
Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Harry Dong 1 Beidi Chen 1 Yuejie Chi 1

Abstract

Large language models (LLMs) have remarkable
utility, but this comes at a considerable compu-
tational cost at deployment. Fortunately, some
methods such as pruning or mixture of experts
exploit sparsity in transformer feedforward (FF)
blocks to gain boosts in speed and reduce mem-
ory, yet these techniques can be costly and in-
flexible in practice, as they often require train-
ing or are restricted to specific types of archi-
tectures. To address this, we introduce GRIF-
FIN, a novel training-free method that selects
unique FF experts at the sequence level for ef-
ficient generation across a plethora of LLMs with
different non-ReLU activation functions. This is
possible due to a critical observation that many
trained LLMs naturally produce highly structured
FF activation patterns within a sequence, which
we call flocking. GRIFFIN maintains the origi-
nal model’s performance with little to no degra-
dation on a variety of tasks, all while improv-
ing latency (e.g. 1.29× and 1.25× speed-ups in
Gemma 7B and Llama 2 13B, respectively, on
an NVIDIA L40). Code can be found at https:
//github.com/hdong920/GRIFFIN.

1. Introduction
Transformers (Vaswani et al., 2017) have demonstrated in-
credible capabilities across a plethora of domains (Lin et al.,
2022; Khan et al., 2022; Nerella et al., 2023). Their large
language model (LLM) successors (Touvron et al., 2023;
Team et al., 2023; Jiang et al., 2023; 2024; Team et al., 2024;
Anthropic, 2024) have pushed the bar higher, but these behe-
moths have become performative at the price of enormous
amounts of computation and memory demands. One signifi-
cant contributor is the model size itself. Not only is storage
an issue, model layers tend to be wide and plenty, slowing

1Department of Electrical and Computer Engineering, Carnegie
Mellon University, USA. Correspondence to: Harry Dong <har-
ryd@andrew.cmu.edu>.

Work presented at the ES-FoMo Workshop at ICML 2024, Vienna,
Austria. Copyright 2024 by the author(s).

down inference. Moreover, given the existence of sparse
structures in LLMs, especially in feedforward (FF) blocks
(Geva et al., 2020; Dettmers et al., 2022; Li et al., 2022;
Liu et al., 2023), these models waste computation on inter-
mediate features with little to no impact on the final result.
For instance, it has been observed that in OPT-175B (Zhang
et al., 2022), fewer than 5% of neurons in FF blocks have
nonzero values per token (Liu et al., 2023), meaning 95% of
the compute in each FF block is wasted. Usually consisting
of around two-thirds of the parameters in an LLM, FF blocks
can be serious memory and compute bottlenecks. These in-
efficiencies are problematic in latency-sensitive scenarios
like in chatbots and autonomous vehicles.

There have been many methods to exploit sparsity in LLMs
for efficiency gains, such as pruning (LeCun et al., 1989;
Frankle & Carbin, 2018; Blalock et al., 2020; Liang et al.,
2021; Liu et al., 2024; Frantar & Alistarh, 2023; Sun et al.,
2023; Dery et al., 2024) and mixtures of experts (MoEs)
(Jacobs et al., 1991; Zhang et al., 2021; Liu et al., 2023;
Piórczyński et al., 2023; Csordás et al., 2023; Yerram et al.,
2024; Zheng et al., 2024). Pruning removes low-impact
pre-trained weights to reduce storage, yet this often does not
translate to real speed-ups in practice, unless the pruning
is done in a hardware-friendly manner (Xia et al., 2022;
Santacroce et al., 2023; Ma et al., 2023; Li et al., 2023; Xia
et al., 2023) which typically causes greater performance de-
terioration. MoEs better preserve the original performance
by adaptively selecting subsets of the model to use per input
but also come with drawbacks. Unless the model has been
trained in this fashion (Fedus et al., 2022; Jiang et al., 2024),
it will need to learn a cheap yet effective gating function
(expert selection mechanism) and sometimes even require
full fine tuning. Perhaps an even bigger weakness of many
of these methods is the limited ability to effectively carry
over to pre-trained LLMs with non-ReLU activations. In
summary, there are a few challenges: 1) structured sparsity
is difficult and costly to enforce; 2) adaptive selection of
model subsets need to be cheap; 3) the method should work
on various activation functions.

Daunting at first, these challenges become surmountable
because of a simple observation of a phenomenon we call
flocking, highly consistent sparse activations that persist
throughout a sequence observed in many LLMs. Flocking
emerges in FF activations (inputs into the FF down pro-

1

https://github.com/hdong920/GRIFFIN
https://github.com/hdong920/GRIFFIN


Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 1. Relative FF activation magnitudes of the first 512 features
and tokens across a sequence from PG-19 (Rae et al., 2019; Gao
et al., 2020) in layer 10 of Gemma 7B. This shows flocking, where
relative activation magnitudes are shared within a sequence.

jection) when we focus on a sequence’s relative activation
magnitudes instead of the absolute values. An example from
Gemma 7B is shown in Figure 1, with more in Appendix E.
The key takeaway is that neurons which produce high rela-
tive magnitudes are naturally shared across tokens within a
sequence, as seen with the distinct vertical streaks. Increas-
ingly bizarre, we observe this across different architectures
and different non-ReLU activation functions.

Unlike existing pruning or MoE methods, we exploit flock-
ing in our design of GRIFFIN (Gating by Repetition In
Feedforward Intermediate Neurons), a highly performative
and efficient training-free method to adaptively activate FF
neurons. GRIFFIN does this by using a sequence’s prompt
to determine the experts to activate during generation, al-
lowing it to overcome all of the aforementioned challenges:

1. No Preparation: Our no-cost method is completely
training-free and requires no preparation. Moreover,
the simple implementation of GRIFFIN means it can
be dropped into any FF block and instantly deployed.

2. Simple Expert Selection: Flocking in the prompt re-
veals the most relevant FF neurons for generation with
little to no performance loss. The selection process is
parameter-free and adds negligible overhead.

3. Model & Activation Function Diversity: Thorough
experimentation demonstrates the efficacy of GRIF-
FIN on numerous models, including Llama 2 (Touvron
et al., 2023), Gemma (Team et al., 2024), Mistral (Jiang
et al., 2023), OPT (Zhang et al., 2022), and ReluLlama
(Team, 2023). Together, the tested activation functions
include ReLU, SwiGLU, GEGLU, and ReGLU.

In this paper, we show GRIFFIN is a simple and strong
adaptive structured pruning method because of flocking. In
more detail, we formalize the neuron selection problem and

its motivation in Section 2. Then, we present our novel
approach in Section 3.2, which requires an examination
of the surprising phenomenon of flocking shared by many
LLMs in Section 3.1. Our rigorous experiments demon-
strate GRIFFIN preserves performance on classification and
generation even after removing 50% of FF neurons (Sec-
tion 4.1), all while having lower latency (Section 4.2). For
instance, GRIFFIN reduces the number of active parameters
in Llama 2 13B from 13B to 8.8B during generation to im-
prove latency by 1.25× with almost no loss in performance.

2. Problem Formulation
This section sets up the problem we are tackling. Since FF
blocks operate identically and independently for each token
unlike attention, we begin with defining the FF block with a
single column vector input x ∈ RD:

FF(x) = FF2(FF1(x)︸ ︷︷ ︸
z

) (1)

where FF2(z) = W2z + b2 and FF1 is nonlinear. This
describes a wide range of FF architectures and arbitrary
activation functions σ. For instance, in OPT,

FF1(x) = σ(W1x+ b1). (2)

For FF blocks with GLU variants such as in Llama 2,

FF1(x) = σ(Wgx+ bg)⊙ (W1x+ b1) (3)

where ⊙ signifies element-wise multiplication. For all ex-
amples, W1,Wg ∈ RDFF×D and W2 ∈ RD×DFF where
typically, DFF ≫ D. We refer to z = FF1(x) as the FF
activations. The goal is to find Ŵ1 ∈ Rk×D, b̂1 ∈ Rk,
and Ŵ2 ∈ RD×k (additionally Ŵg ∈ Rk×D and b̂g ∈ Rk

if needed) where k < DFF such that when the FF block
is reparameterized with these matrices, the output value is
preserved. In other words, for

ẑ = F̂F1(x) = σ(Ŵgx+ b̂g)⊙ (Ŵ1x+ b̂1), (4)

F̂F2(ẑ) = Ŵ2ẑ + b2, (5)

FF(x) ≈ F̂F2(F̂F1(x)), and similarly for FF blocks with
non-GLU functions. Crucially, this selection leads to multi-
plication with smaller matrices which are naturally efficient
on GPUs and TPUs (Fatahalian et al., 2004; Wang et al.,
2019). For all equations defined in this section, they op-
erate independently on each row of a length S sequence
input X ∈ RS×D (e.g. the activations for a sequence are
Z = FF1(X) ∈ RS×DFF ).

3. From Flocking to GRIFFIN
Here, we take deeper dive into the phenomenon of flocking
and describe the intuitive algorithm of GRIFFIN which is
directly inspired by it.

2



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 2. GRIFFIN overview. Relative activations from the prompt determine expert neurons to use for generation.

3.1. Observing Flocking

Observations of sparse activations in transformer FF blocks
are not new (Geva et al., 2020; Dettmers et al., 2022; Li et al.,
2022; Dong et al., 2023; Liu et al., 2023). In ReLU-based
LLMs like OPT (Zhang et al., 2022), the activations can be
exceptionally sparse and become more apparent for larger
models (Liu et al., 2023). As more models use non-sparse
activation functions like GLU variants (Shazeer, 2020), it
is difficult for neurons to have no contribution to the output
since these functions do not have an interval that maps to
zero. Without exact sparsity, the efficacy of many sparsity-
exploiting methods becomes limited. As such, this has
ushered a wave of models that are either adapted from avail-
able models (Zhang et al., 2021; Liu et al., 2021; Mirzadeh
et al., 2023; Zheng et al., 2024; Jiang et al., 2024) or trained
from scratch (Fedus et al., 2022) which can produce acti-
vations that are exactly zero with little to no performance
loss. Even so, these methods require considerable amounts
of computational resources. In contrast, we demonstrate
many pretrained LLMs, including those with GLU networks,
have naturally occuring structured sparsity in the form of
flocking which we exploit.

Flocking arises when we look at the relative impact of each
neuron per token within a sequence. To see this, we normal-
ize rows of Z to be unit vectors to construct Z ∈ RS×DFF

(i.e. [Z]i = [Z]i/∥[Z]i∥2), the relative activations. We
show example relative activation magnitudes for a sequence
in Llama 2 7B and Gemma 7B in Figure 1. Since there
are distinct vertical streaks, this intriguingly implies that
activations that have relatively greater weight are common
across all tokens in a sequence. Notably, Llama 2 7B and
Gemma 7B use SwiGLU and GEGLU activations, respec-
tively, along with other major architecture differences. We
call this phenomenon flocking, and we observe this in virtu-
ally all FF layers (see Appendix E). While relative activation
magnitudes are shared within a sequence, they are not gen-
erally shared between sequences (Appendix A). This lack of

consistency implies pruning FF neurons without retraining
would be less effective than an adaptive method.

3.2. GRIFFIN Algorithm

Using our insight on flocking, we introduce GRIFFIN as a
simple general purpose and training-free adaptive structured
pruning method for efficient generation, captured in Figure 2.
In a nutshell, we select experts during the prompt phase of
each sample which are then used for the entire duration of
the generation phase. This effective approach is based on a
key observation on flocking: since tokens within a sequence
share activation patterns, the prompt and generated tokens
will also share activation patterns.

Prompt Phase Expert Selection. Our experts or neurons
are chosen at the sequence level, so we need to consider
the dynamics of the entire input sequence. To select expert
neurons, we use a statistic s ∈ RDFF to inform us of the
importance of each neuron. At the prompt phase, we take
the ℓ2-norm of Z along the token axis:

s =
[
∥[Z]·,1∥2 · · · ∥[Z]·,D∥2

]⊤
. (6)

Taking the indices of the top-k across s gives us the neu-
rons we will use for this sample’s generation phase which
make up the set E . Using the experts in E , we can find
Ŵ1, b̂1, Ŵg, b̂g, and Ŵ2 by selecting corresponding rows
and columns in W1, b1,Wg, bg , and W2, respectively. This
is done for every FF block during the prompt phase. Elab-
orated in Appendix B, s highlights neurons consistently
activated at relatively high intensities.

Generation with Experts. When generating tokens, we
directly use the pruned layers which contain the expert neu-
rons, F̂F1 and F̂F2, to estimate FF(X) ≈ F̂F2(F̂F1(X)) for
all future tokens. In Llama 2 13B and Gemma 7B, this
reduces the active number of parameters from 13B to 8.8B
and from 8.5B to 5.4B, respectively, during generation.

3



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Table 1. XSum (1-shot Rouge-1), CNN/DailyMail (1-shot Rouge-
1), CoQA (0-shot F1), SCROLLS QASPER (0-shot F1) at 50% FF
sparsity.

MODEL XSUM CNN COQA QASPER

LLAMA 2 7B 27.15 10.08 77.35 26.31
MAGNITUDE 9.71 9.66 56.59 12.93
GRIFFIN 24.75 10.97 77.18 25.76

LLAMA 2 13B 26.90 2.51 79.18 28.32
MAGNITUDE 5.72 0.02 65.69 15.55
GRIFFIN 25.69 3.31 79.22 27.91

GEMMA 7B 26.86 17.45 79.04 30.78
MAGNITUDE 1.49 0.00 2.92 7.02
GRIFFIN 25.86 18.26 78.52 27.37

MISTRAL 7B 28.67 0.28 80.70 24.56
MAGNITUDE 3.58 0.26 61.99 17.18
GRIFFIN 26.59 1.26 80.15 23.92

OPT 6.7B 23.60 13.85 68.70 18.53
MAGNITUDE 1.63 1.20 31.53 7.28
GRIFFIN 21.17 13.01 68.99 17.40

4. Experiments
We showcase the superb performance of GRIFFIN on nu-
merous tasks and models (Section 4.1) while achieving
lower latency (Section 4.2). For more experiments covering
some properties and ablations of GRIFFIN, see Appendix D.
All experiments are run on NVIDIA L40 GPUs.

4.1. Performance

We evaluate various models on several generation and classi-
fication tasks. For generation tasks, we use XSum (Narayan
et al., 2018), CNN/DailyMail (Nallapati et al., 2016), COQA
(Reddy et al., 2019), and SCROLLS QASPER (Dasigi
et al., 2021; Shaham et al., 2022). For classification,
we evaluate on HellaSwag (Zellers et al., 2019), PIQA
(Bisk et al., 2020), COPA (Roemmele et al., 2011), ARC-
Easy/Challenge (Clark et al., 2018), and BoolQ (Clark et al.,
2019). With the exception of XSum and CNN/DailyMail,
we use LM Evaluation Harness for our experiments (Gao
et al., 2023). Aside from comparing with the original LLM,
we also compare GRIFFIN with a static sequence-level se-
lection based on neuron magnitudes. Similar to neuron
magnitude pruning, this baseline selects experts based on
neuron magnitudes in W1 for the generation phase but uses
the entire FF blocks for prompting like GRIFFIN. In the case
of GLU variants, the neuron-wise norms of W1 and Wg are
elementwise multiplied to produce the pruning metric.

Fixing FF sparsity to be 50%, Table 1 shows the generation
performance of GRIFFIN. We see that magnitude neuron
pruning completely annihilates the original performance in
most generation settings. In contrast, GRIFFIN achieves
not only better performance than the baseline in most sce-
narios, but also preserves most of or matches the original

Table 2. Generation phase latency (s). We denote “P + G” as
the task of generating G tokens from a length P prompt. When
relevant, times are in the format 50% FF sparsity.

SETUP FULL MAGNITUDE GRIFFIN

Llama 2 13B
2048+128 6.8 5.4 5.4
2048+2048 119.1 95.0 94.9

Gemma 7B
2048+128 4.5 4.1 4.2
2048+2048 78.5 67.7 67.4

performance on all tasks. The baseline does much better for
classification but still trails behind GRIFFIN (Appendix C).
Moreover, GRIFFIN maintains performance on larger batch
sizes (Appendix C), extending its deployment settings.

4.2. Efficiency

We now present efficiency metrics of GRIFFIN. We collect
synthetic datasets with samples having identical lengths
and average results across samples. Like many other MoE
methods, GRIFFIN is ideal for single sample inputs, such
as in the case of personal devices, so we use batch size 1 for
these experiments. Using Hugging Face implementations of
Llama 2 13B and Gemma 7B at FP16 precision, we measure
the latency in different scenarios on an NVIDIA L40 GPU.

Recalling that our magnitude selection baseline is just neu-
ron pruning at generation, this has the best possible speed-up
since there is no selection overhead per sample. From Ta-
ble 2, GRIFFIN matches the best case, producing up to a
1.29× and 1.25× improvement in latency for long gener-
ation at 50% FF sparsity in Gemma 7B and Llama 2 13B,
respectively. This illustrates that our method is as fast as
a static neuron pruned LLM during generation while be-
ing adaptive to preserve the accuracy of the full model. In
offloading settings with large models, our method has the po-
tential to further accelerate inference. For a prompt, GRIF-
FIN essentially performs structured pruning on the massive
network, and if this pruned model can fit on a single device,
it will avoid offloading for the entirety of generation.

5. Conclusion
We have shown a special form of FF activation sparsity and a
simple way to exploit it. Flocking is a curious phenomenon
present in many LLMs where tokens within a sequence
activate neurons at similar intensities. This motivated the
design of GRIFFIN, a learning-free adaptive structured prun-
ing mechanism to remove FF neurons during inference at
the sequence level which preserves the full model’s perfor-
mance on a large collection of tasks at 50% FF sparsity
while achieving lower latency. With its straightforward al-
gorithm and no-cost deployment, GRIFFIN expands the
accessibility of numerous LLMs for generative inference.

4



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Acknowledgements
We thank Zixin Wen for insightful discussions. The work
of Y. Chi and H. Dong is supported in part by the grants
NSF CCF-1901199, DMS-2134080 and ONR N00014-19-
1-2404. The work of H. Dong is also supported in part by
the Wei Shen and Xuehong Zhang Presidential Fellowship
at Carnegie Mellon University.

References
Anthropic. The claude 3 model family: Opus, sonnet, haiku,

2024.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? Proceedings
of machine learning and systems, 2:129–146, 2020.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Csordás, R., Irie, K., and Schmidhuber, J. Approximating
two-layer feedforward networks for efficient transformers.
arXiv preprint arXiv:2310.10837, 2023.

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., and
Gardner, M. A dataset of information-seeking questions
and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Dery, L., Kolawole, S., Kagey, J.-F., Smith, V., Neubig, G.,
and Talwalkar, A. Everybody prune now: Structured
pruning of llms with only forward passes. arXiv preprint
arXiv:2402.05406, 2024.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

Dong, H., Chen, B., and Chi, Y. Towards structured sparsity
in transformers for efficient inference. In Workshop on
Efficient Systems for Foundation Models@ ICML2023,
2023.

Fatahalian, K., Sugerman, J., and Hanrahan, P. Under-
standing the efficiency of gpu algorithms for matrix-
matrix multiplication. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pp. 133–137, 2004.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frantar, E. and Alistarh, D. Massive language models
can be accurately pruned in one-shot. arXiv preprint
arXiv:2301.00774, 2023.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/
10256836.

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer
feed-forward layers are key-value memories. arXiv
preprint arXiv:2012.14913, 2020.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,
and Shah, M. Transformers in vision: A survey. ACM
computing surveys (CSUR), 54(10s):1–41, 2022.

5

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836


Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 2,
1989.

Li, Y., Yu, Y., Zhang, Q., Liang, C., He, P., Chen, W.,
and Zhao, T. Losparse: Structured compression of large
language models based on low-rank and sparse approxi-
mation. arXiv preprint arXiv:2306.11222, 2023.

Li, Z., You, C., Bhojanapalli, S., Li, D., Rawat, A. S., Reddi,
S. J., Ye, K., Chern, F., Yu, F., Guo, R., et al. The
lazy neuron phenomenon: On emergence of activation
sparsity in transformers. In The Eleventh International
Conference on Learning Representations, 2022.

Liang, T., Glossner, J., Wang, L., Shi, S., and Zhang, X.
Pruning and quantization for deep neural network accel-
eration: A survey. Neurocomputing, 461:370–403, 2021.

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of trans-
formers. AI Open, 2022.

Liu, B., Zhang, Z., He, P., Wang, Z., Xiao, Y., Ye, R., Zhou,
Y., Ku, W.-S., and Hui, B. A survey of lottery ticket
hypothesis. arXiv preprint arXiv:2403.04861, 2024.

Liu, Z., Li, F., Li, G., and Cheng, J. Ebert: Efficient bert
inference with dynamic structured pruning. In Findings
of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 4814–4823, 2021.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Mirzadeh, I., Alizadeh, K., Mehta, S., Del Mundo, C. C.,
Tuzel, O., Samei, G., Rastegari, M., and Farajtabar,
M. Relu strikes back: Exploiting activation sparsity in
large language models. arXiv preprint arXiv:2310.04564,
2023.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. Ab-
stractive text summarization using sequence-to-sequence
rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the
details, just the summary! topic-aware convolutional neu-
ral networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Nerella, S., Bandyopadhyay, S., Zhang, J., Contreras, M.,
Siegel, S., Bumin, A., Silva, B., Sena, J., Shickel, B.,
Bihorac, A., et al. Transformers in healthcare: A survey.
arXiv preprint arXiv:2307.00067, 2023.

Piórczyński, M., Szatkowski, F., Bałazy, K., and Wójcik, B.
Exploiting transformer activation sparsity with dynamic
inference. arXiv preprint arXiv:2310.04361, 2023.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Reddy, S., Chen, D., and Manning, C. D. Coqa: A conversa-
tional question answering challenge. Transactions of the
Association for Computational Linguistics, 7:249–266,
2019.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In 2011 AAAI Spring Symposium Series,
2011.

Santacroce, M., Wen, Z., Shen, Y., and Li, Y. What matters
in the structured pruning of generative language models?
arXiv preprint arXiv:2302.03773, 2023.

Shaham, U., Segal, E., Ivgi, M., Efrat, A., Yoran, O., Haviv,
A., Gupta, A., Xiong, W., Geva, M., Berant, J., et al.
Scrolls: Standardized comparison over long language
sequences. arXiv preprint arXiv:2201.03533, 2022.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Team, S. Sparse large language models with relu activation,
2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

6

https://arxiv.org/abs/1911.05507


Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Y. E., Wei, G.-Y., and Brooks, D. Benchmarking tpu,
gpu, and cpu platforms for deep learning. arXiv preprint
arXiv:1907.10701, 2019.

Xia, M., Zhong, Z., and Chen, D. Structured pruning
learns compact and accurate models. arXiv preprint
arXiv:2204.00408, 2022.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Yerram, V., You, C., Bhojanapalli, S., Kumar, S., Jain, P.,
Netrapalli, P., et al. Hire: High recall approximate top-
k estimation for efficient llm inference. arXiv preprint
arXiv:2402.09360, 2024.

Yin, L., Jaiswal, A., Liu, S., Kundu, S., and Wang, Z. Prun-
ing small pre-trained weights irreversibly and monotoni-
cally impairs ”difficult” downstream tasks in llms, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zhang, Z., Lin, Y., Liu, Z., Li, P., Sun, M., and Zhou,
J. Moefication: Transformer feed-forward layers are
mixtures of experts. arXiv preprint arXiv:2110.01786,
2021.

Zheng, H., Bai, X., Chen, B., Lai, F., and Prakash, A. Learn
to be efficient: Build structured sparsity in large language
models. arXiv preprint arXiv:2402.06126, 2024.

7



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

A. Feedforward Activations Between Sequences
Flocking patterns are unique to each sequence. We show this by taking the ℓ2-norm of Z along the token axis to obtain a
length DFF vector for each sample or sequence, roughly capturing the contribution of each FF neuron throughout a sequence.
Taking the top-k of this for each sample at each layer, we find the Jaccard similarity between two sequences based on the
indices selected for different k. In other words, we compute the intersection over union of every unique pair of top-k sets.
Higher values indicate more similar top-k sets. From Figure 3 where we aggregate Jaccard similarities across WikiText
(Merity et al., 2016) samples, we observe a lack of inter-sample activation similarities for the vast majority of layers in
Llama 2 7B and Gemma 7B, unless the sets of selected neurons are large.

Figure 3. Average Jaccard similarity between WikiText samples’ top FF neuron activations in Llama 2 7B (left) and Gemma 7B (right).
Higher values indicate greater similarity.

B. Selection Metric
Here we present visualizations of our gating statistic s from (6). For a single sample, we find s and sort the entries
normalized between 0 and 1 in Figure 4. In both models, values in s are heavily concentrated in a handful of features. Since
s aggregates the relative activation magnitudes across tokens, this implies s can capture heavily and frequently activated
neurons.

Figure 4. Sorted entries of s for each layer of Llama 2 7B (left) and Gemma 7B (right) with a sequence from PG-19 as the input. Each
line is a layer.

8



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Table 3. Generation tasks XSum (1-shot), CNN/DailyMail (1-shot), CoQA (0-shot), SCROLLS QASPER (0-shot) at 50% FF sparsity.
Magnitude neuron pruning fails in almost every case while GRIFFIN effectively preserves performance.

MODEL XSUM CNN/DAILYMAIL COQA QASPER
(ROUGE-1/2/L) (ROUGE-1/2/L) (F1/EM) (F1)

LLAMA 2 7B 27.15/9.06/22.62 10.08/0.13/9.55 77.35/63.88 26.31
MAGNITUDE 9.71/1.31/8.59 9.66/0.63/9.32 56.59/39.93 12.93
GRIFFIN 24.75/7.41/20.55 10.97/0.66/10.37 77.18/63.58 25.76

LLAMA 2 13B 26.90/9.45/22.09 2.51/0.22/2.34 79.18/66.37 28.32
MAGNITUDE 5.72/0.78/5.06 0.02/0.00/0.02 65.69/47.87 15.55
GRIFFIN 25.69/7.85/20.89 3.31/0.78/3.07 79.22/66.62 27.91

GEMMA 7B 26.86/9.15/22.03 17.45/4.15/15.94 79.04/65.25 30.78
MAGNITUDE 1.49/0.01/1.47 0.00/0.00/0.00 2.92/1.50 7.02
GRIFFIN 25.86/7.81/20.93 18.26/4.75/16.58 78.52/64.62 27.37

MISTRAL 7B 28.67/10.21/23.64 0.28/0.01/0.28 80.70/67.30 24.56
MAGNITUDE 3.58/0.27/3.31 0.26/0.03/0.26 61.99/45.93 17.18
GRIFFIN 26.59/8.70/22.17 1.26/0.21/1.17 80.15/66.50 23.92

OPT 6.7B 23.60/7.04/19.46 13.85/1.54/13.04 68.70/54.98 18.53
MAGNITUDE 1.63/0.00/1.54 1.20/0.00/1.17 31.53/16.52 7.28
GRIFFIN 21.17/5.42/17.58 13.01/1.06/12.26 68.99/55.00 17.40

OPT 13B 25.14/7.93/20.80 13.22/1.18/12.46 69.51/55.67 20.58
MAGNITUDE 1.23/0.00/1.21 1.29/0.00/1.29 39.38/27.07 8.87
GRIFFIN 22.11/6.28/18.29 12.92/1.13/12.20 69.07/54.83 20.16

RELULLAMA 2 7B 25.10/7.81/20.76 20.95/6.79/19.24 78.49/66.73 23.31
MAGNITUDE 9.09/0.22/8.20 8.50/0.14/8.17 19.43/6.48 7.21
GRIFFIN 21.83/5.88/18.09 16.85/4.96/14.69 78.35/67.10 22.29

C. More Evaluations
We further evaluate GRIFFIN across more metrics, tasks, and sparsity levels.

C.1. Generation

Extending Table 1 to include more evaluation metrics at 50% FF sparsity, Table 3 shows the same generation tasks but with
additional metrics. GRIFFIN performs better than the baseline across all models and tasks.

C.2. Classification

As our method is designed specifically for generation, we alter classification evaluations to simulate generation. In typical
classification tasks, LLMs do not enter the generative phase since the final token output of the prompt phase indicates the
class. Consequently, directly applying GRIFFIN for classification tasks trivially yields the exact performance of the original
model. Therefore, we treat all tokens but the final input token as the prompt. Then, the model is forced to go into the
generation phase for one step to produce the class.

Table 4 contains classification results across several datasets at 50% FF sparsity. Here, the baseline does fairly well but still
significantly lags behind GRIFFIN in most cases.

C.3. Varying FF Sparsity

In this section, we look into the relationship between GRIFFIN sparsity levels and performance degradation. This translates
to varying k when we select the top-k of our statistic s. To compare the performance degradation across multiple tasks,
we plot the ratio of the final performance metrics between GRIFFIN and the full model in Figure 5. We see most of the
performance is preserved at 50% FF sparsity in Llama 2 7B, Gemma 7B, and Mistral 7B. Different tasks have different
tipping points where performance sharply drops, which may be related to the difficulty of the task (Yin et al., 2024).

9



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Table 4. Classification tasks (0-shot unnormalized accuracy) at 50% FF sparsity.
MODEL HELLASWAG PIQA COPA ARC-E ARC-C BOOLQ

LLAMA 2 7B 57.16 78.07 87.00 76.35 43.34 77.71
MAGNITUDE 57.12 77.31 84.00 70.33 40.27 66.54
GRIFFIN 57.11 77.69 86.00 74.54 42.75 73.15

LLAMA 2 13B 60.06 79.05 90.00 79.46 48.46 80.61
MAGNITUDE 60.00 79.00 88.00 74.07 46.25 70.52
GRIFFIN 60.10 79.11 89.00 77.19 46.84 78.50

GEMMA 7B 60.61 80.30 88.00 82.74 50.09 83.49
MAGNITUDE 46.24 73.12 57.00 45.20 32.76 62.84
GRIFFIN 60.62 79.98 88.00 81.65 50.09 81.90

MISTRAL 7B 61.21 80.58 92.00 80.89 50.43 83.61
MAGNITUDE 61.15 80.36 86.00 74.20 48.89 60.40
GRIFFIN 61.18 80.52 91.00 79.25 50.00 80.06

OPT 6.7B 50.48 76.28 81.00 65.53 30.55 66.12
MAGNITUDE 49.21 72.63 79.00 47.60 27.13 40.15
GRIFFIN 50.44 75.63 80.00 63.93 30.55 65.44

OPT 13B 52.46 75.90 86.00 67.05 32.94 65.81
MAGNITUDE 51.31 74.21 81.00 49.41 28.07 38.75
GRIFFIN 52.42 76.17 86.00 66.92 33.19 67.65

Figure 5. Relative performance of GRIFFIN for Llama 2 7B (left), Gemma 7B (center), and Mistral 7B (right) as we enforce varying
degrees of sparsity per FF block. For all tasks, the original model’s performance for each task is normalized to 1.

D. Ablations and Analysis
D.1. Batching

We can also extend GRIFFIN with batching. Within a batch, we sum the statistic si of each sample, scaled inversely by each
sample’s root prompt length, Si, and use that to select neurons. In other words, the same experts for all samples within
a batch would be selected based on s =

∑
i si/

√
Si. Results in Figure 6 indicate that GRIFFIN is robust to batching, as

performance degrades very slowly as we increase the batch size.

D.2. Sampling-based Selection

Here, we verify that given the statistic s, top-k expert selection produces better results than sampling-based methods. The
methods we compare against include sampling based on the weights in s and combining top-k selection for half of the
experts followed by weighted sampling. Based on Table 5, we can see that sampling generally degrades performance much
more.

10



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 6. Relative (compared to single sample inference) 1-shot XSum Rouge-1 scores for increasing batch sizes. For each batch, the
same 50% of FF expert neurons are selected.

Table 5. Comparison between different expert selection methods at 50% FF sparsity.
SELECTION METHOD XSUM CNN/DAILYMAIL COQA QASPER

(ROUGE-1/2/L) (ROUGE-1/2/L) (F1/EM) (F1)

Llama 2 7B
FULL 27.15/9.06/22.62 10.08/0.13/9.55 77.35/63.88 26.31
TOP-k 24.75/7.41/20.55 10.97/0.66/10.37 77.18/63.58 25.76
SAMPLING 21.04/5.22/17.12 8.78/0.49/8.28 76.15/62.53 24.46
TOP-k + SAMPLING 24.35/7.08/20.07 10.45/0.48/9.88 77.12/64.17 25.22

Gemma 7B
FULL 26.86/9.15/22.03 17.45/4.15/15.94 79.04/65.25 30.78
TOP-k 25.86/7.81/20.93 18.26/4.75/16.58 78.52/64.62 27.37
SAMPLING 20.25/5.16/16.79 8.34/1.71/7.72 75.02/59.93 24.97
TOP-k + SAMPLING 24.47/7.43/19.98 10.93/2.60/9.98 76.76/62.12 27.09

D.3. Prompt vs. Generation Length

We find that GRIFFIN can potentially be made more robust for long generation by lengthening the prompt. To see this, we
use language modeling on the concatenated version of WikiText to simulate generation. For a length S input into the FF
block, we designate the first P tokens as the prompt and the last G tokens as the generated portion such that P +G = S.
The prompt partition is used to calculate our statistic s and determine the experts. The prompt partition uses the full FF
block while the generation partition only uses the selected experts. When comparing the original model with GRIFFIN, we
only compute the perplexity of the outputs from the generation partition since the other outputs will be identical. Based on
Figure 7, GRIFFIN gets closer to the full model outputs when the prompt length increases and generation length decreases,
meaning the difficulty with long generation can be suppressed with longer prompts.

D.4. Sparsity in Random Sequences

As further exploration into flocking, we investigate this phenomenon with random inputs. As input sequences, we use a
sample from concatenated WikiText, a permuted version of that sample, and completely random sequence where tokens are
uniformly sampled from the vocabulary. Seen in Figure 8, this structure exists in permuted and random inputs, perhaps
even more consistently than in unperturbed sequences. This suggests something within language actually diversifies the
activations, the cause of which would be of interest for future work.

11



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 7. Prompt length vs. generation length for Llama 2 7B (left) and Gemma 7B (right) as measured by increase in perplexity (PPL)
from the full model on concatenated WikiText at 50% FF sparsity.

Figure 8. First 512 tokens and their relative FF activation magnitudes in layer 18 of Gemma 7B when inputting the original WikiText
sequence (left), permuted sequence (center), and random tokens (right). Best viewed zoomed in.

E. More Flocking Examples
We provide more example of flocking across different layers of the LLM. Figure 9 and Figure 10 show flocking in Gemma
7B. Figure 11 and Figure 12 show flocking in Llama2 7B. Flocking in Gemma 7B is more visually distinct while activations
in Llama2 7B are more distributed.

12



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 9. First 512 tokens and their relative FF activation magnitudes in layers 1 to 20 of Gemma 7B when inputting a sequence from
PG-19.

13



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 10. First 512 tokens and their relative FF activation magnitudes in layers 21 to 28 of Gemma 7B when inputting a sequence from
PG-19.

Figure 11. First 512 tokens and their relative FF activation magnitudes in layers 1 to 16 of Llama 2 7B when inputting a sequence from
PG-19.

14



Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation

Figure 12. First 512 tokens and their relative FF activation magnitudes in layers 17 to 32 of Llama 2 7B when inputting a sequence from
PG-19.

15


