we also extend experiments to the text domain, where input sequence
lengths vary by sample. Specifically, we apply compression algorithms to the first three layers of the
BERT model [86], reducing the number of tokens by 20% in each layer. Our experiments utilize the
SST-2 dataset [87] with an average sequence length of 23.2 tokens and the IMDb dataset [88] with
an average sequence length of 292.2 tokens.

As demonstrated in Table 6 and Figure 11 (Appendix), our findings indicate that PITOME performs
better than other BSM-based baselines. Additionally, after retraining, the compressed BERT models
achieve competitive records while significantly accelerating training speed compared to previous
pruning methods such as PowER-BERT [89], Fisher [90], and LTP [91], as well as BERT-based effi-
cient models like DistilBERT [92] and ALBERT [93]. Notably, we observe only a 0.4% performance
drop on the IMDb dataset and even surpass the original BERT model by 0.3% on the SST-2 dataset.
For detailed empirical results on this task, please refer to Appendix D.

Table 5: Image Classification: Per-
formance of PITOME on Imagenet-1k,
both off-the-shelf (OTS acc) and after
retraining (Trained acc), across ViT
backbones. We benchmark with differ-
ent architectures and merging/pruning
methods.

Type Model OTS
Acc.

Trained
Acc. Flops ↓ Train

speed up

Other
models

Swin-B n/a 84.0 15.4 ×
CSWin-B n/a 84.2 15.0 ×
MViTv2-B n/a 84.4 10.2 ×
MViTv2-L n/a 85.3 42.1 ×

merge

ToMeDEIT-T 68.9 70.0 0.79 ✓
ToFuDEIT-T 69.6 70.5 0.79 ✓
DCTDEIT-T 67.6 68.7 0.79 ✓
DiffRateDEIT-T 69.9 70.7 0.79 ✓
PITOMEDEIT-T 70.8 71.6 0.79 ✓
ViTDEIT-T 72.3 72.3 1.2 ×

prune
A-ViTDEIT-S n/a 78.6 2.9 ×
Dynamic-ViTDEIT-S n/a 79.3 2.9 ×
SP-ViTDEIT-S n/a 79.3 2.6 ×

merge

E-ViTDEIT-S - 79.5 2.9 ×
ToMeDEIT-S 77.7 79.4 2.9 ✓
ToFuDEIT-S 77.8 79.6 2.9 ✓
DCTDEIT-S 74.8 78.6 2.9 ✓
DiffRateDEIT-S 76.8 79.5 2.9 ✓
PITOMEDEIT-S 79.1 79.8 2.9 ✓
ViTDEIT-S 79.8 79.8 4.6 ×

merge

ToMeMAE-L 82.9 85.0 31.0 ✓
ToFuMAE-L 83.8 85.1 31.0 ✓
DCTMAE-L 82.8 84.4 31.0 ✓
DiffRateMAE-L 83.2 85.3 31.0 ✓
PITOMEMAE-L 84.6 85.3 31.0 ✓
ViTMAE-L 85.7 85.7 61.6 ×

merge

ToMeMAE-H 85.6 86.4 92.8 ✓
ToFuMAE-H 85.8 86.4 92.8 ✓
DCTMAE-H 84.3 86.0 92.8 ✓
DiffRateMAE-H 85.9 86.6 92.8 ✓
PITOMEMAE-H 86.4 86.7 92.8 ✓
ViTMAE-H 86.9 86.9 167.4 ×

Table 6: Text Classification: PITOME vs other BERT-style
compressed models and token pruning ones.

Dataset Type Model Acc Eval
Flops ↑

Train
Speed ↑

SST-2

compressed
models

ALBERT 91.3 x1.0 x1.1
DistiledBERT 91.1 x2.0 x1.7
BERT 91.4 x1.0 x1.0

pruning
+mask

PowER-BERT 91.1 x2.5 x1.0
Fisher 91.3 x1.6 x1.0
LTP 91.3 x2.9 x1.0

merging

PITOME 91.0 x1.9 x1.4
ToMe 91.2 x1.9 x1.4
ToFu 89.8 x1.9 x1.4
DCT 90.7 x1.9 x1.4
DiffRate 89.7 x1.9 x1.4
PITOME 91.7 x1.9 x1.4

IMDb

compressed
models

ALBERT 89.2 x1.0 x1.2
DistiledBERT 93.0 x2.0 x1.9
BERT 94.0 x1.0 x1.0

pruning
+mask

PowER-BERT 92.5 x2.7 x1.0
TR-BERT 93.6 x2.3 x1.0

merging
PITOME 93.2 x1.9 x1.8
ToMe 93.3 x1.9 x1.8
ToFu 92.6 x1.9 x1.8
DCT 92.4 x1.9 x1.8
DiffRate 92.4 x1.9 x1.8
PITOME 93.6 x1.9 x1.8

Figure 5: Off-the-shelf results on Imagenet-1k. Zoom in
for better view.

4.5 PITOME Ablation Studies
Contributions of energy scores and related factors. To assess the performance of the components
used in PITOME, we conduct the following settings: (i) PITOME without protecting important tokens
by our energy in Step 2, i.e., using odd and even indices in sorted energy score array as two sets in
BSM; (ii) PITOME where the merging process in Step 3 conducted on two randomly sets A, B as
baselines [15, 16] instead of leveraging ordered in sorted energy vectors E(.); (iii) PITOME without
using our proposed energy score as in Eq(4) but utilizing other indicators like attention scores from
the [CLS] (PITOME w cls attn) token [19] or mean of attention scores; (iv) PITOME using a fixed of
k removed token at each layer as ToMe [15] rather than a reducing ratio of r as our configuration.

We run experiments on image-text retrieval and text classification tasks, reporting the results in Table 7
for (i) and (ii), and in Figure 6 for (iii) and (iv). The results demonstrate that all factors contribute to
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the performance of PITOME, with energy-based operations playing a particularly significant role.
Additionally, reducing tokens with a ratio r effectively eliminates redundant tokens in early layers
while preserving informative ones in later layers.

Margin m and α hyper-parameters. To validate the roles of these parameters in our energy score
function in Eq.(4), we conduct ablation studies on image-text retrieval task with (v) adaptive margin
m compared with a fixed value m ∈ {0.9, 0.45, 0.0,−1.0} when varying the ratio r and (vi) given a
fixed value of r, changing the smooth constant value α in α(exp(x−m)− 1) with x < m. Results
for these settings are summarized in Figure 7 and Table 8, respectively. We observe that while models
with fixed tend to have the accuracy drop sharply when it is lower than some threshold, the adaptive
margins achieve the best results across cases. We hypothesize that as the token space becomes sparser
in deeper layers, PiToMe’s fixed m approach likely assigns the same energy score to all tokens,
making it difficult to isolate and protect tokens during merging. Table 8 also shows that α = 1.0 is
the best choice across margin values.

Further details, including additional ablation study results, visualizations (output merging, open-chat
with LLaVa), and extra PITOME experiments, are provided in the Appendix.

Table 7: Impact of different settings in Steps 2 and 3.

Settings Image-Text Retrieval Text CLS.
ratio r Rsum ratio r acc

PITOME w/o
protecting tokens

in step 2

0.925 568.9 0.6 86.99
0.95 575.3 0.7 89.97
0.975 578.2 0.8 91.67

PITOME using
random split

in step 3

0.925 567.9 0.6 87.17
0.95 574.7 0.7 90.34
0.975 578.4 0.8 91.73

PITOME
0.925 573.4 0.6 89.20
0.95 577.8 0.7 91.47
0.975 580.1 0.8 93.26

Table 8: Impact of the constant α on the
image-text retrieval task. Results are in re-
call sum; higher is better.

ration r α = 1.0 α = 0.5 α = 0.

0.85 519.98 518.66 515.90
0.875 545.90 544.22 542.54
0.90 562.82 562.42 561.92
0.925 571.88 571.10 570.62
0.95 577.50 577.43 577.40
0.975 580.24 579.82 579.76

Figure 6: Ablation studies of PITOME.
Figure 7: Ablation studies on adaptive mar-
gin m.

5 Conclusion
This paper introduces PITOME, a novel algorithm that employs energy concepts to protect informative
tokens during the token merging process. Our algorithm matches the efficiency of heuristic merging
methods while maintaining a theoretical connection to the spectral properties of the input token space.
In experiments on image classification, image-text retrieval, and VQA with LLaVA-1.5 7B/13B,
PITOME consistently outperforms recent token merging and pruning methods, given the equivalent
runtime and memory usage.

Limitations and Future Works Although our focus has been on tasks using ViT encoders for a
variety of applications, we believe it is important to extend PITOME to generative tasks such as
image generation (e.g., stable diffusion) or segmentation. This extension, however, necessitates the
development of an unmerge mechanism in the decoder, which remains an open question. Additionally,
our energy score relies on a fully connected graph of input tokens, which can increase complexity as
the input size grows. Constructing sparse graphs, therefore, might be beneficial for scaling in more
challenging settings. Finally, designing a differentiable learning mechanism to optimize the reducing
rate r for token merging could enhance robustness and versatility across different downstream tasks.
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Figure 8: Token merging outputs can be seen as coarsened graph from an input graph.

A Datasets Descriptions

We present in Table 9 datasets used in our experiment. It is important to note that PITOME was run
off-the-shelf on large datasets in VQA tasks such as VQA-v2 with 447.8k sample or GQQ with 12.5
questions, validating generalization and robustness of our merging mechanism.
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Table 9: Brief statistic of all datasets used in this paper.
Task Name Modality No. Train No. Test

Image-Text retrieval Flickr30k [59] Vision, Text 29k images, each with 5 captions 1k images, each with 5 captions
MS-
COCO[60]

Vision, Text approx 118k images, each with 5 captions 5k images, each with 5 captions

Visual Question
Answering

VQA-v2[69] Vision, Text approx 443.7k questions approx 447.8k questions
GQA [70] Vision, Text approx 72k images with 943k questions approx 10.2k images with 12.5k questions
VisWiz [71] Vision, Text 8k image and questions approx 4.32k image and questions
TextVQA[73] Vision, Text approx 28.4k images with 34.6k questions approx 3.1k images with 4.2k questions
MME [74] Vision, Text - 2375 images and questions
ScienceQA[72]Vision, Text approx 4.11k image and questions approx 2.11k image and questions

Text Classification IMDb [88] Text 25k movie reviews. 25k movie reviews.
SST-2 [87] Text 67,349 sentences 872 sentences

Image Classification Imagenet-
1k[81]

Vision Approximately approx 1.28 million images 50k images (50 images per class)

B PITOME Algorithm

B.1 Pseudo-Code Implementation

The pseudo-code for our method is provided in Algorithm 1. Here E in line 3 is a vector that
represents energy scores of all nodes calculated by the energy function 4. The final output is a
MERGE(.) function, which serves as a lambda function that can be applied to any matrix X̂l at the
l-th layer. The vector m is a vector that contains information about token sizes (i.e, the number of
tokens being merged into each token).

Algorithm 1 PITOME Algorithm

1: function PITOME(remain token ratio: r, input graph: G(V, E)) // Function to prepare
for merging

2: k ← N −N · r // Compute number of nodes to merge
3: s← argsort(E, descending=True) // Compute energy scores
4: merge, protect← s[: 2 · k], s[2 · k :] // Identify mergeable and protected nodes
5: na,nb ← merge[:: 2],merge[1 :: 2] // Split mergeable nodes
6: Emerge ← E [na][nb] // Get edge weights of mergeable nodes
7: ndst ← argmax(Emerge) // Find closest neighbors
8: function MERGE(X) // Function to perform merging
9: Xprotected ← X[protect, :] // Extract protected tokens

10: XA,XB ← X[na, :],X[nb, :] // Extract tokens in set A and B
11: XA,XB ← XA ×m[na],XB ×m[nb] // Weighted average
12: XB ← XB.scatter_reduce(ndst,XA,mode = "sum") // Merge tokens
13: XB ← XB/mB.scatter_reduce(ndst,mA,mode = "sum") // Weighted

average
14: return cat(Xprotected,XB) // Concatenate and return merged tokens
15: return MERGE // Return merging lambda function

B.2 PITOME Complexity Analysis

In algorithm 1, in line 3, the weighted graph is constructed through matrix multiplication, leading to
a complexity of O

(
N2h

)
, where h is the dimension of input vectors. Next, the computed energy

scores are sorted, which have the complexity ofO (N log(N)). Lastly, in line 7, the max operator for
selecting the merge destination and the lambda MERGE function, which performs tensor operations
based on computed indices, lead to linear complexity. Combining these aspects, the overall time
complexity of the PITOME function can be approximated as O

(
N2h

)
, considering the dominant

factors contributing to computational cost. However, actual performance may vary depending on
the specific PyTorch version and hardware utilization, with optimizations potentially altering these
estimates.
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(a) MSCOCO (b) Flickr30k

Figure 9: Off-the-shelf performance of all backbones for image-text retrieval task using different
token merging schedules.

In the BSM algorithms used by ToMe, after the bipartition of tokens into two sets A and B using odd
and even indices, each set has N/2 tokens, it also requires calculating a similarity matrix between
tokens in these two sets. This operation also has the complexity of O

(
N2h

)
. The similarity matrix

is then sorted to get the top k tokens in set A with the highest similarity score used for merging, this
operation also has the time complexity of O (N log(N)), and the merging procedure is the same as
our PITOME algorithm. So basically when compared to BSM, our algorithms have the same time
complexity of O

(
N2h

)
, although in practice the speed of ToMe is a little bit faster than PITOME (a

few milliseconds), but our algorithms give a much better trade-off between speed and accuracy. For
more details about the BSM algorithms please refer to the ToMe paper[15].

B.3 Model complexity analysis

In a standard Transformer layer, we have the time and space complexity to be O
(
N2h+Nh2

)
and O

(
N2 +Nh

)
. In each layer ith of the model, we compress the number of to-

kens down to rN using PITOME algorithms with the complexity of O
(
(ri−1N)2h

)
, so the

layer i will enjoy the time and space complexity of O
(
(ri−1N)2h+ riNh2 + (ri−1N)2h

)
and O

(
(ri−1N)2 + riNh

)
resp.Vision language models like LLaVA directly use output to-

kens from ViT encoders. Let l be the number of layers in the ViT encoder since
we utilize PITOME in each layer in the ViT encoder part; the LLM model will
have the time and space complexity of O

(
(rlNViT +NLLM)2h+ (rlNViT +NLLM)h2

)
and

O
(
(rlNViT +NLLM)2 + (rlNViT +NLLM)h

)
which boosts the inference speed and saves a high

amount of memory usage. The speedup could get even more impressive when used with higher
batch size and image size. This also applies to models that use cross-attention modules for image
text matching like BLIP and ALBEF, in which most of the computation expense comes from to-
kens encoded by the ViT model, the time and space complexity for the cross attention layers are
O
(
rlNvisionNtexth+Ntexth

2
)

and O
(
rlNvisionNtext +Ntexth

)
resp.

C Performance of ToMe with Different Token Merging Schedules

In the original ToMe paper, the authors proposed a merging schedule that involves reducing tokens
in each layer by a fixed k tokens per layer. However, as illustrated in Figure 6, we showed that this
merging schedule is suboptimal for off-the-shell performance, and this section provides empirical
results to confirm this claim.

In this experiment, we exclusively compare two versions of the BSM algorithms utilized in the ToMe
paper: one that preserves a percentage r of tokens in each layer and another that reduces a fixed k
tokens in each layer. However, for a more comprehensive comparison, we extensively apply these
algorithms across 6 ViT backbones (DeiT-T, DeiT-S, DeiT-B, MAE-B, MAE-L, MAE-H) for image
classification tasks using the Imagenet-1k dataset, as well as across 4 backbones for image-text
retrieval tasks (CLIP-B, CLIP-L, BLIP, BLIP2) on FLickr30k and MSCOCO dataset.
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(a) DEIT backbones models (b) MAE backbone models

Figure 10: Off-the-shell performance of all backbones for image classification task using different
token merging schedules.

From Figures 10b, 10a, 9b, and 9a, it is evident that, given the same FLOPS, the BSM version that
uses the remaining percent r shows a clear advantage, outperforming the original schedule by a large
margin. This gap becomes even more pronounced when benchmarked on large models like MAE-L,
MAE-H, and BLIP-2. During the experiment, we also observed that models compressed using the
ratio r tend to run a little faster since a large number of tokens are removed in earlier layers.

D Additional Experiments on Text Classification Task.

This section comprehensively assesses the performance of PITOME against other baseline algorithms
for sentiment text classification tasks. We conducted this experiment using the IMDb and SST-2,
applying the compression algorithms to the first three layers of the model. To ensure consistency in
our experimental results, we used two different backbones: BERT with 12 layers and DistilBERT
with 6 layers. Since we only compress the first three layers, in addition to the baselines previously
used throughout this paper, we introduced two additional baselines: ToFu-p and ToFu-m. ToFu-p uses
BSM to prune tokens instead of merging them, while ToFu-m represents the original ToFu algorithm
without pruning.

Table 10: Performance of PITOME versus baselines algorithms when training BERT and Distiled-
BERT when retrained from scratch.

Dataset Model Compress
method

r = 0.8 r = 0.75 r = 0.7

accuracy flops eval
speed

train
speed accuracy flops eval

speed
train
speed accuracy flops eval

speed
train
speed

SST-2

BERT

ToMe 91.25 (-0.20) x1.88 x1.14 x1.40 89.12 (-2.33) x2.27 x1.22 x1.56 88.00 (-3.45) x2.72 x1.30 x1.68
ToFu 89.82 (-1.83) x1.88 x1.15 x1.40 88.64 (-2.81) x2.27 x1.22 x1.56 87.22 (-4.23) x2.72 x1.29 x1.68
DCT 90.66 (-0.79) x1.81 x1.05 x1.12 89.31 (-2.14) x2.13 x1.12 x1.43 87.76 (-3.69) x2.72 x1.19 x1.61
DiffRate 89.72 (-1.73) x1.88 x1.14 x1.40 87.96 (-3.49) x2.27 x1.21 x1.55 87.64 (-3.81) x2.72 x1.22 x1.68
PITOME 91.72 (+0.27) x1.88 x1.19 x1.39 90.28 (-1.17) x2.27 x1.23 x1.55 88.67 (-2.78) x2.72 x1.25 x1.65

DistiledBERT

ToMe 89.64 (-1.74) x1.61 x1.01 x1.28 88.56 (-2.82) x1.88 x1.03 x1.35 88.64 (-2.74) x2.26 x1.07 x1.46
ToFu 89.92 (-1.46) x1.61 x1.02 x1.27 88.85 (-2.53) x1.88 x1.04 x1.35 88.76 (-2.62) x2.26 x1.07 x1.46
DCT 89.59 (-1.79) x1.51 x0.95 x1.16 88.08 (-3.30) x1.61 x1.00 x1.22 87.70 (-3.68) x1.88 x1.02 x1.32
DiffRate 89.65 (-1.73) x1.61 x1.01 x1.26 89.05 (-2.33) x1.88 x1.02 x1.33 87.88 (-3.50) x2.26 x1.07 x1.42
PITOME 90.31 (-1.07) x1.61 x1.02 x1.25 89.28 (-2.10) x1.88 x1.05 x1.34 88.89 (-2.49) x2.26 x1.10 x1.41

IMDb

BERT

ToMe 93.25 (-0.75) x1.91 x1.68 x1.86 93.01 (-0.99) x2.30 x1.88 x2.06 92.33 (-1.67) x2.77 x2.10 x2.36
ToFu 93.36 (-0.64) x1.92 x1.68 x1.86 92.99 (-1.01) x2.30 x1.89 x2.06 92.34 (-1.66) x2.77 x2.09 x2.34
DCT 92.39 (-1.61) x1.90 x1.60 x1.79 92.22 (-1.78) x2.30 x1.75 x1.94 91.31 (-2.69) x2.77 x1.97 x2.25
DiffRate 92.96 (-1.04) x1.91 x1.68 x1.86 92.53 (-1.47) x2.30 x1.86 x2.03 92.10 (-1.90) x2.77 x2.08 x2.33
PITOME 93.52 (-0.48) x1.91 x1.66 x1.84 93.27 (-0.73) x2.30 x1.84 x2.01 92.74 (-1.26) x2.77 x2.08 x2.31

DistiledBERT

ToMe 92.45 (-0.55) x1.83 x1.47 x1.57 92.34 (-0.66) x2.15 x1.57 x1.64 91.86 (-1.14) x2.53 x1.69 x1.86
ToFu 92.55 (-0.45) x1.83 x1.47 x1.57 92.33 (-0.67) x2.15 x1.57 x1.64 91.91 (-1.09) x2.53 x1.69 x1.85
DCT 92.38 (-0.62) x1.61 x1.39 x1.50 91.87 (-1.13) x1.79 x1.48 x1.62 91.69 (-1.31) x2.19 x1.56 x1.77
DiffRate 92.43 (-0.57) x1.83 x1.44 x1.55 92.16 (-0.84) x2.15 x1.57 x1.62 91.78 (-1.22) x2.53 x1.63 x1.84
PITOME 92.71 (-0.29) x1.83 x1.43 x1.54 92.55 (-0.45) x2.15 x1.54 x1.61 92.06 (-0.94) x2.53 x1.62 x1.83

As demonstrated in Table 10 and Figure 11, our findings align with empirical results from previ-
ous tasks, indicating that PITOME consistently achieves superior performance compared to other
baselines. Particularly noteworthy is the performance on the IMDb dataset with a large context
length, where even after reducing FLOPs by 80%, models compressed by PITOME still maintain
off-the-shelf accuracy above 85%, while other baseline algorithms see the off-the-shelf accuracy
drop below 70%. Furthermore, Table 10 highlights that our algorithm can also facilitate better model
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learning compared to other methods, achieving high accuracy that closely approaches that of the
original model.

E Proof of Theorem 1

E.1 Sketch of Proof

The proof sketch for Theorem 1 begins by defining coarsened and lifted versions of the original graph
G (see Definitions 1 and 2) using the PITOME and ToMe algorithms. The goal is to demonstrate that
the spectral distance between G and its PITOME-coarsened counterpart converges to zero, whereas the
distance for ToMe remains bounded away from zero. The sketch proceeds by introducing Propositions
1, 2, and 3, which build toward the main result:

1. Proposition 1 establishes upper bounds on the edge weight differences between merged
nodes under the PITOME and ToMe methods.

2. Proposition 2 employs standard mild assumptions to relate the cosine similarity among
nodes within clusters, demonstrating that the upper bound error ϵ(s)PITOME between the edge
weights of merged nodes in PITOME-coarsened graphs G(n)PITOME converges to 0, whereas
this property does not hold for the ToMe-coarsened graphs G(n)ToMe.

3. Proposition 3 completes the sketch by bounding the spectral distances of the coarsened
graphs in terms of the edge weight differences from the earlier Propositions 1 and 2.

Each proposition is proven in detail within the appendix sections following this sketch. Note that
Theorem 1 immediately follows the following Propositions 1, 2, and 3, which are proved resp. in
Sections E.2, E.3, and E.4.

Proposition 1. Suppose the graphs G(s)0 , G(s)PITOME, and G(s)ToMe are coarsened from the original graph
G by iteratively merging pairs of nodes vas

and vbs w.r.t. the true partition P(s)
0 = {V(s)

0i }i∈[s], the

PITOME-partition P(s)
PITOME = {V(s)

PITOMEi}i∈[s], defined by PITOME Algorithm 1, and the ToMe-

partition [15, 16], P(s)
ToMe = {V

(s)
ToMei}i∈[s], for s = N, . . . , n+ 1. We assume the following standard

mild assumption:

(A2). There exists a margin m s.t.

cos(vas
, vbs) ≥ m > cos(vas

, vcs), ∀vas
∈ V(s)

0i ,∀vbs ∈ V
(s)
0i ,∀vcs ∈ V

(s)
0j ,∀i ̸= j ∈ [s].

(6)

Then, the edge weights of merged nodes from PITOME Algorithm 1 and the ToMe-partition [15, 16]
satisfy

∥W[as, :]−W[bs, :]∥1 ≤ ϵ(s) (7)

for some nonnegative upper bounds ϵ(s), s = N,N − 1, . . . , n+ 1 defined as follows:

ϵ(s) =

{
2(1− cos(vas

, vbs)) if vas
∈ V(s)

0i , vbs ∈ V
(s)
0i ,∀i ∈ [s],

3(1− β) if vas ∈ V
(s)
0i , vbs ∈ V

(s)
0j , i ̸= j ∈ [s].

. (8)

Proposition 2. We assume some standard mild assumptions:

Figure 11: Off-the-shelf performance of various algorithms on the text classification task.
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(A1). E[cos(vas
, vbs)]→ 1, ∀vas

∈ V(s)
0i ,∀vbs ∈ V

(s)
0i , i ∈ [s].

(A2). There exists a margin m s.t., cos(vas
, vbs) ≥ m > cos(vas

, vcs), ∀vas
∈ V(s)

0i ,∀vbs ∈
V(s)
0i ,∀vcs ∈ V

(s)
0j ,∀i ̸= j ∈ [s].

(A3). There is an order of cardinality in the true partition, without loss of generality, we assume
N

(s)
1 ≥ N

(s)
2 ≥ . . . ≥ N

(s)
s , where N

(s)
i = |V(s)

0i |,∀i ∈ [s].

Here E (·) stands for the expectation of the random variables that define the random events M (s)
ab :=

{vas ∈ V
(s)
0i , vbs ∈ V

(s)
0i , i ∈ [s]}, indicating that the two merged nodes belong to the same true

partition V(s)
0i . Given the ϵ(s) defined in equation (8), we obtain

1. The upper bound error ϵ(s)PITOME between the edge weights of merged nodes from PITOME-
coarse G(n)PITOME graphs converges to 0, i.e.,

ϵ
(s)
PITOME → 0 as E(cos(vas

, vbs))→ 1, for any s = N, . . . , n+ 1.

2. The upper bound error ϵ(s)ToMe between the edge weights of merged nodes from ToMe-coarse
G(n)ToMe graphs converges to a non-negative constant C(s), with a high probability that
C(s) > 0, i.e.,
ϵ
(s)
ToMe → C(s) and P(C(s) > 0) > 0 as E(cos(vas , vbs))→ 1, for any s = N, . . . , n+ 1.

Proposition 3. Suppose the graphs G(s)0 , G(s)PITOME, and G(s)ToMe are coarsened from the original graph
G by iteratively merging pairs of nodes vas

and vbs w.r.t. the true partition P(s)
0 = {V(s)

0i }i∈[s], the

PITOME-partition P(s)
PITOME = {V(s)

PITOMEi}i∈[s], defined by PITOME Algorithm 1, and the ToMe-

partition [15, 16], P(s)
ToMe = {V

(s)
ToMei}i∈[s], for s = N, . . . , n+1. If the edge weights of merged nodes

satisfy
∥W[as, :]−W[bs, :]∥1 ≤ ϵ(s)

for some nonnegative upper bounds ϵ(s), s = N,N − 1, . . . , n+ 1. The spectral distances between
the original G ≡ G(N)

0 and the PITOME-coarse and ToMe-coarse G(n)PITOME graphs are bounded as
follows:

max{SD(G,G(n)PITOME), SD(G,G(n)ToMe)} ≤
3N

2

n+1∑
s=N

ϵ(s).

E.2 Proof of Proposition 1

We want to prove that the edge weights of merged nodes from PITOME Algorithm 1 and the
ToMe-partition [15, 16] satisfy

∥W[as, :]−W[bs, :]∥1 ≤ ϵ(s)

for some nonnegative upper bounds ϵ(s), s = N,N − 1, . . . , n+ 1.

Let us start with the simplest case, where we suppose the graph Gc is coarsened from G by merging
one pair of nodes va and vb using PITOME Algorithm 1 and the ToMe-partition. We can then
demonstrate that the edge weights of the merged nodes satisfy certain conditions (for more details,
refer to Appendix E.5.1):

∥W[a, :]−W[b, :]∥1 ≤ ϵ for a nonnegative upper bound ϵ. (9)

Recall that the graphs G(s)0 , G(s)PITOME, and G(s)ToMe are coarsened from the original graph G by iteratively
merging pairs of nodes vas

and vbs w.r.t. the true partition P(s)
0 = {V(s)

0i }i∈[s], the PITOME-partition
P(s)

PITOME = {V(s)
PITOMEi}i∈[s], defined by PITOME Algorithm 1, and the ToMe-partition [15, 16],

P(s)
ToMe = {V

(s)
ToMei}i∈[s], for s = N, . . . , n+1. By iteratively applying the merged 2-nodes inequalities

(9), we obtain the desired upper bound as follows:
∥W[as, :]−W[bs, :]∥1 ≤ ϵ(s), for all s = N,N − 1, . . . , n+ 1,
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where

ϵ(s) =

{
2(1− cos(vas

, vbs)) if vas
∈ V(s)

0i , vbs ∈ V
(s)
0i , i ∈ [s],

3(1− β) if vas ∈ V
(s)
0i , vbs ∈ V

(s)
0j , i ̸= j ∈ [s].

.

E.3 Proof of Proposition 2

Recall that in equation (8) of Proposition 1, we defined ϵ(s), for s = N,N − 1, . . . , n+1, as follows:

ϵ(s) =

{
2(1− cos(vas

, vbs)) if vas
∈ V(s)

0i , vbs ∈ V
(s)
0i , i ∈ [s],

3(1− β) if vas
∈ V(s)

0i , vbs ∈ V
(s)
0j , i ̸= j ∈ [s].

.

Recall that we defined E (·) as the expectation of the random variables that define the random events
M

(s)
ab := {vas ∈ V

(s)
0i , vbs ∈ V

(s)
0i , i ∈ [s]}, indicating that the two merged nodes belong to the same

true partition V(s)
0i . Using the definition and the linearity of expectation, we have

E
(
ϵ(s)

)
= 2[1− E (cos(vas , vbs))] + 3(1− β)(1− P(M (s)

ab )). (10)

Under Assumptions (A2) and (A3) and the energy-based merging mechanism of the PITOME

algorithm, we can verify that P(M (s)
ab ) = 1 via Lemma 2, which is proved in Appendix E.5.2. Refer

to Lemma 3 for the ToMe approach (proof in Appendix E.5.2), noting that there exists a scenario
where the random event M (s)

ab does not occur, leading to P(M (s)
ab ) < 1. This leads to the desired

results.
Lemma 2. For the PITOME approach, it holds that P(M (s)

ab ) = 1, i.e., there exists a true partition
V(s)
0i , i ∈ [s], such that vas

∈ V(s)
0i , vbs ∈ V

(s)
0i .

Lemma 3. For the ToMe approach, there is a case where the random event M (s)
ab does not occur and

therefore P(M (s)
ab ) < 1.

E.4 Proof of Proposition 3

Let us start with the simplest case, where we suppose the graph Gc is coarsened from G by merging
one pair of nodes va and vb. We can then prove the following property: If the edge weights of merged
nodes satisfy

∥W[a, :]−W[b, :]∥1 ≤ ϵ

then the spectral distance between the original and lifted graphs is bounded by

∥λ− λl∥1 ≤
3

2
ϵ. (11)

Proof of the 2-node triangle inequality 11. Indeed, since the coarse graph Gc is coarsened by merg-
ing a pair of nodes va and vb, the edge weights of the lifted graph Gl can be formulated as:

Wl[i, j] =


W[a,a]+2W[a,b]+W[b,b]

4 if i, j ∈ {a, b},
W[a,j]+W[b,j]

2 if i ∈ {a, b} and j /∈ {a, b},
W[i,a]+W[i,b]

2 if i /∈ {a, b} and j ∈ {a, b},
W[i, j] otherwise.

(12)

Here we use the fact that the adjacency matrix elements of Gl are given by

Wl[i, j] =

∑
vi∈Vi

∑
vj∈Vj

W[i, j]

|Vi||Vj |
where vi ∈ Vi, and vj ∈ Vj . (13)

The corresponding node degree of Gl is

dli =

{da+db

2 if i ∈ {a, b},
di otherwise.

(14)

Using the result from Lemma 4, we can bound on the eigenvalue gap between λ and λl via the
perturbation matrix E = L− Ll = D−Dl +Wl −W as follows:

∥λ− λl∥1 =

N∑
i=1

|λi − λli| ≤ N∥E∥2 ≤ N
√
∥E∥∞∥E∥1. (15)
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Here the last inequality follows from the upper bound of the spectral norm ∥E∥2 of [94], and we
defined ∥E∥∞ = maxi

∑
j |E[i, j]|, which is simply the maximum absolute row sum of the matrix,

and ∥E∥1 = maxj
∑

i |E[i, j]|, which is simply the maximum absolute column sum of the matrix.

Lemma 4 (Perturbations of eigenvalues: Weyl’s inequality from [95]). Let L ∈ RN×N and Ll ∈
RN×N be symmetric matrices. Then for all i = 1, . . . , N ,

max
i=1,...,N

|λli(Ll)− λi(L)| ≤ ∥Ll − L∥2, (16)

where ∥Ll − L∥2 is the induced 2-norm of Ll − L.

The equations (12), (13), and (14) yield the following identities:

Wl[i, j]−W[i, j] =


W[a,a]+2W[a,b]+W[b,b]

4 −W[i, j] if i, j ∈ {a, b},
W[a,j]+W[b,j]

2 −W[i, j] if i ∈ {a, b} and j /∈ {a, b},
W[i,a]+W[i,b]

2 −W[i, j] if i /∈ {a, b} and j ∈ {a, b},
0 otherwise.

(17)
and

D[i, i]−Dl[i, i] =

{
di − da+db

2 if i ∈ {a, b},
0 otherwise.

(18)

Now we want to prove that ∥E∥∞ ≤ ϵ and ∥E∥1 ≤ ϵ. Let us first focus on the first term ∥E∥∞ =
maxi

∑
j |E[i, j]|. Via the triangle inequality, we have

∥E∥∞ ≤ ∥D−Dl∥∞ + ∥Wl −W∥∞. (19)
Then, again using the triangle inequality and the assumption of Proposition 3, we obtain the first
upper bound on the first term of the equation (19) as follows:

∥D−Dl∥∞ = max
i

∑
j

|D[i, j]−Dl[i, j]| = max
i∈{a,b}

∣∣∣∣di − da + db
2

∣∣∣∣
=

∣∣∣∣da − da + db
2

∣∣∣∣ = ∣∣∣∣da − db
2

∣∣∣∣
=

1

2

∣∣∣∣∣∣
N∑
j=1

Waj −
N∑
j=1

Wbj

∣∣∣∣∣∣ ≤ 1

2

N∑
j=1

|W[a, j]−W[b, j]|

=
1

2
∥W[a, :]−W[b, :]∥1 ≤

ϵ

2
. (20)

For the second upper bound term from the equation (19), we consider two cases for each index
i = 1, . . . , N : i ∈ {a, b} (Case 1) and i /∈ {a, b} (Case 2).

Case 1. Assume that i ∈ {a, b}. Since a and b have the same role, we can take i = a without loss of
generality. Using the equation (17), it holds that

∥Wl −W∥∞ = max
i∈{a,b}

∑
j

|Wl[i, j]−W[i, j]|

=

∣∣∣∣2W[a, b] +W[b, b]− 3W[a, a]

4

∣∣∣∣+ ∣∣∣∣W[a, a] +W[b, b]− 2W[a, b]

4

∣∣∣∣+ ∑
j /∈{a,b}

∣∣∣∣W[a, j]−W[b, j]

2

∣∣∣∣
=

∣∣∣∣ (W[b, b]−W[a, b]) + 3(W[a, b]−W[a, a])

4

∣∣∣∣
+

∣∣∣∣ (W[a, a]−W[a, b]) + (W[a, b]−W[b, b]) + 2(W[b, b]−W[a, b])

4

∣∣∣∣
+

∑
j /∈{a,b}

∣∣∣∣W[a, j]−W[b, j]

2

∣∣∣∣ .
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Therefore, it holds that

∥Wl −W∥∞ ≤
1

4
|W[a, b]−W[b, b]|+ 3

4
|W[a, a]−W[a, b]|

+
1

4
|W[a, a]−W[a, b]|+ 1

4
|W[a, b]−W[b, b]|+ 2

4
|W[a, b]−W[b, b]|

+
1

2

∑
j /∈{a,b}

|W[a, j]−W[b, j]| (using triangle inequalities)

= |W[a, b]−W[b, b]|+ |W[a, a]−W[a, b]|+ 1

2

∑
j /∈{a,b}

|W[a, j]−W[b, j]|

≤ |W[a, b]−W[b, b]|+ |W[a, a]−W[a, b]|+
∑

j /∈{a,b}

|W[a, j]−W[b, j]|

= |∥W[a, :]−W[b, :]∥1 ≤ ϵ. (21)

Case 2. Assume that i /∈ {a, b}. Using the equation (17), we obtain

∥Wl −W∥∞ = max
i/∈{a,b}

∑
j∈V
|Wl[i, j]−W[i, j]|

=

∣∣∣∣W[i, a] +W[i, b]

2
−W[i, a]

∣∣∣∣+ ∣∣∣∣W[i, a] +W[i, b]

2
−W[i, b]

∣∣∣∣
=

∣∣∣∣W[i, a]−W[i, b]

2

∣∣∣∣+ ∣∣∣∣W[i, a]−W[i, b]

2

∣∣∣∣
= |W[i, a]−W[i, b]| ≤ |∥W[a, :]−W[b, :]∥1 ≤ ϵ. (22)

Combining (21) and (22), we obtain
∥Wl −W∥∞ ≤ ϵ.

This leads to

∥E∥∞ ≤
3

2
ϵ

when using the inequalities (19) and (20). Similarly, we can show that ∥E∥1 ≤ 3
2ϵ. Therefore, the

equation (15) leads to the desired claim as follows:

∥λ− λl∥1 ≤ N

√
3

2
ϵ
3

2
ϵ =

3N

2
ϵ.

Recall that the graphs G(s)0 , G(s)PITOME, and G(s)ToMe are coarsened from the original graph G by iteratively
merging pairs of nodes vas

and vbs w.r.t. the true partition P(s)
0 = {V(s)

0i }i∈[s], the PITOME-partition
P(s)

PITOME = {V(s)
PITOMEi}i∈[s], defined by PITOME Algorithm 1, and the ToMe-partition [15, 16],

P(s)
ToMe = {V(s)

ToMei}i∈[s], for s = N, . . . , n + 1. By iteratively applying the triangle inequalities
(11), the spectral distances between the original G ≡ G(N)

0 and the PITOME-coarse G(n)PITOME and
ToMe-coarse G(n)ToMe graphs are bounded as follows:

max{SD(G,G(n)PITOME),SD(G,G(n)ToMe)} ≤
n+1∑
s=N

max{SD(G(s)0 ,G(s−1)
PITOME),SD(G(s)0 ,G(s−1)

ToMe )}

≤ 3N

2

n+1∑
s=N

ϵ(s).

E.5 Proofs of Technical Results

E.5.1 Proof of the merged 2-nodes inequality (9)

Recall that there exists the graph G0 coarsened from the original graph G by merging a pair of nodes
vas

and vbs w.r.t. the true partition P0 = {V0i}i∈[s]. Then, we have V = V01 ∪ V02 ∪ . . . ∪ V0n,
where n = N − 1. We also note that the energy score Ea of node va is calculated using the following
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equation:

Ea =
1

N

∑
b∈N (a)

fm(cos(va, vb)), fm(x) =

{
x if x ≥ m

α(exp(x−m)− 1) otherwise
. (23)

Inspired by the construction of the function fm in equation (23) and according to Assumption (A2) in
the inequalities (6), we can replace the smooth term α(exp(x−m)−1) by a constant β for simplicity.
More precisely, if the nodes va and vb are not considered true neighbours, i.e., their cosine similarity
is less than the margin m, then we can simplify the expression as follows:

cos(va, vb) = β := sup
va∈V0i,vb∈V0j ,i̸=j∈[N ]

α(exp(cos(vi, vj)−m)− 1) < 0. (24)

To check the inequality (9), we examine the following term
∥W[a, :]−W[b, :]∥1

in two cases:

Case 1. If two nodes va and vb belong to the same true partition, say for example, V0i, i ∈ [N ], then
since n = N − 1, we have V0i = {va, vb}. Therefore, we can expand the previous 1-norm as follows:

∥W[a, :]−W[b, :]∥1 =

N∑
k=1

|W [a, k]−W [b, k]|

=

N∑
vk∈V0i

|W [a, k]−W [b, k]|+
N∑

vk /∈V0i

|W [a, k]−W [b, k]|

= |W [a, a]−W [b, a]|+ |W [a, b]−W [b, b]|
= 2|1− cos(va, vb)|. (25)

Case 2. If va ∈ V0i and vb ∈ V0j such that i ̸= j, i, j ∈ [N ]. Since n = N − 1, we have either
V0i = {va, v0i},V0j = {vb} (Case 2.1) or V0i = {va},V0j = {vb, v0j} (Case 2.2). Let us first
consider the Case 2.1, then it holds that

∥W[a, :]−W[b, :]∥1 =

N∑
k=1

|W [a, k]−W [b, k]|

=

N∑
vk∈V0i

|W [a, k]−W [b, k]|+
N∑

vk∈V0j

|W [a, k]−W [b, k]|+
N∑

vk /∈V0i,vk /∈V0j

|W [a, k]−W [b, k]|

= |W [a, a]−W [b, a]|+ |W [a, 0i]−W [b, 0i]|+ |W [a, b]−W [b, b]|
= (1− β) + |1− cos(va, v0i)− (1− β)|+ (1− β)

= 2(1− β) + | cos(va, v0i)− β| ≤ 3(1− β). (26)

Now, let us first consider the Case 2.2, then it holds that

∥W[a, :]−W[b, :]∥1 =

N∑
k=1

|W [a, k]−W [b, k]|

=

N∑
vk∈V0i

|W [a, k]−W [b, k]|+
N∑

vk∈V0j

|W [a, k]−W [b, k]|+
N∑

vk /∈V0i,vk /∈V0j

|W [a, k]−W [b, k]|

= |W [a, a]−W [b, a]|+ |W [a, 0j]−W [b, ji]|+ |W [a, b]−W [b, b]|
= (1− β) + |1− cos(va, v0j)− (1− β)|+ (1− β)

= 2(1− β) + | cos(va, v0j)− β| ≤ 3(1− β). (27)

Combining the previous equations (25), (26), and (27), we have

∥W[a, :]−W[b, :]∥1 ≤
{
2|1− cos(va, vb)| if va, vb ∈ V0i,∀i ∈ [N ],

3(1− β) if va ∈ V0i, vb ∈ V0j ,∀i ̸= j ∈ [N ].
. (28)
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E.5.2 Proof of Lemma 2

Recall the following Assumptions (A2) and (A3):

(A2). There exists a margin m s.t., cos(vas
, vbs) ≥ m > cos(vas

, vcs), ∀vas
∈ V(s)

0i ,∀vbs ∈
V(s)
0i ,∀vcs ∈ V

(s)
0j ,∀i ̸= j ∈ [s].

(A3). There is an order of cardinality in the true partition, without loss of generality, we assume
N

(s)
1 ≥ N

(s)
2 ≥ . . . ≥ N

(s)
s , where N

(s)
i = |V(s)

0i |,∀i ∈ [s].

In PITOME approach, using Assumption (A2), given any two nodes vas
∈ V(s)

0i , vbs ∈ V
(s)
0j , i < j ∈

[s], the energy scores Eas
and Ebs of nodes vas

and vbs , respectively, are simplified as follows:

Eas
=

1

N

∑
cs∈N (vas )

fm(cos(vas
, vcs)), where fm(x) =

{
x if x ≥ m

β if x < m

=
1

N

∑
vcs∈V(s)

0i

cos(vas , vcs) +
N −N

(s)
i

N
β ≥ N

(s)
i m+ (N −N

(s)
i )β

N
, (29)

Ebs =
1

N

∑
vcs∈V(s)

0j

cos(vbs , vcs) +
N −N

(s)
j

N
β ≤

N
(s)
j + (N −N

(s)
j )β

N
. (30)

Given the choice of the universal margin m as follows: m = max

{
N

(s)
j

N
(s)
i

: i < j ∈ [s]

}
, it holds that

Eas
≥ Ebs . Indeed, this is guaranteed as long as we have

N
(s)
i m+ (N −N

(s)
i )β

N
≥

N
(s)
j + (N −N

(s)
j )β

N
. (31)

This is equivalent that

m ≥
N

(s)
j + (N −N

(s)
j )β − (N −N

(s)
i )β

N
(s)
i

=
N

(s)
j + (N

(s)
i −N

(s)
j )β

N
(s)
i

≥
N

(s)
j

N
(s)
i

. (32)

Using Assumption (A3) and this choice of universal margin m, it holds that

Eas
≥ Ebs , for any vas

∈ V(s)
0i , vbs ∈ V

(s)
0j , i < j ∈ [s]. (33)

Recall that in PITOME approach, we use the ordered energy-based for the bipartite soft matching
where we defined two set A and B with |A| = |B| = k as follows:

A =
{
ve1, v

e
3, . . . , v

e
2k−1

}
,B = {ve2, ve4, . . . , ve2k} , (34)

where the nodes vei , i ∈ [2k], are sorted in decreasing order based on their energy scores, i.e., Eve
i
>

Eve
i+1

,∀i ∈ [2k − 1].

We return to the proof of the Lemma 2 by contradiction. Assume that vas
∈ V(s)

0i , vbs ∈ V
(s)
0j , i ̸=

j ∈ [s]. Without loss of generality, we assume that vas
= ve1 ∈ V

(s)
01 and N

(s)
1 = |V(s)

01 | > 1. Note
that PITOME algorithm selects vbs ∈ B such that

vbs = argmax vcs∈B cos(vas , vcs).

This is equivalent that for any vcs ∈ B, it holds that:
cos(vas

, vcs) ≤ max vcs∈B cos(vas
, vcs) = cos(vas

, vbs) < m.

Assumption (A2) implies that ve2i /∈ V(s)
01 ,∀i ∈ [k]. Since we have N

(s)
1 = |V(s)

01 | > 1, there exists at
least one node in A ∩ V(s)

01 , say for example ve3. Using (34), we have Eve
2
≥ Eve

3
, which contradicts

(33) where we have Eve
3
> Eve

2
since ve3 ∈ V

(s)
01 and ve2 ∈ V

(s)
0j , j > 1.

E.5.3 Proof of Lemma 3

On the contrary, in the Bipartite Soft Matching algorithm from the ToMe approach [15], the authors
divide the tokens into two distinct sets A and B and merge the top k similar tokens using some
partitioning style like sequential, alternating and random without considering the ordered energy-

28



based Bipartite Soft Matching like ours. This leads to a case where the random event M (s)
ab does

not occur and therefore P(M (s)
ab ) < 1. Indeed, this case happens when all the nodes from the true

partition V (s)
01 are divided into the same set A. Therefore, the Bipartite Soft Matching algorithm has

to choose and select the node vbs ∈ V
(s)
0j , j > 1, for merging. Actually, this case arises when all the

nodes from the true partition V(s)
01 are distributed into the same set A. Therefore, the Bipartite Soft

Matching algorithm has to select the node vbs ∈ V
(s)
0j , j > 1, for merging.

F Token Merging Outputs Visualization

To better illustrate the effectiveness of PITOME, we have incorporated many visualizations show-
casing examples randomly sampled from the MSCOCO dataset, as depicted in Figures 12a. In this
analysis, we utilized the BLIP backbone and configured the reduction percentage to r = 0.85. These
visualizations portray the final representation of all remaining tokens in the last layers. Notably,
tokens outlined with bolder cyan borders signify higher attention scores from the classification
(CLS) token. Apparently, unlike ToMe and DiffRate, PITOME adeptly approximates the spectral
spectrum of the original token space, thereby preserving the distribution of all tokens. Consequently,
PITOME demonstrates a lower level of information distortion due to reduced mis-merged tokens,
thus retaining attention maps for critical information in the final layer. As illustrated in Figures
12a,12b,12c,12d,12e the attention map in the final layer of the model compressed by PITOME exhibits
the closest resemblance to that of the baseline model.

G OpenChat with Compressed LLaVA-1.5 Model

This section is dedicated to showcasing sample responses of LLaVA-1.5-7B when compressed
using different algorithms. Here, we set the compression rate to r = 0.9 for each CLIP layer. All
sample answers are given in tables 11, 13, 12. Texts that are highlighted by blue color indicate
false information given by the model. From these sample answers, it is evident that, unlike other
BSM-based approaches, our algorithm PITOME not only facilitates quicker model responses but
also retains its capability to recognize objects, understand contextual information in the image, and
provide correct answers closely aligned with those of the original LLaVA-1.5-7B model.
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Figure 12: Visualizations using random images sampled from the MSCOCO dataset.

ViT-B 384 PiToMe (ours) ToMe DiffRate

(a) A white dog catching a novelty flying disc in a competition.

ViT-B 384 PiToMe (ours) ToMe DiffRate

(b) A woman riding a horse jumping it over obstacles.

ViT-B 384 PiToMe (ours) ToMe DiffRate

(c) Three different motorcycle couples riding down a road.

ViT-B 384 PiToMe (ours) ToMe DiffRate

(d) A man holding a tennis racquet on a tennis court.

ViT-B 384 PiToMe (ours) ToMe DiffRate

(e) A group of people who are around a kitchen counter.
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Table 11

USER: Describe what you see
Model Answer

LLaVA-1.5-7B In the image, a baseball game is taking place with a batter standing at
home plate, holding a baseball bat and preparing to swing. The catcher
is positioned behind the batter, ready to catch the ball if the batter misses.
There are several other players on the field , including teammates and
opponents, all focused on the ongoing play. Some of the players are
standing closer to the batter, while others are spread out across the field.
The scene captures the excitement and anticipation of a crucial moment
in the game.

LLaVA-1.5-7B + PITOME In the image, a baseball player is in the middle of swinging a baseball bat,
attempting to hit the ball during a game. There are several other people
in the scene, some of whom are wearing baseball gloves , indicating that
they are also participating in the game. The presence of multiple players
and the action of the batter suggest that this is an exciting moment in the
game, with the batter trying to make contact with the ball and potentially
score a run for their team.

LLaVA-1.5-7B +ToMe In the image, a group of people is gathered on a baseball field, with
some of them holding baseball bats . It appears that they are either
practicing or participating in a baseball game. There are several people
standing in various positions on the field , and some of them are closer
to the foreground while others are further away. The scene captures the
excitement and camaraderie often associated with baseball, as people
come together to enjoy the game and improve their skills.

LLaVA-1.5-7B + ToFu In the image, there is a baseball game in progress with multiple players
on the field . One player is holding a baseball bat and is in the process of
swinging it, likely attempting to hit the ball. Another player is holding a
baseball glove, ready to catch the ball if it is hit. There are several other
players on the field, some of them wearing baseball gloves as well . A
bench can be seen in the background, likely for players to sit on when
they are not actively participating in the game. The scene captures the
excitement and action of a baseball game.

LLaVA-1.5-7B + DiffRate In the image, a group of people is playing a game of baseball on a field.
There are several players on the field, with some of them holding base-
ball bats and wearing baseball gloves . The players are actively engaged
in the game, with one player holding a baseball bat and another player
wearing a baseball glove, ready to catch the ball. The other players are
also positioned around the field, either waiting for their turn to bat or
preparing to field the ball . The scene captures the excitement and energy
of a live baseball game.
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Table 12

USER: Describe what you see.
Model Answer

LLaVA-1.5-7B In the image, a man is standing on a folding chair in the back of a
yellow taxi cab. He is holding a blue shirt, possibly drying it or preparing
to put it on. The taxi is driving down a busy street with multiple cars
around it, including another taxi in front of it. The man’s position on
the chair and the presence of the shirt suggest that he might be a street
vendor or a worker who is using the taxi as a mobile workspace.

LLaVA-1.5-7B + PITOME In the image, a man is standing on the back of a moving car, holding a
clothesline with clothes hanging from it. The car appears to be a taxi
cab, and the man is wearing a yellow shirt. The scene seems to be taking
place in a busy city, as there are multiple cars visible in the background.
The man’s unusual activity of hanging clothes from the back of a moving
car likely attracts attention and curiosity from passersby.

LLaVA-1.5-7B +ToMe The image shows a man standing on the back of a taxi cab, holding a
large umbrella . The taxi is driving down a street, and the man appears to
be using the umbrella to shield himself from the elements . In addition
to the taxi, there are several other vehicles in the scene, including a
truck and a car . The man on the taxi is the main focus of the image, and
his actions suggest that he is trying to protect himself from rain or other
weather conditions .

LLaVA-1.5-7B + ToFu The image depicts a busy city street scene with a man standing on the
back of a truck , possibly performing a stunt or participating in a pa-
rade . The truck is positioned in the middle of the street, and the man
appears to be the main focus of the scene. There are several other
people in the image, some of whom are walking or standing near the
truck . Additionally, there are multiple cars parked or driving along the
street, and a traffic light can be seen in the background . The overall
atmosphere suggests an urban environment with a lively and bustling
atmosphere.

LLaVA-1.5-7B + DiffRate The image features a man wearing a yellow shirt, standing next to a
yellow car . He appears to be holding onto the car , possibly for support
or to steady himself. The car is parked on a street, and there are other
cars visible in the background. In addition to the man and the car, there
are two other people in the scene, one standing further back and another
closer to the foreground . A handbag can also be seen placed on the
ground near the center of the image.
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Table 13

USER: Describe what is happening?
Model Answer

LLaVA-1.5-7B In the image, a woman is riding a horse and jumping over a hurdle,
which is a part of an equestrian competition. The horse and rider are in
the middle of the jump, showcasing their skills and coordination. There
are several other people in the scene, some of whom may be fellow
competitors or spectators. The presence of multiple people and the focus
on the horse and rider suggests that this is a competitive event or practice
session.

LLaVA-1.5-7B + PITOME In the image, a person is riding a horse while jumping over an obstacle,
likely during an equestrian event or competition. The horse and rider
are in the middle of the jump, showcasing their skill and coordination.
There are several other people in the scene, some of whom might be
fellow competitors, trainers, or spectators. One person is standing close
to the rider on the horse , while others are scattered around the area. The
overall atmosphere of the image suggests an exciting and challenging
equestrian event.

LLaVA-1.5-7B +ToMe In the image, a person is riding a horse and jumping over an obstacle,
possibly a hurdle or a small hill . The horse and rider are in the middle of
the action, showcasing their skill and coordination. The scene captures
the excitement and challenge of equestrian sports, such as show jumping
or eventing.

LLaVA-1.5-7B + ToFu In the image, a person is riding a horse while standing in a corral . The
horse and rider are positioned near a fence , which could be a part of
a fenced-in area or a stable . The scene captures the bond between the
rider and the horse as they interact and move together within the corral.

LLaVA-1.5-7B + DiffRate In the image, there are two people riding horses , likely participating in
a horseback riding lesson or practice session. The horses and riders are
positioned next to each other, with one horse and rider on the left side
and the other horse and rider on the right side of the scene . The riders
are wearing helmets for safety, and the horses appear to be well-trained
and cooperative. The scene captures the essence of a horseback riding
activity, where the riders are learning to control and communicate with
their horses effectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provided experiments to support our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We included it at the end of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions are already stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we provided experiment descriptions in the main paper and appendix. Further-
more, we will release our GitHub implementation if the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will publish the code when the paper is accepted or through an anonymous
link if some reviewers ask for it.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided details for experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct experiments on diverse datasets and follow the protocol used by
previous works for fair comparisons.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is included in our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work helps to reduce the carbon footprint when training large models
using ViT. There is no negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited papers and resources used in our experiment.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t have experiments involving crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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