Let’s Try Again: Eliciting Multi-Turn Reasoning in
Language Models via Simplistic Feedback

Licheng Liu" Zihan Wang" Linjie Li
Imperial College London Northwestern University University of Washington
licheng.liu22 @imperial.ac.uk zihanw @u.northwestern.edu linjli@cs.washington.edu

Chenwei Xu Yiping Lu Han Liu
Northwestern University Northwestern University Northwestern University
cxu@u.northwestern.edu yiping.lu@northwestern.edu hanliu@northwestern.edu

Avirup Sil Manling Li
IBM Research Al Northwestern University
avi@us.ibm.com manling.li@northwestern.edu
Abstract

Large Language Models (LLMs) are increasingly deployed as agents that solve
problems through multi-turn interaction, receiving feedback and refining their
reasoning based on users’ feedback. However, existing reinforcement learning
with verifiable reward (RLVR) methods train them under a single-turn paradigm.
As aresult, we discovered that models often fail to explore alternative reasoning
paths or reflect on prior mistakes, producing repetitive and unadapted responses
to feedback. To address this gap, we propose Unary Feedback as Observation
(UFO), a framework that conditions policy updates on minimal unary feedback
(e.g., “Let’s try again”) after incorrect answers. UFO is simple, compatible with
existing single-turn RL setups, and incentivizes self-reflection. To further promote
efficient and adaptive reasoning, we design reward structures that encourage mini-
mality (solving in fewer turns) and diversity (exploring alternatives under failure).
Experiments show that UFO preserves single-turn performance while improving
multi-turn reasoning accuracy by about 14%. Crucially, UFO-trained models also
generalize beyond their training domain, transferring effectively to out-of-domain
tasks across mathematics, STEM, QA, and general knowledge, showing that UFO
teaches models self-reflective reasoning that carry over across domains. Beyond
these empirical gains, UFO points toward a broader paradigm for building adap-
tive reasoning agents: one that scales supervision from static datasets, reduces
dependence on costly domain-specific feedback, and lays the foundation for more
general, self-improving Al systems in open-ended real-world settings.

1 Introduction

Large language and reasoning models (LLMs/LRMs) [1, 2, 3, 4] have demonstrated strong ca-
pabilities in solving complex tasks like math and code generation. Reinforcement learning
with verifiable rewards (RLVR) [1, 5, 6, 7] further enhances their reasoning ability. How-
ever, real-world applications such as chatbots and programming assistants [8, 9, 10, 11, 12] de-
mand multi-turn problem solving, a setting where current single-turn RL training falls short.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.

The letters of the alphabet are given numeric values based on two conditions below...What is the value of X?
<answer>4</answer>)

Single-Turn RL training make LLMs lose multi-turn problem solving capabilities

Before Single-Turn RL Training: Revising Answers

Please try again. Please try again
<answer>0</answer> x <answer>4</answer> x
Please try again. Please try again.
<answer>1</answer> J <answer>4</answer> x
LLMs can revise answer based on feedback LLMs generate exactly the same answer across turns

Figure 2: Single-turn RL causes LLMs to repeat answer across turns instead of revising based on
feedback.

In this work, we first observe that single-turn RL can hin-
der a model’s ability to engage in interactive multi-turn
reasoning. Specifically, models trained with single-turn
RL often repeat the same answer across turns (Fig-
ure 2). One particular reason for that is that most existing
datasets are inherently single-turn and lack signals for
iterative exploration. Without such signals, models have
limited opportunities to explore diverse reasoning paths
or adapt their strategies based on feedback. Collecting
real-world multi-turn user feedback is expensive and 1 2 3 4 5
challenging. Existing multi-turn RL framework rely on
automated signals from code interpreters [8, 9, 12] or
simulators [11, 13], which are costly to design and lim-
ited in scope [14]. To address this, we propose a simple
yet effective method that enables multi-turn RL using
static datasets.

[o]
o

@ Before RL
After RL

Percentage (%)
N o
o o

N
o

of Effective Answers
Figure 1: After single-turn RL training, the
model gives the same answer across five
turns in 70% of the cases.

By inserting minimal verbal feedback (e.g., “try again”) into the context, we prompt models to
revise their reasoning. We call this approach Unary Feedback as Observation (UFO), which treats
interactive problem solving as an MDP where unary feedback serves as the observation signal.

Experiments show that multi-turn RL with UFO encourages interactive reasoning and exploration
of alternative solutions, reducing repeated answers. Models trained with UFO improve multi-turn
success rates by 14% over single-turn RL and generalize well to diverse out-of-domain tasks by better
adapting their reasoning.

To better align with real-world multi-turn reasoning, we propose two principles: minimality—solving
problems in fewer turns, and diversity—exploring varied strategies after failure. We implement these
via turn-wise reward decay and repetition penalties, promoting efficient and systematic reasoning.

To summarize, our contributions are as follows:

* We identify that while current single-turn RL training improves reasoning, they can lead to repetitive
and degraded outputs in multi-turn, interactive reasoning scenarios.

* We explore a simple yet effective framework, Unary Feedback as Observation (UFO), to enable
multi-turn RL training on existing static single-turn reasoning datasets.

* We show that turn-wise reward decay and answer repetition penalty could effectively improve
multi-turn reasoning minimality and diversity.

B Before RL After RL

Bhvendnnd

DAPO Dr. GRPO Dr.GRPO GRPO GRPO GRPO GRPO PPO PPO + UFO (ours)
328 158 0.58 1.58 148

Figure 3: Comparlson of unique answer ratio (%) before and after RL tralnmg. Across single-

turn RL methods, the unique answer ratio consistently drops after training across multiple model

scales.

=
o
o

~
(%]

Unique Answer Ratio (%)
N w1
w o

o

2 Reinforcement Learning for LLM Reasoning

2.1 Background

Single-Turn Reinforcement Learning. Reinforcement Learning (RL) is a general framework to
steer the behavior of LLMs by maximizing expected reward:

]EwND, y~mo(-|x) [R(I, y)]v

where D is a prompt distribution, 7y, is the LLM policy parameterized by 6, and R(z,y) is the
reward for response y. Algorithms such as PPO [5, 15] and GRPO [1, 16] apply this objective to
static datasets, yielding strong single-turn gains in math and code generation.

Multi-Turn Extensions. While existing methods optimize for single-shot correctness, real-world
tasks like tutoring, coding, and embodied agents require multi-turn and iterative refinement under
feedback. In some domains (e.g., programming), automated feedback is available, but in others (e.g.,
math), feedback is often sparse.

Recent work addresses the challenge of sparse feedback by optimizing full interaction trajectories.
For example, CollabLLM [17] introduces multi-turn fine-tuning with collaborative simulation and
sparse rewards, while RAGEN [7] frames reasoning as an MDP to enable delayed credit assignment.
However, these methods often depend on custom environments or simulated rewards, limiting
scalability. Since most real-world math and code datasets are single-turn and collecting turn-level
human feedback is costly, some efforts synthesize proxy signals [9, 8] or build tool-augmented
environments [18, 19, 12]. Still, multi-turn training remains insufficiently studied.

2.2 Single-Turn RL Leads to Collapsed Multi-Turn Reasoning

To understand multi-turn behavior, we examine how single-turn RL models respond to minimal
feedback (e.g., “try again”). While these models are effective solvers, they are poor revisers, often
repeating initial answers without incorporating feedback (Figure 2).

We quantify this using the effective answer metric. As shown in Figures 3, single-turn RL training
reduces the diversity of responses across turns. Off-the-shelf models fine-tuned with PPO [5],
GRPO [16], DAPO [20], and Dr. GRPO [21] all exhibit decreased effective answer ratios. For
instance, DAPO reduces the 32B model’s ratio from 78.0% to 65.7%, and Dr. GRPO drops the 1.5B
model from 38.0% to 15.4%. PPO and GRPO show milder declines.

We theoretically analyze why single-turn RL models repeat mistakes in multi-turn settings. This
behavior is a predictable consequence of the training process itself, which creates a peaked, low-
entropy output distribution [22, 23].

To quantify this, we use the collision probability, the likelihood that two independent samples are
identical, which is formally defined as

Coll(g) ==Y _qly |).

Y

This probability is fundamentally lower-bounded by the distribution’s Shannon Entropy,
Coll(g) > exp(~H(q)).

We made a rigorous formalization in Appendix B, showing that as a policy becomes more deterministic
(lower entropy), repetition probability increases. Thus, for static policies that can’t incorporate
feedback, repetition becomes an inevitable failure mode.

To overcome this limitation, a policy must learn from interaction history. We formalize this via a
Markov Decision Process (MDP) and define two policy classes. Parallel Policies (11,,,), used in
single-turn RL, generate k independent answers from the initial input; Sequential Policies (ILgeq)
adapt based on the full interaction history. Since

Hpar - Hseqa
the latter provably achieves higher expected success rates:

max E[Succ@k] > max E[Succ@Fk].

€I eq Ellpar

This guarantee follows from a sequential policy’s ability to avoid past errors, boosting its conditional
success. By Blackwell dominance [24], it achieves success rates at least as high as parallel policies.
See Appendix C for details.

This highlights a critical gap: single-turn RL falls short for multi-turn reasoning, yet fine-grained
supervision is often impractical. This leads to our central question:

Can minimal feedback like “try again” enable multi-turn reasoning on static
datasets?

3 Training Multi-Turn Reasoning Models with Unary Feedback

3.1 Problem Formulation

‘We model multi-turn problem solving from static single-turn datasets as a finite-horizon MDP:
(S’ 'A7 P? R7 Tmax)-

Here, S is the state space, A is the action space consisting of all possible answers, P is the transition
function defined by the agent—environment interaction, R is the reward function, and T}, is the
maximum number of interaction steps per episode.

At each turn ¢, the agent observes a state s; € S, that encodes the original question ¢ and the history
of past attempts and feedbacks:

s; = Concat (q, {(ak, fx) 2;11),
where aj, denotes the k-th answer, and f}, is a feedback token returned by the environment. The agent
samples an answer
ag ~ (- | s¢),
and receives reward
|1, if ay is correct,
"= {0, otherwise.

The episode ends upon success or after Ti,,x turns. This frames multi-turn learning within standard
RL.

3.2 Unary Feedback as Observation (UFO)

To realize the above MDP on static datasets, we introduce Unary Feedback as Observation (UFO)
(Figure 4), a simple mechanism for constructing state histories. The key idea is to restrict f in the
observation to negative signals only. UFO restricts feedback f to a generic negative signal (e.g.,
TryAgain) when answers are incorrect; no explicit positive feedback is given. The episode ends
upon a correct answer, and the agent must learn to revise based solely on failed attempts.

In practice, prompts are natural-language sequences listing prior answers and feedback, e.g.:

UFO: Unary Feedback as Observation Multi-Turn Roll Out T

S, % So Question S, Question + History
A, Ay <think>..<answer>2 ¥ A, <think>..<answer> 3 / R=R, - A.ﬂ
J Repetition Penalty
Rr Ends R(] 0 R, 1%y =0.5
Unary Feedback Step 0 Step 7 with reward decay y’

Figure 4: The UFO framework for multi-turn training. At each step ¢, the model observes the full
interaction history and generates a response. Correct responses receive discounted rewards ¢, while
incorrect ones receive none. A repetition penalty based on the uniqueness of trajectory 7 is applied
after success or when the turn limit is reached.

Question: What is the value of ...7
Attempt 1: [wrong answer]
Feedback: Try Again.

Attempt K: [correct answer]

UFO converts static single-turn data into multi-turn episodes with no need for expert labels, structural
changes, or external tools—enabling multi-turn RL with minimal supervision.

3.3 Reinforcement Learning with Unary Feedback

With the MDP and UFO design, we train the agent via RL to learn revision-aware, multi-turn policies.
Since datasets only provide final-answer correctness without reasoning traces, supervised finetuning
is infeasible. RL instead enables exploration under sparse, delayed supervision.

We adopt Proximal Policy Optimization (PPO) to train the policy 7y, following prior work [25, 7]
showing that a learned critic stabilizes optimization. In each episode, the agent interacts with a
problem over multiple turns, observing x;, generating a;, and receiving binary reward r; € {0, 1}.
The resulting trajectory is defined as

T = {(Ila ay, Tl)? (:EQ’ a2, T2)7 EERR ('IT7 ar, TT)}a

where T' < T« is the number of turns before termination. The objective is to maximize the expected
return:

T
jRL(e) =]E’TN’TTQ Z Tt
t=1
We apply PPO with a clipped surrogate objective. For each training batch, we estimate the advantage

Ay using a baseline value function and update the policy as:

7r9(at | It)
Toga(at | Tt)

7'('9(045 | il't)

LPP0(9) = E, | min
() ! 7T9old(at ‘ xt)

Ay, cnp< Ay, 1—, 1+e> . 1)

UFO enables the policy to condition on past failures, allowing context-sensitive behaviors like error
correction, elimination, and refinement—skills hard to learn from static supervision alone.

3.4 Reward Design for Adaptive Reasoning

Binary correctness offers minimal supervision but may lead to blind trial-and-error behavior. To
encourage efficiency and reasoning, we introduce reward decay for minimality, favoring shorter
trajectories, and repetition penalty for diversity, discouraging repeated answers and promoting
exploration.

Reward decay encourages early success by assigning exponentially lower rewards to correct answers
at later turns:
~t, if ay is correct,
Rt - .
0, otherwise,

where v € (0, 1) is a decay factor.
We define the repetition penalty using the number of effective answers E(7) in a trajectory 7 of

length T":
E
Penalty(7) = A - (1 - ;T)> ,

where A > 0 controls the penalty strength and E(7)/T reflects diversity.

Combining the above components, the trajectory-level reward for RL training is defined as
R = R, — Penalty(7).

To improve stability, we apply a small penalty 1 < 0 for malformed or missing outputs. Overall, the
reward combines final-turn correctness, answer diversity, and output validity across turns.

4 Experiments

4.1 Setup

Dataset We conduct major experiments on the MATH subset of MetaMathQA [26] dataset (MMQ-
Math), where data are augmented from the MATH [27] dataset. We also select eight other widely-used
datasets in four different domains to evaluate the generalization ability of UFO: TheoremQA[28],
GSMS8K][29], GPQA[30], MMLU-STEM]|31], HotPotQA[32], ConcurrentQA[33], MMLU [31] and
MMLU-Pro[34].

Training Settings We train Qwen-2.5-3B-Instruct using PPO for 200 steps on A100 GPUs. Each
batch samples P=8 prompts with N=16 rollouts per prompt. We vary the maximum episode length
Tiax € 1,5, 10 during training and fix T},,c=5 for validation. PPO uses GAE (v, A) = (1.0, 1.0),
Adam with 3 = (0.9,0.999), and entropy coefficient 10~3.

Baseline and Metrics We compare our method UFQ against a single-turn PPO model trained
with parallel sampling. The baseline uses Pass@k, selecting the best from k parallel responses. Our
multi-turn model generates responses sequentially with feedback and is evaluated using Succ@k and
AvgTurns. We also perform ablations on T« to study the effect of multi-turn training.

* Pass@k (Baseline). The proportion of problems for which at least one of the k parallel completions
is correct. This metric reflects performance when no feedback is used during generation.

* Succ@k (Multi-turn) This metric measures the percentage of problems solved within a fixed
number of turns. Let 7; be the number of turns the agent takes to solve problem g;, or oo if it

fails.Succ@k = Z;\Ll I[r; < k.
* Average Number of Turns (Multi-turn) To evaluate interaction efficiency, we report the average

number of turns the agent takes to solve each problem: AvgTurns = % Z;Vﬂ T;. T} denotes the
number of interactive turns taken for problem g;.

4.2 Experimental Results and Findings

In this section, we present empirical findings that address three central questions in our study of
multi-turn reinforcement learning with unary feedback:

1. Section 4.2.1: Does multi-turn RL unlock stronger reasoning than single-turn training?
2. Section 4.2.2: Can models effectively revise their answers from sparse feedback alone?
3. Section 4.2.3: How do reward shaping strategies impact reasoning efficiency and diversity?

We explore each question in the following subsections, with quantitative analyses and ablation studies.
Additional qualitative examples and robustness checks are included in the Appendix.

4.2.1 Multi-turn RL Unlocks Higher Upper Bound of LLM Reasoning

We compare multi-turn RL models to single-turn PPO baselines using Succ®@5 over 21 checkpoints
on a held-out set (Figure 5). Multi-turn training achieves up to 14% higher success with similar
inference cost, highlighting the value of iterative revision under sparse feedback.

0.9
e 0.8 g
& & 0.8
@ 0.6 a
g g 0.7
S 2 —e— 10round
v 0.4 Multi-turn 5round
—e— Single turn 0.6 —— 1round
0 50 100 150 200 0 50 100 150 200
Steps Steps
Figure 5: 5-turn UFO significantly outper- Figure 6: Performance with 5 evaluation turns
forms single-turn RL baseline with similar shows that training with 5 turns performs best,
inference cost. while increasing to 10 offers no clear benefit.
0.950
o 0.925
= - —o
2 0.900 ¥——=8#=I-round training
0 Bl
0 5-round training
g 0.875 —8— 10-round training
0.850
0.825

1 2 4 6 8 10
validation rounds

Figure 7: Validation performance (Succ@k) under different training and inference turn settings.
Multi-turn UFO consistently improves success rates across all k, including k£ = 1.

We further evaluate models trained with T, € 1,5, 10 using a fixed 5-turn validation. As shown in
Figure 6, both 5- and 10-turn training yield over 6% gains relative to single-turn training, confirming
the benefits of longer training horizons.

To test generalization, we assess models under various inference budgets k € 1,2,4,6, 8,10 (Fig-
ure 7). Multi-turn-trained models consistently outperform baselines across all &, including k=1,
indicating improved single-turn performance from multi-turn training.

We evaluate the transferability of multi-turn reasoning using 5-turn UFO across nine benchmarks, cov-
ering math (MMQ-Math, TheoremQA, GSMS8K), STEM (GPQA, MMLU-STEM), QA (HotPotQA,
ConcurrentQA), and general knowledge (MMLU, MMLU-Pro), as shown in Table 1. Applying
5-turn UFO consistently improves performance over task-specific RL across all domains.

UFO enhances both in-domain and out-of-domain reasoning by promoting exploration and self-
reflection. For example, on MMQ-Math, 5-turn UFO improves the 3B model from 52.3% to
88.5%. Gains generalize across tasks: models trained on MMQ-Math show 7-10% improvement
on STEM, QA, and general knowledge datasets. Similarly, training on HotPotQA yields boosts on
GPQA (+9.4%), MMLU-STEM (+7%), and MMLU (+5.1%). Notably, UFO recovers and surpasses
accuracy drops from RL on MMLU (66.8% — 85.2%) and improves MMLU-Pro from 48.3% to
60.9%. These results show that UFO enables robust multi-turn and cross-task generalization by
guiding models to revise failed attempts using minimal feedback.

4.2.2 Multi-turn Setting Enables LRMs to Revise From Feedback

The multi-turn setting enables agents to engage repeatedly with each prompt, thereby constructing
more informative interaction trajectories from the same training data. This enhanced utilization of
feedback is hypothesized to extract more meaningful signals, potentially improving solution quality
and accelerating convergence, especially in data-limited contexts.

To empirically validate that LRMs can be improved by effectively utilizing feedback for revision,
we compared 5-turn training scenarios with and without explicit feedback. Results presented in
Figure 8(a) support this hypothesis, demonstrating an over 8% peak performance improvement

Table 1: 5-turn success rate across different tasks and training settings.

Math STEM QA General
Model MMQ-Math TheoremQA GSM8k GPQA MMLU-STEM HotpotQA ConcurrentQA MMLU MMLU-Pro
Qwen2.5-1.5B-Instruct
Base Model w/o RL 10.9 11.7 26.6 21.9 62.5 2.4 3.1 523 352
RL on MMQ-Math 74.8 20.1 84.7 22.7 65.5 19.2 9.5 43.8 34.8
+5turn UFO 83.6 26.8 88.1 27.3 64.8 22.6 9.5 60.9 34.8
Qwen2.5-3B-Instruct
Base Model w/o RL 52.3 28.3 68.0 51.6 75.8 7.8 39 75.2 422
RL on MMQ-Math 79.7 32.0 93.0 50.1 77.6 19.5 12.9 66.8 48.3
+5turn UFO 88.5 40.8 95.3 523 87.5 26.6 15.2 85.2 60.9
RL on HotQA 724 31.8 89.1 484 81.3 383 16.8 71.5 49.3
+5turn UFO 72.7 29.2 85.0 57.8 88.3 44.2 16.8 76.6 48.9
Qwen2.5-7B-Instruct
Base Model w/o RL 56.4 32.1 56.3 62.5 83.6 13.3 4.7 72.3 64.1
RL on MMQ-Math 85.1 33.6 95.2 50.8 84.8 26.3 14.1 73.4 523
+5turn UFO 93.0 42.1 96.8 56.9 84.8 28.6 16.4 80.5 58.8
Llama3.2-1B-Instruct
Base Model w/o RL* 23 23 1.6 1.6 4.6 0.8 0.8 39 23
RL on MMQ-Math 53.9 21.1 52.3 20.3 57.0 19.5 0.8 57.8 32.8
+5turn UFO 64.8 26.8 56.3 26.6 60.2 21.1 1.6 66.4 32.8
Llama3.2-3B-Instruct
Base Model w/o RL 50.8 20.3 484 47.7 713 29.7 6.0 65.6 49.2
RL on MMQ-Math 86.7 242 92.2 46.9 78.1 44.5 13.3 71.1 60.9
+5turn UFO 92.2 32.0 93.8 50.8 82.0 39.8 14.8 82.8 66.4
(a) (b)
0.9 0.9
0.8 208
& &
? 0.7 © 0.7
8 8
306 306
Feedback available in training and val Feedback available in only training
0.5 —— No available feedback 0.5 —e— No available feedback
0 50 100 150 200 0 50 100 150 200
Steps Steps

Figure 8: Multi-turn success rate comparison: Feedback prompt used in both training and validation
vs. blank prompt; (b) Feedback prompt used only in training vs. blank prompt.

when explicit feedback is provided. Even when used only during training (Figure 8(b)), feedback
improves reasoning, suggesting intrinsic benefits of multi-turn learning.

Robustness analysis (Figure 9) further shows consistent gains across prompt variations, highlighting
the generality and applicability of our approach.

4.2.3 Reward Shaping Encourages Efficient Problem Solving

We investigate how different reward schedules influence the agent’s learning behavior, particularly in
encouraging early success versus allowing extended exploration. All schedules define a reward r(n)
based on the turn index n when the first correct answer is produced, with n € {1,..., T }-

We define and evaluate three distinct reward schedules. Following the formulas proposed in Sec-
tion 3.4, we compare three approaches: (1) Exponential Decay: 7c,(n) = 7™ (with v = 0.5),
(2) Linear Decay: 7j;,(n) = max(0,1 — 0.2(n — 1)), (3) Constant Reward: rny(n) = 1. All
schedules operate for n € 1,..., T« The agent’s objective remains to maximize the expected
cumulative reward.

Experimental validation (Figure 10) confirms that exponential reward decay notably reduces the
mean number of actions by roughly 10 %, without sacrificing overall success rates. This suggests
that the exponential decay schedule encourages the model to engage in more profound self-reflection
and systematic thinking before generating a response.

9 antieai P E:
208 S
2 : g
o J
g 0.6 €2
3 % =z . W .)
¢ DOy
0 50 100 150 200 0 50 100 150 200
Steps Steps
—e— Incorrect. —e— Incorrect. Please think again.
—e— |ncorrect. Please try again. Incorrect. Let's try again.

Figure 9: Validation under different verbal feedback prompts. Success rates and action counts
remain consistent across all variants, demonstrating UFO’s robustness to various prompts.

9 o 3

& 0.8 o

2 g

& £ 2

3

» 0.6 =

0 50 100 150 200 0 50 100 150 200
Steps Steps

—e— constant reward —— linear decay reward —e— exponential decay reward

Figure 10: Comparison of reward shaping strategies. While constant, linear decay, and exponential
decay schedules achieve similar success rates (left), exponential decay consistently leads to fewer
actions per episode (right), indicating more efficient problem solving with less external supervision.

5 Related Work

Enhancing LLLM Reasoning with Test-Time Search and Parameter-Efficient Training. Test-
time reasoning frameworks keep model weights frozen yet boost performance: Graph-of-
Thought [35], Reflexion [36], Monte Carlo Tree Self-Refine [37], Self-Refine [38], CRITIC [39] and
memory-augmented agents such as POEM [40] and Larimar [41] rely on search, self-feedback or
episodic memory without updating model parameters.

Training-time optimisation methods , in contrast, adjust the policy itself. RLHF [42, 15] and
its low-cost variant RLAIF [43] align models to preference data; scalable-oversight debate proto-
cols explore alignment with weak judges [44]. Lightweight objectives such as Direct Preference
Optimisation (DPO) [45], Parameter-Efficient RLHF (PERLHF) [46] and Self-Play Fine-Tuning
(SPIN) [47] further cut roll-out cost, while hierarchical ArCHer [6] tackles long-horizon credit
assignment. Benchmarks like UNO Arena [48] expose the strengths and weaknesses of both families
in stateful, multi-turn settings.

Multiturn training for LLMs. Multiturn training for LLMs has been explored through diverse
benchmarks, optimization methods, and architectural designs. Evaluation suites like LMRL-Gym [49]
and MT-Eval [50] assess consistency, instruction-following, and planning across dialogue turns. On
the training side, multiturn RLHF methods include regression-based value estimation [51], hierar-
chical actor-critic [6], and trajectory-level preference modeling [52]. Extensions integrate execution
feedback [53], optimize full-dialogue rewards [54], and leverage multiturn-aware frameworks like
CollabLLM [17] and RAGEN [7]. Beyond RL, parameter-efficient methods such as Baize [55]
achieve strong multiturn performance via LORA and self-chat. A recent survey [56] offers a compre-
hensive taxonomy of these strategies, covering optimization, memory, and evaluation.

6 Conclusions and Limitations

In this work, we highlight a critical limitation of current single-turn RL training: its tendency
to impair multi-turn reasoning by promoting repetitive and shallow responses. To address this,
we propose Unary Feedback as Observation (UFO), a simple yet effective method that integrates
minimal feedback into existing RL pipelines. By explicitly incorporating prior interaction history,
UFO enables models to engage in exploration and self-reflection across multiple attempts, leading to
deeper reasoning and improved adaptability. Our experiments show a 14% gain in multi-turn accuracy
while preserving single-turn quality. Additionally, we demonstrate that incorporating reward decay
and repetitive penalty encourages diverse reasoning, self-correction and more thoughtful response
patterns. Our approach is lightweight, generalizable, and easily applicable to existing datasets. A
limitation of our work is its primary focus on relatively small models, leaving its generalizability to
larger scales for future investigation.

References

[1] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

[2] OpenAl. Gpt-4 technical report, 2024.

[3] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[4] Gemini Team. Gemini: A family of highly capable multimodal models, 2025.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[6] Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl, 2024.

[7] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan
Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho,
Jiajun Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding
self-evolution in llm agents via multi-turn reinforcement learning, 2025.

[8] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024.

[9] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024.

[10] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023.

[11] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning, 2021.

[12] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback, 2024.

[13] Yan Zhuang, Jiawei Ren, Xiaokang Ye, Xuhong He, Zijun Gao, Ryan Wu, Mrinaal Dogra,
Cassie Zhang, Kai Kim, Bertt Wolfinger, Ziqiao Ma, Tianmin Shu, Zhiting Hu, and Lianhui
Qin. Simworld: A world simulator for scaling photorealistic multi-agent interactions, 2025.

10

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon
agents via reinforcement learning, 2025.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James
Zou, Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collabo-
rators. In International Conference on Machine Learning (ICML), 2025. Outstanding Paper
Award (oral).

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-rl: Training llms to reason and leverage search engines with
reinforcement learning, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in
1lms, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming
Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze
Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou,
Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan
Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang,
Yu Cheng, Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for
reasoning language models, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in 1lms beyond the
base model?, 2025.

David Blackwell. Comparison of experiments. In Proceedings of the Second Berkeley Sympo-
sium on Mathematical Statistics and Probability, pages 93—102. University of California Press,
1951.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung- Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamathqa: A dataset for mathematical
reasoning with large language models, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn

Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

11

[28] Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. Theoremqa: A theorem-driven question answering dataset, 2023.

[29] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[30] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and SamuelR. Bowman. Gpqa: A graduate-level google-proof qa
benchmark. arXiv preprint arXiv:2311.12022, 2023. Accessed: 2025-08.

[31] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2020.

[32] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering, 2018.

[33] Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, and Christopher Ré. Reasoning over
public and private data in retrieval-based systems, 2022.

[34] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024.

[35] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models, 2023.

[36] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[37] Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqgiang Li, and Wanli Ouyang. Accessing gpt-4
level mathematical olympiad solutions via monte carlo tree search self-refinement, 2024.

[38] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

[39] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-augmented critiquing, 2023.

[40] Dai Do, Quan Tran, Svetha Venkatesh, and Hung Le. Large language models prompting with
episodic memory, 2024.

[41] Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan, Sihui Dai,
Aurélie Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jifi, Navrétila, Soham Dan, and
Pin-Yu Chen. Larimar: Large language models with episodic memory control, 2024.

[42] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences, 2017.

[43] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. Rlaif vs.
rlhf: Scaling reinforcement learning from human feedback with ai feedback, 2023.

[44] Zachary Kenton, Noah Y. Siegel, Janos Kramar, Jonah Brown-Cohen, Samuel Albanie, Jannis
Bulian, Rishabh Agarwal, David Lindner, Yunhao Tang, Noah D. Goodman, and Rohin Shah.
On scalable oversight with weak 1lms judging strong llms, 2024.

[45] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023.

12

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis
Jin, Simral Chaudhary, Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Bowen Li,
Saravanan Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi,
and Lucas Dixon. Parameter efficient reinforcement learning from human feedback, 2024.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models, 2024.

Zhanyue Qin, Haochuan Wang, Deyuan Liu, Ziyang Song, Cunhang Fan, Zhao Lv, Jinlin Wu,
Zhen Lei, Zhiying Tu, Dianhui Chu, Xiaoyan Yu, and Dianbo Sui. Uno arena for evaluating
sequential decision-making capability of large language models, 2024.

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin
Xu, and Sergey Levine. LMRL Gym: Benchmarks for multi-turn reinforcement learning with
language models. arXiv preprint arXiv:2311.18232, 2023.

Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, et al. MT-Eval: A multi-turn capabilities eval-
uation benchmark for large language models. In Findings of the Association for Computational
Linguistics: EMNLP 2024, 2024.

Zhaolin Gao, Wenhao Zhan, Jonathan D. Chang, Gokul Swamy, Kianté Brantley, Jason D. Lee,
and Wen Sun. Regressing the relative future: Efficient policy optimization for multi-turn rlhf.
In International Conference on Learning Representations, 2025.

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct multi-turn
preference optimization for language agents. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, 2024.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello,
Misha Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, and Tianqi
Liu. Building math agents with multi-turn iterative preference learning, 2025.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila
Noga, Orgad Keller, Bilal Piot, Idan Szpektor, Avinatan Hassidim, Yossi Matias, and Rémi
Munos. Multi-turn reinforcement learning from preference human feedback. In Advances in
Neural Information Processing Systems, 2024.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model
with parameter-efficient tuning on self-chat data. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

Chen Zhang, Xinyi Dai, Yaxiong Wu, Qu Yang, Yasheng Wang, Ruiming Tang, and Yong
Liu. A survey on multi-turn interaction capabilities of large language models. arXiv preprint
arXiv:2501.09959, 2025.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2015.

13

A Extended Background of Reinforcement Learning in LLMs

Reinforcement Learning (RL) enables large language models to improve through interaction and
reward feedback. The general RL objective maximizes the expected reward over sampled responses:

J(@) = Ewa, y~e () [R((E, y)}) 2
where 7y is the model policy, x is the input prompt, y is the generated output, and R(x,y) is a scalar
reward assessing response quality.

A widely adopted method for RL fine-tuning is Proximal Policy Optimization (PPO) [5], which
stabilizes training by clipping the likelihood ratio between the new and old policies. The ratio is
defined as:

(e | @)
) = e o) @

The PPO objective minimizes over the clipped surrogate advantage:
Jppo(0) = Eq [min (ps A¢, prA¢) — BDx1] 4

where p; = clip(ps, 1 — €,1 + ¢), and A, is the advantage function estimating how much better y; is
than the baseline under prompt ;.

For advantage estimation, Generalized Advantage Estimation (GAE) [57] is often used:

oo

AFAEOND NN 60, with 6 = 1+ 4V (204) — V() ©)
=0

where (y, A) trade off bias and variance.

More recently, DeepSeekMath [16] and DeepSeek-R1 [1] adopts Group Relative Policy Optimization
(GRPO), a RL method that samples a set of outputs {y; }&, for each prompt z, and optimizes:

JGRPO<9) = ET,{yl} [Jgroup(g)}) (6)
with
1 G
Taowp(0) = 5 > min (pi A, piAs) — BDx., @)
i=1

where the advantage A; is computed using a reward-normalized baseline:

T mean({r;})
BT ®

This avoids dependency on value networks and uses rule-based or environment-specific rewards r;,
making it well-suited for reasoning tasks where explicit heuristics can guide learning. GRPO has
shown to induce emergent multi-step reasoning behavior across domains.

B Details on the Theoretical Analysis on Repetition Pattern

We provide a detailed proof on how peaked, low-entropy output distribution from RL training [22, 23]
can lead to high repetition in model multi-turn behavior.

Preliminaries. Let ¢(y | «) denote the model’s output distribution given input zz. We introduce the
following definitions:

Definition 1 (Collision Probability). The collision probability of ¢(y |) is defined as:
Coll(q) ==Y q(y | »)*. ©)

Y

This is the probability that two i.i.d. samples from g yield the same answer: Pr[4, = A;] = Coll(g).

14

Definition 2 (Entropy). The Shannon entropy of ¢(y | z) is:
H(g) =~ qly|x)logq(y | x).
Yy

Lower entropy corresponds to a more peaked distribution.

Definition 3 (Expected Number of Duplicate Pairs). Given k i.i.d. samples {A1,..., A} ~ q(- |),
the expected number of duplicate pairs is:

E[DupPairs] = (’;) - Coll(q).

Repetition Under Sequential Sampling.

Proposition 1. Let A, ..., Ax ~ q(- |) be sampled sequentially. Since single-turn RL does not
guarantee any multi-turn capability, we simplify the assumption that the policy is static and does
not update based on prior turns, i.e., the answer at each turn t is sampled from the same fixed
distribution q(-|x). The probability of generating a duplicate answer is the collision probability,
which is lower-bounded by:

Pr[A; = A;] > exp(—H(q)),

where H(q) denotes the Shannon entropy of the base distribution q(- | x).

Proof. LetY ~ q(- | x), and define the collision probability as:
Coll(q) =P[A; = A;] = > q(y)* = Ey~qlq(Y))].
Y
By Jensen’s inequality applied to the concave function log, we have:
log Ey [q(Y)] = Ey[log q(Y)] = —=H(q),

which implies:
Coll(q) = exp(—H(q))-
O

Remark 1 (On the Tightness of the Bound). The lower bound Coll(q) > exp(—H(q)) is tight in the
following cases:

* When ¢ is uniform on a support of size n, i.e., ¢(y) = 1/n, then H(q) = logn and
Coll(q) = 1/n, achieving equality.

* When ¢ is a delta distribution (i.e., concentrated on one point), then #(q) = 0 and Coll(q) =
1.

We assume log ¢(y) is only computed where ¢(y) > 0, so the result still holds for distributions with
zero-probability points.

A tighter bound can be obtained using the Rényi—Shannon inequality:
Coll(q) = e~ @)= Prrldllw)

where « is the uniform distribution on the support of ¢. Our stated bound omits the KL divergence
for simplicity and interpretability.

This demonstrates that a low-entropy model is mathematically guaranteed to have a higher floor for
its repetition rate. Thus, for a static agent that does not learn from feedback, repetition is not an
accidental bug but a predictable outcome of the low-entropy distributions created by standard RL.

C Theoretical Analysis on Advantages of Sequential Policies
We model multi-turn reasoning as a finite-horizon Markov Decision Process (MDP), where the state

at step t is given by (p)
St =\4,01, J1y---,0t—1, Jt—1),

15

with input question ¢, previous answers a;, and corresponding feedback f;.

We represent policies as functions 7 (a | s¢) that produce an action a based on the interaction history
s¢. In our setting, the single-turn RL paradigm corresponds to a parallel policy, where the model
samples multiple answers independently from a fixed distribution 7 (a | ¢) without conditioning on
feedback. In contrast, our UFO (Unary Feedback as Observation) operates as a sequential policy,
where the action at each step is conditioned on the full history and thus can adapt dynamically.

‘We formalize the distinction as follows:

* Parallel policies 7 € II,,,;: sample answers i.i.d. from a fixed policy 7(a | ¢), without using
feedback.
* Sequential policies 7 € Il 4: choose actions based on the full state s;, enabling feedback-
driven refinement.
Every parallel policy is a special case of a sequential policy that ignores interaction history. Formally,
for any 7(a | ¢), we can construct m;(a | s¢) = w(a | ¢) for all ¢, implying
Hpar - Hseq-
Since Ilp, € Ilgeq, we immediately have:

max E[Succ@k] > max E[Succ@k],

TrEHseq 71'El_[par
where Succ@Fk denotes the probability of producing a correct answer within & attempts.

Let p denote the success probability under a parallel policy. Then:

Py [success in k turns] = 1 — (1 — p)*.

For a sequential policy, let p} be the conditional success probability at step ¢, which may depend on
the state s;. The success probability is:

(1—p,), wherep; > p.
1

Pseq[success in k turns] = 1 —

k
t=

Sequential policies can eliminate previously failed answers by maintaining a rejection set H; C A
and enforcing:
m(a]sy) =0 foralla € H;.

This behavior approximates sampling without replacement and yields increasing conditional success
rates:

’ p
s R
1= iipi
Therefore, sequential policies such as UFO improve Succ@k by adaptively avoiding prior failure
modes. This formalizes the theoretical advantage of feedback-aware reasoning strategies over static

single-turn RL.

D Detailed Evaluation under Multi-round Settings

We illustrate a detailed analysis of how multi-round training improves generalization on long-horizon
interactive reasoning. Figure 11 provides a comprehensive view of validation performance across all
checkpoints, comparing models trained under 1-round, 5-round, and 10-round settings. Each curve
represents evaluation success rates under a fixed number of evaluation rounds.

We observe that under 1-round evaluation (top-left), all training strategies achieve similar perfor-
mance, suggesting that even single-turn training can suffice in this limited setting. However, as
evaluation round count increases, the gap between single-round training and multi-round training
becomes increasingly significant. In particular, models trained with 10-round UFO feedback con-
sistently outperform the others under 6, 8, and 10-round evaluation, demonstrating more stable and
generalizable behavior across turns.

These results support our core hypothesis: unary feedback, when used as structured observation
during training, enables better long-horizon generalization. In contrast, models trained only with

16

1 Round 2 Rounds 4 Rounds

I //\/
g 0.8
©
o
0.6 /\
wn
S 0.6
204 :
(%]
0.2 04
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
6 Rounds 8 Rounds 10 Rounds
0.9 0.9
0.9
% 0.8 / \/\/\/\/ 0.8 \/_\/\/\
& /\ : Vi 0.8 /\/
wn
o 0.7
§ 0.7 0.7
> 0.6
n 0.6 0.6
0.5
0.5 0.5
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Training Steps Training Steps Training Steps
—— 1-round training 5-round training —— 10-round training ‘

Figure 11: Performance across different evaluation round settings. Each subplot shows the
success rate evaluated at r rounds. While all methods perform similarly under 1-round evaluation,
models trained with multi-round feedback (UFO) generalize significantly better to longer evaluation
horizons.

single-round interactions struggle to adapt to multi-turn dynamics, leading to degraded performance
as the task horizon increases.

E Prompt Settings

E.1 Problem Solving Model Prompt

We adopt a simple and structured prompt format for mathematical problem solving, following prior
designs from [16, 3], with an extension to support multi-turn interactions. A key element of our
prompt is the explicit <think> and <answer> separation, paired with an action budget (Y) and max
length (Z). This guides the model to reason step-by-step while planning within a fixed turn horizon,
improving controllability and alignment in multi-turn settings. As shown in Box , we present the
prompt template used during training and evaluation.

Box 1: Model Prompt Template

<|im_start|>system

{prompt}

You’re a helpful assistant.

<|im_end|>

<|im_start|>user

{prompt}

You are solving Math problems.

Turn X:

State:

(Question)

You have Y actions left. Always output: <think> [Your thoughts]
</think> <answer> [your answer] </answer> with no extra text.
Strictly follow this format. Max response length: Z words (tokens).

17

<|im_end|>
<|im_start|>assistant

(This conversation pattern repeats for up to K turns)
<|im_end|>

E.2 Feedback Provider Model Prompt

We also present the prompt for the feedback provider that gives the problem-solving model more
detailed feedback as follows.

Box 2: Tutor Prompt Template

<|im_start|>system

You are a helpful math tutor.

<|im_end|>

<|im_start|>user

Problem: {question}

Student’s answer: {wrong_answer}

This answer is incorrect. Give a brief, encouraging hint (1-2
sentences) that helps the student reconsider their approach without
revealing the correct answer. Focus on guiding them to check their
work or think about the problem differently.

Response format: Just the hint, no extra formatting.

<|im_end|>

<|im_start|>assistant

<|im_end|>

E.3 TheoremQA Prompt Format

The TheoremQA environment follows a similar prompting structure as the MMQ-Math, with an
additional image token placed at the beginning of the question when a picture is present. This enables
compatibility with multimodal pipelines, where the image is processed separately while the text
prompt includes a placeholder token to signal its presence.

As shown in Box , the image token <image> is placed on a new line above the question if an image
is available.

Box 3: TheoremQA Prompt Template

<|im_start|>system

You’re a helpful assistant.

<|im_end|>

<|im_start|>user

{prompt}

You are solving Math problems.

Turn X:

State:

<image>

+ (Question)

You have Y actions left. Always output: <think>[Your

thoughts] </think><answer>[your answer]</answer> with no extra text.
Strictly follow this format. Max response length: Z words (tokens).
<|im_end|>

<|im_start|>assistant

<|im_end|>

18

Table 2: Hugging Face model names used in the unique answer ratio evaluation.

Method Model (Hugging Face name)

DAPO Qwen/Qwen2.5-32B
BytedTsinghua-SIA/DAPO-Qwen-32B

Dr. GRPO Qwen/Qwen2.5-Math-7B
sail/Qwen2.5-Math-7B-Oat-Zero
Qwen/Qwen2.5-Math-1.5B
sail/Qwen2.5-Math-1.5B-Oat-Zero

GRPO Qwen/Qwen2.5-0.5B
hkust-nlp/Qwen-2.5-0.5B-SimpleRL-Zoo
Qwen/Qwen2.5-1.5B
hkust-nlp/Qwen-2.5-1.5B-SimpleRL-Zoo
Qwen/Qwen2.5-7B
hkust-nlp/Qwen-2.5-7B-SimpleRL-Zoo
Qwen/Qwen2.5-14B
hkust-nlp/Qwen-2.5-14B-SimpleRL-Zoo

PPO Qwen/Qwen2.5-Math-7B
RLHFlow/Qwen2.5-7B-PPO-Zero
Qwen/Qwen2.5-3B-Instruct
LichengLiu03/Qwen2.5-3B-UFO

F Model Evaluation Details

We present the model used to evaluate answer repetition in Table 2.

G Case Analyses

We investigate the impact of multi-turn reinforcement learning (RL) on large language models
(LLMs) through a series of curated examples across distinct training stages. These case studies
(shown in Boxes —) highlight the evolving dynamics of exploration, convergence, and reasoning
quality throughout training.

G.1 Case 1: Pre-training Behavior

Before any reinforcement learning, we observe the model’s default multi-turn reasoning behavior in a
symbolic pattern-matching task (Box). The model is asked to recover a missing variable X from a
repeating alphabetic value pattern, given partial information and a constraint on the sum of values
in a specific word. In Turn 1, the model identifies the relevant positions in the word “numeric” and
proposes an initial guess for X. As feedback indicates the answer is incorrect, the model progressively
refines its understanding: it attempts to align characters in the input word with their positions in the
pattern and adjusts its value for X.

Despite making several wrong guesses, the model demonstrates adaptive behavior across turns:
it updates its assumptions, introduces new hypotheses, and makes meaningful structural progress
(e.g., recognizing the 8-length cycle). However, it ultimately fails to reach the correct solution within
the available steps. The case shows that pretrained models already possess multi-step reflective
capabilities and can utilize external feedback to revise their reasoning, even without explicit
training for multi-turn alignment. It suggest that reinforcement learning has the potential to further
stabilize and guide emergent reasoning process toward convergence.

G.2 Case 2: Post Single-turn RL

After reinforcement learning with single-step reward feedback, the model demonstrates drastically
different behavior from its pretrained counterpart (Box). When tasked with identifying the variable
X in a cyclic pattern-based word problem, the model immediately commits to a single interpretation.
In Turn 1, it attempts a symbolic derivation by aligning the letter values of “numeric” with a fixed

19

Table 3: Comparison of multi-turn reasoning behaviors across training stages.

Case Stage Exploration Convergence Reasoning Quality Failure Mode

1 Pre-RL High No Incomplete Early guessing

2 Single-turn R None No Repetitive Overfitting

3 Multi-turn RL ~ Moderate Yes Correct aligned

4 Multi-turn R Moderate Yes Incorrect Reasoning drift
periodic pattern, then solving X — 3 = —1. However, this derivation mistakenly assumes that the

letters in “numeric” correspond to the first 7 elements of the pattern without justifying the mapping.
More notably, this exact sequence of logic and answer is repeated identically in Turns 2 through 5.

The case reveals that single-turn RL induces brittle, overconfident behavior: once the model
settles on a trajectory during initial inference, it does not reconsider alternative hypotheses or respond
meaningfully to corrective feedback. The reward optimization has led to collapse in exploration,
as each turn simply replays the same incorrect reasoning with no adaptation. In contrast to the
pretraining stage, where the model at least attempts different strategies, this behavior illustrates a
major drawback of single-step reward supervision: it teaches the model what to say once, but not
how to revise when it’s wrong.

G.3 Case 3: Success Adaptation to Feedback Through Multi-turn RL with UFO

This example illustrates the effectiveness of multi-turn reinforcement learning (Box). The model
is prompted to determine the sum of all positive integers n for which 218 is an integer. In Turn 1,

n
it begins by simplifying the expression to 1 + %, and attempts a partial answer without listing all
divisors. Upon receiving feedback, the model updates its understanding in Turn 2 by enumerating all
positive divisors of 18. By Turn 3, it completes the reasoning process by summing those divisors
correctly, arriving at the correct final answer of 39.

The case shows a successful case of multi-turn self-correction, where the model refines its reasoning
incrementally in response to feedback. Each turn builds on the previous one: the model first
identifies the mathematical form, then retrieves the correct domain knowledge (divisors), and finally
executes a complete and valid computation. Unlike single-turn RL, the multi-turn reward structure
encourages adaptive reasoning and gradual convergence. The example shows that properly trained
multi-turn agents can both reason correctly and update their behavior mid-trajectory in pursuit of a
verifiable answer.

G.4 Case 4: Reasoning Drift of Multi-turn RL with UFO

We examine a failure trajectory under multi-turn reinforcement learning where the model arrives at
the correct final answer through incorrect or misaligned reasoning. As shown in Box , the task is to

find the value of X such that the matrix (3(1 3) has an inverse consistent with the given answer

“17.” In the initial turn, the model misinterprets the problem structure by assuming that the matrix
inverse itself is the scalar 17, and raises a structural objection. In the next turn, it shifts to a more
plausible interpretation where 17 is assumed to be the determinant. This leads to the formulation of
the correct equation 7.X + 3 = 17, though the value of X is still miscalculated at that stage.

By the third turn, the model correctly solves for X = 2, but then presents a flawed expression for the
inverse matrix, misapplying the standard inversion formula for 2 x 2 matrices. Despite producing the
right numerical solution, the trajectory contains conceptual errors related to matrix algebra, including
an incorrect cofactor layout. This case highlights a form of reasoning drift: while the final output
aligns with the ground truth, the intermediate steps do not constitute a logically valid derivation.
Such behavior reveals a potential failure of reward design in multi-turn RL, where correctness of the
answer is reinforced even in the absence of faithful reasoning.

To summarize (as in Table 3), multi-turn RL with UFO improves convergence and stabilizes reasoning,
but naive reward design can still lead to misalignment between thought and outcome. It highlights the
need for evaluation frameworks to go beyond final answer correctness and explicitly assess reasoning
integrity throughout the trajectory.

20

Box 4: Multi-Turn Rollout before training

Tarn 1:

State: The letters of the alphabet are given numeric values based on the two conditions below.
e Only the numeric values of —2, —1, 0, 1 and 2 are used.

e Starting with A and going through Z, a numeric value is assigned to each letter according to
the following pattern:

1727X707 _]-7 _27 _1707 1a27 1707 _17 _27 _1707 s

Two complete cycles of the pattern are shown above. The letter A has a value of 1, B has
a value of 2, F has a value of —2 and Z has a value of 2. The sum of the numeric values of
the letters in the word “numeric” is -1. What is the value of unknown variable X? You have
10 actions left. Always output: <think> [Your thoughts] <think> <answer> [your answer]
<answer> with no extra text. Strictly follow this format. Max response length: 100 words
(tokens).

Output:

<think>First, let’s identify the positions of each letter in the word “numeric” based on the
pattern provided. We know the values of A, B, F, and Z. We need to determine the value of X
and then find the values of N, M, E, and C to sum up to -1.</think>

<answer>X = 2</answer>

Reward: 0.0

Turn 2:

State: Incorrect. Please try agin. You have 3 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer]| <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>Given the incorrect answer, let’s re-examine the pattern and the values assigned to
each letter. The word “numeric" has the letters N, U, M, B, E, I, C. From the provided pattern,
we know the values of A, B, F, and Z. To find the value of X, we need to identify the value for
N and then determine the pattern for subsequent letters.</think>

<answer>X = 0</answer>

Reward: 0.0

Turn 3:

State: Incorrect. Please try agin. You have 2 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer]| <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>Given the incorrect answer, let’s re-evaluate the pattern and the values assigned to
each letter in the word “numeric". The values for A, B, F, and Z are known. The pattern
seems to repeat every 8 letters, and the values cycle through 1, 2, X, 0, -1, -2, -1, 0. We need
to determine the value of X such that the sum of the values of the letters in “numeric" equals
-1.</think>

<answer>X =-1</answer>

Reward: 0.0

Turn 4:

State: Incorrect. Please try agin. You have 1 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer] <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>Given the incorrect answer, let’s re-examine the pattern and the values assigned to
each letter in the word “numeric". The values for A, B, F, and Z are known, and the pattern
seems to repeat every 8 letters with values 1, 2, X, 0, -1, -2, -1, 0. To find the value of X such
that the sum of the values of the letters in “numeric" equals -1, we need to assign values to N,
U, M, B, E, I, C and ensure their sum is -1</think>

<answer>X = 1</answer>

Reward: 0.0

21

Turn 5:

State: Incorrect. Please try agin. You have O actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer]| <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>Given the incorrect answer, let’s re-examine the pattern and the values assigned to
each letter in the word “numeric". The values for A, B, F, and Z are known, and the pattern
seems to repeat every 8 letters with values 1, 2, X, 0, -1, -2, -1, 0. To find the value of X such
that the sum of the values of the letters in “numeric" equals -1, we need to assign values to N,
U, M, B, E, I, C and ensure their sum is -1.</think>

<answer>X = -1</answer>

Reward: 0.0

Box 5: Model rollout after single-turn RL training

Turn 1:

State: The letters of the alphabet are given numeric values based on the two conditions below.
e Only the numeric values of —2, —1, 0, 1 and 2 are used.

e Starting with A and going through Z, a numeric value is assigned to each letter according to
the following pattern:

1725X705 _17 _25 _17()’ 1721 1707 _15 _27 _1507 000

Two complete cycles of the pattern are shown above. The letter A has a value of 1, B has
a value of 2, F has a value of —2 and Z has a value of 2. The sum of the numeric values of
the letters in the word “numeric"” is -1. What is the value of unknown variable X? You have
10 actions left. Always output: <think> [Your thoughts] <think> <answer> [your answer]
<answer> with no extra text. Strictly follow this format. Max response length: 100 words
(tokens).

Output:

<think>For the word “numeric", the values of the letters are as follows: N has a value of 1,
U has a value of 2, M has a value of 0, E has a value of -1, R has a value of -2, I has a value
of -1, C has a value of 1. The sum of these valuesis1 +2+0—1—-2—1+1 = 0, which
contradicts the given sum of -1. However, we can re-evaluate the pattern and the values. The
pattern repeats every 16 letters, and the values repeat as well. The word “numeric" consists of
7 letters, so we need to find the sum of the first 7 values in the pattern: 1,2, X,0, —1, —2, —1.
We know the sum of these values is -1. So,wehave 1 +2+ X +0—1—2—1 = —1, which
simplifies to X — 3 = —1, and thus X = 2.</think>

<answer>2</answer>

Reward: 0.0

Turn 2:

State: Incorrect. Please try agin. You have 3 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer] <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>For the word “numeric", the values of the letters are as follows: N has a value of 1,
U has a value of 2, M has a value of 0, E has a value of -1, R has a value of -2, I has a value
of -1, C has a value of 1. The sum of these valuesis1 +2+0—1—-2—1+1 = 0, which
contradicts the given sum of -1. The pattern repeats every 16 letters, and the values repeat
as 1,2, X,0,—-1,-2,-1,0,1,2,1,0,—1, —2, —1, 0. For the word “numeric", the values are
1,2, X,0,—1,—2, —1. The sum of these valuesis 1 +2+ X +0—1—2 —1 = —1, which
simplifies to X — 3 = —1, and thus X = 2.</think>

<answer>2</answer>

Reward: 0.0

Turn 3:

State: Incorrect. Please try agin. You have 2 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer] <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

22

<think>For the word “numeric", the values of the letters are as follows: N has a value of 1,
U has a value of 2, M has a value of 0, E has a value of -1, R has a value of -2, I has a value
of -1, C has a value of 1. The sum of these valuesis1 +2+0—-1—-2—1+1 = 0, which
contradicts the given sum of -1. The pattern repeats every 16 letters, and the values repeat
as 1,2, X,0,—-1,-2,-1,0,1,2,1,0,—1, —2, —1, 0. For the word “numeric", the values are
1,2, X,0,—1,—2,—1. The sum of these valuesis1 +2+ X +0—1—2—1= —1, which
simplifies to X — 3 = —1, and thus X = 2.</think>

<answer>2</answer>

Reward: 0.0

Turn 4:

State: Incorrect. Please try agin. You have 1 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer]| <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>For the word “numeric", the values of the letters are as follows: N has a value of 1,
U has a value of 2, M has a value of 0, E has a value of -1, R has a value of -2, I has a value
of -1, C has a value of 1. The sum of these valuesis1 +2+0—1—-2—1+1 = 0, which
contradicts the given sum of -1. The pattern repeats every 16 letters, and the values repeat
as 1,2, X,0,-1,—-2,-1,0,1,2,1,0,—1,—2, —1, 0. For the word “numeric", the values are
1,2,X,0,—1,—2,—1. The sum of these valuesis1 +2+ X +0—1—-2—1 = —1, which
simplifies to X — 3 = —1, and thus X = 2.</think>

<answer>2</answer>

Reward: 0.0

Turn 5:

State: Incorrect. Please try agin. You have 0 actions left. Always output: <think> [Your
thoughts] <think> <answer> [your answer]| <answer> with no extra text. Strictly follow
this format. Max response length: 100 words (tokens).

Output:

<think>For the word “numeric", the values of the letters are as follows: N has a value of 1,
U has a value of 2, M has a value of O, E has a value of -1, R has a value of -2, I has a value
of -1, C has a value of 1. The sum of these valuesis1+2+0—1—2—1+ 1 = 0, which
contradicts the given sum of -1. The pattern repeats every 16 letters, and the values repeat
as 1,2, X,0,-1,—-2,-1,0,1,2,1,0,—1,—2, —1, 0. For the word “numeric", the values are
1,2, X,0,—1,—2, —1. The sum of these valuesis 1 +2+ X +0—1—2 —1 = —1, which
simplifies to X — 3 = —1, and thus X = 2.</think>

<answer>2</answer>

Reward: 0.0

Box 6: Model rollout after multi-turn RL training with UFO (Success Case)

Turn 1:
State:
Determine the sum of all positive integer values of n such that is an integer.
You have 10 actions left. Always output: <think> [Your thoughts] </think> <answer>
[your answer] </answer> with no extra text. Strictly follow this format. Max response length:
100 words.
Output:
n+18

<think>First, I need to understand when == is an integer. This fraction can be simplified

tol + %. For this to be an integer, n must be a divisor of 18.</think>
<answer>18 and 1 (since 1 + % =2and 1+ 1—18 = 19 are integers)</answer>
Reward: 0.0

Turn 2:

State:

Incorrect. Please think again.

You have 9 actions left.

Output:

<think>Given %18 is an integer, we have 1 + 171—8 as an integer. This means n must be a

n+18

23

divisor of 18. The positive divisors of 18 are 1, 2, 3, 6, 9, and 18. I need to verify which of
these values make the expression an integer.</think>

<answer>1, 2, 3, 6,9, 18</answer>

Reward: 0.0

Turn 3:

State:

Incorrect. Please think again.

You have 8 actions left.

Output:

<think>Upon reviewing, I realize the divisors of 18 are 1, 2, 3, 6, 9, and 18. For each of
these values, 1 + 1778 is indeed an integer. Therefore, the sum of all positive integer values of
nisl+2+3+6+9+ 18 = 39.</think>

<answer>39</answer>

Reward: 0.25

Box 7: Model rollout after multi-turn RL training with UFO (Failure Case)

Tuarn 1:
State:
Find the inverse of the matrix

(59

If the inverse does not exist, then enter the zero matrix. The answer is 17. What is the value
of unknown variable X ?

You have 10 actions left. Always output: <think> [Your thoughts] </think> <answer>
[your answer] </answer> with no extra text. Strictly follow this format. Max response length:
100 words.

Output:

<think>Since the inverse of a matrix is given as 17, and the matrix provided is 2x2, the
inverse should be a 2x2 matrix. However, the given inverse of 17 does not align with the
structure of a 2x2 matrix. The problem might have a mistake in the provided inverse value or
the matrix structure.</think>

<answer>There is an inconsistency in the problem statement. The given inverse of 17 does
not match the structure of a 2x2 matrix inverse.</answer>

Reward: 0.0

Turn 2:

State:

Incorrect. Please think again.

You have 9 actions left.

Output:

<think>Given the inverse of the matrix is provided as 17, which does not fit the expected
format of a 2x2 matrix inverse (which should be a 2x2 matrix), it seems there might be a
misunderstanding. However, since the problem statement specifies the inverse as 17, and
considering the structure of the matrix, it implies the inverse is a scalar value. For a 2x2

ad—bc \ —¢

ad — be = 17. Given the matrix <X 3

1 7
7X + 3 = 17.</think>
<answer>7</answer>
Reward: 0.0

Turn 3:

State:

Incorrect. Please think again.
You have 8 actions left.
Output:

matrix <(Cz Z) , the inverse is —* (¢ _ab>. If the inverse is simply 17, it suggests

),ad—bc:X~7—3-(—1):7X+3.Thus,

24

<think>Given the matrix (i(l ?7)) , the condition for the inverse to be a scalar 17 is 7.X +

3 = 17. Solving for X gives 7X = 14, thus X = 2. The inverse of the matrix should be
— Tz _3
% (I X3> , which simplifies to (]17 17) ,not just 17.</think>
= 2
<answer>2</answer>

Reward: 0.25

25

	Introduction
	Reinforcement Learning for LLM Reasoning
	Background
	Single-Turn RL Leads to Collapsed Multi-Turn Reasoning

	Training Multi-Turn Reasoning Models with Unary Feedback
	Problem Formulation
	Unary Feedback as Observation (UFO)
	Reinforcement Learning with Unary Feedback
	Reward Design for Adaptive Reasoning

	Experiments
	Setup
	Experimental Results and Findings
	Multi-turn RL Unlocks Higher Upper Bound of LLM Reasoning
	Multi-turn Setting Enables LRMs to Revise From Feedback
	Reward Shaping Encourages Efficient Problem Solving

	Related Work
	Conclusions and Limitations
	Extended Background of Reinforcement Learning in LLMs
	Details on the Theoretical Analysis on Repetition Pattern
	Theoretical Analysis on Advantages of Sequential Policies
	Detailed Evaluation under Multi-round Settings
	Prompt Settings
	Problem Solving Model Prompt
	Feedback Provider Model Prompt
	TheoremQA Prompt Format

	Model Evaluation Details
	Case Analyses
	Case 1: Pre-training Behavior
	Case 2: Post Single-turn RL
	Case 3: Success Adaptation to Feedback Through Multi-turn RL with UFO
	Case 4: Reasoning Drift of Multi-turn RL with UFO

