
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PERFT: PARAMETER-EFFICIENT ROUTED
FINE-TUNING FOR MIXTURE-OF-EXPERT
LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

The Mixture-of-Experts (MoE) paradigm has emerged as a promising approach
for scaling transformer-based large language models (LLMs) with improved re-
source utilization. However, efficiently fine-tuning MoE LLMs remains largely
underexplored. Inspired by recent works on Parameter-Efficient Fine-Tuning
(PEFT), we present a unified framework for integrating PEFT modules into MoE
LLMs. Our framework, aligned with the core mechanisms of MoE, encompasses
a comprehensive set of design dimensions including various functional and com-
position strategies. By combining the key design choices within our framework,
we introduce Parameter-Efficient Routed Fine-Tuning (PERFT) as a flexible and
scalable family of PEFT strategies tailored for MoE LLMs.1 Extensive experi-
ments adapting OLMoE-1B-7B and Mixtral-8×7B for various commonsense and
arithmetic reasoning tasks demonstrate the effectiveness, scalability, and intrigu-
ing dynamics of PERFT. Additionally, we provide empirical findings for each
specific design choice to facilitate better application of MoE and PEFT.

1 INTRODUCTION

As modern transformer-based Vaswani et al. (2017) large language models (LLMs) continue to scale
up, Mixture-of-Experts (MoE) (Shazeer et al., 2017) has emerged in recent years as a promising
solution to the trade-off between performance and cost, yielding notable results in a series of frontier
models (Jiang et al., 2024; Reid et al., 2024; Dai et al., 2024; Qwen, 2024; Grok, 2024). With
so many new MoE LLMs available, how to effectively fine-tune them for downstream tasks has be-
come an area of considerable value. The advancements of MoE do not directly translate to efficiency
in their fine-tuning, and full fine-tuning these models remains prohibitively expensive due to their
immense number of expert parameters. Besides, the routing mechanism among sparsely-activated
experts poses unique challenges unseen in conventional dense architectures (Wang et al., 2024).
This necessitates exploring solutions specially-designed for efficiently adapting sparse MoE models,
without incurring the full cost of fine-tuning all parameters.

Parameter-Efficient Fine-Tuning (PEFT) techniques, such as adapters (Houlsby et al., 2019) and
LoRA (low-rank adaptation; Hu et al., 2022), have gained considerable attention on conventional
dense models. Combining hybrid elements from different PEFT methods have also shown promising
results (He et al., 2022; Hu et al., 2023; Zhang et al., 2023). With the rise of MoE architectures,
recent studies have explored PEFT solutions for dense models with MoE-inspired designs (Zadouri
et al., 2023; Dou et al., 2023; Luo et al., 2024; Li et al., 2024; Gao et al., 2024; Wu et al., 2024).
However, designing PEFT strategies tailored for MoE models remains largely underexplored.

To this end, we present the first unified framework for incorporating diverse PEFT modules di-
rectly into the MoE mechanism. Different from previous PEFT solutions that operate in isolation
from the underlying MoE architecture, our framework is designed closely around the unique routing
mechanisms among experts in MoE models. We introduce two key design dimensions. Functional
strategies define the internal mechanisms of the introduced PEFT module, including the architec-
ture inside individual PEFT modules, the multiplicity of PEFT modules, and the routing mechanism
among them. Compositional strategies describe how PEFT modules interact with the original MoE

1Code available via https://anonymous.4open.science/r/PERFT-MoE/.

1

https://anonymous.4open.science/r/PERFT-MoE/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of a default MoE layer and the PERFT family. PERFT-R, the primary
variant, holds an independent routing among the introduced PEFT experts. PERFT-E embeds PEFT
experts within the original MoE module and directly utilizes its routing patterns. PERFT-D and
PERFT-S simply work as independent shared expert(s) alongside the MoE module.

architecture, including operating as shared PEFT experts or embedded PEFT experts. To rigorously
characterize the behavior of adapting MoE LLMs with each strategies, we provide empirical analy-
ses that offer insights into understanding and optimizing configurations on these dimensions.

By exploring representative design choices within our framework, we introduce Parameter-Efficient
Routed Fine-Tuning (PERFT), a flexible and scalable family of PEFT strategies tailored for MoE
LLMs, as shown in Figure 1. These methods cover a range of architectural designs with vary-
ing levels of scale, sparsity, and routing dynamics. At the core of PERFT is PERFT-R (Routed),
which introduces an independent routing mechanism among multiple PEFT experts, enabling task-
specific expert activation patterns. We also study PERFT-E (Embedded), which utilizes the pre-
trained router, and PERFT-D (Dense) and PERFT-S (Single), which employ always-activated PEFT
experts without routing. These variants cover a wide range of functional and compositional strate-
gies, allowing for a systematic exploration on the trade-offs between parameter efficiency, sparsity,
and routing in fine-tuning MoE modules.

Extensive experiments are conducted on OLMoE-1B-7B (Muennighoff et al., 2024) and Mixtral-
8×7B (Jiang et al., 2024) for commonsense and math reasoning tasks. Our results demonstrate that
PERFT enables different levels of efficient adaptation of MoE LLMs while maintaining competitive
performance. With an equivalent level of activated trainable parameters in OLMoE-1B-7B, PERFT-
R achieves improvements of up to 17.2% and 12.3% over the average performance of MoE-agnostic
baseline methods in each domain. We also demonstrate and empirically analyze our observations
for the optimal scaling, sparsity, and routing configurations that generalize across settings. We hope
to provide practical insights for improving future MoE and PEFT approaches, and contribute to the
understanding of adaptation strategies for modern large-scale LLMs.

The primary contributions of our work are as follows:

1. We introduce a unified framework of PEFT techniques tailored for MoE LLMs. This encom-
passes multiple dimensions of design strategies, offering a novel perspective.

2. By combining the design choices within this unified framework, we propose PERFT as a
flexible and scalable family of strategies for adapting MoE LLMs.

3. Extensive experiments adapting OLMoE-1B-7B and Mixtral-8×7B for commonsense and
arithmetic reasoning tasks validate the effectiveness, scalability, and intriguing dynamics of
PERFT. We provide empirical findings and analysis for each specific design choice.

2 BACKGROUND

2.1 MIXTURE-OF-EXPERTS IN TRANSFORMER MODEL

Transformer Model. Consider a transformer model comprising L layers of transformer blocks,
each incorporating a standard self-attention mechanism and a feed-forward neural network (FFN).
Given a sequence of T tokens with an initial embedding in a D-dimensional hidden space x1:T

0 ∈
RT×D, we formulate the inner mechanism of each transformer block2 at layer l ∈ {1, · · · , L} as:

h1:T
l = SelfAttnl

(
x1:T
l−1

)
+ x1:T

l−1, xt
l = FFNl

(
ht
l

)
+ ht

l , (1)

2Layer normalization and dropout operations are omitted in this paper for clarity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where h1:T
l denotes the attention module output with the residual connection. The Feed-Forward

Network FFNl performs a token-wise mapping, yielding output xt
l at token t ∈ {1, · · · , T} with

residual added, which subsequently becomes the input for the next transformer block at layer l + 1.

Mixture-of-Experts. As a viable solution to the computational challenges in scaling models and
improving specialization, early forms of MoE were introduced (Jacobs et al., 1991; Jordan & Jacobs,
1994; Eigen et al., 2013; Shazeer et al., 2017). In the era of transformers, studies have revealed that
FFNs, with two-thirds of the model parameter, encapsulate a substantial amount of knowledge (Geva
et al., 2021; Dai et al., 2022) that can be attributed to sparsely represented features (Dalvi et al.,
2019; Durrani et al., 2020; Gurnee et al., 2023). Leveraging this internal sparsity, MoE architectures
can achieve better resource utilization by activating only a subset of effective parameters for each
input (Liu et al., 2023b), which has since been successfully applied to transformer-based language
models (Lepikhin et al., 2020; Du et al., 2022; Fedus et al., 2022; Zoph et al., 2022a; Komatsuzaki
et al., 2022; Rajbhandari et al., 2022; Jiang et al., 2024; Dai et al., 2024; Qwen, 2024; Grok, 2024).
Modern MoE architectures employ token-wise gating network (router) G(·), which dynamically
assigns each token to K of top-activated experts among N FFN experts Ei(·):

MoE(ht) =
∑N

i=1

(
G
(
ht

)
i
Ei

(
ht

))
, where G

(
ht

)
= TopK

(
Softmax

(
htWg

)
,K

)
, (2)

in which G(·) : RD 7→ RN denotes the sparse gating function that distributes weights across all N
FFN experts’ outputs, among which only K get nonzero values. The weight matrix Wg in G(·) can
be interpreted as a set of D-dimensional column vectors {gi|i ∈ 1, · · · , N}, each corresponding to a
characteristic hidden state hi for the expert Ei. The router computes token-to-expert affinity scores
sti via a softmax-normalized projection of each token’s hidden state onto these characteristic states
(Zhou et al., 2022; Dikkala et al., 2023; Lo et al., 2024), which are subsequently top-K thresholded
to yield expert selection results for each token. Notably, recent works (Gou et al., 2023; Dai et al.,
2024; Qwen, 2024) have explored shared experts that structurally mirror routed experts, working in
parallel with them and always remaining activated for capturing common knowledge.

2.2 PARAMETER-EFFICIENT FINE-TUNING FOR TRANSFORMER-BASED MODEL

Vanilla PEFT. Classical full fine-tuning approaches for downstream tasks (Devlin et al., 2019; Qiu
et al., 2020) have become increasingly impractical as transformers continue scaling up. Recent work
has introduced diverse PEFT methods offering comparable performance to full fine-tuning with sig-
nificantly reduced computational demands. He et al. (2022) present a unified view for PEFT, where
any PEFT method can be viewed as a combination of several design dimensions. For instance, given
the adapted module’s input h and output x, LoRA (Hu et al., 2022), which approximates weight
updates using low-rank matrices, can be described as a parallel operation ∆(h) = hWdownWup and
x ← x + s · ∆(h). This framework facilitates hybrid design for better PEFT variants. They find
that parallel PEFT modules generally outperform sequential adaptations, and modifying FFN yields
better results than modifying attention, which are further supported by Hu et al. (2023), Zhang et al.
(2023), Dettmers et al. (2024) and Hao et al. (2024).

PEFT with MoE-like Structures. The success of MoE transformers has inspired MoE-structured
adaptations. Much recent work has focused on developing such modules for dense models, including
inserting multiple LoRA experts with routers at attention layers (Liu et al., 2023a; Luo et al., 2024)
and alongside dense FFN layer (Zadouri et al., 2023; Dou et al., 2023; Page-Caccia et al., 2024; Chen
et al., 2024; Hao et al., 2024). Gao et al. (2024) find that allocating more LoRA experts to higher
layers leads to better performance. Li et al. (2024) propose up-cycled a mixture of LoRA-adapted
frozen FFN experts from dense models. Wu et al. (2024) explore methods for composing multiple
trained LoRAs in a MoE style. Notably, all these methods primarily focus on adapting dense models,
leaving the application of PEFT to inherently sparse MoE models largely underexplored. Recently
Wang et al. (2024) propose an expert-specialized fine-tuning approach, which comes closest to this
research gap by selectively fine-tuning the most relevant experts for downstream tasks, though no
PEFT techniques are involved. Our work, in contrast, directly addresses this area by introducing
PEFT modules into the MoE mechanism, which offers a more flexible and efficient solution for
adapting MoE models while preserving their original weights untouched.

3 METHODOLOGY

3.1 THE UNIFIED FRAMEWORK

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

b. Compositional Strategies

Router

FFN
Expert

PEFT
Module PEFT

Module

① Shared PEFT experts
①

②

② Embedded PEFT experts

③ MoE-Agnostic PEFT③

a. Functional Strategies

Router

Adapted
Module

Routing
among PEFT experts

Multiplicity
of PEFT experts

Architecture
inside PEFT experts

Figure 2: The unified framework of PEFT
for a MoE module. a. Functional strategies
specify the internal implementation of the in-
troduced PEFT module. b. Compositional
strategies describe the PEFT module’s inter-
action with the original MoE mechanism.

This section introduces our unified framework for
PEFT on MoE models. Inspired by the unified view
of PEFT (He et al., 2022), our framework focuses
on two key design dimensions, as shown in Fig-
ure 2. Functional strategies define the internal
mechanism of the introduced PEFT module, includ-
ing the architecture inside individual PEFT modules,
the multiplicity of PEFT modules, and the routing
mechanisms among them. Compositional strate-
gies describe how PEFT modules interact with the
original MoE architecture, including operating as
shared PEFT experts or embedded PEFT experts. By
considering these aspects, our framework addresses
the unique mechanisms of both PEFT and MoE, pro-
viding a novel and comprehensive perspective on
adapting MoE LLMs.

3.1.1 FUNCTIONAL STRATEGY

This dimension describes the internal implementa-
tion of the introduced PEFT module. We consider
variations of mechanisms in three dimensions:

Architecture inside PEFT Experts. This aspect de-
fines the specific internal structure of each individual
PEFT expert. The general architecture for comput-
ing ∆(h) in each PEFT expert can be formalized as

∆(h) = UpProj (Act (DownProj(h))) , (3)
where Act(·) is implemented with non-linear activation functions, or with an identity function for
LoRA. The DownProj(·) : RD 7→ RDB and UpProj(·) : RB 7→ RDB introduce a key scaling
factor, the bottleneck size DB , known as rank r used in LoRA’s low-rank decomposition. Adjusting
DB leads to linear scaling of trainable parameters. Optimizing this hyperparameter is crucial for dif-
ferent tasks and models, as it balances the bottleneck subspaces’ capacity for additional knowledge
against the effectiveness of training newly introduced weights with given data (Hu et al., 2022).

Multiplicity of PEFT Experts. The number of PEFT experts serves as another key scaling factor
in our framework. Increasing the number of PEFT experts allows each to generate its own copy of
∆(h), denoted as ∆i(h). Previous studies on fine-tuning dense models with MoE-like structures
(Zadouri et al., 2023; Liu et al., 2023a; Dou et al., 2023; Li et al., 2024) have empirically shown that
optimizing the number of adapters can significantly impact performance. This optimization can be
tailored to specific tasks, models, or even individual layers within a model (Gao et al., 2024). We
investigate the balance between performance and effective utilization of experts in our experiments.

Routing among PEFT Experts. This aspect considers whether an independent routing mechanism
is introduced among PEFT experts. In contrast to previous work primarily focusing on adapting
dense models using PEFT modules with MoE-like structures (Hao et al., 2024; Gao et al., 2024;
Wu et al., 2024), our framework reveals the potential dynamics in the interaction between routed
PEFT experts and the pretrained MoE module. For a token-wise routing among M PEFT experts,
the PEFT module operates similarly to the original MoE module for FFN experts (Equation 2):

∆(ht) =
∑M

i=1

(
G̃
(
ht

)
i
∆i(h

t)
)
, (4)

where G̃(·) denotes the gating function for the PEFT experts. This aspect highlights the profound
dynamics between routers and experts in MoE and PEFT modules, as shown in Figure 3. Based on
the key-value memory perspective for FFN (Geva et al., 2021) (Figure 3a), we can similarly interpret
the weight matrix Wg ∈ RD × RN in a router for N FFN experts as a set of N individual vectors
{gi}, each representing a characteristic hidden state for the corresponding expert’s key memories.
More specifically, each of the N vectors approximately symbolizes a cluster of all individual neuron
vectors within each FFN expert, and the routing process can be interpreted as a projection of the
current hidden state onto these N vectors to calculate the affinity of each expert with the input
token. For our PEFT expert router G̃(·), we can either learn from scratch a new collection of PEFT

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

c. Expert Vectors in Routers for FFN and PEFT Experts

·· ··

·· ··

·· ··

·· ··
expert vectors in both
router for FFN experts

and router for PEFT experts

key memory vectors in both
activated FFN experts

and activated PEFT experts

b. Expert Vectors in a Default MoE's Router for FFN Experts

expert vectors
in the router

for FFN experts

key memory vectors
in the activated

FFN expert

·· ··×

·· ··

= =

a. Key Memory Vectors in a Dense FFN Expert

weight matrix
key memory vectors
of all FFN neurons

× ·· ··

·· ··

= = = =

Figure 3: The dynamics between key memory vectors in experts and expert vectors in routers.
a. A dense FFN expert as projecting ht ∈ RD onto Da key memory vectors in the weight matrix
Wup = {ki ∈ RD} and yielding activation scores at ∈ RDa distributed over the key memories.
b. A router for N FFN experts as projecting ht onto N expert vectors stored in router weight
matrix Wg = {gi ∈ RD}, yielding token-to-expert affinity scores st ∈ RN distributed over the ex-
perts. Each expert vector gi symbolizes a characteristic ht pattern featuring its expert’s key memory
vectors {kj}i. c. Routers for both the N FFN experts and M PEFT experts introduce interesting
dynamics between their expert vectors {gi} and {g̃i}, resulting a more flexible space for fine-tuning.

expert vectors {g̃i}, or directly utilize the existing {gi} from the original router for FFN experts,
which becomes functionally equivalent to the configuration of embedded PEFT in Section 3.1.2. We
provide detailed visualization and analysis of these dynamics in our experiments.

3.1.2 COMPOSITIONAL STRATEGY

The compositional strategy defines how the PEFT module integrates with the original MoE model.
Based on findings from previous research (He et al., 2022; Hu et al., 2023; Luo et al., 2024; Hao
et al., 2024) that inserting PEFT modules in parallel generally yields superior performance, we focus
exclusively on parallel insertion methods, i.e., PEFT receiving the same input as the module it is
adapting and combining its output with that of the same module. This consideration aligns with
the parallel nature of MoE architectures, where FFN experts operate concurrently rather than in a
stacked configuration. Here we identify three main categories of insertion strategies:

Shared PEFT Experts. The PEFT module can operate in parallel with the entire MoE module,
functioning as shared PEFT experts. Given a input hidden state sequence h1:T , we have:

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+∆(h1:T) + h1:T , (5)

where the PEFT module takes the same input h1:T as the MoE module, and combines its output
additively with the MoE output to the residual connection. This approach draws inspiration from
the concept of shared FFN experts in recent works (Gou et al., 2023; Dai et al., 2024; Qwen, 2024).
Introducing these shared structurally identical FFN experts alongside routed FFN experts during
training MoE models aims to improve parameter efficiency by mitigating the redundancy of shared
knowledge across routed experts. Applying this principle to lightweight PEFT modules, we hy-
pothesize that these shared PEFT experts can similarly capture and adapt the common parts needed
among routed FFN experts, thereby potentially offering greater efficiency as well.

Embedded PEFT Experts. In this configuration, the PEFT modules are embedded within the MoE
module. Each PEFT module is paired with a corresponding FFN expert and operates in a tight
coupling manner, receiving the same token-wise input ht as distributed by the MoE router:

xt =
∑N

i=1
G(ht)i

(
Ei(h

t) + ∆i(h
t)
)
+ ht, (6)

where Ei(h
t) is the output of the i-th FFN expert for token t, and ∆i(h

t) is the output for token
t of the i-th PEFT module that is associated with the i-th expert. The PEFT modules’ outputs are
combined with their corresponding FFN experts’ outputs before being weighted by the router and
summed. This formulation can be viewed as introducing N PEFT experts embedded within the MoE
module, mirroring the activation patterns of the original FFN experts as discussed in Section 3.1.1.

MoE-Agnostic PEFT. The PEFT module is integrated at locations independent of the MoE mod-
ules, completely decoupled and functioning agnostically to the MoE mechanism. This includes

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

previous PEFT strategies that treat models effectively as if they were dense architecture. We include
this strategy as a baseline in our experiments, enabling us to compare the performance of trivial
techniques applied without consideration of the underlying MoE structure.

3.2 THE PERFT FAMILY

Deriving from our unified framework of PEFT on MoE LLMs, we hereby propose Parameter
Efficient Routed Fine-Tuning (PERFT) as a family of novel PEFT methods tailored for MoE mod-
els, as illustrated in Figure 1. At the core of the PERFT family is PERFT-R (Routed), with a
parallel module consisting of an independent router among the introduced PEFT experts:

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+

∑M

j=1

(
G̃
(
h1:T

)
j
∆j

(
h1:T

))
+ h1:T , (7)

where G̃(·) : RD 7→ RM denotes the gating function for the M PEFT experts ∆j(·). PERFT-R
allows for learning an independent series of expert vectors g̃i for PEFT experts, together with FFN
expert vectors gi forming an intriguing dynamics, as discussed in Section 3.1.1 and Figure 3c.

If the number of introduced PEFT experts M matches the number of FFN experts N in the original
MoE module, the structural design in PERFT-R provides a possibility to substitute G̃(·) with the
original G(·), which makes it becomes a simplified special case

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+

∑N

j=1

(
G
(
h1:T

)
j
∆j

(
h1:T

))
+ h1:T

=
∑N

i=1
G
(
h1:T

)
i

(
Ei

(
h1:T

)
+∆j

(
h1:T

))
+ h1:T ,

(8)

which takes exactly the same form as the embedded PEFT experts in Equation 6. Hence we denote
this variant as PERFT-E (Embedded). As it directly utilizes the expert vectors gi original pre-
trained router for distributing tokens for PEFT experts instead of learning weights from scratch, it
can be intuitively estimated that this property of would lead to performance gain especially when the
number of routed experts are to some extent that learning from scratch is not able to capture enough
quality distribution of PEFT expert vectors in the space of hidden states.

By removing routing functions and naively making multiple PEFT shared experts always activated
in parallel with the MoE module, we have another variant PERFT-D (Dense), denoted as

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+

∑M

j=1
∆j

(
h1:T

)
+ h1:T , (9)

which can be further simplified into only having one shared PEFT expert, namely PERFT-S (Single)

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+∆0

(
h1:T

)
+ h1:T , (10)

These two structures implemented the idea of shared experts introduced in recent works (Dai et al.,
2024; Qwen, 2024) with PEFT experts, serve as two simpler variants in our PERFT family.

4 EXPERIMENTS AND ANALYSES

4.1 EXPERIMENT SETUP

Benchmarks. Our experiments follow the settings provided by Hu et al. (2023), encompassing
8 benchmarks for commonsense reasoning and 6 for arithmetic reasoning. We utilize their amal-
gamated training sets Commonsense170K and Math50K to fine-tune models respectively for each
domain. Evaluations are conducted correspondingly across all individual benchmark test sets.

LLM Backbones. Two state-of-the-art open-source MoE LLMs serve as the backbone models for
our experiment: OLMoE-1B-7B (Muennighoff et al., 2024) and Mixtral-8×7B (Jiang et al., 2024).
They are selected among publicly available MoE models based on their outstanding performance in
the 1B and 13B activated parameter ranges. We use the model weights of their pretrained versions.

Baselines. Since there is little previous work on applying PEFT to MoE, we primarily experiment
with applying LoRA to attention matrices Wq and Wv , the versatile and popular PEFT solution that
provides optimal performance under limited parameter budgets (Hu et al., 2022). This serves as our
baseline across all scales and tasks. For the smaller OLMoE-1B-7B model, we also include results
of applying LoRA to the router matrix Wg , as reported in Table 4 in appendix.

Training. In our experiments, we maintain consistency with the original training process of each
LLM by incorporating their respective auxiliary losses alongside the cross-entropy loss for token

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

outputs. The models we investigate all include the load balancing loss (Shazeer et al., 2017), which
aims to distribute tokens equally among experts. OLMoE-1B-7B additionally incorporates a router
z-loss (Zoph et al., 2022b) to penalize large logits in the router for better training stability. To
ensure a fair comparison, we keep all auxiliary losses active during fine-tuning for baseline and all
PERFT variants. For PERFT-R, we extend this approach with the load balancing loss for the PEFT
expert router as well for a similar balanced distribution of tokens among PEFT experts. Detailed
hyperparameters and resource configurations for our experiments are provided in Appendix A.

Design Choices. For the internal architecture of PERFT and its variants, the major part of our exper-
iments focuses on the application of parallel LoRA adapters (He et al., 2022) to the FFN networks,
which serves as a simple and effective representation among various possible configurations. The
output scaling with α in LoRA also helps us reduce the need to retune hyperparameters when we
vary the bottleneck sizes (Yang & Hu, 2020; Hu et al., 2022). For alternative internal architectures,
following prior results on dense models (He et al., 2022; Hu et al., 2023), we provide an additional
comparative analysis in Appendix B.1 of using vanilla parallel adapter (Houlsby et al., 2019; He
et al., 2022) with an additional activation function applied between projections.

Regarding routing, we investigate both learned routing (PERFT-R) and embedded routing using the
pretrained MoE router (PERFT-E). We also include non-routed variants (PERFT-D and PERFT-S)
for comparison. For the number of experts, we explore various configurations as shown in Figure 4.
The notation “(TopK/N)” indicates PERFT with K out of N experts activated per forward pass, and
“(N)” represents N shared PEFT experts without routing. We examine configurations with the total
number of experts ranging from 1 to 64 and activated experts from 1 to 8, allowing us to study the
impact of expert count and activation ratio on performance. We experiment with different bottleneck
sizes (LoRA ranks) ranging from 2 to 128, as represented by the point sizes in Figure 4. This allows
us to study the impact of parameter efficiency on performance across different PERFT variants.

4.2 EXPERIMENT RESULTS LLM Arch. Strategy # Act. % Act. CR AR

LoRA4 Wq,Wv@Attn 0.52M 0.041 57.15 28.42
LoRA16 PERFT-R (Top1/2) 0.59M 0.046 66.66 31.91
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 66.98 31.18

OLMoE
1B-7B

(Top8/64)

LoRA16 Wq,Wv@Attn 2.10M 0.164 62.86 29.71
LoRA4 PERFT-E (Top8/64) 2.10M 0.164 69.42 31.30
LoRA32 PERFT-R (Top1/4) 2.23M 0.174 67.32 32.29

LoRA64 Wq,Wv@Attn 8.39M 0.654 67.95 28.82
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 69.29 29.08
LoRA16 PERFT-R (Top8/8) 8.65M 0.675 68.81 31.65

Mixtral
13B-47B
(Top2/8)

LoRA8 Wq,Wv@Attn 3.41M 0.026 85.02 64.72
LoRA8 PERFT-R (Top2/2) 4.46M 0.035 86.23 69.03
LoRA8 PERFT-R (Top2/8) 5.24M 0.046 85.68 68.14

Table 1: Average performance of OLMoE and Mix-
tral with baseline and PERFT variants on commonsense
reasoning (CR) and arithmetic reasoning (AR) bench-
marks. “Arch.” denotes the architecture inside PEFT mod-
ules. “# Act.” and “% Act.” represent the number of ac-
tivated trainable parameters and their ratio to the total acti-
vated parameters. “(TopK/N)” refers to activating K experts
among the total number of N experts. Performance scores
for CR and AR are calculated by averaging the scores across
each relevant individual benchmark.

Table 1 presents a comparison be-
tween several representative PERFT
variants and MoE-agnostic baseline
with equivalent levels of trainable pa-
rameters. The reported PERFT vari-
ants consistently outperform baseline
methods, with PERFT-R achieving
improvements of up to 17.2% and
12.3% on each domain, and PERFT-
E up to 10.4% and 5.4%. Section
C in appendix provides a comprehen-
sive series of tables detailing the per-
formance of all variants across each
individual task.

To obtain the optimal configurations,
we conduct an exhaustive series of
experiments by fine-tuning OLMoE
using combinations of each PERFT
variant and possible design choices,
with results presented in Figure 4.

PERFT-R emerges as the best strategy. Across both domains, we observe a clear distinction be-
tween the overall performance of each PERFT variants. PERFT-R, as expected, emerges as the
best strategy that generally outperforms other variants. This advantage is particularly evident at
higher levels of parameter efficiency, highlighting its superior potential as an effective strategy for
the efficient fine-tuning of MoE models. PERFT-E demonstrates promising performance above the
baseline as well. PERFT-S and PERFT-D, as the most simplified variants, fail to yield competitive
results across the tested range on both domains.

PERFT-R and PERFT-E generally benefit from scaling up. Our results show distinct scaling
patterns across different variants of our model. PERFT-R and PERFT-E generally can benefit from
scaling up trainable parameters via increased bottleneck sizes DB within a certain range, as rep-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 3 10 2

Activated Parameter Efficiency

40

50

60

70

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
%

)

qvLoRA

S (1)

D (2)

D (4) D (8)

R (Top1/1)

R (Top1/2)

R (Top2/2)

R (Top1/4)
R (Top2/4)

R (Top4/4)

R (Top8/8)

R (Top8/16)

R (Top8/32)

R (Top8/64)

E (Top8/64)

(a) Commonsense Reasoning

10 3 10 2

Activated Parameter Efficiency

20

30

qvLoRA

S (1)

D (2)

D (4)

R (Top1/2)

R (Top2/2)

R (Top1/4)

R (Top2/4)

R (Top4/4)

R (Top2/8)
R (Top8/8)

E (Top8/64)

LoRA Ranks

2

4

8

16

32

64

128

LoRA Ranks

2

4

8

16

32

64

128

(b) Arithmetic Reasoning

Figure 4: Performance comparison of OLMoE-1B-7B fine-tuned with baselines and PERFT
family. Performance on y-axes is averaged across corresponding evaluation benchmarks; “Activated
Parameter Efficiency” on x-axes indicates the ratio of activated trainable parameters to the total
activated parameters. Color represents different methods: “qvLoRA” stands for applying LoRA
on attention matrices Wq and Wv; “S”, “D”, “R” and “E” refer to the proposed PERFT variants.
Transparency indicates different sparsity levels (ratio of activated experts K/N , as “(TopK/N)”
labeled for PERFT-R and PERFT-E). Marker size indicates bottleneck size DB .

resented by larger marker sizes in Figure 4. However, PERFT-S and PERFT-D show a rapid per-
formance decline as bottleneck size increases. For the multiplicity of PEFT experts, PERFT-E
consistently exhibits performance degradation with more experts, whereas PERFT-R demonstrates
a more complex relationship between expert multiplicity and performance, with different trainable
parameter ratios yielding varying results.

PERFT-R is more sensitive to the overall number of PEFT experts. Figure 5 illustrates the impact
of scaling the total number of activated PEFT experts and their trainable parameter efficiencies while
controlling for other factors. When fixing the total number of PEFT experts, the performance gain
from increasing the activated ratio is relatively modest, suggesting that the performance of PERFT-
R is more sensitive to the overall PEFT expert count rather than the proportion activated. It is also
observed that on commonsense reasoning tasks, PERFT-R configurations with fewer total PEFT
experts tend to outperform those with more experts across various activated parameter efficiencies.
In contrast, for math reasoning tasks (Figure 4b), configurations with more PEFT experts do show
improved performance as parameter efficiency increases. These divergent patterns reveal that the
optimal configuration appears to be task-dependent. Further results on controlling for other factors
are provided in Figure 8 in appendix, emphasizing the importance of balancing the total number of
experts, sparsity, and computational efficiency when optimizing PERFT configurations for optimal
performance.

4.3 RESULT ANALYSES

Routing is important in scaling the number of PEFT experts. Our experiments reveal fascinat-
ing dynamics of PERFT as we manipulate the bottleneck size. As Figure 4 suggests, the optimal
information bottleneck configuration represents a delicate balance between capacity and learning
effectiveness for each PERFT variant and the given task to achieve peak performance. For PERFT-
S and PERFT-D variants without G̃(·) to distribute gating weights, increasing the bottleneck leads
to rapidly decreased average performance across both commonsense and arithmetic reasoning tasks

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10 3 10 2

64

66

68

70

72

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
%

)

PERFT-R (Top1/2)
PERFT-R (Top2/2)

10 3 10 2

PERFT-R (Top1/4)
PERFT-R (Top2/4)
PERFT-R (Top4/4)

10 3 10 2

PERFT-R (Top1/8)
PERFT-R (Top2/8)
PERFT-R (Top4/8)
PERFT-R (Top8/8)

10 3 10 2

PERFT-R (Top1/16)
PERFT-R (Top2/16)
PERFT-R (Top4/16)
PERFT-R (Top8/16)

Figure 5: Performance comparison of configurations with different total number of PEFT ex-
perts in PERFT-R. Results from OLMoE-1B-7B fine-tuned with PERFT-R for commonsense rea-
soning. x-axes stand for activated parameter efficiency. Transparency represents different sparsity
levels (ratio of activated PEFT experts), and marker size represents bottleneck size DB .

compared to baseline and other PERFT variants. This phenomenon should be attributed to ineffi-
cient parameter utilization in always-activated shared experts. Without an effective routing mecha-
nism, a mismatch would occur between the effective dimensionality of the task and adapter capacity.
When the adapter’s dimensions significantly exceed the intrinsic dimensionality required by the task
for applying modifications, the surplus dimensions in the PEFT module may introduce useless or
harmful adaptations, leading to decreased performance as the bottleneck size increases. A detailed
discussion on possible reasons is presented in Appendix B.2.

We also observe that naively scaling up the number of experts without a routing mechanism can
lead to severe performance degradation. Consistently, PERFT-D underperforms PERFT-S, with
performance declining as the number of PERFT experts increases. Figure 6 visualizes this effect
through UMAP projections of key memory vectors and expert vectors for the base OLMoE-1B-7B
model and different PERFT variants (E, R, D, and S). As the UMAP projection maintains relative
distances between original FFN experts in the final results, in an ideal adaptation scenario, PEFT
expert key vectors that may activate simultaneously should be distributed evenly within subspaces
formed by task-relevant FFN experts’ key vectors, maximizing hidden space utilization. However,
PERFT-D variants in Figure 6 exhibit tightly clustered key vectors from different experts (shown
with different colors), indicating a functional redundancy and inefficient use of model capacity in
PERFT-D experts. A detailed analysis on this phenomenon is provided in Appendix B.3.

Routing contributes more from its weight distribution, rather than sparse activation. Compar-
ing to PERFT-S and PERFT-D in Figure 4, we observe that even when all experts are activated
(TopN/N), PERFT-R can still improve the performance significantly, by simply introducing learn-
able token-wise gating weights for dynamically assigning the importance of each expert’s output.
This effect is reminiscent of how Gated Linear Units (GLU) improve the FFN layer in transformers
(Dauphin et al., 2017). In our case, Figure 6 shows that gating weights can lead to more balanced
vector distribution and more effective utilization of hidden space, supporting our discussion in Sec-
tion 3.1.1. Without such a mechanism, the potential benefits of the increased number of experts may
be counterbalanced by the redundancy in model capacity, as discussed in Appendix B.3.

Figure 5 reveals that for a fixed total number of PEFT experts, increasing the sparsity of PERFT-
R by activating fewer PEFT experts does not severely degrade performance. This observation is
also supported by the visual representation in Figure 6, which suggests that an adequate number
of activated expert vectors is sufficient to capture the distribution of the space to be adapted. In
addition, the key value vectors from different PEFT experts of PERFT-R that appear clustered in
Figure 6 can be utilized by a sparser router to ensure them not activated simultaneously, thereby
maintaining performance. This finding indicates that the overall capacity of the PEFT module may
be a more critical factor in determining performance rather than the activated capacity.

With more PEFT experts, PERFT-E can become favored over PERFT-R. Figure 6 illustrates
the distinct dynamics between PERFT-E and PERFT-R. PERFT-E utilizes the frozen expert vectors
in the router for FFN experts, while PERFT-R learns an independent router from scratch for PEFT
experts. It’s important to note that the comparative performance between PERFT-E and PERFT-R
can vary in practice, especially when considering scenarios with different activated parameters. Our
results in Figure 4a demonstrate that given the same total number of PEFT experts, PERFT-E con-
sistently performs better than PERFT-R (Top8/64) across all bottleneck sizes; while many PERFT-R
configurations with fewer experts in turn outperform PERFT-E. When a larger number of PEFT ex-
perts are used, utilizing the pretrained router can provide more stable and efficient learning for each

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of key memory vectors and expert vectors in OLMoE-1B-7B and
PERFT family fine-tuned for commonsense reasoning. Results show projections of vectors with
DB = 32 from layer 8 of OLMoE. Each subplot corresponds to a different configuration: “Base
Model” showing vectors of FFN experts and router in the original MoE layer; “S”, “D”, “R” and “E”
referring to vectors in the PEFT experts and router (if any) of the corresponding PERFT variants.
Markers ● represent key memory vectors in FFN or PEFT experts, and ✖ expert vectors in routers
for either FFN experts (in Base Model and PERFT-E) or PEFT experts (in PERFT-R). All vectors
are projected using the same PCA and UMAP trained on key memory vectors from the FFN experts.
Different colors distinguish vectors associated with different experts.

expert, while PERFT-R may waste more training on exploring larger subspaces and not being able
to capture the optimal distribution effectively. This variability highlights the complex trade-off be-
tween the flexibility offered by learning new routing mechanisms against the stability gained from
utilizing pretrained components in large-scale models, underscoring the need to consider training
configuration- and task-specific factors when choosing between them.

5 CONCLUSION

In this paper, we introduce a unified framework for integrating PEFT techniques into MoE mod-
els, addressing the challenges of efficiently adapting these large, sparse architectures to downstream
tasks. Our framework, encompassing both functional and compositional strategies, bridges the gap
between existing PEFT methods for dense models and the unique sparsity characteristics of MoE ar-
chitectures. Building upon this framework, we propose PERFT, a flexible family of PEFT strategies
specifically tailored for MoE modules. Through extensive experiments on adapting several state-
of-the-art MoE models (OLMoE and Mixtral) for various commonsense and arithmetic reasoning
tasks, we demonstrated the effectiveness and scalability of PERFT. Our results showed significant
performance improvements over MoE-agnostic baseline methods. We provide an analysis of our
findings for each specific design choice from our study, contributing to a deeper understanding of
the dynamics between PEFT adaptation strategies and the MoE architecture.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021. URL https:
//aclanthology.org/2021.acl-long.568/.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020. URL https://ojs.aaai.org/index.php/AAAI/
article/view/6239.

Shaoxiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for mitigating
data conflicts in instruction finetuning mllms. arXiv preprint arXiv:2401.16160, 2024. URL
https://arxiv.org/abs/2401.16160.

10

https://aclanthology.org/2021.acl-long.568/
https://aclanthology.org/2021.acl-long.568/
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://arxiv.org/abs/2401.16160

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019. URL https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.
org/abs/2110.14168.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neu-
rons in pretrained transformers. In Proc. of ACL, pp. 8493–8502, Dublin, Ireland, 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL https:
//aclanthology.org/2022.acl-long.581.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024. URL https://arxiv.
org/abs/2401.06066.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James R. Glass.
What is one grain of sand in the desert? analyzing individual neurons in deep NLP models. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pp. 6309–6317. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33016309.
URL https://doi.org/10.1609/aaai.v33i01.33016309.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017. URL https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.
pdf.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of NAACL-HLT, pp. 4171–4186,
Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1423. URL https://aclanthology.org/N19-1423.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang. On the
benefits of learning to route in mixture-of-experts models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9376–9396, 2023. URL https:
//aclanthology.org/2023.emnlp-main.583/.

S Dou, E Zhou, Y Liu, S Gao, J Zhao, W Shen, Y Zhou, Z Xi, X Wang, X Fan, et al. Loramoe: Al-
leviate world knowledge forgetting in large language models via moe-style plugin. arXiv preprint
arXiv:2312.09979, 2023. URL https://arxiv.org/abs/2312.09979.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022. URL https://proceedings.mlr.press/v162/du22c.html.

11

https://aclanthology.org/N19-1300/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://doi.org/10.1609/aaai.v33i01.33016309
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://aclanthology.org/N19-1423
https://aclanthology.org/2023.emnlp-main.583/
https://aclanthology.org/2023.emnlp-main.583/
https://arxiv.org/abs/2312.09979
https://proceedings.mlr.press/v162/du22c.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual neurons
in pre-trained language models. In Proc. of EMNLP, pp. 4865–4880, Online, 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.395. URL https:
//aclanthology.org/2020.emnlp-main.395.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a
deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013. URL https://arxiv.org/
abs/1312.4314.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical frame-
work for transformer circuits. Transformer Circuits Thread, 1, 2021. URL https://
transformer-circuits.pub/2021/framework/index.html.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022. URL https://www.jmlr.org/papers/v23/21-0998.html.

Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang,
Xiaoyuan Guo, Jie Yang, and VS Subrahmanian. Higher layers need more lora experts. arXiv
preprint arXiv:2402.08562, 2024. URL https://arxiv.org/abs/2402.08562.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proc. of EMNLP, pp. 5484–5495, Online and Punta Cana, Dominican
Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
446. URL https://aclanthology.org/2021.emnlp-main.446.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction
tuning. arXiv preprint arXiv:2312.12379, 2023. URL https://arxiv.org/abs/2312.
12379.

Grok. Open release of grok-1, March 2024. URL https://x.ai/blog/grok-os.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. Finding neurons in a haystack: Case studies with sparse probing. ArXiv preprint,
abs/2305.01610, 2023. URL https://arxiv.org/abs/2305.01610.

Jitai Hao, WeiWei Sun, Xin Xin, Qi Meng, Zhumin Chen, Pengjie Ren, and Zhaochun Ren. Meft:
Memory-efficient fine-tuning through sparse adapter. arXiv preprint arXiv:2406.04984, 2024.
URL https://arxiv.org/abs/2406.04984.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In Proc. of ICLR. OpenReview.net, 2022.
URL https://openreview.net/forum?id=0RDcd5Axok.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 523–533, 2014. URL
https://aclanthology.org/D14-1058.pdf.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learn-
ing for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proc. of ICML, vol-
ume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 2019. URL
http://proceedings.mlr.press/v97/houlsby19a.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proc. of ICLR.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

12

https://aclanthology.org/2020.emnlp-main.395
https://aclanthology.org/2020.emnlp-main.395
https://arxiv.org/abs/1312.4314
https://arxiv.org/abs/1312.4314
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://www.jmlr.org/papers/v23/21-0998.html
https://arxiv.org/abs/2402.08562
https://aclanthology.org/2021.emnlp-main.446
https://arxiv.org/abs/2312.12379
https://arxiv.org/abs/2312.12379
https://x.ai/blog/grok-os
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2406.04984
https://openreview.net/forum?id=0RDcd5Axok
https://aclanthology.org/D14-1058.pdf
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023. URL https://arxiv.
org/abs/2304.01933.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991. URL https://ieeexplore.ieee.
org/abstract/document/6797059/.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024. URL https://arxiv.org/
abs/2401.04088.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algo-
rithm. Neural computation, 6(2):181–214, 1994. URL https://ieeexplore.ieee.org/
abstract/document/6796382/.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints. arXiv preprint arXiv:2212.05055, 2022. URL
https://arxiv.org/abs/2212.05055.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for
Computational Linguistics, 3:585–597, 2015. URL https://direct.mit.edu/tacl/
article-abstract/doi/10.1162/tacl_a_00160/43300.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020. URL https:
//arxiv.org/abs/2006.16668.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and
Mingjie Tang. Mixlora: Enhancing large language models fine-tuning with lora based mixture of
experts. arXiv preprint arXiv:2404.15159, 2024. URL https://arxiv.org/abs/2404.
15159.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167,
2017. URL https://aclanthology.org/P17-1015/.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
Moelora: An moe-based parameter efficient fine-tuning method for multi-task medical applica-
tions. arXiv preprint arXiv:2310.18339, 2023a. URL https://arxiv.org/abs/2310.
18339.

Zeyu Liu, Tim Dettmers, Xi Lin, Veselin Stoyanov, and Xian Li. Towards a unified view of sparse
feed-forward network in pretraining large language model. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 15038–15061, 2023b. URL https:
//aclanthology.org/2023.emnlp-main.930/.

Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang, and Jie Fu. A closer look into mixture-of-experts
in large language models. arXiv preprint arXiv:2406.18219, 2024. URL https://arxiv.
org/abs/2406.18219v1.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large lan-
guage models. arXiv preprint arXiv:2402.12851, 2024. URL https://arxiv.org/abs/
2402.12851.

13

https://arxiv.org/abs/2304.01933
https://arxiv.org/abs/2304.01933
https://ieeexplore.ieee.org/abstract/document/6797059/
https://ieeexplore.ieee.org/abstract/document/6797059/
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://ieeexplore.ieee.org/abstract/document/6796382/
https://ieeexplore.ieee.org/abstract/document/6796382/
https://arxiv.org/abs/2212.05055
https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00160/43300
https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00160/43300
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2404.15159
https://arxiv.org/abs/2404.15159
https://aclanthology.org/P17-1015/
https://arxiv.org/abs/2310.18339
https://arxiv.org/abs/2310.18339
https://aclanthology.org/2023.emnlp-main.930/
https://aclanthology.org/2023.emnlp-main.930/
https://arxiv.org/abs/2406.18219v1
https://arxiv.org/abs/2406.18219v1
https://arxiv.org/abs/2402.12851
https://arxiv.org/abs/2402.12851

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018. URL
https://aclanthology.org/D18-1260/.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts lan-
guage models. arXiv preprint arXiv:2409.02060, 2024. URL https://arxiv.org/abs/
2409.02060.

Lucas Page-Caccia, Edoardo Maria Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessan-
dro Sordoni. Multi-head adapter routing for cross-task generalization. Advances in Neural Infor-
mation Processing Systems, 36, 2024. URL https://arxiv.org/abs/2211.03831.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
2021. URL https://aclanthology.org/2021.naacl-main.168/.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China technological sciences,
63(10):1872–1897, 2020. URL https://link.springer.com/article/10.1007/
s11431-020-1647-3.

Qwen. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters, February
2024. URL https://qwenlm.github.io/blog/qwen-moe/.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation AI scale. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research, pp. 18332–18346. PMLR, 2022. URL
https://proceedings.mlr.press/v162/rajbhandari22a.html.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024. URL https://arxiv.org/abs/2403.05530.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1743–1752, 2015. URL
https://aclanthology.org/D15-1202.pdf.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.
URL https://dl.acm.org/doi/abs/10.1145/3474381.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Com-
monsense reasoning about social interactions. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019. URL https:
//aclanthology.org/D19-1454/.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. URL
https://arxiv.org/pdf/2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017. URL https://arxiv.org/abs/1701.06538.

14

https://aclanthology.org/D18-1260/
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2211.03831
https://aclanthology.org/2021.naacl-main.168/
https://link.springer.com/article/10.1007/s11431-020-1647-3
https://link.springer.com/article/10.1007/s11431-020-1647-3
https://qwenlm.github.io/blog/qwen-moe/
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://arxiv.org/abs/2403.05530
https://aclanthology.org/D15-1202.pdf
https://dl.acm.org/doi/abs/10.1145/3474381
https://aclanthology.org/D19-1454/
https://aclanthology.org/D19-1454/
https://arxiv.org/pdf/2002.05202
https://arxiv.org/abs/1701.06538

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Zihan Wang, Deli Chen, Damai Dai, Runxin Xu, Zhuoshu Li, and Y Wu. Let the expert stick to his
last: Expert-specialized fine-tuning for sparse architectural large language models. arXiv preprint
arXiv:2407.01906, 2024. URL https://arxiv.org/abs/2407.01906.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628,
2024. URL https://arxiv.org/abs/2404.13628.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020. URL https://arxiv.org/abs/2011.14522.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
arXiv preprint arXiv:2309.05444, 2023. URL https://arxiv.org/abs/2309.05444.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019. URL https://aclanthology.org/
P19-1472/.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview, 2023. URL https://par.nsf.gov/
servlets/purl/10471451.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, An-
drew M Dai, Quoc V Le, James Laudon, et al. Mixture-of-experts with expert
choice routing. Advances in Neural Information Processing Systems, 35:7103–7114,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. Designing effective sparse expert models. arXiv preprint arXiv:2202.08906, 2
(3):17, 2022a. URL https://arxiv.org/abs/2202.08906.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022b. URL https://arxiv.org/abs/2202.08906.

A TRAINING CONFIGURATIONS

Hardware. For each fine-tuning experiment with the baseline and PERFT variant, we trained
OLMoE-1B-7B on a single NVIDIA A100 GPU, and Mixtral-8×7B on 4×NVIDIA H100 GPUs
using NV-link interconnect across GPUs. Both models are evaluated on NVIDIA A100 GPUs.

Hyperparameters. We display the hyperparameter configurations used in fine-tuning and evaluat-
ing OLMoE-1B-7B and Mixtral-8×7B in Table 2. We follow Hu et al. (2023) and each model’s
original settings for training.

B ADDITIONAL ANALYSES FOR PERFT CONFIGURATIONS

B.1 ARCHITECTURE OF PEFT EXPERTS

Table 3 compares the commonsense reasoning performance of LoRA and Parallel Adapters (PA)
as PEFT experts in OLMoE-1B-7B with several well-performing PERFT-R configurations. As we

15

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2407.01906
https://arxiv.org/abs/2404.13628
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2309.05444
https://aclanthology.org/P19-1472/
https://aclanthology.org/P19-1472/
https://par.nsf.gov/servlets/purl/10471451
https://par.nsf.gov/servlets/purl/10471451
https://proceedings.neurips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyperparameters OLMoE-1B-7B Mixtral-8×7B

Training precision BFloat16
Dropout 0.05

Optimizer AdamW
LR 1e-5 2e-5

LR scheduler Linear
Batch size 16

Warmup steps 100
Epochs 3

Auxiliary loss coef. 0.01 0.02

Table 2: Hyperparameter configurations for OLMoE-1B-7B and Mixtral-8×7B.

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

LoRA4 PERFT-R (Top1/1) 0.16M 0.013 62.48 75.73 68.17 25.16 51.07 76.81 55.72 61.60 59.59
PA4 PERFT-R (Top1/1) 0.16M 0.013 63.09 76.50 64.94 31.23 52.72 77.02 56.31 55.40 59.65
LoRA8 PERFT-R (Top1/1) 0.29M 0.023 63.43 77.53 70.68 42.13 66.14 77.10 59.30 66.20 65.31
PA8 PERFT-R (Top1/1) 0.29M 0.023 65.63 78.94 68.68 40.46 53.75 79.25 56.14 61.20 63.01
LoRA16 PERFT-R (Top1/1) 0.56M 0.043 64.98 78.56 72.52 41.99 67.25 77.82 58.70 68.20 66.25
PA16 PERFT-R (Top1/1) 0.56M 0.043 66.61 78.56 71.34 41.26 59.75 78.87 59.30 66.20 65.24
LoRA32 PERFT-R (Top1/1) 1.08M 0.084 66.36 78.84 72.36 42.83 63.38 78.62 58.36 71.20 66.49
PA32 PERFT-R (Top1/1) 1.08M 0.084 66.61 79.54 72.62 42.36 66.46 79.29 62.03 67.40 67.04

LoRA4 PERFT-R (Top2/2) 0.33M 0.026 64.86 76.71 69.60 40.89 62.43 77.23 55.80 63.60 63.89
PA4 PERFT-R (Top2/2) 0.33M 0.026 65.44 77.48 69.40 41.14 51.54 78.83 57.94 63.20 63.12
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 65.26 78.18 72.31 42.11 71.82 77.90 60.49 67.80 66.98
PA8 PERFT-R (Top2/2) 0.59M 0.046 67.31 80.03 71.14 41.70 61.80 78.58 58.87 66.60 65.75
LoRA16 PERFT-R (Top2/2) 1.11M 0.087 66.18 77.97 72.52 43.99 70.64 78.24 60.75 69.80 67.51
PA16 PERFT-R (Top2/2) 1.11M 0.087 66.76 79.38 72.47 43.52 69.85 80.85 61.26 71.00 68.14
LoRA32 PERFT-R (Top2/2) 2.16M 0.169 65.81 79.38 73.59 49.42 71.59 77.78 61.18 71.80 68.82
PA32 PERFT-R (Top2/2) 2.16M 0.169 67.61 80.96 73.18 45.57 70.64 80.68 61.18 72.00 68.98

LoRA4 PERFT-R (Top2/4) 0.66M 0.051 63.98 75.68 69.29 40.26 65.75 77.36 59.56 67.40 64.91
PA4 PERFT-R (Top2/4) 0.66M 0.051 65.93 77.75 69.96 40.81 61.09 79.17 58.28 65.80 64.85
LoRA8 PERFT-R (Top2/4) 1.18M 0.092 65.02 77.86 71.90 41.61 68.75 77.31 59.13 68.80 66.30
PA8 PERFT-R (Top2/4) 1.18M 0.092 64.40 78.07 71.24 41.80 70.17 79.76 61.09 67.80 66.79
LoRA16 PERFT-R (Top2/4) 2.23M 0.174 64.07 76.61 73.59 42.10 71.90 78.32 60.58 71.20 67.30
PA16 PERFT-R (Top2/4) 2.23M 0.174 65.99 79.92 72.62 43.14 61.64 80.09 60.58 69.20 66.65
LoRA32 PERFT-R (Top2/4) 4.33M 0.337 66.30 77.75 75.44 45.88 71.43 76.18 60.58 70.60 68.02
PA32 PERFT-R (Top2/4) 4.33M 0.337 66.70 79.33 73.18 42.57 70.40 81.10 62.20 70.60 68.26

Table 3: Commonsense reasoning performance of OLMoE-1B-7B with PERFT-R using LoRA
and Parallel Adapter (PA) as PEFT experts. “Arch.” denotes the architecture inside PEFT mod-
ules. “# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio
to the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and OpenBookQA
(Mihaylov et al., 2018).

can see, under equivalent activated trainable parameter levels, the average performance difference
between LoRA and PA is only marginal. Interestingly, certain architectures consistently outperform
others on specific tasks. For instance, parallel adapters generally perform better on BoolQ, PIQA,
and ARC, while LoRA excels in SIQA and OBQA. These differences may stem from the inherent
nature of knowledge required for each task or specific training data distributions, though a deeper
investigation into these task-specific variations is beyond the scope of this study. Given the similar
average performance, we opted to focus on LoRA for our experiments due to its simpler structure
without the additional activation function.

It is also viable to consider copying the original FFN structure as PEFT experts. We have opted not to
investigate this option further in our current study based on two reasons. First, replicating the exact
form of FFN experts does not align well with the principles of PEFT, as it would basically become
up-scaling the model to a version with more experts. Second, recent advancements have introduced
more complex implementations that go beyond the simple σ(hWup)Wdown pattern how FFN initially

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

designed as. Gated Linear Unit (GLU), introduced by Dauphin et al. (2017) and Shazeer (2020), has
become widely adopted in modern transformers including OLMoE-1B-7B and Mixtral-8×7B. GLU
incorporates an additional post-activation gating term FFNGLU(h) = [σ(hWup)⊗ (hWgate)]Wdown,
where ⊗ denotes element-wise multiplication. The increased complexity of GLU, with its three
matrices, presents challenges for a controlled comparison under the same parameter budget. Given
these considerations, we focus on experimenting within our current scope.

B.2 BOTTLENECK SIZE OF PEFT EXPERTS

We provide a detailed empirical analysis about the inefficient parameter utilization when always-
activated shared experts are employed without an effective routing mechanism. This symbolizes a
mismatch between effective dimensionality and adapter capacity: if the adapter’s dimensions sig-
nificantly exceed the task’s intrinsic dimensionality, surplus dimensions may introduce useless or
harmful adaptations. Larger random-initialized bottlenecks in PERFT-S and PERFT-D can intro-
duce unnecessary noise in the additional adapted spaces due to insufficient information, interfering
with useful representations in the original pretrained model. With the perspective viewing hidden
states on the residual stream as bandwidths for modules to communicate on (Elhage et al., 2021), in
our PEFT scenario where most parameters remain unchanged, only a relatively small subspace of
each layer’s hidden state requires task-specific adaptation. Any over-parameterized adaptation can
unnecessarily disrupt normal functioning on the residual stream’s bandwidths, potentially destabi-
lizing the original gradient flow in the transformer and leading to unstable training or sub-optimal
solutions (Aghajanyan et al., 2021). Simultaneously, in the PEFT context with limited adaptation
information compared to model pretraining, an excessively large parameter space without gating
control can easily result in over-fitting on fine-tuning data, which is exacerbated by the sparse nature
of the MoE module we are adapting. As the MoE module hosts multiple different patterns on vari-
ous combinations of activated FFN experts that dynamically interact with each other on the residual
stream, the always-activated PERFT-S and PERFT-D variants may learn unnecessary adaptations
during the training process, further aggravating the disrupted functionality and over-fitting problems.

It is also worth noting that since FFN tends to learn task-specific textual patterns (Geva et al., 2021)
and attention learns more about positional interactions (Elhage et al., 2021), the nature of different
components to which PEFT is introduced also contributes to different phenomena. For the baseline
LoRA operating on attention matrices, individual attention heads are already operating on relatively
smaller subspaces and can easily write outputs to disjoint subspaces without interaction. The spaces
they read and write are relatively more fixed due to the low rank property (Dhead < D of hidden
space) of multi-head attention matrices. Consequently, additional parameters introduced by scaling
the bottleneck of attention LoRA may not interfere with information from other components as
severely as adapting the MoE FFN module.

B.3 MULTIPLICITY OF PEFT EXPERTS WITHOUT ROUTING

This degradation can be explained from the perspective of redundancy in key vector memories.
Suppose we have a PERFT-D of M shared experts with bottleneck size DB . This can be viewed as
a set of M clusters of key PEFT vectors {ẽi}j , i ∈ {1, · · · , DB}, j ∈ {1, · · · ,M}. At initialization,
all weights are randomly distributed. The probability of two randomly chosen vectors being within
ϵ distance of each other can be approximated using the chi-square distribution:

p0(ϵ) ≈ P (χ2
DB

<
DBϵ

2

4
) (11)

where χ2
DB

is the chi-square distribution with DB degrees of freedom. As training progresses,
vectors may converge. We can define a factor γT that represents the increased likelihood of vectors
being within ϵ distance after T training steps:

pT (ϵ) = γT · p0(ϵ) (12)
The expected number of effective vectors after T training steps can be approximated as:

E[Neff(T)] ≈MDB(1− e−MDBγT p0(ϵ)
2

) (13)
And the efficiency factor:

ηT (ϵ) ≈ 1− e−MDBγT p0(ϵ)
2

(14)
These formulas depend on p0(ϵ), which can be estimated from the initialization distribution, and γT ,
which represents the cumulative effect of training on vector convergence. The γT factor encapsulates

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the impact of gradient updates over T training steps and could be estimated empirically or through
analysis of training dynamics.

C ADDITIONAL RESULTS

C.1 OLMOE-1B-7B FOR COMMONSENSE REASONING

10 3 10 2

Activated Parameter Efficiency

60

70

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
%

)

R (Top1/1)

R (Top1/2)

R (Top2/2)

R (Top1/4)

R (Top2/4)

R (Top4/4)

R (Top1/8)

R (Top2/8)

R (Top4/8)

R (Top8/8)

R (Top1/16)

R (Top2/16) R (Top4/16)

R (Top8/16)

R (Top8/32)

R (Top8/64)

E (Top8/64)

LoRA Ranks

2

4

8

16

32

64

128

LoRA Ranks

2

4

8

16

32

64

128

Figure 7: Performance comparison of OLMoE-1B-7B fine-tuned with different configurations
of PERFT-R. Performance on y-axes is averaged across commonsense reasoning benchmarks; “Ac-
tivated Parameter Efficiency” on x-axes indicates the ratio of activated trainable parameters to the
total activated parameters. Color represents different configurations of PERFT-R. Transparency in-
dicates different sparsity levels (ratio of activated experts K/N , as “(TopK/N)” labeled for PERFT-R
and PERFT-E). Marker size indicates bottleneck size DB .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

10 3 10 2

64

66

68

70

72

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
%

)

PERFT-R (Top1/2)
PERFT-R (Top2/2)

10 3 10 2

PERFT-R (Top1/4)
PERFT-R (Top2/4)
PERFT-R (Top4/4)

10 3 10 2

PERFT-R (Top1/8)
PERFT-R (Top2/8)
PERFT-R (Top4/8)
PERFT-R (Top8/8)

10 3 10 2

PERFT-R (Top1/16)
PERFT-R (Top2/16)
PERFT-R (Top4/16)
PERFT-R (Top8/16)

(a) Dynamics of configurations with different numbers of total PEFT experts in PERFT-R

10 4 10 3 10 2

60

62

64

66

68

70

72

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
%

)

PERFT-R (Top1/1)
PERFT-R (Top1/2)
PERFT-R (Top1/4)
PERFT-R (Top1/8)
PERFT-R (Top1/16)

10 4 10 3 10 2

PERFT-R (Top2/2)
PERFT-R (Top2/4)
PERFT-R (Top2/8)
PERFT-R (Top2/16)

10 4 10 3 10 2

PERFT-R (Top4/4)
PERFT-R (Top4/8)
PERFT-R (Top4/16)

10 4 10 3 10 2

PERFT-R (Top8/8)
PERFT-R (Top8/16)
PERFT-R (Top8/32)
PERFT-R (Top8/64)
PERFT-E (Top8/64)

(b) Dynamics of configurations with different numbers of total PEFT experts in PERFT-R

10 4 10 3 10 2

60

62

64

66

68

70

72

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
%

)

PERFT-R (Top1/1)
PERFT-R (Top2/2)
PERFT-R (Top4/4)
PERFT-R (Top8/8)

10 4 10 3 10 2

PERFT-R (Top1/2)
PERFT-R (Top2/4)
PERFT-R (Top4/8)
PERFT-R (Top8/16)

10 4 10 3 10 2

PERFT-R (Top1/4)
PERFT-R (Top2/8)
PERFT-R (Top4/16)
PERFT-R (Top8/32)

10 4 10 3 10 2

PERFT-R (Top1/8)
PERFT-R (Top2/16)
PERFT-R (Top8/64)
PERFT-E (Top8/64)

(c) Dynamics of configurations with different activated ratios among PEFT experts in PERFT-R

Figure 8: Performance comparison of configurations with different total number of PEFT
experts in PERFT-R. Results from OLMoE-1B-7B fine-tuned with PERFT-R for commonsense
reasoning. x-axes stand for activated parameter efficiency. Transparency represents different spar-
sity levels (ratio of activated PEFT experts), and marker size represents bottleneck size DB .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Base (pretrained) — — 42.42 52.61 16.53 21.27 28.10 13.13 13.99 6.80 24.36
Base (instruct) — — 59.94 62.68 12.03 22.27 5.84 15.15 17.15 8.00 25.38

LoRA2 Wq,Wv@Attn 0.26M 0.020 62.02 71.11 59.77 28.48 50.36 70.37 48.89 48.00 54.88
LoRA4 Wq,Wv@Attn 0.52M 0.041 60.40 73.61 62.90 32.08 50.20 74.12 52.65 51.20 57.15
LoRA8 Wq,Wv@Attn 1.05M 0.082 63.76 74.86 65.30 37.01 50.83 76.81 55.46 56.40 60.05
LoRA16 Wq,Wv@Attn 2.10M 0.164 64.95 76.88 69.60 39.27 53.35 78.07 57.34 63.40 62.86
LoRA32 Wq,Wv@Attn 4.19M 0.327 66.79 78.56 70.93 41.63 58.41 79.38 60.41 65.00 65.14
LoRA64 Wq,Wv@Attn 8.39M 0.654 67.13 80.30 73.34 44.28 65.90 80.72 61.95 70.00 67.95
LoRA128 Wq,Wv@Attn 16.8M 1.309 68.32 82.64 74.16 45.71 72.45 81.36 63.82 73.60 70.26

LoRA4 Wg@Gate 0.14M 0.011 62.14 59.79 39.66 25.94 51.62 42.63 36.52 29.00 43.41
LoRA8 Wg@Gate 0.27M 0.021 59.11 66.49 47.59 27.37 51.70 52.06 42.06 33.20 47.45
LoRA16 Wg@Gate 0.54M 0.042 62.05 64.04 47.85 28.08 49.33 57.37 43.17 34.40 48.29
LoRA32 Wg@Gate 1.08M 0.084 59.24 60.07 43.19 26.62 49.09 41.50 32.34 31.60 42.96

LoRA4 PERFT-S (1) 0.26M 0.020 63.82 72.31 63.87 25.45 50.12 73.91 49.49 56.40 56.92
LoRA8 PERFT-S (1) 0.52M 0.041 63.52 73.56 66.33 25.45 51.93 72.60 52.47 61.00 58.36
LoRA16 PERFT-S (1) 1.05M 0.082 63.49 71.71 65.71 25.11 51.22 71.13 50.60 61.20 57.52
LoRA32 PERFT-S (1) 2.10M 0.164 62.08 68.28 64.69 25.37 52.17 64.73 44.54 54.80 54.58
LoRA64 PERFT-S (1) 4.19M 0.327 61.59 63.76 59.11 24.48 54.06 53.75 36.86 43.80 49.68

LoRA4 PERFT-D (2) 0.52M 0.041 62.14 71.87 66.53 25.41 51.07 72.60 50.43 57.80 57.23
LoRA8 PERFT-D (2) 1.05M 0.082 62.87 71.44 63.41 25.47 51.70 65.28 46.84 54.80 55.23
LoRA16 PERFT-D (2) 2.10M 0.164 62.14 59.68 46.98 25.51 49.25 45.96 33.45 39.20 45.27
LoRA32 PERFT-D (2) 4.19M 0.327 62.17 48.20 32.86 25.38 48.86 24.87 25.17 25.60 36.64

LoRA4 PERFT-D (4) 1.05M 0.082 62.87 69.37 61.98 24.93 50.91 65.78 46.08 55.60 54.69
LoRA8 PERFT-D (4) 2.10M 0.164 62.17 49.29 33.06 24.57 49.57 25.46 25.09 22.20 36.43
LoRA16 PERFT-D (4) 4.19M 0.327 62.17 50.60 33.21 24.67 48.78 26.01 24.74 30.00 37.52
LoRA32 PERFT-D (4) 8.39M 0.654 62.17 52.18 33.47 25.02 50.51 25.80 22.18 26.00 37.17

LoRA4 PERFT-D (8) 2.10M 0.164 62.11 48.86 35.11 24.57 48.22 25.51 23.38 27.80 36.94
LoRA8 PERFT-D (8) 4.19M 0.327 62.17 49.13 33.27 25.37 49.41 25.00 24.23 26.40 36.87
LoRA16 PERFT-D (8) 8.39M 0.654 62.17 52.01 33.47 24.91 53.20 25.29 26.96 25.20 37.90
LoRA32 PERFT-D (8) 16.8M 1.309 62.17 50.92 33.88 24.58 49.64 24.16 26.71 25.20 37.16

LoRA4 PERFT-R (Top1/1) 0.16M 0.013 62.48 75.73 68.17 25.16 51.07 76.81 55.72 61.60 59.59
LoRA8 PERFT-R (Top1/1) 0.29M 0.023 63.43 77.53 70.68 42.13 66.14 77.10 59.30 66.20 65.31
LoRA16 PERFT-R (Top1/1) 5.57M 0.043 64.98 78.56 72.52 41.99 67.25 77.82 58.70 68.20 66.25
LoRA32 PERFT-R (Top1/1) 1.08M 0.084 66.36 78.84 72.36 42.83 63.38 78.62 58.36 71.20 66.49

LoRA4 PERFT-R (Top1/2) 0.20M 0.015 63.67 77.04 69.09 39.92 58.09 76.81 55.80 62.40 62.85
LoRA8 PERFT-R (Top1/2) 0.33M 0.026 63.98 78.13 70.93 41.00 58.88 78.11 56.66 65.80 64.19
LoRA16 PERFT-R (Top1/2) 0.59M 0.046 65.14 76.93 72.42 41.39 70.64 78.03 59.56 69.20 66.66
LoRA32 PERFT-R (Top1/2) 1.11M 0.087 65.60 78.18 73.13 43.47 69.61 77.40 58.53 70.00 66.99
LoRA64 PERFT-R (Top1/2) 2.16M 0.169 66.09 77.97 73.75 46.36 72.61 78.79 62.20 69.20 68.37

LoRA4 PERFT-R (Top2/2) 0.33M 0.026 64.86 76.71 69.60 40.89 62.43 77.23 55.80 63.60 63.89
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 65.26 78.18 72.31 42.11 71.82 77.90 60.49 67.80 66.99
LoRA16 PERFT-R (Top2/2) 1.11M 0.087 66.18 77.97 72.52 43.99 70.64 78.24 60.75 69.80 67.51
LoRA32 PERFT-R (Top2/2) 2.16M 0.169 65.81 79.38 73.59 49.42 71.59 77.78 61.18 71.80 68.82
LoRA64 PERFT-R (Top2/2) 4.26M 0.332 65.96 79.87 72.82 53.93 73.40 78.91 62.20 72.20 69.91
LoRA128 PERFT-R (Top2/2) 8.45M 0.659 67.09 80.09 74.67 68.44 70.32 79.55 60.49 73.80 71.81

LoRA4 PERFT-R (Top1/4) 0.39M 0.031 63.94 76.88 69.91 39.14 60.54 78.49 57.68 65.40 64.00
LoRA8 PERFT-R (Top1/4) 0.66M 0.051 64.34 77.75 71.75 40.30 67.01 77.06 58.96 64.80 65.25
LoRA16 PERFT-R (Top1/4) 1.18M 0.092 64.46 77.04 71.29 41.83 62.51 77.57 59.39 65.00 64.89
LoRA32 PERFT-R (Top1/4) 2.23M 0.174 66.21 78.51 71.49 43.87 69.61 77.69 61.01 70.20 67.32
LoRA64 PERFT-R (Top1/4) 4.33 0.337 65.32 79.60 73.49 45.33 71.11 77.69 62.20 71.00 68.22

LoRA4 PERFT-R (Top2/4) 0.66M 0.051 63.98 75.68 69.29 40.26 65.75 77.36 59.56 67.40 64.91
LoRA8 PERFT-R (Top2/4) 1.18M 0.092 65.02 77.86 71.90 41.61 68.75 77.31 59.13 68.80 66.30
LoRA16 PERFT-R (Top2/4) 2.23M 0.174 64.07 76.61 73.59 42.10 71.90 78.32 60.58 71.20 67.30
LoRA32 PERFT-R (Top2/4) 4.33M 0.337 66.30 77.75 75.44 45.88 71.43 76.18 60.58 70.60 68.02

LoRA4 PERFT-R (Top4/4) 1.18M 0.092 64.25 75.84 71.03 41.40 69.22 77.65 57.08 68.40 65.61
LoRA8 PERFT-R (Top4/4) 2.23M 0.174 65.14 77.64 72.98 42.67 72.45 76.98 59.39 66.40 66.71
LoRA16 PERFT-R (Top4/4) 4.33M 0.337 65.44 79.43 73.08 48.35 71.19 77.48 59.98 73.40 68.55
LoRA32 PERFT-R (Top4/4) 8.52M 0.665 66.70 79.49 73.75 55.95 71.43 77.53 60.07 70.40 69.41
LoRA64 PERFT-R (Top4/4) 16.9M 1.319 66.02 79.71 75.49 59.29 73.32 76.64 59.90 71.80 70.27
LoRA128 PERFT-R (Top4/4) 33.7M 2.628 65.99 78.94 75.13 67.21 73.72 78.24 59.90 74.80 71.74

Table 4: (Part 1/2) Evaluation results for OLMoE-1B-7B with baseline methods and PERFT
variants on eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside
PEFT modules. “# Act.” and “% Act.” represent the number of activated trainable parameters and
their ratio to the total activated parameters. “(TopK/N)” refers to activating K experts among the
total number of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and
OpenBookQA (Mihaylov et al., 2018).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

LoRA4 PERFT-R (Top1/8) 0.52M 0.041 63.73 75.30 69.91 40.77 66.77 77.69 57.51 64.60 64.54
LoRA8 PERFT-R (Top1/8) 0.79M 0.061 64.98 77.09 70.78 41.65 66.93 77.78 57.76 66.40 65.42
LoRA16 PERFT-R (Top1/8) 1.31M 0.102 64.89 77.26 70.88 41.95 70.09 77.31 59.39 67.40 66.15
LoRA32 PERFT-R (Top1/8) 2.36M 0.184 64.25 77.58 72.52 42.30 70.64 77.82 58.53 67.40 66.38

LoRA4 PERFT-R (Top2/8) 0.79M 0.061 64.28 76.99 68.88 40.61 66.85 77.57 57.34 65.40 64.74
LoRA8 PERFT-R (Top2/8) 1.31M 0.102 63.91 76.88 71.03 43.45 69.69 77.23 58.11 68.00 66.04
LoRA16 PERFT-R (Top2/8) 2.36M 0.184 64.68 77.64 72.36 43.33 71.51 75.97 58.45 67.80 66.47
LoRA32 PERFT-R (Top2/8) 4.46M 0.348 64.40 78.13 74.21 46.80 71.59 76.39 58.79 71.20 67.69

LoRA4 PERFT-R (Top4/8) 1.31M 0.102 64.74 77.04 71.60 42.82 70.01 77.31 59.73 68.20 66.43
LoRA8 PERFT-R (Top4/8) 2.36M 0.184 64.86 76.61 73.69 42.10 69.46 76.98 58.02 67.20 66.12
LoRA16 PERFT-R (Top4/8) 4.46M 0.348 65.78 76.33 72.57 45.61 69.53 76.22 58.28 69.20 66.69
LoRA32 PERFT-R (Top4/8) 8.65M 0.675 65.20 77.37 73.64 46.36 72.45 77.02 56.83 69.20 67.26

LoRA4 PERFT-R (Top8/8) 2.36M 0.184 64.98 77.37 72.77 45.71 70.32 77.15 58.96 68.60 66.98
LoRA8 PERFT-R (Top8/8) 4.46M 0.348 64.98 78.13 74.21 46.75 69.85 77.19 59.56 70.00 67.58
LoRA16 PERFT-R (Top8/8) 8.65M 0.675 65.93 77.58 74.41 55.14 71.98 76.47 57.59 71.40 68.81
LoRA32 PERFT-R (Top8/8) 17.0M 1.329 65.78 78.07 74.92 58.44 71.82 76.05 61.35 73.80 70.03
LoRA64 PERFT-R (Top8/8) 33.8M 2.638 65.20 80.25 75.13 65.68 73.01 75.67 59.47 72.40 70.85

LoRA4 PERFT-R (Top1/16) 0.79M 0.061 64.65 75.73 70.83 40.04 63.61 77.06 59.04 64.40 64.42
LoRA8 PERFT-R (Top1/16) 1.05M 0.082 64.98 76.17 69.60 40.17 67.48 76.30 58.02 67.00 64.97
LoRA16 PERFT-R (Top1/16) 1.57M 0.123 63.79 77.04 73.29 42.39 70.56 76.60 58.96 69.00 66.45
LoRA32 PERFT-R (Top1/16) 2.62M 0.204 64.25 75.79 72.21 43.98 70.24 76.18 59.04 69.20 66.36

LoRA4 PERFT-R (Top2/16) 1.05M 0.082 63.94 77.31 71.44 41.23 69.22 78.37 58.11 67.00 65.83
LoRA8 PERFT-R (Top2/16) 1.57M 0.123 62.45 76.12 71.55 41.75 67.80 76.14 59.47 68.00 65.41
LoRA16 PERFT-R (Top2/16) 2.62M 0.204 64.50 76.06 71.03 43.21 69.22 75.59 59.30 68.00 65.86
LoRA32 PERFT-R (Top2/16) 4.72M 0.368 65.35 76.50 72.98 47.08 69.30 74.79 58.19 67.80 66.50

LoRA4 PERFT-R (Top4/16) 1.57M 0.123 64.37 75.52 72.36 42.12 69.61 76.35 57.59 68.00 65.74
LoRA8 PERFT-R (Top4/16) 2.62M 0.204 64.92 76.55 72.21 43.09 69.61 75.67 59.30 67.20 66.07
LoRA16 PERFT-R (Top4/16) 4.72M 0.368 65.50 76.50 73.80 43.82 71.43 74.03 57.34 69.80 66.53
LoRA32 PERFT-R (Top4/16) 8.91M 0.695 65.47 77.09 73.64 45.04 69.77 74.49 58.70 67.80 66.50

LoRA4 PERFT-R (Top8/16) 2.62M 0.204 64.25 76.06 72.31 41.46 71.11 76.81 60.67 68.00 66.33
LoRA8 PERFT-R (Top8/16) 4.72M 0.368 64.50 77.53 73.34 45.22 71.74 74.92 57.51 67.80 66.57
LoRA16 PERFT-R (Top8/16) 8.91M 0.695 64.53 77.91 73.54 47.24 71.27 75.00 54.78 71.20 66.93
LoRA32 PERFT-R (Top8/16) 17.3M 1.350 65.57 76.82 74.51 53.13 70.01 74.07 57.17 70.60 67.73

LoRA4 PERFT-R (Top8/32) 3.15M 0.245 63.82 75.52 72.57 41.75 72.30 74.37 57.25 69.00 65.82
LoRA8 PERFT-R (Top8/32) 5.24M 0.409 63.79 75.35 71.70 43.90 67.88 74.03 58.28 67.80 65.34
LoRA16 PERFT-R (Top8/32) 9.44M 0.736 64.07 75.90 73.39 44.59 72.22 72.31 55.29 65.20 65.37
LoRA32 PERFT-R (Top8/32) 17.8M 1.390 64.71 75.35 73.95 47.17 70.72 72.22 55.46 67.80 65.92

LoRA4 PERFT-R (Top8/64) 4.19M 0.327 63.55 76.06 70.11 42.16 69.14 72.31 53.67 64.80 63.98
LoRA8 PERFT-R (Top8/64) 6.29M 0.491 64.53 75.52 72.21 41.79 70.40 71.38 53.92 66.20 64.49
LoRA16 PERFT-R (Top8/64) 10.5M 0.818 64.71 73.61 72.26 42.35 70.88 71.09 54.78 65.80 64.44
LoRA32 PERFT-R (Top8/64) 18.9M 1.472 62.81 74.43 72.31 41.11 69.22 69.49 53.84 65.60 63.60

LoRA2 PERFT-E (Top8/64) 1.05M 0.082 65.54 79.11 73.59 50.06 73.24 77.27 58.70 72.80 68.79
LoRA4 PERFT-E (Top8/64) 2.10M 0.164 64.80 79.49 74.36 58.39 72.69 75.00 58.45 72.20 69.42
LoRA8 PERFT-E (Top8/64) 4.19M 0.327 65.81 78.84 73.85 58.84 71.51 74.41 56.06 69.20 68.56
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 65.20 78.24 74.97 64.35 72.30 74.41 55.46 69.40 69.29
LoRA32 PERFT-E (Top8/64) 16.8M 1.309 66.51 76.39 74.26 62.55 73.09 72.22 56.14 70.60 68.97
LoRA64 PERFT-E (Top8/64) 33.6M 2.617 65.57 77.09 73.80 59.89 73.32 71.72 56.40 68.80 68.32

Table 5: (Part 2/2) Evaluation results for OLMoE-1B-7B with baseline methods and PERFT
variants on eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside
PEFT modules. “# Act.” and “% Act.” represent the number of activated trainable parameters and
their ratio to the total activated parameters. “(TopK/N)” refers to activating K experts among the
total number of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and
OpenBookQA (Mihaylov et al., 2018).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 OLMOE-1B-7B FOR ARITHMETIC REASONING

Arch. Strategy # Act. % Act. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.

LoRA2 Wq,Wv@Attn 0.26M 0.020 20.00 8.72 43.04 20.47 52.95 29.40 29.10
LoRA4 Wq,Wv@Attn 0.52M 0.041 21.83 8.11 40.51 20.47 50.79 28.80 28.42
LoRA8 Wq,Wv@Attn 1.05M 0.082 17.33 8.57 44.05 24.02 50.59 30.90 29.24
LoRA16 Wq,Wv@Attn 2.10M 0.164 18.83 9.02 46.58 24.02 50.59 29.20 29.71
LoRA32 Wq,Wv@Attn 4.19M 0.327 19.17 8.79 43.54 23.23 51.97 28.20 29.15
LoRA64 Wq,Wv@Attn 8.39M 0.654 17.00 9.10 47.09 22.83 49.80 27.10 28.82
LoRA128 Wq,Wv@Attn 16.8M 1.309 15.00 8.11 44.81 22.83 49.02 26.50 27.71

LoRA4 PERFT-S (1) 0.26M 0.020 21.00 5.61 40.00 18.50 50.59 28.90 27.43
LoRA8 PERFT-S (1) 0.52M 0.041 17.00 6.22 34.18 17.32 39.17 30.20 24.02
LoRA16 PERFT-S (1) 1.05M 0.082 14.83 6.29 35.19 21.26 41.73 27.30 24.43
LoRA32 PERFT-S (1) 2.10M 0.164 16.17 4.09 34.68 18.11 37.40 23.60 22.34

LoRA4 PERFT-D (2) 0.52M 0.041 18.67 5.76 37.97 20.08 40.75 24.60 24.64
LoRA8 PERFT-D (2) 1.05M 0.082 15.67 5.46 33.16 18.11 37.40 24.40 22.37
LoRA16 PERFT-D (2) 2.10M 0.164 14.00 4.85 30.13 16.93 34.65 22.00 20.43
LoRA32 PERFT-D (2) 4.19M 0.327 8.17 3.87 29.11 19.29 25.39 15.70 16.92

LoRA4 PERFT-D (4) 1.05M 0.082 14.17 5.08 34.18 22.05 35.43 21.80 22.12
LoRA8 PERFT-D (4) 2.10M 0.164 9.17 3.94 31.65 19.69 29.13 20.60 19.03
LoRA16 PERFT-D (4) 4.19M 0.327 9.33 3.03 21.77 20.87 21.46 13.30 14.96
LoRA32 PERFT-D (4) 8.39M 0.654 4.33 1.97 16.20 21.65 18.90 12.90 12.66

LoRA4 PERFT-R (Top1/2) 0.20M 0.015 18.83 7.88 41.77 16.93 44.88 26.10 26.07
LoRA8 PERFT-R (Top1/2) 0.33M 0.026 19.00 7.51 47.09 19.69 53.35 31.90 29.75
LoRA16 PERFT-R (Top1/2) 0.59M 0.046 21.17 8.79 52.15 19.69 57.68 32.00 31.91
LoRA32 PERFT-R (Top1/2) 1.11M 0.087 27.17 9.33 50.89 20.87 57.09 32.00 32.89

LoRA4 PERFT-R (Top2/2) 0.33M 0.026 21.17 8.19 45.82 18.11 49.02 30.30 28.77
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 23.33 7.35 51.65 18.50 52.76 33.50 31.18
LoRA16 PERFT-R (Top2/2) 1.11M 0.087 26.50 8.49 52.15 20.87 56.69 32.30 32.83
LoRA32 PERFT-R (Top2/2) 2.16M 0.169 23.67 9.25 44.81 21.65 53.35 35.20 31.32

LoRA4 PERFT-R (Top1/4) 0.39M 0.031 18.83 8.87 48.86 21.65 50.20 29.10 29.59
LoRA8 PERFT-R (Top1/4) 0.66M 0.051 20.83 9.48 44.05 17.32 55.91 29.60 29.53
LoRA16 PERFT-R (Top1/4) 1.18M 0.092 22.67 7.88 46.84 20.47 51.77 33.50 30.52
LoRA32 PERFT-R (Top1/4) 2.23M 0.174 25.67 7.35 54.18 19.69 54.72 32.10 32.28

LoRA4 PERFT-R (Top2/4) 0.66M 0.051 19.33 7.73 45.32 16.93 49.21 31.70 28.37
LoRA8 PERFT-R (Top2/4) 1.18M 0.092 16.33 6.97 44.30 16.54 48.82 30.10 27.18
LoRA16 PERFT-R (Top2/4) 2.23M 0.174 20.83 8.34 47.34 18.50 51.18 33.70 29.98
LoRA32 PERFT-R (Top2/4) 4.33M 0.337 28.00 9.10 49.37 19.29 57.09 33.20 32.67

LoRA4 PERFT-R (Top4/4) 1.18M 0.092 20.67 7.58 47.85 20.08 53.35 31.30 30.14
LoRA8 PERFT-R (Top4/4) 2.23M 0.174 25.33 7.73 40.51 20.08 49.02 30.70 28.89
LoRA16 PERFT-R (Top4/4) 4.33M 0.337 21.50 7.43 45.06 20.87 59.84 30.30 30.83
LoRA32 PERFT-R (Top4/4) 8.52M 0.665 22.17 8.34 50.38 20.08 55.31 30.80 31.18

LoRA4 PERFT-R (Top2/8) 0.79M 0.061 21.83 7.88 50.89 21.26 51.97 29.90 30.62
LoRA8 PERFT-R (Top2/8) 1.31M 0.102 20.00 8.26 47.34 19.29 52.76 28.30 29.33
LoRA16 PERFT-R (Top2/8) 2.36M 0.184 22.33 8.72 46.08 20.87 50.39 30.20 29.76
LoRA32 PERFT-R (Top2/8) 4.46M 0.348 22.50 7.43 46.84 18.90 50.59 30.90 29.53

LoRA4 PERFT-R (Top8/8) 2.36M 0.184 28.33 7.81 47.85 16.93 53.15 31.20 30.88
LoRA8 PERFT-R (Top8/8) 4.46M 0.348 21.00 8.49 49.37 21.26 51.97 31.60 30.61
LoRA16 PERFT-R (Top8/8) 8.65M 0.675 28.50 8.04 45.82 20.87 53.74 32.90 31.64
LoRA32 PERFT-R (Top8/8) 17.0M 1.329 27.67 8.49 45.06 21.26 52.95 32.60 31.34

LoRA4 PERFT-E (Top8/64) 2.10M 0.164 26.67 6.44 46.58 22.05 53.94 32.10 31.30
LoRA8 PERFT-E (Top8/64) 4.19M 0.327 28.33 7.81 43.80 21.26 57.28 32.60 31.85
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 25.17 8.42 43.29 19.29 48.82 29.50 29.08
LoRA32 PERFT-E (Top8/64) 16.8M 1.309 26.17 6.75 44.05 20.87 52.76 32.80 30.56

Table 6: Evaluation results for OLMoE-1B-7B with baseline methods and PERFT variants on
six arithmetic reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules.
“# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio to
the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including MultiArith (Roy & Roth, 2015),
GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), AQuA (Ling et al., 2017), SingleEq
(Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.3 MIXTRAL-8×7B FOR COMMONSENSE REASONING

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Base (pretrained) — — 51.10 81.12 46.11 47.54 49.88 53.20 52.99 39.20 52.64
Base (instruct) — — 68.87 88.30 68.58 72.06 59.98 89.52 78.50 74.40 75.03

LoRA8 Wq,Wv@Attn 3.41M 0.026 73.49 90.04 81.17 89.67 82.16 93.56 83.87 86.20 85.02

LoRA16 PERFT-S (1) 4.19M 0.033 75.11 90.26 81.63 94.26 84.85 92.85 81.40 87.60 85.99

LoRA8 PERFT-R (Top2/2) 4.46M 0.035 74.68 89.77 81.47 94.33 86.27 92.05 81.48 89.80 86.23
LoRA16 PERFT-R (Top1/4) 4.72M 0.037 72.84 89.12 80.40 92.69 84.37 91.84 82.25 85.80 84.91
LoRA8 PERFT-R (Top2/4) 4.72M 0.037 74.71 90.10 79.38 94.18 85.71 92.09 81.31 85.80 85.41
LoRA8 PERFT-R (Top2/8) 5.24M 0.041 73.76 89.12 81.63 94.51 85.16 91.67 80.20 87.80 85.48

LoRA8 PERFT-E (Top2/8) 4.19M 0.033 74.13 90.21 80.81 91.36 86.42 92.21 81.06 88.60 85.60

Table 7: Evaluation results for Mixtral-8×7B with baseline methods and PERFT variants on
eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside PEFT mod-
ules. “# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio
to the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and OpenBookQA
(Mihaylov et al., 2018).

C.4 MIXTRAL-8×7B FOR ARITHMETIC REASONING

Arch. Strategy # Act. % Act. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.

LoRA8 Wq,Wv@Attn 3.41M 0.026 60.00 50.87 90.13 28.74 89.37 69.20 64.72

LoRA8 PERFT-R (Top2/2) 4.46M 0.035 82.83 55.80 87.59 29.92 89.76 68.30 69.04
LoRA8 PERFT-R (Top2/8) 5.24M 0.041 79.00 54.06 87.34 29.13 88.98 70.30 68.13

Table 8: Evaluation results for Mixtral-8×7B with baseline methods and PERFT variants on
six arithmetic reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules.
“# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio to
the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including MultiArith (Roy & Roth, 2015),
GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), AQuA (Ling et al., 2017), SingleEq
(Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021).

23

	Introduction
	Background
	Mixture-of-Experts in Transformer Model
	Parameter-Efficient Fine-tuning for Transformer-based Model

	Methodology
	The Unified Framework
	Functional Strategy
	Compositional Strategy

	The PERFT Family

	Experiments and Analyses
	Experiment Setup
	Experiment Results
	Result Analyses

	Conclusion
	Training Configurations
	Additional Analyses for PERFT Configurations
	Architecture of PEFT Experts
	Bottleneck Size of PEFT Experts
	Multiplicity of PEFT Experts without Routing

	Additional Results
	OLMoE-1B-7B for Commonsense Reasoning
	OLMoE-1B-7B for Arithmetic Reasoning
	Mixtral-87B for Commonsense Reasoning
	Mixtral-87B for Arithmetic Reasoning

