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Abstract

This paper explores a tracking method of broccoli heads that
combine a Particle Filter and 3D features detectors to track
multiple crops in a sequence of 3D data frames. The tracking
accuracy is verified based on a data association method that
matches detections with tracks over each frame. The particle
filter incorporates a simple motion model to produce the pos-
terior particle distribution, and a similarity model as proba-
bility function to measure the tracking accuracy. The method
is tested with datasets of two broccoli varieties collected in
planted fields from two different countries. Our evaluation
shows the tracking method reduces the number of false neg-
atives produced by the detectors on their own. In addition,
the method accurately detects and tracks the 3D locations of
broccoli heads relative to the vehicle at high frame rates.

Broccoli is a high-value vegetable grown worldwide due to
its nutritional compounds that have increased its consump-
tion. Traditionally, broccoli is selectively harvested by hand,
relying on visual grading to estimate whether a head can be
cut (Kootstra et al. 2021). Crop detection and tracking are to-
gether an important part of autonomous selective harvesting.
They can also increase accuracy of other tasks in agriculture
such as produce count, mapping or estimates of crop yields.
The result of these tasks can then be used by farmers on the
entire agricultural process to make informed decisions on
several tasks including planting, harvesting and labour man-
agement (Duckett et al. 2018).

Full automation of agricultural tasks have been actively
developed for some decades now, but important tasks such as
harvesting or crop yield estimates still rely on intense human
labour. Therefore, developing devices such as autonomous
harvesters capable of detecting and tracking crops under real
field conditions is essential for an effective management of
vegetable crops (Kootstra et al. 2020).

In this work we present a method to detect and track
crops of broccoli plants that can be incorporated into an au-
tonomous selective harvester. The results have been exten-
sively evaluated using datasets of different broccoli varieties
collected in real farm environments in the UK and Spain.
The main contributions of our paper are: (1) a simple and
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effective tracking algorithm for improving broccoli detec-
tions and crop estimates, as predictions are made based on
dynamics and measurements. (2) an efficient framework that
restricts the search of crops in posterior frames and reduces
the number of false negatives a detector can produce by it-
self. (3) an efficient framework that runs in real-time and
process 3D data at high frame rates.

Related work
Accurately detecting vegetable crops from other elements in
the background remains a major challenge in autonomous
selective harvesting. One early attempt to locate broccoli
crops was published by (Ramirez 2006) using a small set of
13 RGB images. The method detected broccoli crops on the
entire plant based on contrast and statistical texture analy-
sis. Also using RGB images (Blok, Barth, and van den Berg
2016) described a system to detect broccoli heads of two dif-
ferent varieties based on a texture filter and colour analysis
of the broccoli head appearance. They reported a precision
score of 99.5%, a recall score of 91.2%, and a negative pre-
dictive value of 69.7%. Meanwhile, (Kusumam et al. 2017)
detected heads of two broccoli varieties in depth images col-
lected with an RGB-D sensor. They designed a processing
pipeline that included an Euclidean clustering method, a 3D
feature descriptor and a SVM classifier to detect the broc-
coli heads. They reported an average precision for the two
varieties of 95.2% and 84.5%, respectively. Later (Montes
et al. 2020) further expanded these results and presented
three new methods capable of accurately detecting the 3D
locations of broccoli heads at high frame rates. The meth-
ods involved algorithms for clustering points that either be-
longed to the same area bounded by an edge, or points which
normal vectors angles and surface smoothness were within
a similarity threshold. A SVM then classified the feature
vector of each cluster as broccoli head or background ob-
ject. The best experimental results reported were a precision
score of 98.4%, a recall score of 95.7%, and a negative pre-
dictive value of 99.8%. In addition, a mean average precision
of 96.5% computed over multiple Intersection-over-Union
values was also reported for two broccoli varieties.

In the same way, deep learning techniques have been in-
creasingly used to process and to better understand the large
datasets produced in automated agricultural research. (Ben-
der, Whelan, and Sukkarieh 2020) performed a series of



broccoli and cauliflower detection using a CNN model with
a mean average precision of 95%. However, this result is for
the entire broccoli plant and not the individual head, which is
necessary for autonomous harvesting operations. A similar
approach by (Zhu et al. 2018) based on the AlexNet network
model used a dataset from ImageNet1 to classify five cate-
gories of vegetables: broccoli, pumpkin, cauliflower, mush-
rooms and cucumber. The dataset was enlarged to improve
training by creating rotated versions of the original images
and achieved an accuracy rate of 92.1%. Seeking to de-
velop a robot that can selectively harvest broccoli heads,
(Blok et al. 2020) presented a detection method based on
the Mask Region-based CNN model. In their experiments,
images from three different broccoli varieties were collected
in two countries using a prototype robot. The algorithm de-
tected 229 out of 232 annotated broccoli heads, and also lo-
cated 175 out of 176 heads on a dataset available online.
Later, (Blok et al. 2021) compared this CNN model to an Oc-
clusion Region-based CNN to estimate the size of broccoli
heads even when the crops were heavily occluded. (Zhou
et al. 2020) presented an improved CNN ResNet model for
segmenting broccoli heads from RGB images. They built a
yield estimation model based on the number of extracted
pixels and a pixel weight value achieving an accuracy of
89.6%. In addition, a Particle Swarm Optimization algo-
rithm and the Otsu method were used to grade the quality of
broccoli heads according to a standard proposed by the au-
thors. In (Louedec et al. 2020) another system is presented
for detecting broccoli heads based on 3D information ob-
tained from RGB-D sensors. In their technique they trained
a CNN for semantic segmentation of the same datasets used
by (Kusumam et al. 2017) outperforming these results and
reporting high rate detection speeds of up to 50 fps. (Garcı́a-
Manso et al. 2021) presented another system for localiza-
tion of broccoli heads based on a Faster R-CNN model built
on a pre-trained ResNet-50 model. The algorithm detected
broccoli heads in small 640×480 RGB images and classified
them into harvestable, immature and wasted classes. The
system was able to correctly detect and classify 97% of the
test images, including the ones partially occluded by leaves.
A wealth of other applications involving deep learning tech-
niques in agriculture for different crops are also available in
the literature (Yang and Xu 2021).

Detect-and-Track of broccoli heads
This section describes our solution to detecting and tracking
crops of broccoli plants in sequences of 3D data frames. A
common approach is to design a pipeline that integrates a
detection step and a tracking module to perform tasks such
as accurate object’s count and mapping (Santos et al. 2020).
Similarly, in this work we combine broccoli head detection
and tracking into a single framework and introduce a regis-
tration step based on 3D feature vector data associations to
avoid multiple tracking of the same crop observed in differ-
ent frames.

For detection we use the best reported broccoli detector
from (Montes et al. 2020) dubbed Organised Edge Segmen-
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tation (OES) to guide the tracker. OES labels points as edges
based on point depth discontinuities and uses a tolerance dis-
tance to determine the difference in depth values between
neighbouring points (Choi, Trevor, and Christensen 2013).
A clustering step then groups points together if they be-
long to an area bounded by the same edge and spreads to
other points in the immediate vicinity to form the clusters.
Clearly, any detector capable of detecting broccoli heads can
be used instead. For tracking we use a particle filter that in-
corporates a simple motion model, a detection step as an
observation model (Wojke, Bewley, and Paulus 2017), and a
feature vector histogram to model appearance similarity be-
tween tracks. We also introduce a track confirmation step to
deal with misdetections and to reduce false positive trajec-
tories.

Particle filter
A particle filter is an estimation model known to enable ro-
bust object tracking (Elfring, Torta, and van de Molengraft
2021). The goal is to track the state sequence xk using esti-
mated dynamics (e.g., direction, speed, acceleration), where
x is a state vector at a discrete time step k ∈ N. For es-
timating the state, is necessary to have a model encoding
some prior knowledge on how xk is expected to move from
frame to frame. It is also required to have an observation
model that relates environment observations to xk. The mo-
tion model indicates how the state changes over time under
the dynamic variables: xk = fk(xk−1, uk, ε). Here fk is
a function that associates x between time steps k − 1 and
k using a deterministic motion input uk and a model noise
ε representing uncertainties (often Gaussian) associated to
the variables. The observation model zk = hk(Zxk, ξk) is a
function hk that associates the state xk with an expected set
of observations Z and a model ξk representing observation
noise. At each time step k, the current state changes from
xk−1 to xk and a new set of observations zk is collected.
The goal is to estimate the distribution of state xk given all
the observations seen so far and the knowledge about state
dynamics. The steps involved in tracking can be summarized
as follows:

• Prediction: predict a distribution of the next state
given past observations and dynamic actions:
p (xk | xk−1, uk) = p (xk | x1:k−1, z1:k−1, u1:k).

• Observation: compute an updated estimate of the
state from predictions and observations: p (zk | xk) =
p (xk | x1:k−1, z1:k−1, u1:k). For each propagated parti-
cle, the likelihood p (xk | zk) ∝ p (zk | xk) p (xk−1) is
measured.

• Resampling: The particles are resampled to avoid loosing
diversity and propagated to a new state distribution given
the observations collected across time.

This process of prediction, observation and resampling re-
peats itself for as many iterations as needed.

Experimental results
In our evaluation we use the same datasets used in the ex-
periments detailed in (Montes et al. 2020). We use the OES



detector to find all broccoli heads in the first frame and cre-
ate initial trajectories accordingly. We use a standard ap-
proach in which the broccoli head state x is modelled as a
set of weighted particles representing a distribution of pos-
sible locations in the frame. This simple model will suffice
as broccoli head orientations with respect to the sensor re-
mains constant. The initial set of particles is at the centre
of each broccoli head the first time it is detected. The filter
propagates particles from one frame to the next using a mo-
tion model. We use a standard dynamical model defined as:
xk = xk−1+∆∗vk+ε; where ∆ is a constant of motion in-
crement, vk = vk−1+ ϵ is the velocity and ε and ϵ are added
Gaussian noise. The state xk can then be updated based on
new acquired observations provided by the broccoli detec-
tor. Some particles are selected or filtered by assigning them
a weight based on its likelihood of predicting the new state
correctly. Particle likelihoods are computed using an appear-
ance model based on a Viewpoint Feature Histogram (VFH).
A VFH is a 3D feature descriptor that uses normal vector
angles to represent the properties of data points (Rusu et al.
2010). We use the Chi-square similarity coefficient between
the predicted state and the observed histograms to compute
a particle’s likelihood. The likelihoods are then normalized
and treated as weights. The algorithm produces a new set of
particles by resampling from the current set with probabili-
ties proportional to their weights.

Track confirmation. When the detector’s response is ac-
curate, it can guide the tracker fairly well using simple data
association policies. Unfortunately, detectors are not fully
reliable and a trade-off between true positive and false pos-
itive rates is common. However, increasing true detections
also increases false positive rates. When false detections oc-
cur, simple rules often misguide the tracker and perform
poorly. This problem can be alleviated by introducing a con-
firmation step that performs data association and handles
missing detections: On each frame, the detector is first used
to confirm the prediction result for each track. Then, tracks
that have not been confirmed for a number of frames are
eliminated. In addition, any trajectory near the border is also
eliminated to avoid predictions outside the current frame.
This simple process reduces false positive trajectories with-
out loosing tracks of broccoli not detected for short periods
of time.

Evaluation metrics. Location and area size are the main
parameters associated with correctly detecting and tracking
each broccoli head. A correct state estimation matches at
least a 0.5 Intersection-over-Union value according to anno-
tated data. In our evaluation, the common metrics Precision,
Recall and F1 suffice to evaluate performance, as Precision
is the ratio of correct predictions to the total broccoli predic-
tions made by the system, and Recall is the ratio of correct
predictions to the total number of actual broccoli labelled
as such. F1 Score is the weighted average of Precision and
Recall. Consequently, it takes both false and missing pre-
dictions into account and is usually more useful when there
is an unbalanced class distribution in the datasets. The sys-
tem is evaluated with all training and testing combinations
of annotated datasets collected in two different runs in UK

farms: UK1 and UK2, and one dataset from a farm in Spain:
SP1. For experiments on the same set, we define a training
and testing split of a 75% to 25% ratio. In any other case,
100% of one dataset was used for training and 100% of the
other set was used for testing. Table 1 summarizes a com-
parative list of evaluation results when using only the OES
broccoli detector and the proposed detect-and-track frame-
work. The scores for each dataset combination indicate an
improved performance from detection results. In these ex-
periments, we achieve an increment in the F1 score when
the particle filter is added to the detection pipeline. Figure
1 shows selected examples of both detection and tracking
results.

Running times. A particle filter performance is satisfac-
tory only when the set of particles is sufficiently large to rep-
resent the state distributions that are being estimated. How-
ever, the number of particles have an impact in the running
time of the particle filter. In our evaluation, a small set of 100
particles per track was large enough to improve the perfor-
mance score of the system and only added a few millisec-
onds to the process, still allowing the real time execution
reported in (Montes et al. 2020) using the same computing
hardware. A gradual increment in the number of particles
also increased the running times, but had very little impact
on the evaluation metrics.

Conclusions
We have presented a framework for detecting and track-
ing crops of broccoli heads in sequences of 3D point cloud
frames. Our system utilises a real-time detector, feature vec-
tor histograms to model similarity appearance, and a simple
track confirmation technique to keep track accuracy through
fail detections. The results demonstrate that the system is
capable of reliably detecting and tracking multiple instances
of broccoli heads in sequences of 3D frames, as well as im-
proving accuracy by reducing false predictions while pre-
serving high detection rates. Our results indicate a consis-
tent improvement of the F1 metric in all datasets combina-
tions used for testing. On a modern CPU we were able to
efficiently tracking broccoli locations, thus enabling a fast
execution for other real time detection and tracking applica-
tions. Future work will include further evaluation of the pro-
posed system by integrating other detectors and extending
to recent structure from motion approaches. Our evaluation
shows that the system exhibits the required detect-and-track
accuracy and real-time performance needed for autonomous
selective harvesting applications. However, the generic na-
ture of the framework makes it applicable to a wide range of
other tasks in agriculture.
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