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ABSTRACT

The Mixture-of-Experts (MoE) paradigm has emerged as a promising approach
for scaling transformer-based large language models (LLMs) with improved re-
source utilization. However, efficiently fine-tuning MoE LLMs remains largely
underexplored. Inspired by recent works on Parameter-Efficient Fine-Tuning
(PEFT), we present a unified framework for integrating PEFT modules into MoE
LLMs. Our framework, aligned with the core mechanisms of MoE, encompasses
a comprehensive set of design dimensions including various functional and com-
position strategies. By combining the key design choices within our framework,
we introduce Parameter-Efficient Routed Fine-Tuning (PERFT) as a flexible and
scalable family of PEFT strategies tailored for MoE LLMs.1 Extensive experi-
ments adapting OLMoE-1B-7B and Mixtral-8×7B for various commonsense and
arithmetic reasoning tasks demonstrate the effectiveness, scalability, and intrigu-
ing dynamics of PERFT. Additionally, we provide empirical findings for each
specific design choice to facilitate better application of MoE and PEFT.

1 INTRODUCTION

As modern transformer-based Vaswani et al. (2017) large language models (LLMs) continue to scale
up, Mixture-of-Experts (MoE) (Shazeer et al., 2017) has emerged in recent years as a promising
solution to the trade-off between performance and cost, yielding notable results in a series of frontier
models (Jiang et al., 2024; Reid et al., 2024; Dai et al., 2024; Qwen, 2024; Grok, 2024). With
so many new MoE LLMs available, how to effectively fine-tune them for downstream tasks has be-
come an area of considerable value. The advancements of MoE do not directly translate to efficiency
in their fine-tuning, and full fine-tuning these models remains prohibitively expensive due to their
immense number of expert parameters. Besides, the routing mechanism among sparsely-activated
experts poses unique challenges unseen in conventional dense architectures (Wang et al., 2024).
This necessitates exploring solutions specially-designed for efficiently adapting sparse MoE models,
without incurring the full cost of fine-tuning all parameters.

Parameter-Efficient Fine-Tuning (PEFT) techniques, such as adapters (Houlsby et al., 2019) and
LoRA (low-rank adaptation; Hu et al., 2022), have gained considerable attention on conventional
dense models. Combining hybrid elements from different PEFT methods have also shown promising
results (He et al., 2022; Hu et al., 2023; Zhang et al., 2023). With the rise of MoE architectures,
recent studies have explored PEFT solutions for dense models with MoE-inspired designs (Zadouri
et al., 2023; Dou et al., 2023; Luo et al., 2024; Li et al., 2024; Gao et al., 2024; Wu et al., 2024).
However, designing PEFT strategies tailored for MoE models remains largely underexplored.

To this end, we present the first unified framework for incorporating diverse PEFT modules di-
rectly into the MoE mechanism. Different from previous PEFT solutions that operate in isolation
from the underlying MoE architecture, our framework is designed closely around the unique routing
mechanisms among experts in MoE models. We introduce two key design dimensions. Functional
strategies define the internal mechanisms of the introduced PEFT module, including the architec-
ture inside individual PEFT modules, the multiplicity of PEFT modules, and the routing mechanism
among them. Compositional strategies describe how PEFT modules interact with the original MoE

1Code available via https://anonymous.4open.science/r/PERFT-MoE/.
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Figure 1: Illustration of a default MoE layer and the PERFT family. PERFT-R, the primary
variant, holds an independent routing among the introduced PEFT experts. PERFT-E embeds PEFT
experts within the original MoE module and directly utilizes its routing patterns. PERFT-D and
PERFT-S simply work as independent shared expert(s) alongside the MoE module.

architecture, including operating as shared PEFT experts or embedded PEFT experts. To rigorously
characterize the behavior of adapting MoE LLMs with each strategies, we provide empirical analy-
ses that offer insights into understanding and optimizing configurations on these dimensions.

By exploring representative design choices within our framework, we introduce Parameter-Efficient
Routed Fine-Tuning (PERFT), a flexible and scalable family of PEFT strategies tailored for MoE
LLMs, as shown in Figure 1. These methods cover a range of architectural designs with vary-
ing levels of scale, sparsity, and routing dynamics. At the core of PERFT is PERFT-R (Routed),
which introduces an independent routing mechanism among multiple PEFT experts, enabling task-
specific expert activation patterns. We also study PERFT-E (Embedded), which utilizes the pre-
trained router, and PERFT-D (Dense) and PERFT-S (Single), which employ always-activated PEFT
experts without routing. These variants cover a wide range of functional and compositional strate-
gies, allowing for a systematic exploration on the trade-offs between parameter efficiency, sparsity,
and routing in fine-tuning MoE modules.

Extensive experiments are conducted on OLMoE-1B-7B (Muennighoff et al., 2024) and Mixtral-
8×7B (Jiang et al., 2024) for commonsense and math reasoning tasks. Our results demonstrate that
PERFT enables different levels of efficient adaptation of MoE LLMs while maintaining competitive
performance. With an equivalent level of activated trainable parameters in OLMoE-1B-7B, PERFT-
R achieves improvements of up to 17.2% and 12.3% over the average performance of MoE-agnostic
baseline methods in each domain. We also demonstrate and empirically analyze our observations
for the optimal scaling, sparsity, and routing configurations that generalize across settings. We hope
to provide practical insights for improving future MoE and PEFT approaches, and contribute to the
understanding of adaptation strategies for modern large-scale LLMs.

The primary contributions of our work are as follows:

1. We introduce a unified framework of PEFT techniques tailored for MoE LLMs. This encom-
passes multiple dimensions of design strategies, offering a novel perspective.

2. By combining the design choices within this unified framework, we propose PERFT as a
flexible and scalable family of strategies for adapting MoE LLMs.

3. Extensive experiments adapting OLMoE-1B-7B and Mixtral-8×7B for commonsense and
arithmetic reasoning tasks validate the effectiveness, scalability, and intriguing dynamics of
PERFT. We provide empirical findings and analysis for each specific design choice.

2 BACKGROUND

2.1 MIXTURE-OF-EXPERTS IN TRANSFORMER MODEL

Transformer Model. Consider a transformer model comprising L layers of transformer blocks,
each incorporating a standard self-attention mechanism and a feed-forward neural network (FFN).
Given a sequence of T tokens with an initial embedding in a D-dimensional hidden space x1:T

0 ∈
RT×D, we formulate the inner mechanism of each transformer block2 at layer l ∈ {1, · · · , L} as:

h1:T
l = SelfAttnl

(
x1:T
l−1

)
+ x1:T

l−1, xt
l = FFNl

(
ht
l

)
+ ht

l , (1)

2Layer normalization and dropout operations are omitted in this paper for clarity.
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where h1:T
l denotes the attention module output with the residual connection. The Feed-Forward

Network FFNl performs a token-wise mapping, yielding output xt
l at token t ∈ {1, · · · , T} with

residual added, which subsequently becomes the input for the next transformer block at layer l + 1.

Mixture-of-Experts. As a viable solution to the computational challenges in scaling models and
improving specialization, early forms of MoE were introduced (Jacobs et al., 1991; Jordan & Jacobs,
1994; Eigen et al., 2013; Shazeer et al., 2017). In the era of transformers, studies have revealed that
FFNs, with two-thirds of the model parameter, encapsulate a substantial amount of knowledge (Geva
et al., 2021; Dai et al., 2022) that can be attributed to sparsely represented features (Dalvi et al.,
2019; Durrani et al., 2020; Gurnee et al., 2023). Leveraging this internal sparsity, MoE architectures
can achieve better resource utilization by activating only a subset of effective parameters for each
input (Liu et al., 2023b), which has since been successfully applied to transformer-based language
models (Lepikhin et al., 2020; Du et al., 2022; Fedus et al., 2022; Zoph et al., 2022a; Komatsuzaki
et al., 2022; Rajbhandari et al., 2022; Jiang et al., 2024; Dai et al., 2024; Qwen, 2024; Grok, 2024).
Modern MoE architectures employ token-wise gating network (router) G(·), which dynamically
assigns each token to K of top-activated experts among N FFN experts Ei(·):

MoE(ht) =
∑N

i=1

(
G
(
ht

)
i
Ei

(
ht

))
, where G

(
ht

)
= TopK

(
Softmax

(
htWg

)
,K

)
, (2)

in which G(·) : RD 7→ RN denotes the sparse gating function that distributes weights across all N
FFN experts’ outputs, among which only K get nonzero values. The weight matrix Wg in G(·) can
be interpreted as a set of D-dimensional column vectors {gi|i ∈ 1, · · · , N}, each corresponding to a
characteristic hidden state hi for the expert Ei. The router computes token-to-expert affinity scores
sti via a softmax-normalized projection of each token’s hidden state onto these characteristic states
(Zhou et al., 2022; Dikkala et al., 2023; Lo et al., 2024), which are subsequently top-K thresholded
to yield expert selection results for each token. Notably, recent works (Gou et al., 2023; Dai et al.,
2024; Qwen, 2024) have explored shared experts that structurally mirror routed experts, working in
parallel with them and always remaining activated for capturing common knowledge.

2.2 PARAMETER-EFFICIENT FINE-TUNING FOR TRANSFORMER-BASED MODEL

Vanilla PEFT. Classical full fine-tuning approaches for downstream tasks (Devlin et al., 2019; Qiu
et al., 2020) have become increasingly impractical as transformers continue scaling up. Recent work
has introduced diverse PEFT methods offering comparable performance to full fine-tuning with sig-
nificantly reduced computational demands. He et al. (2022) present a unified view for PEFT, where
any PEFT method can be viewed as a combination of several design dimensions. For instance, given
the adapted module’s input h and output x, LoRA (Hu et al., 2022), which approximates weight
updates using low-rank matrices, can be described as a parallel operation ∆(h) = hWdownWup and
x ← x + s · ∆(h). This framework facilitates hybrid design for better PEFT variants. They find
that parallel PEFT modules generally outperform sequential adaptations, and modifying FFN yields
better results than modifying attention, which are further supported by Hu et al. (2023), Zhang et al.
(2023), Dettmers et al. (2024) and Hao et al. (2024).

PEFT with MoE-like Structures. The success of MoE transformers has inspired MoE-structured
adaptations. Much recent work has focused on developing such modules for dense models, including
inserting multiple LoRA experts with routers at attention layers (Liu et al., 2023a; Luo et al., 2024)
and alongside dense FFN layer (Zadouri et al., 2023; Dou et al., 2023; Page-Caccia et al., 2024; Chen
et al., 2024; Hao et al., 2024). Gao et al. (2024) find that allocating more LoRA experts to higher
layers leads to better performance. Li et al. (2024) propose up-cycled a mixture of LoRA-adapted
frozen FFN experts from dense models. Wu et al. (2024) explore methods for composing multiple
trained LoRAs in a MoE style. Notably, all these methods primarily focus on adapting dense models,
leaving the application of PEFT to inherently sparse MoE models largely underexplored. Recently
Wang et al. (2024) propose an expert-specialized fine-tuning approach, which comes closest to this
research gap by selectively fine-tuning the most relevant experts for downstream tasks, though no
PEFT techniques are involved. Our work, in contrast, directly addresses this area by introducing
PEFT modules into the MoE mechanism, which offers a more flexible and efficient solution for
adapting MoE models while preserving their original weights untouched.

3 METHODOLOGY

3.1 THE UNIFIED FRAMEWORK

3
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b. Compositional Strategies

Router

FFN
Expert

PEFT
Module PEFT

Module

① Shared PEFT experts
①

②

② Embedded PEFT experts

③ MoE-Agnostic PEFT③

a. Functional Strategies

Router

Adapted
Module

Routing
among PEFT experts

Multiplicity
of PEFT experts

Architecture
inside PEFT experts

Figure 2: The unified framework of PEFT
for a MoE module. a. Functional strategies
specify the internal implementation of the in-
troduced PEFT module. b. Compositional
strategies describe the PEFT module’s inter-
action with the original MoE mechanism.

This section introduces our unified framework for
PEFT on MoE models. Inspired by the unified view
of PEFT (He et al., 2022), our framework focuses
on two key design dimensions, as shown in Fig-
ure 2. Functional strategies define the internal
mechanism of the introduced PEFT module, includ-
ing the architecture inside individual PEFT modules,
the multiplicity of PEFT modules, and the routing
mechanisms among them. Compositional strate-
gies describe how PEFT modules interact with the
original MoE architecture, including operating as
shared PEFT experts or embedded PEFT experts. By
considering these aspects, our framework addresses
the unique mechanisms of both PEFT and MoE, pro-
viding a novel and comprehensive perspective on
adapting MoE LLMs.

3.1.1 FUNCTIONAL STRATEGY

This dimension describes the internal implementa-
tion of the introduced PEFT module. We consider
variations of mechanisms in three dimensions:

Architecture inside PEFT Experts. This aspect de-
fines the specific internal structure of each individual
PEFT expert. The general architecture for comput-
ing ∆(h) in each PEFT expert can be formalized as

∆(h) = UpProj (Act (DownProj(h))) , (3)
where Act(·) is implemented with non-linear activation functions, or with an identity function for
LoRA. The DownProj(·) : RD 7→ RDB and UpProj(·) : RB 7→ RDB introduce a key scaling
factor, the bottleneck size DB , known as rank r used in LoRA’s low-rank decomposition. Adjusting
DB leads to linear scaling of trainable parameters. Optimizing this hyperparameter is crucial for dif-
ferent tasks and models, as it balances the bottleneck subspaces’ capacity for additional knowledge
against the effectiveness of training newly introduced weights with given data (Hu et al., 2022).

Multiplicity of PEFT Experts. The number of PEFT experts serves as another key scaling factor
in our framework. Increasing the number of PEFT experts allows each to generate its own copy of
∆(h), denoted as ∆i(h). Previous studies on fine-tuning dense models with MoE-like structures
(Zadouri et al., 2023; Liu et al., 2023a; Dou et al., 2023; Li et al., 2024) have empirically shown that
optimizing the number of adapters can significantly impact performance. This optimization can be
tailored to specific tasks, models, or even individual layers within a model (Gao et al., 2024). We
investigate the balance between performance and effective utilization of experts in our experiments.

Routing among PEFT Experts. This aspect considers whether an independent routing mechanism
is introduced among PEFT experts. In contrast to previous work primarily focusing on adapting
dense models using PEFT modules with MoE-like structures (Hao et al., 2024; Gao et al., 2024;
Wu et al., 2024), our framework reveals the potential dynamics in the interaction between routed
PEFT experts and the pretrained MoE module. For a token-wise routing among M PEFT experts,
the PEFT module operates similarly to the original MoE module for FFN experts (Equation 2):

∆(ht) =
∑M

i=1

(
G̃
(
ht

)
i
∆i(h

t)
)
, (4)

where G̃(·) denotes the gating function for the PEFT experts. This aspect highlights the profound
dynamics between routers and experts in MoE and PEFT modules, as shown in Figure 3. Based on
the key-value memory perspective for FFN (Geva et al., 2021) (Figure 3a), we can similarly interpret
the weight matrix Wg ∈ RD × RN in a router for N FFN experts as a set of N individual vectors
{gi}, each representing a characteristic hidden state for the corresponding expert’s key memories.
More specifically, each of the N vectors approximately symbolizes a cluster of all individual neuron
vectors within each FFN expert, and the routing process can be interpreted as a projection of the
current hidden state onto these N vectors to calculate the affinity of each expert with the input
token. For our PEFT expert router G̃(·), we can either learn from scratch a new collection of PEFT

4
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c. Expert Vectors in Routers for  FFN and  PEFT Experts
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··  ··
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expert vectors in both 
router for FFN experts

and router for PEFT experts

key memory vectors in both
activated FFN experts

and activated PEFT experts

b. Expert Vectors in a Default MoE's Router for  FFN Experts

expert vectors 
in the router

for FFN experts
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in the activated 

FFN expert

··  ··×

··  ··

= =

a. Key Memory Vectors in a Dense FFN Expert

weight matrix
key memory vectors
of all FFN neurons

× ··  ··

··  ··

= = = =

Figure 3: The dynamics between key memory vectors in experts and expert vectors in routers.
a. A dense FFN expert as projecting ht ∈ RD onto Da key memory vectors in the weight matrix
Wup = {ki ∈ RD} and yielding activation scores at ∈ RDa distributed over the key memories.
b. A router for N FFN experts as projecting ht onto N expert vectors stored in router weight
matrix Wg = {gi ∈ RD}, yielding token-to-expert affinity scores st ∈ RN distributed over the ex-
perts. Each expert vector gi symbolizes a characteristic ht pattern featuring its expert’s key memory
vectors {kj}i. c. Routers for both the N FFN experts and M PEFT experts introduce interesting
dynamics between their expert vectors {gi} and {g̃i}, resulting a more flexible space for fine-tuning.

expert vectors {g̃i}, or directly utilize the existing {gi} from the original router for FFN experts,
which becomes functionally equivalent to the configuration of embedded PEFT in Section 3.1.2. We
provide detailed visualization and analysis of these dynamics in our experiments.

3.1.2 COMPOSITIONAL STRATEGY

The compositional strategy defines how the PEFT module integrates with the original MoE model.
Based on findings from previous research (He et al., 2022; Hu et al., 2023; Luo et al., 2024; Hao
et al., 2024) that inserting PEFT modules in parallel generally yields superior performance, we focus
exclusively on parallel insertion methods, i.e., PEFT receiving the same input as the module it is
adapting and combining its output with that of the same module. This consideration aligns with
the parallel nature of MoE architectures, where FFN experts operate concurrently rather than in a
stacked configuration. Here we identify three main categories of insertion strategies:

Shared PEFT Experts. The PEFT module can operate in parallel with the entire MoE module,
functioning as shared PEFT experts. Given a input hidden state sequence h1:T , we have:

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+∆(h1:T ) + h1:T , (5)

where the PEFT module takes the same input h1:T as the MoE module, and combines its output
additively with the MoE output to the residual connection. This approach draws inspiration from
the concept of shared FFN experts in recent works (Gou et al., 2023; Dai et al., 2024; Qwen, 2024).
Introducing these shared structurally identical FFN experts alongside routed FFN experts during
training MoE models aims to improve parameter efficiency by mitigating the redundancy of shared
knowledge across routed experts. Applying this principle to lightweight PEFT modules, we hy-
pothesize that these shared PEFT experts can similarly capture and adapt the common parts needed
among routed FFN experts, thereby potentially offering greater efficiency as well.

Embedded PEFT Experts. In this configuration, the PEFT modules are embedded within the MoE
module. Each PEFT module is paired with a corresponding FFN expert and operates in a tight
coupling manner, receiving the same token-wise input ht as distributed by the MoE router:

xt =
∑N

i=1
G(ht)i

(
Ei(h

t) + ∆i(h
t)
)
+ ht, (6)

where Ei(h
t) is the output of the i-th FFN expert for token t, and ∆i(h

t) is the output for token
t of the i-th PEFT module that is associated with the i-th expert. The PEFT modules’ outputs are
combined with their corresponding FFN experts’ outputs before being weighted by the router and
summed. This formulation can be viewed as introducing N PEFT experts embedded within the MoE
module, mirroring the activation patterns of the original FFN experts as discussed in Section 3.1.1.

MoE-Agnostic PEFT. The PEFT module is integrated at locations independent of the MoE mod-
ules, completely decoupled and functioning agnostically to the MoE mechanism. This includes

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

previous PEFT strategies that treat models effectively as if they were dense architecture. We include
this strategy as a baseline in our experiments, enabling us to compare the performance of trivial
techniques applied without consideration of the underlying MoE structure.

3.2 THE PERFT FAMILY

Deriving from our unified framework of PEFT on MoE LLMs, we hereby propose Parameter
Efficient Routed Fine-Tuning (PERFT) as a family of novel PEFT methods tailored for MoE mod-
els, as illustrated in Figure 1. At the core of the PERFT family is PERFT-R (Routed), with a
parallel module consisting of an independent router among the introduced PEFT experts:

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+

∑M

j=1

(
G̃
(
h1:T

)
j
∆j

(
h1:T

))
+ h1:T , (7)

where G̃(·) : RD 7→ RM denotes the gating function for the M PEFT experts ∆j(·). PERFT-R
allows for learning an independent series of expert vectors g̃i for PEFT experts, together with FFN
expert vectors gi forming an intriguing dynamics, as discussed in Section 3.1.1 and Figure 3c.

If the number of introduced PEFT experts M matches the number of FFN experts N in the original
MoE module, the structural design in PERFT-R provides a possibility to substitute G̃(·) with the
original G(·), which makes it becomes a simplified special case

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+

∑N

j=1

(
G
(
h1:T

)
j
∆j

(
h1:T

))
+ h1:T

=
∑N

i=1
G
(
h1:T

)
i

(
Ei

(
h1:T

)
+∆j

(
h1:T

))
+ h1:T ,

(8)

which takes exactly the same form as the embedded PEFT experts in Equation 6. Hence we denote
this variant as PERFT-E (Embedded). As it directly utilizes the expert vectors gi original pre-
trained router for distributing tokens for PEFT experts instead of learning weights from scratch, it
can be intuitively estimated that this property of would lead to performance gain especially when the
number of routed experts are to some extent that learning from scratch is not able to capture enough
quality distribution of PEFT expert vectors in the space of hidden states.

By removing routing functions and naively making multiple PEFT shared experts always activated
in parallel with the MoE module, we have another variant PERFT-D (Dense), denoted as

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+

∑M

j=1
∆j

(
h1:T

)
+ h1:T , (9)

which can be further simplified into only having one shared PEFT expert, namely PERFT-S (Single)

x1:T =
∑N

i=1

(
G
(
h1:T

)
i
Ei

(
h1:T

))
+∆0

(
h1:T

)
+ h1:T , (10)

These two structures implemented the idea of shared experts introduced in recent works (Dai et al.,
2024; Qwen, 2024) with PEFT experts, serve as two simpler variants in our PERFT family.

4 EXPERIMENTS AND ANALYSES

4.1 EXPERIMENT SETUP

Benchmarks. Our experiments follow the settings provided by Hu et al. (2023), encompassing
8 benchmarks for commonsense reasoning and 6 for arithmetic reasoning. We utilize their amal-
gamated training sets Commonsense170K and Math50K to fine-tune models respectively for each
domain. Evaluations are conducted correspondingly across all individual benchmark test sets.

LLM Backbones. Two state-of-the-art open-source MoE LLMs serve as the backbone models for
our experiment: OLMoE-1B-7B (Muennighoff et al., 2024) and Mixtral-8×7B (Jiang et al., 2024).
They are selected among publicly available MoE models based on their outstanding performance in
the 1B and 13B activated parameter ranges. We use the model weights of their pretrained versions.

Baselines. Since there is little previous work on applying PEFT to MoE, we primarily experiment
with applying LoRA to attention matrices Wq and Wv , the versatile and popular PEFT solution that
provides optimal performance under limited parameter budgets (Hu et al., 2022). This serves as our
baseline across all scales and tasks. For the smaller OLMoE-1B-7B model, we also include results
of applying LoRA to the router matrix Wg , as reported in Table 4 in appendix.

Training. In our experiments, we maintain consistency with the original training process of each
LLM by incorporating their respective auxiliary losses alongside the cross-entropy loss for token

6
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outputs. The models we investigate all include the load balancing loss (Shazeer et al., 2017), which
aims to distribute tokens equally among experts. OLMoE-1B-7B additionally incorporates a router
z-loss (Zoph et al., 2022b) to penalize large logits in the router for better training stability. To
ensure a fair comparison, we keep all auxiliary losses active during fine-tuning for baseline and all
PERFT variants. For PERFT-R, we extend this approach with the load balancing loss for the PEFT
expert router as well for a similar balanced distribution of tokens among PEFT experts. Detailed
hyperparameters and resource configurations for our experiments are provided in Appendix A.

Design Choices. For the internal architecture of PERFT and its variants, the major part of our exper-
iments focuses on the application of parallel LoRA adapters (He et al., 2022) to the FFN networks,
which serves as a simple and effective representation among various possible configurations. The
output scaling with α in LoRA also helps us reduce the need to retune hyperparameters when we
vary the bottleneck sizes (Yang & Hu, 2020; Hu et al., 2022). For alternative internal architectures,
following prior results on dense models (He et al., 2022; Hu et al., 2023), we provide an additional
comparative analysis in Appendix B.1 of using vanilla parallel adapter (Houlsby et al., 2019; He
et al., 2022) with an additional activation function applied between projections.

Regarding routing, we investigate both learned routing (PERFT-R) and embedded routing using the
pretrained MoE router (PERFT-E). We also include non-routed variants (PERFT-D and PERFT-S)
for comparison. For the number of experts, we explore various configurations as shown in Figure 4.
The notation “(TopK/N)” indicates PERFT with K out of N experts activated per forward pass, and
“(N)” represents N shared PEFT experts without routing. We examine configurations with the total
number of experts ranging from 1 to 64 and activated experts from 1 to 8, allowing us to study the
impact of expert count and activation ratio on performance. We experiment with different bottleneck
sizes (LoRA ranks) ranging from 2 to 128, as represented by the point sizes in Figure 4. This allows
us to study the impact of parameter efficiency on performance across different PERFT variants.

4.2 EXPERIMENT RESULTS LLM Arch. Strategy # Act. % Act. CR AR

LoRA4 Wq,Wv@Attn 0.52M 0.041 57.15 28.42
LoRA16 PERFT-R (Top1/2) 0.59M 0.046 66.66 31.91
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 66.98 31.18

OLMoE
1B-7B

(Top8/64)

LoRA16 Wq,Wv@Attn 2.10M 0.164 62.86 29.71
LoRA4 PERFT-E (Top8/64) 2.10M 0.164 69.42 31.30
LoRA32 PERFT-R (Top1/4) 2.23M 0.174 67.32 32.29

LoRA64 Wq,Wv@Attn 8.39M 0.654 67.95 28.82
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 69.29 29.08
LoRA16 PERFT-R (Top8/8) 8.65M 0.675 68.81 31.65

Mixtral
13B-47B
(Top2/8)

LoRA8 Wq,Wv@Attn 3.41M 0.026 85.02 64.72
LoRA8 PERFT-R (Top2/2) 4.46M 0.035 86.23 69.03
LoRA8 PERFT-R (Top2/8) 5.24M 0.046 85.68 68.14

Table 1: Average performance of OLMoE and Mix-
tral with baseline and PERFT variants on commonsense
reasoning (CR) and arithmetic reasoning (AR) bench-
marks. “Arch.” denotes the architecture inside PEFT mod-
ules. “# Act.” and “% Act.” represent the number of ac-
tivated trainable parameters and their ratio to the total acti-
vated parameters. “(TopK/N)” refers to activating K experts
among the total number of N experts. Performance scores
for CR and AR are calculated by averaging the scores across
each relevant individual benchmark.

Table 1 presents a comparison be-
tween several representative PERFT
variants and MoE-agnostic baseline
with equivalent levels of trainable pa-
rameters. The reported PERFT vari-
ants consistently outperform baseline
methods, with PERFT-R achieving
improvements of up to 17.2% and
12.3% on each domain, and PERFT-
E up to 10.4% and 5.4%. Section
C in appendix provides a comprehen-
sive series of tables detailing the per-
formance of all variants across each
individual task.

To obtain the optimal configurations,
we conduct an exhaustive series of
experiments by fine-tuning OLMoE
using combinations of each PERFT
variant and possible design choices,
with results presented in Figure 4.

PERFT-R emerges as the best strategy. Across both domains, we observe a clear distinction be-
tween the overall performance of each PERFT variants. PERFT-R, as expected, emerges as the
best strategy that generally outperforms other variants. This advantage is particularly evident at
higher levels of parameter efficiency, highlighting its superior potential as an effective strategy for
the efficient fine-tuning of MoE models. PERFT-E demonstrates promising performance above the
baseline as well. PERFT-S and PERFT-D, as the most simplified variants, fail to yield competitive
results across the tested range on both domains.

PERFT-R and PERFT-E generally benefit from scaling up. Our results show distinct scaling
patterns across different variants of our model. PERFT-R and PERFT-E generally can benefit from
scaling up trainable parameters via increased bottleneck sizes DB within a certain range, as rep-
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Figure 4: Performance comparison of OLMoE-1B-7B fine-tuned with baselines and PERFT
family. Performance on y-axes is averaged across corresponding evaluation benchmarks; “Activated
Parameter Efficiency” on x-axes indicates the ratio of activated trainable parameters to the total
activated parameters. Color represents different methods: “qvLoRA” stands for applying LoRA
on attention matrices Wq and Wv; “S”, “D”, “R” and “E” refer to the proposed PERFT variants.
Transparency indicates different sparsity levels (ratio of activated experts K/N , as “(TopK/N)”
labeled for PERFT-R and PERFT-E). Marker size indicates bottleneck size DB .

resented by larger marker sizes in Figure 4. However, PERFT-S and PERFT-D show a rapid per-
formance decline as bottleneck size increases. For the multiplicity of PEFT experts, PERFT-E
consistently exhibits performance degradation with more experts, whereas PERFT-R demonstrates
a more complex relationship between expert multiplicity and performance, with different trainable
parameter ratios yielding varying results.

PERFT-R is more sensitive to the overall number of PEFT experts. Figure 5 illustrates the impact
of scaling the total number of activated PEFT experts and their trainable parameter efficiencies while
controlling for other factors. When fixing the total number of PEFT experts, the performance gain
from increasing the activated ratio is relatively modest, suggesting that the performance of PERFT-
R is more sensitive to the overall PEFT expert count rather than the proportion activated. It is also
observed that on commonsense reasoning tasks, PERFT-R configurations with fewer total PEFT
experts tend to outperform those with more experts across various activated parameter efficiencies.
In contrast, for math reasoning tasks (Figure 4b), configurations with more PEFT experts do show
improved performance as parameter efficiency increases. These divergent patterns reveal that the
optimal configuration appears to be task-dependent. Further results on controlling for other factors
are provided in Figure 8 in appendix, emphasizing the importance of balancing the total number of
experts, sparsity, and computational efficiency when optimizing PERFT configurations for optimal
performance.

4.3 RESULT ANALYSES

Routing is important in scaling the number of PEFT experts. Our experiments reveal fascinat-
ing dynamics of PERFT as we manipulate the bottleneck size. As Figure 4 suggests, the optimal
information bottleneck configuration represents a delicate balance between capacity and learning
effectiveness for each PERFT variant and the given task to achieve peak performance. For PERFT-
S and PERFT-D variants without G̃(·) to distribute gating weights, increasing the bottleneck leads
to rapidly decreased average performance across both commonsense and arithmetic reasoning tasks
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Figure 5: Performance comparison of configurations with different total number of PEFT ex-
perts in PERFT-R. Results from OLMoE-1B-7B fine-tuned with PERFT-R for commonsense rea-
soning. x-axes stand for activated parameter efficiency. Transparency represents different sparsity
levels (ratio of activated PEFT experts), and marker size represents bottleneck size DB .

compared to baseline and other PERFT variants. This phenomenon should be attributed to ineffi-
cient parameter utilization in always-activated shared experts. Without an effective routing mecha-
nism, a mismatch would occur between the effective dimensionality of the task and adapter capacity.
When the adapter’s dimensions significantly exceed the intrinsic dimensionality required by the task
for applying modifications, the surplus dimensions in the PEFT module may introduce useless or
harmful adaptations, leading to decreased performance as the bottleneck size increases. A detailed
discussion on possible reasons is presented in Appendix B.2.

We also observe that naively scaling up the number of experts without a routing mechanism can
lead to severe performance degradation. Consistently, PERFT-D underperforms PERFT-S, with
performance declining as the number of PERFT experts increases. Figure 6 visualizes this effect
through UMAP projections of key memory vectors and expert vectors for the base OLMoE-1B-7B
model and different PERFT variants (E, R, D, and S). As the UMAP projection maintains relative
distances between original FFN experts in the final results, in an ideal adaptation scenario, PEFT
expert key vectors that may activate simultaneously should be distributed evenly within subspaces
formed by task-relevant FFN experts’ key vectors, maximizing hidden space utilization. However,
PERFT-D variants in Figure 6 exhibit tightly clustered key vectors from different experts (shown
with different colors), indicating a functional redundancy and inefficient use of model capacity in
PERFT-D experts. A detailed analysis on this phenomenon is provided in Appendix B.3.

Routing contributes more from its weight distribution, rather than sparse activation. Compar-
ing to PERFT-S and PERFT-D in Figure 4, we observe that even when all experts are activated
(TopN/N ), PERFT-R can still improve the performance significantly, by simply introducing learn-
able token-wise gating weights for dynamically assigning the importance of each expert’s output.
This effect is reminiscent of how Gated Linear Units (GLU) improve the FFN layer in transformers
(Dauphin et al., 2017). In our case, Figure 6 shows that gating weights can lead to more balanced
vector distribution and more effective utilization of hidden space, supporting our discussion in Sec-
tion 3.1.1. Without such a mechanism, the potential benefits of the increased number of experts may
be counterbalanced by the redundancy in model capacity, as discussed in Appendix B.3.

Figure 5 reveals that for a fixed total number of PEFT experts, increasing the sparsity of PERFT-
R by activating fewer PEFT experts does not severely degrade performance. This observation is
also supported by the visual representation in Figure 6, which suggests that an adequate number
of activated expert vectors is sufficient to capture the distribution of the space to be adapted. In
addition, the key value vectors from different PEFT experts of PERFT-R that appear clustered in
Figure 6 can be utilized by a sparser router to ensure them not activated simultaneously, thereby
maintaining performance. This finding indicates that the overall capacity of the PEFT module may
be a more critical factor in determining performance rather than the activated capacity.

With more PEFT experts, PERFT-E can become favored over PERFT-R. Figure 6 illustrates
the distinct dynamics between PERFT-E and PERFT-R. PERFT-E utilizes the frozen expert vectors
in the router for FFN experts, while PERFT-R learns an independent router from scratch for PEFT
experts. It’s important to note that the comparative performance between PERFT-E and PERFT-R
can vary in practice, especially when considering scenarios with different activated parameters. Our
results in Figure 4a demonstrate that given the same total number of PEFT experts, PERFT-E con-
sistently performs better than PERFT-R (Top8/64) across all bottleneck sizes; while many PERFT-R
configurations with fewer experts in turn outperform PERFT-E. When a larger number of PEFT ex-
perts are used, utilizing the pretrained router can provide more stable and efficient learning for each
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Figure 6: Visualization of key memory vectors and expert vectors in OLMoE-1B-7B and
PERFT family fine-tuned for commonsense reasoning. Results show projections of vectors with
DB = 32 from layer 8 of OLMoE. Each subplot corresponds to a different configuration: “Base
Model” showing vectors of FFN experts and router in the original MoE layer; “S”, “D”, “R” and “E”
referring to vectors in the PEFT experts and router (if any) of the corresponding PERFT variants.
Markers ● represent key memory vectors in FFN or PEFT experts, and ✖ expert vectors in routers
for either FFN experts (in Base Model and PERFT-E) or PEFT experts (in PERFT-R). All vectors
are projected using the same PCA and UMAP trained on key memory vectors from the FFN experts.
Different colors distinguish vectors associated with different experts.

expert, while PERFT-R may waste more training on exploring larger subspaces and not being able
to capture the optimal distribution effectively. This variability highlights the complex trade-off be-
tween the flexibility offered by learning new routing mechanisms against the stability gained from
utilizing pretrained components in large-scale models, underscoring the need to consider training
configuration- and task-specific factors when choosing between them.

5 CONCLUSION

In this paper, we introduce a unified framework for integrating PEFT techniques into MoE mod-
els, addressing the challenges of efficiently adapting these large, sparse architectures to downstream
tasks. Our framework, encompassing both functional and compositional strategies, bridges the gap
between existing PEFT methods for dense models and the unique sparsity characteristics of MoE ar-
chitectures. Building upon this framework, we propose PERFT, a flexible family of PEFT strategies
specifically tailored for MoE modules. Through extensive experiments on adapting several state-
of-the-art MoE models (OLMoE and Mixtral) for various commonsense and arithmetic reasoning
tasks, we demonstrated the effectiveness and scalability of PERFT. Our results showed significant
performance improvements over MoE-agnostic baseline methods. We provide an analysis of our
findings for each specific design choice from our study, contributing to a deeper understanding of
the dynamics between PEFT adaptation strategies and the MoE architecture.
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A TRAINING CONFIGURATIONS

Hardware. For each fine-tuning experiment with the baseline and PERFT variant, we trained
OLMoE-1B-7B on a single NVIDIA A100 GPU, and Mixtral-8×7B on 4×NVIDIA H100 GPUs
using NV-link interconnect across GPUs. Both models are evaluated on NVIDIA A100 GPUs.

Hyperparameters. We display the hyperparameter configurations used in fine-tuning and evaluat-
ing OLMoE-1B-7B and Mixtral-8×7B in Table 2. We follow Hu et al. (2023) and each model’s
original settings for training.

B ADDITIONAL ANALYSES FOR PERFT CONFIGURATIONS

B.1 ARCHITECTURE OF PEFT EXPERTS

Table 3 compares the commonsense reasoning performance of LoRA and Parallel Adapters (PA)
as PEFT experts in OLMoE-1B-7B with several well-performing PERFT-R configurations. As we
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Hyperparameters OLMoE-1B-7B Mixtral-8×7B

Training precision BFloat16
Dropout 0.05

Optimizer AdamW
LR 1e-5 2e-5

LR scheduler Linear
Batch size 16

Warmup steps 100
Epochs 3

Auxiliary loss coef. 0.01 0.02

Table 2: Hyperparameter configurations for OLMoE-1B-7B and Mixtral-8×7B.

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

LoRA4 PERFT-R (Top1/1) 0.16M 0.013 62.48 75.73 68.17 25.16 51.07 76.81 55.72 61.60 59.59
PA4 PERFT-R (Top1/1) 0.16M 0.013 63.09 76.50 64.94 31.23 52.72 77.02 56.31 55.40 59.65
LoRA8 PERFT-R (Top1/1) 0.29M 0.023 63.43 77.53 70.68 42.13 66.14 77.10 59.30 66.20 65.31
PA8 PERFT-R (Top1/1) 0.29M 0.023 65.63 78.94 68.68 40.46 53.75 79.25 56.14 61.20 63.01
LoRA16 PERFT-R (Top1/1) 0.56M 0.043 64.98 78.56 72.52 41.99 67.25 77.82 58.70 68.20 66.25
PA16 PERFT-R (Top1/1) 0.56M 0.043 66.61 78.56 71.34 41.26 59.75 78.87 59.30 66.20 65.24
LoRA32 PERFT-R (Top1/1) 1.08M 0.084 66.36 78.84 72.36 42.83 63.38 78.62 58.36 71.20 66.49
PA32 PERFT-R (Top1/1) 1.08M 0.084 66.61 79.54 72.62 42.36 66.46 79.29 62.03 67.40 67.04

LoRA4 PERFT-R (Top2/2) 0.33M 0.026 64.86 76.71 69.60 40.89 62.43 77.23 55.80 63.60 63.89
PA4 PERFT-R (Top2/2) 0.33M 0.026 65.44 77.48 69.40 41.14 51.54 78.83 57.94 63.20 63.12
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 65.26 78.18 72.31 42.11 71.82 77.90 60.49 67.80 66.98
PA8 PERFT-R (Top2/2) 0.59M 0.046 67.31 80.03 71.14 41.70 61.80 78.58 58.87 66.60 65.75
LoRA16 PERFT-R (Top2/2) 1.11M 0.087 66.18 77.97 72.52 43.99 70.64 78.24 60.75 69.80 67.51
PA16 PERFT-R (Top2/2) 1.11M 0.087 66.76 79.38 72.47 43.52 69.85 80.85 61.26 71.00 68.14
LoRA32 PERFT-R (Top2/2) 2.16M 0.169 65.81 79.38 73.59 49.42 71.59 77.78 61.18 71.80 68.82
PA32 PERFT-R (Top2/2) 2.16M 0.169 67.61 80.96 73.18 45.57 70.64 80.68 61.18 72.00 68.98

LoRA4 PERFT-R (Top2/4) 0.66M 0.051 63.98 75.68 69.29 40.26 65.75 77.36 59.56 67.40 64.91
PA4 PERFT-R (Top2/4) 0.66M 0.051 65.93 77.75 69.96 40.81 61.09 79.17 58.28 65.80 64.85
LoRA8 PERFT-R (Top2/4) 1.18M 0.092 65.02 77.86 71.90 41.61 68.75 77.31 59.13 68.80 66.30
PA8 PERFT-R (Top2/4) 1.18M 0.092 64.40 78.07 71.24 41.80 70.17 79.76 61.09 67.80 66.79
LoRA16 PERFT-R (Top2/4) 2.23M 0.174 64.07 76.61 73.59 42.10 71.90 78.32 60.58 71.20 67.30
PA16 PERFT-R (Top2/4) 2.23M 0.174 65.99 79.92 72.62 43.14 61.64 80.09 60.58 69.20 66.65
LoRA32 PERFT-R (Top2/4) 4.33M 0.337 66.30 77.75 75.44 45.88 71.43 76.18 60.58 70.60 68.02
PA32 PERFT-R (Top2/4) 4.33M 0.337 66.70 79.33 73.18 42.57 70.40 81.10 62.20 70.60 68.26

Table 3: Commonsense reasoning performance of OLMoE-1B-7B with PERFT-R using LoRA
and Parallel Adapter (PA) as PEFT experts. “Arch.” denotes the architecture inside PEFT mod-
ules. “# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio
to the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and OpenBookQA
(Mihaylov et al., 2018).

can see, under equivalent activated trainable parameter levels, the average performance difference
between LoRA and PA is only marginal. Interestingly, certain architectures consistently outperform
others on specific tasks. For instance, parallel adapters generally perform better on BoolQ, PIQA,
and ARC, while LoRA excels in SIQA and OBQA. These differences may stem from the inherent
nature of knowledge required for each task or specific training data distributions, though a deeper
investigation into these task-specific variations is beyond the scope of this study. Given the similar
average performance, we opted to focus on LoRA for our experiments due to its simpler structure
without the additional activation function.

It is also viable to consider copying the original FFN structure as PEFT experts. We have opted not to
investigate this option further in our current study based on two reasons. First, replicating the exact
form of FFN experts does not align well with the principles of PEFT, as it would basically become
up-scaling the model to a version with more experts. Second, recent advancements have introduced
more complex implementations that go beyond the simple σ(hWup)Wdown pattern how FFN initially
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designed as. Gated Linear Unit (GLU), introduced by Dauphin et al. (2017) and Shazeer (2020), has
become widely adopted in modern transformers including OLMoE-1B-7B and Mixtral-8×7B. GLU
incorporates an additional post-activation gating term FFNGLU(h) = [σ(hWup)⊗ (hWgate)]Wdown,
where ⊗ denotes element-wise multiplication. The increased complexity of GLU, with its three
matrices, presents challenges for a controlled comparison under the same parameter budget. Given
these considerations, we focus on experimenting within our current scope.

B.2 BOTTLENECK SIZE OF PEFT EXPERTS

We provide a detailed empirical analysis about the inefficient parameter utilization when always-
activated shared experts are employed without an effective routing mechanism. This symbolizes a
mismatch between effective dimensionality and adapter capacity: if the adapter’s dimensions sig-
nificantly exceed the task’s intrinsic dimensionality, surplus dimensions may introduce useless or
harmful adaptations. Larger random-initialized bottlenecks in PERFT-S and PERFT-D can intro-
duce unnecessary noise in the additional adapted spaces due to insufficient information, interfering
with useful representations in the original pretrained model. With the perspective viewing hidden
states on the residual stream as bandwidths for modules to communicate on (Elhage et al., 2021), in
our PEFT scenario where most parameters remain unchanged, only a relatively small subspace of
each layer’s hidden state requires task-specific adaptation. Any over-parameterized adaptation can
unnecessarily disrupt normal functioning on the residual stream’s bandwidths, potentially destabi-
lizing the original gradient flow in the transformer and leading to unstable training or sub-optimal
solutions (Aghajanyan et al., 2021). Simultaneously, in the PEFT context with limited adaptation
information compared to model pretraining, an excessively large parameter space without gating
control can easily result in over-fitting on fine-tuning data, which is exacerbated by the sparse nature
of the MoE module we are adapting. As the MoE module hosts multiple different patterns on vari-
ous combinations of activated FFN experts that dynamically interact with each other on the residual
stream, the always-activated PERFT-S and PERFT-D variants may learn unnecessary adaptations
during the training process, further aggravating the disrupted functionality and over-fitting problems.

It is also worth noting that since FFN tends to learn task-specific textual patterns (Geva et al., 2021)
and attention learns more about positional interactions (Elhage et al., 2021), the nature of different
components to which PEFT is introduced also contributes to different phenomena. For the baseline
LoRA operating on attention matrices, individual attention heads are already operating on relatively
smaller subspaces and can easily write outputs to disjoint subspaces without interaction. The spaces
they read and write are relatively more fixed due to the low rank property (Dhead < D of hidden
space) of multi-head attention matrices. Consequently, additional parameters introduced by scaling
the bottleneck of attention LoRA may not interfere with information from other components as
severely as adapting the MoE FFN module.

B.3 MULTIPLICITY OF PEFT EXPERTS WITHOUT ROUTING

This degradation can be explained from the perspective of redundancy in key vector memories.
Suppose we have a PERFT-D of M shared experts with bottleneck size DB . This can be viewed as
a set of M clusters of key PEFT vectors {ẽi}j , i ∈ {1, · · · , DB}, j ∈ {1, · · · ,M}. At initialization,
all weights are randomly distributed. The probability of two randomly chosen vectors being within
ϵ distance of each other can be approximated using the chi-square distribution:

p0(ϵ) ≈ P (χ2
DB

<
DBϵ

2

4
) (11)

where χ2
DB

is the chi-square distribution with DB degrees of freedom. As training progresses,
vectors may converge. We can define a factor γT that represents the increased likelihood of vectors
being within ϵ distance after T training steps:

pT (ϵ) = γT · p0(ϵ) (12)
The expected number of effective vectors after T training steps can be approximated as:

E[Neff(T )] ≈MDB(1− e−MDBγT p0(ϵ)
2

) (13)
And the efficiency factor:

ηT (ϵ) ≈ 1− e−MDBγT p0(ϵ)
2

(14)
These formulas depend on p0(ϵ), which can be estimated from the initialization distribution, and γT ,
which represents the cumulative effect of training on vector convergence. The γT factor encapsulates
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the impact of gradient updates over T training steps and could be estimated empirically or through
analysis of training dynamics.

C ADDITIONAL RESULTS

C.1 OLMOE-1B-7B FOR COMMONSENSE REASONING
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Figure 7: Performance comparison of OLMoE-1B-7B fine-tuned with different configurations
of PERFT-R. Performance on y-axes is averaged across commonsense reasoning benchmarks; “Ac-
tivated Parameter Efficiency” on x-axes indicates the ratio of activated trainable parameters to the
total activated parameters. Color represents different configurations of PERFT-R. Transparency in-
dicates different sparsity levels (ratio of activated experts K/N , as “(TopK/N)” labeled for PERFT-R
and PERFT-E). Marker size indicates bottleneck size DB .
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(a) Dynamics of configurations with different numbers of total PEFT experts in PERFT-R
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(c) Dynamics of configurations with different activated ratios among PEFT experts in PERFT-R

Figure 8: Performance comparison of configurations with different total number of PEFT
experts in PERFT-R. Results from OLMoE-1B-7B fine-tuned with PERFT-R for commonsense
reasoning. x-axes stand for activated parameter efficiency. Transparency represents different spar-
sity levels (ratio of activated PEFT experts), and marker size represents bottleneck size DB .
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Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Base (pretrained) — — 42.42 52.61 16.53 21.27 28.10 13.13 13.99 6.80 24.36
Base (instruct) — — 59.94 62.68 12.03 22.27 5.84 15.15 17.15 8.00 25.38

LoRA2 Wq,Wv@Attn 0.26M 0.020 62.02 71.11 59.77 28.48 50.36 70.37 48.89 48.00 54.88
LoRA4 Wq,Wv@Attn 0.52M 0.041 60.40 73.61 62.90 32.08 50.20 74.12 52.65 51.20 57.15
LoRA8 Wq,Wv@Attn 1.05M 0.082 63.76 74.86 65.30 37.01 50.83 76.81 55.46 56.40 60.05
LoRA16 Wq,Wv@Attn 2.10M 0.164 64.95 76.88 69.60 39.27 53.35 78.07 57.34 63.40 62.86
LoRA32 Wq,Wv@Attn 4.19M 0.327 66.79 78.56 70.93 41.63 58.41 79.38 60.41 65.00 65.14
LoRA64 Wq,Wv@Attn 8.39M 0.654 67.13 80.30 73.34 44.28 65.90 80.72 61.95 70.00 67.95
LoRA128 Wq,Wv@Attn 16.8M 1.309 68.32 82.64 74.16 45.71 72.45 81.36 63.82 73.60 70.26

LoRA4 Wg@Gate 0.14M 0.011 62.14 59.79 39.66 25.94 51.62 42.63 36.52 29.00 43.41
LoRA8 Wg@Gate 0.27M 0.021 59.11 66.49 47.59 27.37 51.70 52.06 42.06 33.20 47.45
LoRA16 Wg@Gate 0.54M 0.042 62.05 64.04 47.85 28.08 49.33 57.37 43.17 34.40 48.29
LoRA32 Wg@Gate 1.08M 0.084 59.24 60.07 43.19 26.62 49.09 41.50 32.34 31.60 42.96

LoRA4 PERFT-S (1) 0.26M 0.020 63.82 72.31 63.87 25.45 50.12 73.91 49.49 56.40 56.92
LoRA8 PERFT-S (1) 0.52M 0.041 63.52 73.56 66.33 25.45 51.93 72.60 52.47 61.00 58.36
LoRA16 PERFT-S (1) 1.05M 0.082 63.49 71.71 65.71 25.11 51.22 71.13 50.60 61.20 57.52
LoRA32 PERFT-S (1) 2.10M 0.164 62.08 68.28 64.69 25.37 52.17 64.73 44.54 54.80 54.58
LoRA64 PERFT-S (1) 4.19M 0.327 61.59 63.76 59.11 24.48 54.06 53.75 36.86 43.80 49.68

LoRA4 PERFT-D (2) 0.52M 0.041 62.14 71.87 66.53 25.41 51.07 72.60 50.43 57.80 57.23
LoRA8 PERFT-D (2) 1.05M 0.082 62.87 71.44 63.41 25.47 51.70 65.28 46.84 54.80 55.23
LoRA16 PERFT-D (2) 2.10M 0.164 62.14 59.68 46.98 25.51 49.25 45.96 33.45 39.20 45.27
LoRA32 PERFT-D (2) 4.19M 0.327 62.17 48.20 32.86 25.38 48.86 24.87 25.17 25.60 36.64

LoRA4 PERFT-D (4) 1.05M 0.082 62.87 69.37 61.98 24.93 50.91 65.78 46.08 55.60 54.69
LoRA8 PERFT-D (4) 2.10M 0.164 62.17 49.29 33.06 24.57 49.57 25.46 25.09 22.20 36.43
LoRA16 PERFT-D (4) 4.19M 0.327 62.17 50.60 33.21 24.67 48.78 26.01 24.74 30.00 37.52
LoRA32 PERFT-D (4) 8.39M 0.654 62.17 52.18 33.47 25.02 50.51 25.80 22.18 26.00 37.17

LoRA4 PERFT-D (8) 2.10M 0.164 62.11 48.86 35.11 24.57 48.22 25.51 23.38 27.80 36.94
LoRA8 PERFT-D (8) 4.19M 0.327 62.17 49.13 33.27 25.37 49.41 25.00 24.23 26.40 36.87
LoRA16 PERFT-D (8) 8.39M 0.654 62.17 52.01 33.47 24.91 53.20 25.29 26.96 25.20 37.90
LoRA32 PERFT-D (8) 16.8M 1.309 62.17 50.92 33.88 24.58 49.64 24.16 26.71 25.20 37.16

LoRA4 PERFT-R (Top1/1) 0.16M 0.013 62.48 75.73 68.17 25.16 51.07 76.81 55.72 61.60 59.59
LoRA8 PERFT-R (Top1/1) 0.29M 0.023 63.43 77.53 70.68 42.13 66.14 77.10 59.30 66.20 65.31
LoRA16 PERFT-R (Top1/1) 5.57M 0.043 64.98 78.56 72.52 41.99 67.25 77.82 58.70 68.20 66.25
LoRA32 PERFT-R (Top1/1) 1.08M 0.084 66.36 78.84 72.36 42.83 63.38 78.62 58.36 71.20 66.49

LoRA4 PERFT-R (Top1/2) 0.20M 0.015 63.67 77.04 69.09 39.92 58.09 76.81 55.80 62.40 62.85
LoRA8 PERFT-R (Top1/2) 0.33M 0.026 63.98 78.13 70.93 41.00 58.88 78.11 56.66 65.80 64.19
LoRA16 PERFT-R (Top1/2) 0.59M 0.046 65.14 76.93 72.42 41.39 70.64 78.03 59.56 69.20 66.66
LoRA32 PERFT-R (Top1/2) 1.11M 0.087 65.60 78.18 73.13 43.47 69.61 77.40 58.53 70.00 66.99
LoRA64 PERFT-R (Top1/2) 2.16M 0.169 66.09 77.97 73.75 46.36 72.61 78.79 62.20 69.20 68.37

LoRA4 PERFT-R (Top2/2) 0.33M 0.026 64.86 76.71 69.60 40.89 62.43 77.23 55.80 63.60 63.89
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 65.26 78.18 72.31 42.11 71.82 77.90 60.49 67.80 66.99
LoRA16 PERFT-R (Top2/2) 1.11M 0.087 66.18 77.97 72.52 43.99 70.64 78.24 60.75 69.80 67.51
LoRA32 PERFT-R (Top2/2) 2.16M 0.169 65.81 79.38 73.59 49.42 71.59 77.78 61.18 71.80 68.82
LoRA64 PERFT-R (Top2/2) 4.26M 0.332 65.96 79.87 72.82 53.93 73.40 78.91 62.20 72.20 69.91
LoRA128 PERFT-R (Top2/2) 8.45M 0.659 67.09 80.09 74.67 68.44 70.32 79.55 60.49 73.80 71.81

LoRA4 PERFT-R (Top1/4) 0.39M 0.031 63.94 76.88 69.91 39.14 60.54 78.49 57.68 65.40 64.00
LoRA8 PERFT-R (Top1/4) 0.66M 0.051 64.34 77.75 71.75 40.30 67.01 77.06 58.96 64.80 65.25
LoRA16 PERFT-R (Top1/4) 1.18M 0.092 64.46 77.04 71.29 41.83 62.51 77.57 59.39 65.00 64.89
LoRA32 PERFT-R (Top1/4) 2.23M 0.174 66.21 78.51 71.49 43.87 69.61 77.69 61.01 70.20 67.32
LoRA64 PERFT-R (Top1/4) 4.33 0.337 65.32 79.60 73.49 45.33 71.11 77.69 62.20 71.00 68.22

LoRA4 PERFT-R (Top2/4) 0.66M 0.051 63.98 75.68 69.29 40.26 65.75 77.36 59.56 67.40 64.91
LoRA8 PERFT-R (Top2/4) 1.18M 0.092 65.02 77.86 71.90 41.61 68.75 77.31 59.13 68.80 66.30
LoRA16 PERFT-R (Top2/4) 2.23M 0.174 64.07 76.61 73.59 42.10 71.90 78.32 60.58 71.20 67.30
LoRA32 PERFT-R (Top2/4) 4.33M 0.337 66.30 77.75 75.44 45.88 71.43 76.18 60.58 70.60 68.02

LoRA4 PERFT-R (Top4/4) 1.18M 0.092 64.25 75.84 71.03 41.40 69.22 77.65 57.08 68.40 65.61
LoRA8 PERFT-R (Top4/4) 2.23M 0.174 65.14 77.64 72.98 42.67 72.45 76.98 59.39 66.40 66.71
LoRA16 PERFT-R (Top4/4) 4.33M 0.337 65.44 79.43 73.08 48.35 71.19 77.48 59.98 73.40 68.55
LoRA32 PERFT-R (Top4/4) 8.52M 0.665 66.70 79.49 73.75 55.95 71.43 77.53 60.07 70.40 69.41
LoRA64 PERFT-R (Top4/4) 16.9M 1.319 66.02 79.71 75.49 59.29 73.32 76.64 59.90 71.80 70.27
LoRA128 PERFT-R (Top4/4) 33.7M 2.628 65.99 78.94 75.13 67.21 73.72 78.24 59.90 74.80 71.74

Table 4: (Part 1/2) Evaluation results for OLMoE-1B-7B with baseline methods and PERFT
variants on eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside
PEFT modules. “# Act.” and “% Act.” represent the number of activated trainable parameters and
their ratio to the total activated parameters. “(TopK/N)” refers to activating K experts among the
total number of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and
OpenBookQA (Mihaylov et al., 2018).
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Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

LoRA4 PERFT-R (Top1/8) 0.52M 0.041 63.73 75.30 69.91 40.77 66.77 77.69 57.51 64.60 64.54
LoRA8 PERFT-R (Top1/8) 0.79M 0.061 64.98 77.09 70.78 41.65 66.93 77.78 57.76 66.40 65.42
LoRA16 PERFT-R (Top1/8) 1.31M 0.102 64.89 77.26 70.88 41.95 70.09 77.31 59.39 67.40 66.15
LoRA32 PERFT-R (Top1/8) 2.36M 0.184 64.25 77.58 72.52 42.30 70.64 77.82 58.53 67.40 66.38

LoRA4 PERFT-R (Top2/8) 0.79M 0.061 64.28 76.99 68.88 40.61 66.85 77.57 57.34 65.40 64.74
LoRA8 PERFT-R (Top2/8) 1.31M 0.102 63.91 76.88 71.03 43.45 69.69 77.23 58.11 68.00 66.04
LoRA16 PERFT-R (Top2/8) 2.36M 0.184 64.68 77.64 72.36 43.33 71.51 75.97 58.45 67.80 66.47
LoRA32 PERFT-R (Top2/8) 4.46M 0.348 64.40 78.13 74.21 46.80 71.59 76.39 58.79 71.20 67.69

LoRA4 PERFT-R (Top4/8) 1.31M 0.102 64.74 77.04 71.60 42.82 70.01 77.31 59.73 68.20 66.43
LoRA8 PERFT-R (Top4/8) 2.36M 0.184 64.86 76.61 73.69 42.10 69.46 76.98 58.02 67.20 66.12
LoRA16 PERFT-R (Top4/8) 4.46M 0.348 65.78 76.33 72.57 45.61 69.53 76.22 58.28 69.20 66.69
LoRA32 PERFT-R (Top4/8) 8.65M 0.675 65.20 77.37 73.64 46.36 72.45 77.02 56.83 69.20 67.26

LoRA4 PERFT-R (Top8/8) 2.36M 0.184 64.98 77.37 72.77 45.71 70.32 77.15 58.96 68.60 66.98
LoRA8 PERFT-R (Top8/8) 4.46M 0.348 64.98 78.13 74.21 46.75 69.85 77.19 59.56 70.00 67.58
LoRA16 PERFT-R (Top8/8) 8.65M 0.675 65.93 77.58 74.41 55.14 71.98 76.47 57.59 71.40 68.81
LoRA32 PERFT-R (Top8/8) 17.0M 1.329 65.78 78.07 74.92 58.44 71.82 76.05 61.35 73.80 70.03
LoRA64 PERFT-R (Top8/8) 33.8M 2.638 65.20 80.25 75.13 65.68 73.01 75.67 59.47 72.40 70.85

LoRA4 PERFT-R (Top1/16) 0.79M 0.061 64.65 75.73 70.83 40.04 63.61 77.06 59.04 64.40 64.42
LoRA8 PERFT-R (Top1/16) 1.05M 0.082 64.98 76.17 69.60 40.17 67.48 76.30 58.02 67.00 64.97
LoRA16 PERFT-R (Top1/16) 1.57M 0.123 63.79 77.04 73.29 42.39 70.56 76.60 58.96 69.00 66.45
LoRA32 PERFT-R (Top1/16) 2.62M 0.204 64.25 75.79 72.21 43.98 70.24 76.18 59.04 69.20 66.36

LoRA4 PERFT-R (Top2/16) 1.05M 0.082 63.94 77.31 71.44 41.23 69.22 78.37 58.11 67.00 65.83
LoRA8 PERFT-R (Top2/16) 1.57M 0.123 62.45 76.12 71.55 41.75 67.80 76.14 59.47 68.00 65.41
LoRA16 PERFT-R (Top2/16) 2.62M 0.204 64.50 76.06 71.03 43.21 69.22 75.59 59.30 68.00 65.86
LoRA32 PERFT-R (Top2/16) 4.72M 0.368 65.35 76.50 72.98 47.08 69.30 74.79 58.19 67.80 66.50

LoRA4 PERFT-R (Top4/16) 1.57M 0.123 64.37 75.52 72.36 42.12 69.61 76.35 57.59 68.00 65.74
LoRA8 PERFT-R (Top4/16) 2.62M 0.204 64.92 76.55 72.21 43.09 69.61 75.67 59.30 67.20 66.07
LoRA16 PERFT-R (Top4/16) 4.72M 0.368 65.50 76.50 73.80 43.82 71.43 74.03 57.34 69.80 66.53
LoRA32 PERFT-R (Top4/16) 8.91M 0.695 65.47 77.09 73.64 45.04 69.77 74.49 58.70 67.80 66.50

LoRA4 PERFT-R (Top8/16) 2.62M 0.204 64.25 76.06 72.31 41.46 71.11 76.81 60.67 68.00 66.33
LoRA8 PERFT-R (Top8/16) 4.72M 0.368 64.50 77.53 73.34 45.22 71.74 74.92 57.51 67.80 66.57
LoRA16 PERFT-R (Top8/16) 8.91M 0.695 64.53 77.91 73.54 47.24 71.27 75.00 54.78 71.20 66.93
LoRA32 PERFT-R (Top8/16) 17.3M 1.350 65.57 76.82 74.51 53.13 70.01 74.07 57.17 70.60 67.73

LoRA4 PERFT-R (Top8/32) 3.15M 0.245 63.82 75.52 72.57 41.75 72.30 74.37 57.25 69.00 65.82
LoRA8 PERFT-R (Top8/32) 5.24M 0.409 63.79 75.35 71.70 43.90 67.88 74.03 58.28 67.80 65.34
LoRA16 PERFT-R (Top8/32) 9.44M 0.736 64.07 75.90 73.39 44.59 72.22 72.31 55.29 65.20 65.37
LoRA32 PERFT-R (Top8/32) 17.8M 1.390 64.71 75.35 73.95 47.17 70.72 72.22 55.46 67.80 65.92

LoRA4 PERFT-R (Top8/64) 4.19M 0.327 63.55 76.06 70.11 42.16 69.14 72.31 53.67 64.80 63.98
LoRA8 PERFT-R (Top8/64) 6.29M 0.491 64.53 75.52 72.21 41.79 70.40 71.38 53.92 66.20 64.49
LoRA16 PERFT-R (Top8/64) 10.5M 0.818 64.71 73.61 72.26 42.35 70.88 71.09 54.78 65.80 64.44
LoRA32 PERFT-R (Top8/64) 18.9M 1.472 62.81 74.43 72.31 41.11 69.22 69.49 53.84 65.60 63.60

LoRA2 PERFT-E (Top8/64) 1.05M 0.082 65.54 79.11 73.59 50.06 73.24 77.27 58.70 72.80 68.79
LoRA4 PERFT-E (Top8/64) 2.10M 0.164 64.80 79.49 74.36 58.39 72.69 75.00 58.45 72.20 69.42
LoRA8 PERFT-E (Top8/64) 4.19M 0.327 65.81 78.84 73.85 58.84 71.51 74.41 56.06 69.20 68.56
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 65.20 78.24 74.97 64.35 72.30 74.41 55.46 69.40 69.29
LoRA32 PERFT-E (Top8/64) 16.8M 1.309 66.51 76.39 74.26 62.55 73.09 72.22 56.14 70.60 68.97
LoRA64 PERFT-E (Top8/64) 33.6M 2.617 65.57 77.09 73.80 59.89 73.32 71.72 56.40 68.80 68.32

Table 5: (Part 2/2) Evaluation results for OLMoE-1B-7B with baseline methods and PERFT
variants on eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside
PEFT modules. “# Act.” and “% Act.” represent the number of activated trainable parameters and
their ratio to the total activated parameters. “(TopK/N)” refers to activating K experts among the
total number of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and
OpenBookQA (Mihaylov et al., 2018).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 OLMOE-1B-7B FOR ARITHMETIC REASONING

Arch. Strategy # Act. % Act. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.

LoRA2 Wq,Wv@Attn 0.26M 0.020 20.00 8.72 43.04 20.47 52.95 29.40 29.10
LoRA4 Wq,Wv@Attn 0.52M 0.041 21.83 8.11 40.51 20.47 50.79 28.80 28.42
LoRA8 Wq,Wv@Attn 1.05M 0.082 17.33 8.57 44.05 24.02 50.59 30.90 29.24
LoRA16 Wq,Wv@Attn 2.10M 0.164 18.83 9.02 46.58 24.02 50.59 29.20 29.71
LoRA32 Wq,Wv@Attn 4.19M 0.327 19.17 8.79 43.54 23.23 51.97 28.20 29.15
LoRA64 Wq,Wv@Attn 8.39M 0.654 17.00 9.10 47.09 22.83 49.80 27.10 28.82
LoRA128 Wq,Wv@Attn 16.8M 1.309 15.00 8.11 44.81 22.83 49.02 26.50 27.71

LoRA4 PERFT-S (1) 0.26M 0.020 21.00 5.61 40.00 18.50 50.59 28.90 27.43
LoRA8 PERFT-S (1) 0.52M 0.041 17.00 6.22 34.18 17.32 39.17 30.20 24.02
LoRA16 PERFT-S (1) 1.05M 0.082 14.83 6.29 35.19 21.26 41.73 27.30 24.43
LoRA32 PERFT-S (1) 2.10M 0.164 16.17 4.09 34.68 18.11 37.40 23.60 22.34

LoRA4 PERFT-D (2) 0.52M 0.041 18.67 5.76 37.97 20.08 40.75 24.60 24.64
LoRA8 PERFT-D (2) 1.05M 0.082 15.67 5.46 33.16 18.11 37.40 24.40 22.37
LoRA16 PERFT-D (2) 2.10M 0.164 14.00 4.85 30.13 16.93 34.65 22.00 20.43
LoRA32 PERFT-D (2) 4.19M 0.327 8.17 3.87 29.11 19.29 25.39 15.70 16.92

LoRA4 PERFT-D (4) 1.05M 0.082 14.17 5.08 34.18 22.05 35.43 21.80 22.12
LoRA8 PERFT-D (4) 2.10M 0.164 9.17 3.94 31.65 19.69 29.13 20.60 19.03
LoRA16 PERFT-D (4) 4.19M 0.327 9.33 3.03 21.77 20.87 21.46 13.30 14.96
LoRA32 PERFT-D (4) 8.39M 0.654 4.33 1.97 16.20 21.65 18.90 12.90 12.66

LoRA4 PERFT-R (Top1/2) 0.20M 0.015 18.83 7.88 41.77 16.93 44.88 26.10 26.07
LoRA8 PERFT-R (Top1/2) 0.33M 0.026 19.00 7.51 47.09 19.69 53.35 31.90 29.75
LoRA16 PERFT-R (Top1/2) 0.59M 0.046 21.17 8.79 52.15 19.69 57.68 32.00 31.91
LoRA32 PERFT-R (Top1/2) 1.11M 0.087 27.17 9.33 50.89 20.87 57.09 32.00 32.89

LoRA4 PERFT-R (Top2/2) 0.33M 0.026 21.17 8.19 45.82 18.11 49.02 30.30 28.77
LoRA8 PERFT-R (Top2/2) 0.59M 0.046 23.33 7.35 51.65 18.50 52.76 33.50 31.18
LoRA16 PERFT-R (Top2/2) 1.11M 0.087 26.50 8.49 52.15 20.87 56.69 32.30 32.83
LoRA32 PERFT-R (Top2/2) 2.16M 0.169 23.67 9.25 44.81 21.65 53.35 35.20 31.32

LoRA4 PERFT-R (Top1/4) 0.39M 0.031 18.83 8.87 48.86 21.65 50.20 29.10 29.59
LoRA8 PERFT-R (Top1/4) 0.66M 0.051 20.83 9.48 44.05 17.32 55.91 29.60 29.53
LoRA16 PERFT-R (Top1/4) 1.18M 0.092 22.67 7.88 46.84 20.47 51.77 33.50 30.52
LoRA32 PERFT-R (Top1/4) 2.23M 0.174 25.67 7.35 54.18 19.69 54.72 32.10 32.28

LoRA4 PERFT-R (Top2/4) 0.66M 0.051 19.33 7.73 45.32 16.93 49.21 31.70 28.37
LoRA8 PERFT-R (Top2/4) 1.18M 0.092 16.33 6.97 44.30 16.54 48.82 30.10 27.18
LoRA16 PERFT-R (Top2/4) 2.23M 0.174 20.83 8.34 47.34 18.50 51.18 33.70 29.98
LoRA32 PERFT-R (Top2/4) 4.33M 0.337 28.00 9.10 49.37 19.29 57.09 33.20 32.67

LoRA4 PERFT-R (Top4/4) 1.18M 0.092 20.67 7.58 47.85 20.08 53.35 31.30 30.14
LoRA8 PERFT-R (Top4/4) 2.23M 0.174 25.33 7.73 40.51 20.08 49.02 30.70 28.89
LoRA16 PERFT-R (Top4/4) 4.33M 0.337 21.50 7.43 45.06 20.87 59.84 30.30 30.83
LoRA32 PERFT-R (Top4/4) 8.52M 0.665 22.17 8.34 50.38 20.08 55.31 30.80 31.18

LoRA4 PERFT-R (Top2/8) 0.79M 0.061 21.83 7.88 50.89 21.26 51.97 29.90 30.62
LoRA8 PERFT-R (Top2/8) 1.31M 0.102 20.00 8.26 47.34 19.29 52.76 28.30 29.33
LoRA16 PERFT-R (Top2/8) 2.36M 0.184 22.33 8.72 46.08 20.87 50.39 30.20 29.76
LoRA32 PERFT-R (Top2/8) 4.46M 0.348 22.50 7.43 46.84 18.90 50.59 30.90 29.53

LoRA4 PERFT-R (Top8/8) 2.36M 0.184 28.33 7.81 47.85 16.93 53.15 31.20 30.88
LoRA8 PERFT-R (Top8/8) 4.46M 0.348 21.00 8.49 49.37 21.26 51.97 31.60 30.61
LoRA16 PERFT-R (Top8/8) 8.65M 0.675 28.50 8.04 45.82 20.87 53.74 32.90 31.64
LoRA32 PERFT-R (Top8/8) 17.0M 1.329 27.67 8.49 45.06 21.26 52.95 32.60 31.34

LoRA4 PERFT-E (Top8/64) 2.10M 0.164 26.67 6.44 46.58 22.05 53.94 32.10 31.30
LoRA8 PERFT-E (Top8/64) 4.19M 0.327 28.33 7.81 43.80 21.26 57.28 32.60 31.85
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 25.17 8.42 43.29 19.29 48.82 29.50 29.08
LoRA32 PERFT-E (Top8/64) 16.8M 1.309 26.17 6.75 44.05 20.87 52.76 32.80 30.56

Table 6: Evaluation results for OLMoE-1B-7B with baseline methods and PERFT variants on
six arithmetic reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules.
“# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio to
the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including MultiArith (Roy & Roth, 2015),
GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), AQuA (Ling et al., 2017), SingleEq
(Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021).
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C.3 MIXTRAL-8×7B FOR COMMONSENSE REASONING

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Base (pretrained) — — 51.10 81.12 46.11 47.54 49.88 53.20 52.99 39.20 52.64
Base (instruct) — — 68.87 88.30 68.58 72.06 59.98 89.52 78.50 74.40 75.03

LoRA8 Wq,Wv@Attn 3.41M 0.026 73.49 90.04 81.17 89.67 82.16 93.56 83.87 86.20 85.02

LoRA16 PERFT-S (1) 4.19M 0.033 75.11 90.26 81.63 94.26 84.85 92.85 81.40 87.60 85.99

LoRA8 PERFT-R (Top2/2) 4.46M 0.035 74.68 89.77 81.47 94.33 86.27 92.05 81.48 89.80 86.23
LoRA16 PERFT-R (Top1/4) 4.72M 0.037 72.84 89.12 80.40 92.69 84.37 91.84 82.25 85.80 84.91
LoRA8 PERFT-R (Top2/4) 4.72M 0.037 74.71 90.10 79.38 94.18 85.71 92.09 81.31 85.80 85.41
LoRA8 PERFT-R (Top2/8) 5.24M 0.041 73.76 89.12 81.63 94.51 85.16 91.67 80.20 87.80 85.48

LoRA8 PERFT-E (Top2/8) 4.19M 0.033 74.13 90.21 80.81 91.36 86.42 92.21 81.06 88.60 85.60

Table 7: Evaluation results for Mixtral-8×7B with baseline methods and PERFT variants on
eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside PEFT mod-
ules. “# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio
to the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and OpenBookQA
(Mihaylov et al., 2018).

C.4 MIXTRAL-8×7B FOR ARITHMETIC REASONING

Arch. Strategy # Act. % Act. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.

LoRA8 Wq,Wv@Attn 3.41M 0.026 60.00 50.87 90.13 28.74 89.37 69.20 64.72

LoRA8 PERFT-R (Top2/2) 4.46M 0.035 82.83 55.80 87.59 29.92 89.76 68.30 69.04
LoRA8 PERFT-R (Top2/8) 5.24M 0.041 79.00 54.06 87.34 29.13 88.98 70.30 68.13

Table 8: Evaluation results for Mixtral-8×7B with baseline methods and PERFT variants on
six arithmetic reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules.
“# Act.” and “% Act.” represent the number of activated trainable parameters and their ratio to
the total activated parameters. “(TopK/N)” refers to activating K experts among the total number
of N experts. Dataset names are partially abbreviated, including MultiArith (Roy & Roth, 2015),
GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), AQuA (Ling et al., 2017), SingleEq
(Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021).
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