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Abstract

Training automated agents to complete complex tasks in interactive environments
is challenging: reinforcement learning requires careful hand-engineering of reward
functions, imitation learning requires specialized infrastructure and access to a
human expert, and learning from intermediate forms of supervision (like binary
preferences) is time-consuming and extracts little information from each human
intervention. Can we overcome these challenges by building agents that learn
from rich, interactive feedback instead? We propose a new supervision paradigm
for interactive learning based on “teachable” decision-making systems that learn
from structured advice provided by an external teacher. We begin by formalizing
a class of human-in-the-loop decision making problems in which multiple forms
of teacher-provided advice are available to a learner. We then describe a simple
learning algorithm for these problems that first learns to interpret advice, then
learns from advice to complete tasks even in the absence of human supervision. In
puzzle-solving, navigation, and locomotion domains, we show that agents that learn
from advice can acquire new skills with significantly less human supervision than
standard reinforcement learning algorithms and often less than imitation learning.

1 Introduction

Reinforcement learning (RL) offers a promising paradigm for building agents that can learn complex
behaviors from autonomous interaction and minimal human effort. In practice, however, significant
human effort is required to design and compute the reward functions that enable successful RL [49]:
the reward functions underlying some of RL’s most prominent success stories involve significant
domain expertise and elaborate instrumentation of the agent and environment [37, 38, 44, 28, 15].
Even with this complexity, a reward is ultimately no more than a scalar indicator of how good a
particular state is relative to others. Rewards provide limited information about how to perform tasks,
and reward-driven RL agents must perform significant exploration and experimentation within an
environment to learn effectively. A number of alternative paradigms for interactively learning policies
have emerged as alternatives, such as imitation learning [40, 20, 50], DAgger [43], and preference
learning [10, 6]. But these existing methods are either impractically low bandwidth (extracting little
information from each human intervention) [25, 30, 10] or require costly data collection [44, 23]. It
has proven challenging to develop training methods that are simultaneously expressive and efficient
enough to rapidly train agents to acquire novel skills.

Human learners, by contrast, leverage numerous, rich forms of supervision: joint attention [34],
physical corrections [5] and natural language instruction [9]. For human teachers, this kind of
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Figure 1: Three phases of teachable reinforcement learning. During the grounding phase (a), we train an
advice-conditional policy through RL q(a|s,t,c1) that can interpret a simple form of advice c

1. During the
improvement phase (b), an external coach provides real-time coaching, which the agent uses to learn more
complex advice forms and ultimately an advice-independent policy p(a|s,t). During the evaluation phase, the
advice-independent policy p(a|s,t) is executed to accomplish a task without additional human feedback.

coaching is often no more costly to provide than scalar measures of success, but significantly more
informative for learners. In this way, human learners use high-bandwidth, low-effort communication
as a means to flexibly acquire new concepts or skills [46, 33]. Importantly, the interpretation of some
of these feedback signals (like language), is itself learned, but can be bootstrapped from other forms
of communication: for example, the function of gesture and attention can be learned from intrinsic
rewards [39]; these in turn play a key role in language learning [31].

This paper proposes a framework for training automated agents using similarly rich interactive
supervision. For instance, given an agent learning a policy to navigate and manipulate objects in a
simulated multi-room object manipulation problem (e.g., Fig 3 left), we train agents using not just
reward signals but advice about what actions to take (“move left”), what waypoints to move towards
(“move towards (1,2)”), and what sub-goals to accomplish (“pick up the yellow ball”), offering
human supervisors a toolkit of rich feedback forms that direct and modify agent behavior. To do so,
we introduce a new formulation of interactive learning, the Coaching-Augmented Markov Decision
Process (CAMDP), which formalizes the problem of learning from a privileged supervisory signal
provided via an observation channel. We then describe an algorithmic framework for learning in
CAMDPs via alternating advice grounding and distillation phases. During the grounding phase,
agents learn associations between teacher-provided advice and high-value actions in the environment;
during distillation, agents collect trajectories with grounded models and interactive advice, then
transfer information from these trajectories to fully autonomous policies that operate without advice.
This formulation allows supervisors to guide agent behavior interactively, while enabling agents to
internalize this guidance to continue performing tasks autonomously once the supervisor is no longer
present. Moreover, this procedure can be extended to enable bootstrapping of grounded models that
use increasingly sparse and abstract advice types, leveraging some types of feedback to ground others.
Experiments show that models trained via coaching can learn new tasks more efficiently and with
20x less human supervision than naïve methods for RL across puzzle-solving [8], navigation [14],
and locomotion domains [8].

In summary, this paper describes: (1) a general framework (CAMDPs) for human-in-the-loop RL with
rich interactive advice; (2) an algorithm for learning in CAMDPs with a single form of advice; (3) an
extension of this algorithm that enables bootstrapped learning of multiple advice types; and finally
(4) a set of empirical evaluations on discrete and continuous control problems in the BabyAI [8] and
D4RL [14] environments. It thus offers a groundwork for moving beyond reward signals in interactive
learning, and instead training agents with the full range of human communicative modalities.

2 Coaching Augmented Markov Decision Processes

To develop our procedure for learning from rich feedback, we begin by formalizing the environments
and tasks for which feedback is provided. This formalization builds on the framework of multi-task
RL and Markov decision processes (MDP), augmenting them with advice provided by a coach in the
loop through an arbitrary prescriptive channel of communication. Conider the grid-world environment
depicted in Fig 3 left [8]. Tasks in this environment specify particular specific desired goal states;
e.g. “place the yellow ball in the green box and the blue key in the green box” or “open all doors in
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the blue room.” In multi-task RL, a learner’s objective is produce a policy p(at |st ,t) that maximizes
reward in expectation over tasks t . More formally, a multi-task MDP is defined by a 7-tuple
M ⌘ (S ,A ,T ,R,r(s0),g, p(t)), where S denotes the state space, A denotes the action space,
p : S ⇥A ⇥S 7! R�0 denotes the transition dynamics, r : S ⇥A ⇥ t 7! R denotes the reward
function, r : S 7! R�0 denotes the initial state distribution, g 2 [0,1] denotes the discount factor and
p(t) denotes the distribution over tasks. The objective in a multi-task MDP is to learn a policy pq that
maximizes the expected sum of discounted returns in expectation over tasks: maxq JE(pq , p(t)) =
Eat⇠pq (·|st ,t)

t⇠p(t)
[Â•

t=0 g t
r(st ,at ,t)].

Why might additional supervision beyond the reward signal be useful for solving this optimization
problem? Suppose the agent in Fig 3 is in the (low-value) state shown in the figure, but could reach a
high-value state by going “right and up” towards the blue key. This fact is difficult to communicate
through a scalar reward, which cannot convey information about alternative actions. A side channel
for providing this type of rich information at training-time would be greatly beneficial.

We model this as follows: a coaching-augmented MDP (CAMDP) consists of an ordinary multi-
task MDP augmented with a set of coaching functions C = {C 1,C 2, · · · ,C i}, where each C

j

provides a different form of feedback to the agent. Like a reward function, each coaching function
models a form of supervision provided externally to the agent (by a coach); these functions may
produce informative outputs densely (at each timestep) or only infrequently. Unlike rewards, which
give agents feedback on the desirability of states and actions they have already experienced, this
coaching provides information about what the agent should do next. 1 As shown in Figure 3, advice
can take many forms, for instance action advice (c0), waypoints (c1), language sub-goals (c2), or any
other local information relevant to task completion.2 Coaching in a CAMDP is useful if it provides
an agent local guidance on how to proceed toward a goal that is inferrable from the agent’s current
observation, when the mapping from observations and goals to actions has not yet been learned.

As in standard reinforcement learning in an multi-task MDP, the goal in a CAMDP is to learn a policy
pq (· | st ,t) that chooses an action based on Markovian state st and high level task information t
without interacting with c

j. However, we allow learning algorithms to use the coaching signal c
j to

learn this policy more efficiently at training time (although this is unavailable during deployment).
For instance, the agent in Fig 3 can leverage hints “go left” or “move towards the blue key” to guide
its exploration process but it eventually must learn how to perform the task without any coaching
required. Section 3 decribes an algorithm for acquiring this independent, multi-task policy pq (· | st ,t)
from coaching feedback, and Section 4 presents an empirical evaluation of this algorithm.

3 Leveraging Advice via Distillation

3.1 Preliminaries

The challenge of learning in a CAMDP is twofold: first, agents must learn to ground coaching signals
in concrete behavior; second, agents must learn from these coaching signals to independently solve
the task of interest in the absence of any human supervision. To accomplish this, we divide agent
training into three phases: (1) a grounding phase, (2) an improvement phase and (3) an evaluation

phase.

In the grounding phase, agents learn how to interpret coaching. The result of the grounding phase
is a surrogate policy q(at | st ,t,c) that can effectively condition on coaching when it is provided in
the training loop. As we will discuss in Section 3.2, this phase can also make use of a bootstrapping

process in which more complex forms of feedback are learned using signals from simpler ones.

During the improvement phase, agents use the ability to interpret advice to learn new skills. Specif-
ically, the learner is presented with a novel task ttest that was not provided during the grounding
phase, and must learn to perform this task using only a small amount of interaction in which advice
c is provided by a human supervisor who is present in the loop. This advice, combined with the

1While the design of optimal coaching strategies and explicit modeling of coaches are important research
topics [16], this paper assumes that the coach is fixed and not explicitly modeled. Our empirical evaluation use
both scripted coaches and human-in-the-loop feedback.

2When only a single form of advice is available to the agent, we omit the superscript for clarity.
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learned surrogate policy q(at |st ,t,c), can be used to efficiently acquire an advice-independent policy
p(at |st ,t), which can perform tasks without requiring any coaching.

Finally, in the evaluation phase, agent performance is evaluated on the task ttest by executing the
advice-independent, multi-task policy p(at |st ,ttest)in the environment.

3.2 Grounding Phase: Learning to Interpret Advice

The goal of the grounding phase is to learn a mapping from advice to contextually appropriate actions,
so that advice can be used for quickly learning new tasks. In this phase, we run RL on a distribution
of training tasks p(t). As the purpose of these training environments is purely to ground coaching,
sometimes called “advice”, the tasks may be much simpler than test-time tasks. During this phase, the
agent uses access to a reward function r(s,a,c), as well as the advice c(s,a) to learn a surrogate policy
qf (a|s,t,c). The reward function r(s,a,c) is provided by the coach during the grounding phase only
and rewards the agent for correctly following the provided coaching, not just for accomplishing the
task. Since coaching instructions (e.g. cardinal directions) are much easier to follow than completing
a full task, grounding can be learned quickly. The process of grounding is no different than standard
multi-task RL, incorporating advice c(s,a) as another component of the observation space. This
formulation makes minimal assumptions about the form of the coaching c.

During this grounding process, the agent’s optimization objective is:

max
f

J(q) = E t⇠p(t)
at⇠qf (at |st ,t,c)


Â

t

r(st ,at ,c)

�
, (1)

Bootstrapping Multi-Level Advice The previous section described how to train an agent to in-
terpret a single form of advice c. In practice, a coach might find it useful to use multiple forms of
advice—for instance high-level language sub-goals for easy stages of the task and low-level action
advice for more challenging parts of the task. While high-level advice can be very informative for
guiding the learning of new tasks in the improvement phase, it can often be quite difficult to ground
quickly pure RL. Instead of relying on RL, we can bootstrap the process of grounding one form
of advice c

h from a policy q(a|s,t,cl) that can interpret a different form of advice c
l . In particular,

we can use a surrogate policy which already understands (using the grounding scheme described
above) low-level advice q(a|s,t,cl) to bootstrap training of a surrogate policy which understands
higher-level advice q(a|s,t,ch). We call this process “bootstrap distillation”.

Intuitively, we use a supervisor in the loop to guide an advice-conditional policy that can interpret
a low-level form of advice qf1(a|s,t,cl) to perform a training task, obtaining trajectories D =
{(s0,a0,cl

0,c
h

0),(s1,a1,cl

1,c
h

1) · · · ,(sH ,aH ,cl

H
,ch

H
)}N

j=1, then distilling the demonstrated behavior via
supervised learning into a policy qf2(a|s,t,ch) that can interpret higher-level advice to perform this

(a) In-the-loop advice

ccc(s, a*, �, c)
coached rollouts 

from conditional policy
distillation into 

unconditional policy

(b) Off-policy advice

ccc(s, �a, �)
uncoached rollouts 

from unconditional policy
distillation into 

unconditional policy
hindsight coaching 

and action relabeling

ccc(s, a*, �, c)

Figure 2: Illustration of the procedure of advice distillation in the on-policy and off-policy settings. During
on-policy advice distillation, the advice-conditional surrogate policy q(a|s,t,c) is coached to get optimal
trajectories. These trajectories are then distilled into an unconditional model p(a|s,t) using supervised learning.
During off-policy distillation, trajectories are collected by the unconditional policy and trajectories are relabeled
with advice after the fact. After this, we use the advice-conditional policy q(a|s,t,c) to relabel trajectories with
optimal actions. These trajectories can then be distilled into an unconditional policy.
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new task without requiring the low level advice any longer. More specifically, we make use of an
input remapping solution, as seen in Levine et al. [28], where the policy conditioned on advice c

l is
used to generate optimal action labels, which are then remapped to observations with a different form
of advice c

h as input. To bootstrap the understanding of an abstract form of advice c
h from a more

low level one c
l , the agent optimizes the following objective to bootstrap the agent’s understanding of

one advice type from another:

D ={(s0,a0,c
l

0,c
h

0),(s1,a1,c
l

1,c
h

1), · · · ,(sH ,aH ,c
l

H
,ch

H
)}N

j=1

s0 ⇠ p(s0),at ⇠ qf1(at |st ,t,cl),st+1 ⇠ p(st+1|st ,at)

max
f2

E(st ,at ,ch
t ,t)⇠D

h
logqf2(at |st ,t,ch

t
)
i

With this procedure, we only need to use RL to ground the simplest, fastest-learned advice form, and
we can use more efficient bootstrapping to ground the others.

3.3 Improvement Phase: Learning New Tasks Efficiently with Advice

At the end of the grounding phase, we have an advice-following agent qf (a|s,t,c) that can interpret
various forms of advice. Ultimately, we want a policy p(a|s,t) which is able to succeed at performing
the new test task ttest, without requiring advice at evaluation time. To achieve this, we make use
of a similar idea to the one described above for bootstrap distillation. In the improvement phase,
we leverage a supervisor in the loop to guide an advice-conditional surrogate policy qf (a|s,t,c) to
perform the new task ttest, obtaining trajectories D = {s0,a0,c0,s1,a1,c1, · · · ,sH ,aH ,cH}N

j=1, then
distill this behavior into an advice-independent policy pq (a|s,t) via behavioral cloning. The result is
a policy trained using coaching, but ultimately able to select tasks even when no coaching is provided.
In Fig 3 left, this improvement process would involve a coach in the loop providing action advice or
language sub-goals to the agent during learning to coach it towards successfully accomplishing a
task, and then distilling this knowledge into a policy that can operate without seeing action advice or
sub-goals at execution time. More formally, the agent optimizes the following objective:

D = {s0,a0,c0,s1,a1,c1, · · · ,sH ,aH ,cH}N

j=1

s0 ⇠ p(s0),at ⇠ qf (at |st ,t,ct),st+1 ⇠ p(st+1|st ,at)

max
q

E(st ,at ,t)⇠D [logpq (at |st ,t)]

This improvement process, which we call advice distillation, is depicted Fig 2. This distillation
process is preferable over directly providing demonstrations because the advice provided can be
more convenient than providing an entire demonstration (for instance, compare the difficulty of
producing a demo by navigating an agent through an entire maze to providing a few sparse waypoints).
Interestingly, even if the new tasks being solved ttest are quite different from the training distribution
of tasks p(t), since advice c (for instance waypoints) is provided locally and is largely invariant to
this distribution shift, the agent’s understanding of advice generalizes well.

Learning with Off-Policy Advice One limitation to the improvement phase procedure described
above is that advice must be provided in real time. However, a small modification to the algorithm
allows us to train with off-policy advice. During the improvement phase, we roll out an initially-
untrained advice-independent policy p(a|s,t). After the fact, the coach provides high-level advice
c

h at a multiple points along the trajectory. Next, we use the advice-conditional surrogate policy
qf (a|s,t,c) to relabel this trajectory with near-optimal actions at each timestep. This lets us use
behavioral cloning to update the advice-free agent on this trajectory. While this relabeling process
must be performed multiple times during training, it allows a human to coach an agent without
providing real-time advice, which can be more convenient. This process can be thought of as the
coach performing DAgger [42] at the level of high-level advice (as was done in in [26]) rather than
low-level actions. This procedure can be used for both the grounding and improvement phases.
Mathematically, the agent optimizes the following objective:

D = {s0,a0,c0,s1,a1,c1, · · · ,sH ,aH ,cH}N

j=1

s0 ⇠ p(s0),at ⇠ p(at |st ,t),st+1 ⇠ p(st+1|st ,at)

max
q

E (st ,t)⇠D
a
⇤⇠qf (at |st ,t,c)

[logpq (a
⇤|st ,t)]
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3.4 Evaluation Phase: Executing tasks Without a Supervisor

In the evaluation phase, the agent simply needs to be able to perform the test tasks ttest without
requiring a coach in the loop. We run the advice-independent agent learned in the improvement phase,
p(a|s,t) on the test task ttest and record the average success rate.

4 Experimental Evaluation

We aim to answer the following questions through our experimental evaluation (1) Can advice be
grounded through interaction with the environment via supervisor in the loop RL? (2) Can grounded
advice allow agents to learn new tasks more efficiently than standard RL? (3) Can agents bootstrap
the grounding of one form of advice from another?

4.1 Evaluation Domains

Instruction: Navigate to (x, y)“Pick up a blue key”

Action 
advice: 

Waypoint:

Subgoal:

Action: TurnLeft

Waypoint: (3, 7)

“Go to the yellow door”

Direction 
advice: 

Cardinal 
Advice

Waypoint:

Direction: [.17, -.23]

Direction: West

Waypoint (3, 4)

Navigate to (x, y)

Direction 
advice: 

Cardinal 
Advice:

Waypoint:

Direction: [.17, -.23]

Direction: West

Waypoint (3, 4)

Figure 3: Evaluation Domains. (Left) BabyAI (Middle) Point Maze Navigation (Right) Ant Navigation. The
associated task instructions are shown, as well as the types of advice available in each domain.

BabyAI: In the open-source BabyAI [8] grid-world, an agent is given tasks involving navigation,
pick and place, door-opening and multi-step manipulation. We provide three types of advice:

1. Action Advice: Direct supervision of the next action to take.

2. OffsetWaypoint Advice: A tuple (x, y, b), where (x, y) is the goal coordinate minus the
agent’s current position, and b tells the agent whether to interact with an object.

3. Subgoal Advice: A language subgoal such as “Open the blue door.”

2-D Maze Navigation (PM): In the 2D navigation environment, the goal is to reach a random target
within a procedurally generated maze. We provide the agent different types of advice:

1. Direction Advice: The vector direction the agent should head in.

2. Cardinal Advice: Which of the cardinal directions (N, S, E, W) the agent should head in.

3. Waypoint Advice: The (x,y) position of a coordinate along the agent’s route.

4. OffsetWaypoint Advice: The (x,y) waypoint minus the agent’s current position.

Ant-Maze Navigation (Ant): The open-source ant-maze navigation domain [14] replaces the simple
point mass agent with a quadrupedal “ant” robot. The forms of advice are the same as the ones
described above for the point navigation domain.

In all domains, we describe advice forms provided each timestep (Action Advice and Direction
Advice) as “low-level” advice, and advice provided less frequently as “high-level” advice. We present
experiments involving both scripted coaches and real human-in-the-loop advice.
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4.2 Experimental Setup

For the environments listed above, we evaluate the ability of the agent to perform grounding efficiently
on a set of training tasks, to learn new test tasks quickly via advice distillation, and to leverage one
form of advice to bootstrap another. The details of the exact set of training and testing tasks, as well
as architecture and algorithmic details, are provided in the appendix.

We evaluate all the environments using the metric of advice efficiency rather than sample efficiency.
By advice efficiency, we are evaluating the number of instances of coach-in-the-loop advice that are
needed in order to learn a task. In real-world learning tasks, this coach is typically a human, and the
cost of training largely comes from the provision of supervision (rather than time the agent spends
interacting with the environment). The same is true for other forms of supervision such as behavioral
cloning and RL (unless the human spends extensive time instrumenting the environment to allow
autonomous rewards and resets). This “advice units” metric more accurately reflects the true quantity
we would like to measure: the amount of human time and effort needed to provide a particular course
of coaching. For simplicity, we consider every time a supervisor provides any supervision, such as
a piece of advice or a scalar reward, to constitute one advice unit. We measure efficiency in terms
of how many advice units are needed to learn a task. We emphasize that this metric makes a strong
simplifying assumption—that all forms of advice have the same cost—which is certainly not true
for real-world supervision. However, it is challenging to design a metric which accurately captures
human effort. In Section 4.7 we validate our method by measuring the real human interaction time

needed to train agents. We also plot more traditional sample efficiency measures in Appendix D.

We compare our proposed framework to an RL baseline that is provided with a task instruction but
no advice. In the improvement phase, we also compare with behavioral cloning from an expert for
environments where it is feasible to construct an oracle.

4.3 Grounding Prescriptive Advice during Training

Figure 4: Left: Performance during the grounding phase (Section 3.2). All curves are trained with shaped-reward
RL. We compare agents which condition on high-level advice (shades of blue) to ones with access to low-level
advice (red) to an advice-free baseline (gray). Takeaways: (a) the agent is able to ground advice, which suggests
that our advice-conditional policy may be useful for coaching; (b) grounding certain high-level advice forms
through RL is slow, which is why bootstrapping is necessary. Right: Bootstrapping is able to quickly use existing
grounded advice forms (OffsetWaypoint for Point Maze and Ant Maze envs, ActionAdvice for BabyAI) to
ground additional forms of advice.

Fig 4 shows the results of the grounding phase, where the agent grounds advice by training an
advice-conditional policy through RL. We observe the the agent learns the task more quickly when
provided with advice, indicating that the agent is learning to interpret advice to complete tasks.
However, we also see that the agent fails to improve much when conditioning on some more abstract
forms of advice, such as waypoint advice in the ant environment. This indicates that the advice form
has not been grounded properly through RL. In cases like this, we instead must instead ground these
advice forms through bootstrapping, as discussed in Section 3.2.

4.4 Bootstrapping Multi-Level Feedback

Once we have successfully grounded the easiest form of advice, in each environment, we efficiently
ground the other forms using the bootstrapping procedure from Section 3.2. As we see in Fig 4,
bootstrap distillation is able to ground new forms of advice significantly more efficiently than if we
start grounding things from scratch with naïve RL. It performs exceptionally well even for advice
forms where naïve RL does not succeed at all, while providing additional speed up for environments
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where it does. This suggests that advice is not just a tool to solve new tasks, but also a tool for
grounding more complex forms of communication for the agent.

4.5 Learning New Tasks with Grounded Prescriptive Advice

Point Maze Direction Cardinal Waypoint Offset RL Oracle

6x6 Maze 0.9±0.02 0.95±0.05 0.99±0.01 0.99±0.01 0.27±0.01 0.87±0.01
7x10 Maze 0.75±0.09 0.77±0.06 0.74±0.09 0.9±0.05 0.09±0.04 0.73±0.05
10x10 Maze 0.69±0.06 0.67±0.04 0.62±0.04 0.85±0.04 0.11±0.04 0.64±0.06
13x13 Maze 0.16±0.04 0.35±0.08 0.22±0.05 0.45±0.03 0.08±0.04 0.28±0.04

Ant Maze Direction Cardinal Waypoint Offset RL

3x3 Maze 0.25±0.17 0.38±0.2 0.77±0.2 0.8±0.21 0.0±0.0
6x6 Maze 0.04±0.04 0.32±0.11 0.56±0.25 0.55±0.25 0.0±0.0
7x10 Maze 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
BabyAI Action Advice OffsetWaypoint Subgoal RL Oracle BC

Test Env 1 0.31±0.15 0.51±0.14 0.53±0.15 0.0±0.0 0.31±0.14
Test Env 2 0.53±0.16 0.66±0.16 0.43±0.17 0.18±0.07 0.6±0.06
Test Env 3 0.14±0.01 0.2±0.06 0.2±0.08 0.04±0.03 0.16±0.04
Test Env 4 0.04±0.01 0.1±0.02 0.1±0.05 0.0±0.0 0.04±0.03
Test Env 5 0.07±0.03 0.13±0.02 0.2±0.11 0.0±0.0 0.05±0.02
Test Env 6 0.44±0.1 0.48±0.09 0.28±0.02 0.17±0.09 0.43±0.12
Test Env 7 0.32±0.04 0.42±0.06 0.54±0.12 0.01±0.01 0.26±0.03

Figure 5: Learning new tasks through distillation. The agent uses an already-grounded advice channel to perform
the distillation process from Section 3.3 to train an advice-free agent. Results show the success rate of the
advice-free new agent. Left, we show representative curves for a few environments. Colors designate supervision
used: shades of blue = high level advice; red = low level advice; black = oracle demonstrations; gray = shaped
rewards. Right: We show success rates (mean, std) over 3 seeds for a larger set of environments. Runs are bolded
if std intervals overlapped with the highest mean. Success rates are evaluated at 3e5 steps for Point Maze and
Ant Maze and 5e5 steps for BabyAI. Takeaway: once advice is grounded, in general it is most efficient to teach
the agents new tasks by providing high-advice. There are occasional exceptions, discussed in Appendix G.

Figure 6: “Best advice” is OffsetAdvice. Y-axis includes
advice from both grounding and improvement across all
four Point Maze test envs. RL results stretch off the plot,
indicating we were unable to run RL for long enough to
converge to the success rates of the other methods.

Finally, we evaluate whether we can use
grounded advice to guide the agent through new
tasks. In most cases, we directly used advice-
conditional policies learned during grounding
and bootstrapping. However, about half of the
BabyAI high-level advice policies performed
poorly on the test environments. In this case, we
finetuned the policies with a few (<4k) samples
collected with rollouts from a lower-level better
grounded advice form.

As we can see in Fig 5, agents which are trained
through distillation from an abstract coach on
average train with less supervision than RL agents. Providing high-level advice can even sometimes
outperform providing demonstrations, as the high-level advice allows the human to coach the agent
through a successful trajectory without needing to provide an action at each timestep. It is about as
efficient to provide low-level advice as to provide demos (when demos are available), as both involve
providing one supervision unit per timestep.

Advice grounding on the new tasks is not always perfect, however. For Instance, in BabyAI Test
Env 2 in Figure 5, occasional errors in the advice-conditional policy’s interpretation of high-advice
result in it being just as efficient efficient to provide low-level advice or demos as it is to provide
high-level advice (though both are more efficient than RL). When grounding is poor, the converged
final policy may not be fully successful. Baseline methods, in contrast, may ultimately converge
to higher rates, even if they take far more samples. For instance, RL never succeeds in AntMaze
3x3 and 6x6 in the plots in Figure 5, but if training is continued for 1e6 advice units, RL achieves
near-perfect performance, whereas our method plateaus. This suggests our method is most useful
when costly supervision is the main constraint.
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The curve in Figure 5 is not entirely a fair comparison - after all, we are not taking into account
the advice units used to train the advice-conditional surrogate policy. However, it’s also not fair to
include this cost for each test env, since the up-front cost of grounding advice gets amortized over
a large set of downstream tasks. Figure 6 summarizes the total number of samples needed to train
each model to convergence on the Point Maze test environments, including all supervision provided
during grounding and improvement. We see that when we use the best advice form, our method is
8x more efficient than demos, and over 20x more efficient than dense-reward RL. In the PointMaze
environment, the cost of grounding becomes worthwhile with only 4 test envs. In other environments
such as Ant, it may take many more test envs than the three we tested on. This suggests that our
method is most appropriate when the agent will be used on a large set of downstream tasks.

4.6 Off-Policy Advice Relabeling

One limitation of the improvement phase as described Section 4.5 is that the human coach has to
be continuously present as the agent is training to provide advice on every trajectory. We relax this
requirement by providing the advice in hindsight rather than in-the-loop using the procedure from
Section 3.3. Results are shown in Figure 7. IN the Point Maze and Ang envs, this DAgger-like
scheme for soliciting advice performs greater than or equal to real-time advice. However, it performs
worse in the BabyAI environment. In future work we will explore this approach further, as it removes
the need for a human to be constantly present in the loop and opens avenues for using active learning
techniques to label only the most informative trajectories.

4.7 Real Human Experiments

Figure 7: All curves show the success rate of an advice-free policy
trained via distillation from an advice-conditional surrogate policy.
All curves use the OffsetWaypoint advice form, and results are aver-
aged over three seeds. Takeaway: DAgger performs well on some
environments (Point Maze, Ant) but poorly on others (BabyAI).

To validate the automated evaluation
above (and determine whether our
“advice unit” metric is a good proxy
for human effort), we performed an
additional set of experiments with
human-in-the-loop coaches. Advice-
conditional surrogate policies were
pre-trained to follow advice using
a scripted coach. The coaches (all
researchers at U.C. Berkeley) then
coached these agents through solving
new, more complex test environments.
Afterwards, an an advice-free policy
was distilled from the successful tra-
jectories. Humans provided advice
through a click interface. (For instance, they could click on the screen to provide a.) See Fig 8.

In the BabyAI environment, we provide OffsetWaypoint advice and compare against a behavioral
cloning (BC) baseline where the human provided per-timestep demonstrations using arrow keys. Our
method’s is higher variance and has a slightly lower mean success rate, but results are still largely
consistent with Figure 5, which showed that for the BabyAI env BC is competitive with our method.

In the Ant environment, demonstrations aren’t possible, and the agent does not explore well enough
to learn from sparse rewards. We compare against the performance of an agent coached by a scripted
coach providing dense, shaped rewards. We see that the agent trained with 30 minutes of coaching
by humans performs comparably to an RL agent trained with 3k more advice units.

5 Related Work

The learning problem studied in this paper belongs to a more general class of human-in-the-loop RL
problems [1, 25, 30, 47, 12]. Existing frameworks like TAMER [25, 45] and COACH [30, 4] also
use interactive feedback to train policies, but are restricted to scalar or binary rewards. In contrast,
our work formalizes the problem of learning from arbitrarily complex feedback signals. A distinct
line of work looks to learn how to perform tasks from binary feedback with human preferences,
for example by indicating which of two trajectory snippets a human might prefer [10, 21, 47, 27].
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These techniques receive only a single bit of information with every human interaction, making
human supervision time-consuming and tedious. In contrast, the learning algorithm we describe uses
higher-bandwidth feedback signals like language-based subgoals and directional nudges, provided
sparsely, to reduce the required effort from a supervisor.

Figure 8: Left, Middle: We compare the success of an advice-free
policy trained in two test envs with real human coaching to a RL
policy trained with a scripted reward. “RL 10x” means RL policy
received 10x more advice units (left) or samples (middle). Right:
success of advice-free policies trained with 30 mins of human time.
Humans either coach the agent with our method or provide demos.
Sample sizes are n=2 per condition for Ant, n=3 per condition for
BabyAI, so the results are suggestive not conclusive.

Learning from feedback, especially
provided in the form of natural lan-
guage, is closely related to instruction
following in natural language process-
ing [7, 3, 32, 41]. In instruction fol-
lowing problems, the goal is to pro-
duce an instruction-conditional policy
that can generalize to new natural lan-
guage specifications of behavior (at
the level of either goals or action se-
quences [24] and held-out environ-
ments. Here, our goal is to produce
an unconditional policy that achieves
good task success autonomously—we
use instruction following models to in-
terpret interactive feedback and scaf-
fold the learning of these autonomous
policies. Moreover, the advice pro-
vided is not limited to task-level spec-
ifications, but instead allows for real-
time, local guidance of behavior. This
provides significantly greater flexibil-
ity in altering agent behavior.

The use of language at training time to scaffold learning has been studied in several more specific
settings [29]: Co-Reyes et al. [11] describe a procedure for learning to execute fixed target trajectories
via interactive corrections, Andreas et al. [2] use language to produce policy representations useful
for reinforcement learning, while Jiang et al. [22] and Hu et al. [18] use language to guide the learning
of hierarchical policies. Eisenstein et al. [13] and Narasimhan et al. [35] use side information from
language to communicate information about environment dynamics rather than high-value action
sequences. In contrast to these settings, we aim to use interactive human in the loop advice to learn
policies that can autonomously perform novel tasks, even when a human supervisor is not present.

6 Discussion

Summary: In this work, we introduced a new paradigm for teacher in the loop RL, which we refer to
as coaching augmented MDPs. We show that CAMPDs cover a wide range of scenarios and introduce
a novel framework to learn how to interpret and utilize advice in CAMDPs. We show that doing so
has the dual benefits of being able to learn new tasks more efficiently in terms of human effort and

being able to bootstrap one form of advice off of another for more efficient grounding.

Limitations: Our method relies on accurate grounding of advice, which does not always happen in
the presence of other correlated environment features (e.g. the advice to “open the door,” and the
presence of a door in front of the agent). Furthermore, while our method is more efficient than BC or
RL, it still requires significant human effort. These limitations are discussed further in Appendix G.

Societal impacts: As human in the loop systems such as the one described here are scaled up
to real homes, privacy becomes a major concern. If we have learning systems operating around
humans, sharing data and incorporating human feedback into their learning processes, they need to be
careful about not divulging private information. Moreover, human in the loop systems are constantly
operating around humans and need to be especially safe.
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