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Abstract

Persistent homology is a branch of computational algebraic
topology that studies shapes and extracts features over multi-
ple scales. In this paper, we present an unsupervised approach
that uses persistent homology to study divergent behavior in
agricultural point cloud data. More specifically, we build per-
sistence diagrams from multidimensional point clouds, and
use those diagrams as the basis to compare and contrast dif-
ferent subgroups of the population. We apply the framework
to study the cold hardiness behavior of 5 leading grape cul-
tivars, with real data from over 20 growing seasons. Our re-
sults demonstrate that persistent homology is able to effec-
tively elucidate divergent behavior among the different cul-
tivars; identify cultivars that exhibit variable behavior across
seasons; and identify seasonal correlations.

1 Introduction
Multidimensional point cloud data sets are becoming perva-
sive in numerous agricultural applications. Advances in phe-
notyping technologies that measure various crop attributes,
coupled with an increased adoption of field sensing for en-
vironmental monitoring (e.g., temperature, humidity, soil
moisture) have led to increased availability of multidimen-
sional data sets in agriculture. While most of these vari-
ables are temporal, some variables may also encode static
attributes that describe spatial locators or the crop varieties
(cultivars) grown at those locations.

Given such a complex spatiotemporal data set, we are in-
terested in understanding how different cultivars (with dif-
ferent genotypes G) respond to different environmental fac-
tors (E) to affect their phenotypes (P) (Tardieu et al. 2017).
This question of decoding the G×E→ P interaction is at
the center of modern-day phenomics. However, prior to un-
derstanding this complex interaction, historical data sets of-
fer a more immediate opportunity to understand how differ-
ent genotypes relate to one another by their phenotypic be-
havior. For instance, extracting different patterns of pheno-
typic behavior—be it conserved or divergent—among vari-
ous subgroups of cultivars could help classify cultivars into
behavioral groups. Class information could help in subse-
quent prediction tasks associated with those cultivars. How-
ever, in agricultural data sets, such a classification may not
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be trivially observable from data, particularly for temporally
changing phenotypes. Given the complex nature of traits,
a subset of cultivars that show similar phenotypic behav-
ior during one part of the season may possibly diverge at
other times. Secondly, even within a single cultivar, there
could be variability observed across the different seasons, as
phenotypic plasticity is a well-established phenomenon in
plants (Schlichting 1986). Consequently, it is important for
any downstream machine learning workflow to incorporate
these complex structural relationships among cultivars in or-
der to improve the efficacy of the prediction tasks.

In this paper, we model the problems of extracting cross-
cultivar relationships and intra-cultivar variability patterns
as one of a structure discovery process. More specifically,
given a multi-dimensional point cloud, where each point
represents a phenotypic observation of a cultivar in time, we
model the problem of identifying structural patterns in data
using topological data analysis. In particular, we explore the
use of persistent homology (Edelsbrunner 2013), an active
research area within the field of applied algebraic topology.
This is a branch of mathematics that studies shapes of data
and spaces using algebraic techniques. Topology works with
coordinate-free representation of shapes (simplicial com-
plexes) (Munkres 2018), which are also more robust to small
changes in data or to missing data (Lum et al. 2013).

There are two major classes of techniques within applied
topology—mapper (Singh, Memoli, and Carlsson 2007)
and persistent homology (Edelsbrunner 2013). Here, we ex-
plore persistent homology to study point clouds as it is better
equipped to elucidate topological features that persist over
multiple scales (including temporal scales). Although per-
sistent homology has been widely used in a number of other
application domains, it is yet to be explored in any serious
depth for agricultural data sets. To the best of our knowl-
edge, it has only been applied to decode plant leaf shapes
(Zhang et al. 2021). However, the focus of this paper is dif-
ferent; we aim to identify patterns between cultivars and
within cultivars based on phenotypic behavior.

As a concrete application case study, we study the cold
hardiness of multiple grape cultivars. Cold hardiness is a
trait that measures how resilient a variety is to cold temper-
atures. Specialty crops such as grapes and apples can incur
a significant loss when the air temperature drops below cer-
tain cold hardiness thresholds (Mills, Ferguson, and Keller



2006). However, these thresholds are not fixed, change by
the time of the season, and vary by the cultivars. Further-
more, due to a large number of cultivars and their divergent
behavior across different growing conditions, it becomes im-
portant to study: a) the relationships between different culti-
vars by their cold hardiness trait, and b) any trait level vari-
ability as seen in the same cultivar across different seasons.
Elucidating these relationships will help field scientists de-
vise better frost/cold mitigation protocols customized and
effective when applied to different cultivars. They could also
help us improve the precision of current state-of-the-art cold
hardiness prediction models (e.g., (Ferguson et al. 2014)).

2 Cold Hardiness Data
This study used the cold hardiness of endo–and ecodor-
mant primary buds from about 30 diverse field-grown
grapevine cultivars measured since 1988 at the WSU Irri-
gated Agriculture Research and Extension Center (IAREC).
Locations include the vineyards at IAREC, Prosser, WA
(46.29°N lat., -119.74°W long.), the WSU-Roza Research
Farm, Prosser, WA (46.25°N lat., -119.73°W long.), and the
Ste. Michelle Wine Estates, Paterson, WA (45.96°N lat.; -
119.61°W long.). Cane samples containing dormant buds
were collected daily, weekly, or at 2-week intervals from
leaf fall in October to bud swell in April—i.e., dormant sea-
son. The collected samples were analyzed using differential
thermal analysis (DTA) (Mills, Ferguson, and Keller 2006).
DTA requires putting the samples in a thermoelectric mod-
ule that senses low-temperature exotherms (LTEs) resulting
from the freezing events of individual buds. The module is
placed in a controlled chamber, where LTEs are monitored
and registered as the temperature decreases. The result is a
measurement of the lethal temperatures at which 10%, 50%,
and 90% of the bud population die, denoted by LTE10,
LTE50, and LTE90, respectively. Additionally, daily envi-
ronmental data (e.g., max and min air temperature) from the
closest on-site weather station to each vineyard was obtained
using the API provided by AgWeatherNet (WSU 2022).

Thus, for each cultivar, there is a temporal dataset with
a varying number of seasons containing daily weather data
along with cold hardiness LTE values for the days that sam-
ples were collected. For the purpose of this study, a season is
said to span from September 7th to May 15th—a conserva-
tive interval containing the full dormancy period (Ferguson
et al. 2011, 2014).

Data Summary. Table 1 shows a summary of the number
of years of data collected for the five different grape cultivars
that have been selected for this study based on their mar-
ket importance (n = 3, 629 samples). Each cultivar dataset
contains a row for each day of data collection. The key (se-
lected) temporal fields include:

• DATE: The date of observation.
• SEASON JDAY: Julian day is an integer that represents

the count of the number of days since the beginning of the
year. For the dormant season, the JDAY continues at the
new year—i.e., starts on JDAY 250 (Sep 7th) and ends
with JDAY 500 (May 15th).

Cultivar LTE Data Seasons Years of
LTE Data

LTE Total
Samples

Cabernet Sauvignon (CS) 1988-2022 34 829
Chardonnay (CH) 1996-2022 26 783
Concord (CD) 1988-’90,’92-’93,’97-’98,’99-2022 27 484
Merlot (MR) 1996-2022 26 897
Riesling (WR) 1988-2022 34 636

Table 1: Summary of LTE data for selected grape cultivars.

• LTE values at LTE10, LTE50, and LTE90: in ◦C.
• MIN AT, AVG AT, MAX AT: Minimum, average, and

maximum air temperatures respectively, as observed at
1.5 meters above the ground (in degrees Celsius).

3 Methods
3.1 Persistent Homology
The input to the persistent homology (PH) pipeline (Edels-
brunner 2013) is a high dimensional point cloud X of n
points in d dimensions with a distance dist(x, y) specified
for any pair x, y ∈ X . In short, PH characterizes the struc-
ture of X by identifying features in each dimension that per-
sist across multiple scales of dist values. It tracks a simpli-
cial complex K built on X as a function of distance values
dist ≤ r for r ≥ 0. At any given cutoff r, an edge xy ∈ K
when dist(x, y) ≤ r. Similarly, a triangle xyz ∈ K when
every pairwise dist for points {x, y, z} is ≤ r, and so on.
PH then tracks the evolution of algebraic objects (groups)
defined on K as r increases. It creates a persistence di-
agram (PD) dgmi in dimension i that represents each i-
dimensional feature by a point in the 2D plane with coordi-
nates ⟨birth,death⟩ corresponding to the values of r at which
the feature starts and one at which it stops existing. In partic-
ular, dgm0 captures the evolution of connected components,
while dgm1 captures the evolution of holes in X . In this
work, we concentrate on dgm1 PDs as holes in X can be
used to capture branching behavior (see Section 3.2).

Furthermore, the PH pipeline provides a natural way to
compare pairs of data sets X and Y based on their branching
behavior. We first generate the corresponding PDs dgm1(X )
and dgm1(Y). Considering these PDs as histograms (or
probability measures), we compute the Wasserstein distance
WD(dgm1(X ),dgm1(Y)) between them (also known as
the Earth mover’s distance). We then use the WD values to
directly compare the data sets X and Y .

3.2 Building Persistence Diagrams for Analyzing
Cold Hardiness Behavior

In the case of cold hardiness, each point in the point cloud
X is a 4-tuple ⟨c, s, d, h⟩, where c is the cultivar label, s is
the season/year, d is a JDAY of the season, and h is the cold
hardiness value (i.e., the phenotype) observed that day for
that cultivar, which is one of LTE10, LTE50, or LTE90.

Using this input point cloud X , we construct different
types of persistence diagrams (Section 3.1) to answer dif-
ferent kinds of queries as described below.

Task 1. Computing Inter-cultivar and Intra-cultivar re-
lationships. Consider two cultivars c1 and c2 that exhibit
similar LTE values during most of the season except for an



Figure 1: Branching events detected by persistent homology for each point cloud data set. 2001-2002 and 2010-2011 were the
pair with the greatest Wasserstein Distance for their respective persistence diagrams among all season pairs. The y-axis LTE
value is calculated using Eqn. (1).

interval when they diverge in their values. It is also possible
that such divergent behavior may be observable at multiple
time scales—e.g., two cultivars could diverge for days, while
another two cultivars could diverge for weeks to months.

Furthermore, it is possible the LTE behavior exhibited by
a single cultivar across two different seasons is divergent.
For instance, a cultivar c may exhibit a higher range of LTE
values during one season and a lower range in another sea-
son, both during the same JDAY time interval.

In what follows, we present an approach using persistence
diagrams to detect these distinct kinds of divergent behavior.
S1) For each cultivar c, construct a point cloud Xc ⊆ X

with all points of the form ⟨d, h⟩ taken from all points
in X corresponding to cultivar c.

S2) Next, for each cultivar c and using Xc, build a per-
sistence diagram containing dgm0 (connected compo-
nents) and dgm1 (holes) as described in Section 3.1.
We denote those diagrams for cultivar c as dgmc

0 and
dgmc

1, respectively.
S3) We then compare each pair of cultivars by comput-

ing the pairwise Wasserstein distance (described in
Section 3.1) between their respective diagrams. More
specifically, for a cultivar pair c and c′, we compute
WD(dgmc

1(Xc),dgm
c′

1 (Xc′)).
The dgm1 outputs of step S2 can be used to infer intra-

cultivar variability, and the outputs of step S3 to infer inter-
cultivar relationships. Consider a hole detected as part of a
dgmc

1(Xc), and let that hole span from day i to day j along
the JDAY dimension of the point cloud. This is indicative of
a branching event that starts around day i and ends around
day j. If the two branching paths are comprised of points
from two different seasons s1 and s2 (to be expected), then
we infer that the cultivar c shows variable LTE behavior be-
tween these two seasons for the JDAY interval [i, j].

Note that different dist(.) can be used for step S2 to com-
pute the persistence diagrams. In this paper, we first used
two different scaling functions for the two dimensions of
the point cloud (JDAY, LTE50), and then used the L2 (Eu-
clidean) distance as the function on the scaled points to con-
struct the persistence diagrams.

For JDAY, we used a simple normalization to scale all
points in the range of [0,1].

For LTE, instead of using their values directly, we mod-
eled the phenotype value by taking the difference between
the observed LTE value and the minimum air temperature
recorded on that day (we denote this difference δ(s, d, h) on
day d of season s with LTE h). Intuitively, this difference is
a strong indicator of the degree of risk that the cultivar faces
on that day—as the difference shrinks, the cultivar is at a
higher risk. Note that δ(s, d, h) can be positive or negative
(rare). Subsequently, we normalize the δ values as:

δ(s, d, h)=
δ(s, d, h)−mind{|δ(s, d, h)|}

maxd{|δ(s, d, h)|} −mind{|δ(s, d, h)|}
(1)

Intuitively, this normalization function is aimed at making
an oval or oblong branching shape into a more circular
shape, making it suited for hole detection (examples shown
in Figure 1).

Task 2. Computing seasonal correlations. Given multi-
ple seasons, we are also interested in computing pairwise
seasonal correlations. Two seasons are said to be similar if
all the cultivars considered show consistent relative behav-
ior between the two seasons. There are two ways to compute
this relationship. We can directly compare the point clouds
for those two seasons. Alternatively, we can build the per-
sistence diagrams for those two seasons and compare them.
We choose the latter approach since persistence diagrams are
more compact representations with robust properties (Edels-
brunner 2013).

4 Results
In this section, we present the results of applying our
methodology described under Tasks 1 and 2 in Section 3.2
on the grape cold hardiness data set described in Section 2.
All experiments shown are for LTE50 values (due to space
restrictions). All persistence diagrams and Wasserstein dis-
tances were computed using the Scikit-TDA package
(Saul and Tralie 2019).

Results of Inter-cultivar Comparisons: Figure 2 shows
the persistence diagrams computed for each cultivar, and Ta-
ble 2 shows the Wasserstein distance matrix for all cultivar
pairs using their persistence diagrams. As can be seen, CD



Figure 2: Persistence diagrams for the five grape cultivars, each constructed using their data from seasons 1999 through 2022.
Blue and orange dots represent connected components (dgm0) and holes (dgm1) respectively. The vertical distance of a dot
from the main diagonal corresponds to the feature’s duration.

Figure 3: Persistence diagrams for the last 5 seasons of the cold hardiness data. Each diagram is for one season, constructed
using all 5 cultivar data for that season.

and MR display the largest distance, while CH and CS con-
stitute the closest pair. WR (Riesling) has a larger distance
to all other cultivars except to CD. Note that there are no
known connections between the cold hardiness trait and the
consumptive type of grape (i.e., wine or juice or table).

CD CH CS MR WR
CD 0 0.236 0.201 0.305 0.168
CH 0.236 0 0.146 0.164 0.233
CS 0.201 0.146 0 0.168 0.206
MR 0.305 0.164 0.168 0 0.286
WR 0.168 0.233 0.206 0.286 0

Table 2: Pairwise distance matrix for cultivars. For each cul-
tivar data from 1999-2022 was used. Each value shows the
Wasserstein distance between the dgm1 obtained for the cor-
responding two cultivars.
Results of Intra-cultivar Variability: Next, we ask how
variable is each cultivar across the different seasons. This is
captured by the level of branching observed within the dgm1
for that cultivar (Task 1, Section 3.2). Figure 2 shows all
five persistence diagrams. As can be readily observed, each
cultivar has a different profile. Intuitively, if a cultivar be-
haves highly variable from season to season, we can expect
to see more branching. However, if those branching events
are relatively short-lived, then they correspond to small time
scale variations. Longer lived branching events correspond
to more persistent divergent behavior. From Figure 2, it can
be seen that all three of CH, CD, and MR show numerous
holes of wide ranging durations. In contrast, CS and WR

show fewer holes with smaller duration. This suggests that
CS and WR are less variable compared to the other varieties.

Seasonal comparisons: We also compared the different
seasons (from 1999 to 2022) using the methodology de-
scribed in Task 2 of Section 3.2. Figure 3 shows the per-
sistence diagrams for only the last 5 seasons (due to space
constraints). We observed that the two most different sea-
sons (i.e., with the largest Wasserstein distance) were the
seasons 2001-2002 vs. 2010-2011 (shown in Figure 1).

5 Conclusion
Topological data analysis can be an effective tool to mine for
higher order structural information from point cloud data. In
this paper, we presented a persistent homology based frame-
work to analyze and glean various types of structural infor-
mation from a cold hardiness data set. The framework itself
is generic and can be extended to other applications within
agriculture or other domains. Future research directions in-
clude (but are not limited to) a) using the information gained
to improve the prediction accuracy of cold hardiness mod-
els; b) adverse testing against noise and incomplete data; and
c) exploring ways to use relationships inferred toward data
imputation and multi-task learning among cultivars.
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