Improving Rationality in the Reasoning Process of Language Models
through Self-playing Game

Pinzheng Wang ! > Juntao Li'? Zecheng Tang'? Haijia Gui'? Min Zhang !>

Abstract

Large language models (LLMs) have demon-
strated considerable reasoning abilities in various
tasks such as mathematics and coding. However,
recent studies indicate that even the best models
lack true comprehension of their reasoning pro-
cesses. In this paper, we explore how self-play can
enhance the rationality of models in the reasoning
process without supervision from humans or su-
perior models. We design a Critic-Discernment
Game (CDG) in which a prover first provides a so-
lution to a given problem and is subsequently chal-
lenged by critiques of its solution. These critiques
either aim to assist or mislead the prover. The
objective of the prover is to maintain the correct
answer when faced with misleading comments,
while correcting errors in response to constructive
feedback. Our experiments on tasks involving
mathematical reasoning, stepwise error detection,
self-correction, and long-chain reasoning demon-
strate that CDG training can significantly improve
the ability of well-aligned LLMs to comprehend
their reasoning process. We have released our
code here.

1. Introduction

Large language models (LLMs) have achieved significant
success in reasoning tasks such as coding and mathemat-
ics (Roziere et al., 2023; Dubey et al., 2024; Yang et al.,
2024a). By training on reasoning paths from humans or su-
perior models, LLMs can generate impressive step-by-step
reasoning processes similar to human thought (Kim et al.,
2023; Wei et al., 2022). However, recent studies indicate
that even well fine-tuned and aligned LLMs still lack true

!School of Computer Science and Technology, Soochow Uni-
versity 2Key Laboratory of Data Intelligence and Advanced Com-
puting, Soochow University. Correspondence to: Juntao Li
<ljt@suda.edu.cn>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

comprehension of their reasoning processes and instead rely
mostly on probabilistic pattern matching (Mirzadeh et al.,
2024; Valmeekam et al., 2022; Razeghi et al., 2022). This
can be reflected in the instability of the reasoning process
of LLMs, which tends to produce hallucinations and errors
while struggling to detect and correct these issues on its
own (Pan et al., 2023; Kamoi et al., 2024). This limitation
is particularly detrimental for long chains of thought, which
are essential for solving complex and challenging tasks. As
the length of the reasoning process increases, intermediate
errors and incorrect attempts are more likely to accumulate
if the model lacks the ability to detect or correct them (Zhao
et al., 2024; Wu et al., 2024a).

To mitigate this issue, existing approaches employ process
based reward models (PRMs) or preference data pairs to
provide stepwise error supervision for the reasoning pro-
cess (Lightman et al., 2023; Lai et al., 2024; Uesato et al.,
2022a). However, these methods struggle to explicitly de-
fine fine-grained steps in general reasoning, merely indicate
which step is better without providing specific explanations,
and frequently rely on human-annotated data, making them
difficult to scale up (Guo et al., 2025; Zhang et al., 2025).
Therefore, we explore enhancing the rationality of the rea-
soning process of LLMs through self-play in language, with-
out supervision from humans or superior models.

We design a Critic-Discernment Game (CDG), where the
agent engages in discussion about its reasoning process with
different goals. Specifically, our game involves three roles:
the prover, the helpful critic, and the misleading critic. As
shown in Figure 1, each role has the following objective:

* Prover: Given a question, the prover is required to provide
an answer with a clear chain of thought. Afterward, the
prover receives feedback from a critic whose intent can be
either helpful or misleading. The prover should maintain its
initial correct solution and revise the incorrect solution.

e Helpful Critic: The helpful critic receives a problem
along with the prover’s incorrect answer. Its task is to iden-
tify the mistake in the prover’s reasoning without directly
correcting the solution, persuading and assisting the prover
in revising the original incorrect answer.

* Misleading Critic: The misleading critic receives a prob-

https://github.com/PinzhengWang322/Critic_Discernment_Game

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

lem and the correct solution of the prover. Its task is to
fabricate and point out a false error within the prover’s solu-
tion, intending to mislead the prover to change the original
correct answer into an incorrect one.

The critics can freely choose the granularity of the steps they
critique, either to attack or to collaborate with the prover in
the form of natural language. All three roles are optimized
through reinforcement learning (RL) algorithms based on
their respective tasks and performance in each round. To
achieve success, the prover must thoroughly understand
its reasoning process, ensuring it can maintain correct
steps without being misled by the increasingly adaptive
misleading critic, while accurately revising genuinely
erroneous steps.

To the best of our knowledge, we are the first to improve
reasoning capabilities through a self-play language game
on fully fine-tuned and aligned models, such as LLaMA-
3.1-8B-instruct (Dubey et al., 2024) and Qwen2.5-1.5B-
Instruct (Yang et al., 2024a). To evaluate whether the
model truly gains a better understanding of its reasoning
process, we conduct comprehensive evaluations across four
tasks: mathematical reasoning, stepwise error detection,
self-correction, and long-chain reasoning. In the long-chain
reasoning task, the model is required to generate reason-
ing processes similar to OpenAl-ol (OpenO1 Team, 2024),
which involves extensive trial, self-reflection, and error cor-
rection to solve hard math problems (Wu et al., 2024a; Qin
et al., 2024; Huang et al., 2024). Our method consistently
improves model performance across all tasks, demonstrat-
ing that the Critic-Discernment Game effectively enhances
rationality in the reasoning process. We believe our method
highlights the potential of self-play language games with RL
as a novel training paradigm beyond instruction tuning and
preference optimization (Rafailov et al., 2024; Schulman
etal., 2017; Meng et al., 2024).

2. Related works

RL for LLM reasoning Reinforcement Learning (RL)
has emerged as a crucial training method to enhance rea-
soning capabilities in large language models (LLMs), with
many methods providing feedback based on the quality
of the reasoning outcome, measured by the correctness
of the final answer (Anthony et al., 2017; Gulcehre et al.,
2023; Singh et al., 2023) or through an outcome reward
model (ORM) (Cobbe et al., 2021c; Yang et al., 2024b; Ue-
sato et al., 2022b). However, recent works have highlighted
that LLMs lack true comprehension of their reasoning pro-
cesses, making them prone to generating hallucinations and
errors (Mirzadeh et al., 2024; Lanham et al., 2023). To
address this, many works have introduced step-level super-
vision for models, usually through process reward mod-
els (PRMs) (Zhang et al., 2025; Uesato et al., 2022a) or

step-wise preference data (Lai et al., 2024). These methods,
however, rely on data annotated by humans or superior mod-
els, which limits their scalability. Some methods attempt
to automate the construction of step-level supervision us-
ing techniques like Monte Carlo Tree Search (Zhang et al.;
Lu et al., 2024; Wang et al., 2024; Luo et al., 2024). Yet,
these approaches struggle to explicitly define fine-grained
reasoning steps and tend to have limitations of data quality
issues or reward hacking (Guo et al., 2025). In this work,
we propose a self-play RL algorithm which differs from tra-
ditional preference optimization. In our approach, rewards
are derived from game rules, allowing for step-level super-
vision at arbitrary granularity without relying on human or
superior model supervision.

Self-Play in LLM Self-play is a technique where mul-
tiple agents learn by interacting with themselves (Zhang
et al., 2024; Cheng et al., 2024a; Xi et al., 2024). Game
agents like AlphaGo Zero (Silver et al., 2017) have shown
that advanced planning and reasoning abilities can be devel-
oped solely through self-play without human supervision.
Inspired by these successes, many efforts have been made
to enhance various LLM capabilities via self-play games.
Zheng et al. (2024) and Xu et al. (2024) employ a two-
agent attack-defense game to align LLMs in safety-critical
scenarios, significantly improving robustness against jail-
break attacks. Additionally, many works (Chen et al., 2024;
Wu et al., 2024b; Kirchner et al., 2024) utilize self-play
strategies, such as generate-discriminate frameworks and
competitive reward mechanisms, to better align LLMs with
human preferences. Furthermore, studies have shown that
self-play can effectively enhance agents’ strategies in lan-
guage games, e.g., Negotiation (Fu et al., 2023) and the
Werewolf Game (Xu et al., 2023a;b). Our work is most sim-
ilar to SPAG (Cheng et al., 2024b), which uses the Adversar-
ial Taboo Game to improve pre-trained models’ reasoning
abilities. However, our approach differs in that we explore
how self-play can enhance the rationality of the reason-
ing process in well-instructed and aligned models, such as
Llama-3.1-8B-Instruct, rather than merely activating latent
abilities in pre-trained models.

3. Self-play of Critic-Discernment Games
3.1. Critic-Discernment Game Modeling

In our game, we consider a dataset consisting of math
questions and their corresponding ground truth answers
y = y(z). Given a solution z proposed for a question x, we
employ regular expressions and the SymPy grader (Meurer
et al., 2017) to evaluate the correctness of the solution, de-
noted by Leomect(2,y). We represent the prover, helpful
critic, and misleading critic as m, 1, and p, respectively.

At the start of the game, the prover is required to provide

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Question: Mark went to a store where he spent one-half of his money, and then
spent $14 more.If he had $3 left, how much did he have when he entered the store?

Let's think through this step by step. Mark had $3

Let's think step by step. Mark spent a total of $14

Prover | + $14 = 17 after he spent half of his money. So he : * 2 = $28. He had $3 left, so he had $28 + $3 =
la:g,) had $17 * 2 = $34 when he entered the store. @ E $31 when he entered the store. ®
C :

/

t(ou incorrectly failed to add the last $3 remaining.

Cr.itic
°5)

(Aim to mislead)
You are right, the final answer should be $34 + $3 = $37. ®

The $3 remaining was already accounted for when adding
it to the $14 spent, so I retain my initial answer. @

The result should include the $3 that Mark had left.

| 5.5 | Prover
(%
1) Episodes where the Critic misleads the Prover

e

~a

You incorrectly doubled the $14 spent; the correct

approach is to account for it after calculating half of |Critic

his initial money. —_
Y. i ‘Q’

(Aim to correct)

You are right, the half of his initial money is $14 + $3 =
$17. The final answer should be $17 * 2 = $34.

I have already calculated it. I retain my initial answer.

Prover

0.0

2) Episodes where the Critic corrects the Prover

Figure 1. Examples of Critic-Discernment Game with the same math question. In the left dialogue, the critic attempts to mislead the
prover into changing a correct answer, while in the right dialogue, the critic guides the prover to correct an incorrect answer. The prover
must rationally decide whether to revise their response based on the critic’s feedback and their own answer.

Algorithm 1 Data collection of Critic-Discernment Game
Inputs: prover 7, helpful critic p, misleading critic p,
question x and corresponding answer y, prompt templates
fhelp’ fmislead’ frevise
Sample prover’s initial solution z ~ 7(z|z)
if Leorrect (2, y) = O then

Sample critique ¢ ~ p(cy| frep (2, 2))
else
Sample critique ¢ ~ p(c,| fmisiead (2, 2))
end if
Sample revised solution 2. ~ (2| frevise () 2, €))
Collect an episode 7 = (z, z, ¢, 2')

an initial solution z for a given problem sampled from the
dataset distribution P,. If the solution z is incorrect, the
game assigns a helpful critic to identify and highlight the er-
ror in the solution; conversely, if the solution z is correct, the
game assigns a misleading critic to fabricate a non-existent
error in the solution, attempting to mislead the prover into
revising the correct answer to an incorrect one. Upon re-
ceiving critiques whose intent is unknown, the prover must
decide whether to modify the solution by reassessing the
highlighted errors in its reasoning process. The data col-
lection procedure for a single Critic-Discernment Game
is described in Algorithm 1. The prompt templates fi.ip,

{ﬂislead, frevise used in the game are provided in Appendix A.
e prover can win the game in two ways: (1) by providing

a correct solution on the first attempt and successfully re-
sisting the misleading critic’s deception, or (2) by initially
providing an incorrect solution but correcting it through
feedback from the helpful critic to arrive at the correct final
answer. The first way of winning requires a superior abil-
ity to solve the problem, and therefore we assign a larger
reward to this outcome. The total reward for the prover is:

Ry =]EZNTI'[]]-COITCCt(Zv y)ECNp,z’N‘fr(]]-correct(Zly y) + 77)

(1) Correct initially and resist misleading critic

+ -

(2) Incorrect initially but correct with the help of the helpful critic

ey

where 7 is the hyper-parameter to ensure a larger reward
of the first term, 2z ~ 7(z|z), 2/ ~ 7(2'| frevise(, 2, €)),
¢ ~ p(c| frep(, 2)), ¢ ~ p(c| fmistead (@, 2)) are simplified
asz~m 2 ~mc~p,c~op.

]]-correct(za y))]Ecwu,z/Nﬂ']]-correct(zly y)]a

For the helpful critic, the condition for winning is to con-
vince the prover of its critique and guide it in successfully
correcting its initial incorrect solution. The reward for the
helpful critic is assigned as follows:
Ru :EZNTF,CN;,L,ZINW [(1 -]lcorrect(zv y))]lcorrect<zla y)]
@

For the misleading critic, the condition for winning is to suc-
cessfully deceive the prover into altering a correct solution

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

based on its critique. The reward is assigned as follows:

- I]-correct(zlv y))] .
3)

Rp :EZNW,CN;),Z’NW []]-(:orrect(za y) (1

Each role in the game is trained to maximize its own reward.
The prover and the helpful critic work collaboratively, while
the prover competes against the misleading critic. During
the training process, we jointly optimize the strategies of
these models through reinforcement learning.

3.2. Reinforcement Learning from Self-play

To enhance the capabilities of each role in the game, we
employ reinforcement learning (RL) for training. The prover
model is optimized to maximize the expected reward value:

LRL-CDG(W) =-E I:RTF(W(ZTF|ITF)):| B} (4)
where z, denotes the output of the prover given input x .

Several mainstream reinforcement learning algorithms can
be employed to optimize the above objective, including
Proximal Policy Optimization (PPO), Direct Preference Op-
timization (DPO), and Reinforced Self-Training (ReST).
Our experiments show that among these methods, ReST
exhibits stable performance and considerable effectiveness
in our critic-discernment game. Therefore, we adopt ReST
as the training method for CDG agents. With a threshold
7 € R, ReST updates the LLM by the reinforcement on the
selected samples D, = {(:c,r, 2n) (T, 20) > Tﬂ—}. The
corresponding loss function can be written as:

Lrestcp (1) = E[Lo(z,)5 L (T, 27|
= IE’DT,‘_ [ELM(xﬁv ZTK‘)}? (5)

where L1y (2, 2) denotes the language modeling loss on
the self-generated data.

The loss function for critic ¢ and p can be defined as:

Lrest.coc(p) = Ep, [Lim(zp, 2p)] (6)
Lrestcoa () = Ep,, [Lom(@y, 2] @)

In our experiments, the values of 7, 7, and 7, are set to
0.5, 0.75, and 0.5, respectively. According to equation 1,
the samples included in Dr, for reinforcement are: (1)
cases where the prover provides a correct solution on the
first attempt; (2) cases where the prover successfully re-
sists misleading critiques; and (3) cases where the prover
successfully corrects the initial incorrect solution with the
assistance of the helpful critic. For the critics, each critique
is presented to the prover in the form of fieyise (2, 2, ¢), and
the prover is required to generate multiple responses through
random sampling. A misleading critique is included in D7,
only if it successfully misleads the prover with a success

Algorithm 2 Self-play of Critic-Discernment Game
Inputs: inital prover 7, initial helpful critic py, ini-
tial misleading critic pp, iteration number for self-
improvement 7'
for iteration t =1 to 7' do

Collect self-play episodes Tz = {7 ~ m X s X pt}
Select D! , D! D! from T;
ift >1 tTl:en e
D!+ D! UDL !
g
Tp Tp Tp
end if
Minimize the following objective on 7} to obtain 7y 1:
Lrest-coc(m) = Epr [Lim(@r, 2x)]
Minimize the following objective on z; to obtain fi;41:
Lrestcpc (@) = Ep: [Lim(zp, 24)]
Minimize the following objective on p; to obtain p;41:
Lrest.cpG(p) = Ep: [Lim(zp, 2p)]
end for

rate exceeding 7,,. Similarly, a helpful critique is included in
Dr,, only if it helps the prover correct an initially incorrect
solution with a success rate exceeding 7,,.

Considering that the feature of multi-turn auto-regressive
generation by LLMs is inefficient for on-policy RL training,
we adopt an offline learning scheme for multi-round training.
For the ¢-th training round, we first collect self-play episodes
and update the datasets for training each role as Dime
D1 U DL . Subsequently, we update the initial policy
model by minimizing Equations 5, 6 and 7, and use it as the
initialization for the next round of self-play. More details
of our self-play strategy are provided in Appendix B. The
overall training algorithm is described in Algorithm 2.

4. Experiments

To evaluate the effectiveness of CDG, we conduct experi-
ments on four mathematics-related reasoning tasks using
the fully fine-tuned LLaMA3.1-8B-Instruct model. These
tasks are designed to comprehensively assess the model’s
rationality in its reasoning process. Notably, LLaMA3.1-
8B-Instruct has already undergone self-improvement using
techniques such as rejection sampling and Monte Carlo Tree
Search with reward guidance for mathematical tasks (Dubey
et al., 2024). Therefore, performance improvements ob-
served from training with CDG demonstrate its ability to
further enhance the model’s reasoning rationality on the
foundation of traditional self-improvement methods.

4.1. Improving Mathematical Reasoning with CDG

In this section, we evaluate the mathematical reasoning
capabilities of various models under the CDG framework.

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Table 1. Math reasoning performance of CDG, which consistently enhances the reasoning ability of each model (p-value < 0.05). CDG-n
represents the prover model trained after the n-th iteration, while CDG-Imitation refers to the model trained using imitation learning.

GSMSK MATHS500
Models Methods P@1 M@8 M@32 P@l M@8 M@32
Instruction-tuned Models
Llama-3.1-8B-Instruct None 85.3 91.2 93.0 494 58.3 63.4
CDG-1 85.5 91.1 92.7 49.0 56.8 62.2
CDG-2 86.8 92.0 93.1 51.7 60.7 66.0
Qwen2.5-1.5B-Instruct None 75.1 82.6 86.5 554 58.6 62.9
CDG-1 75.4 83.8 86.4 57.6 62.9 66.2
CDG-2 75.2 83.8 86.8 56.1 61.5 65.6
Pre-trained Model
Llama-3.1-8B-Base + CDG-Imitation 78.9 87.1 90.4 29.4 36.5 42.6
CDG-1 78.4 86.4 89.3 29.8 36.3 40.4
CDG-2 79.2 88.7 90.8 33.8 39.2 43.6
Datasets and Evaluation Metrics We focus on the field Results As shown in Table 1, CDG training consistently

of mathematical reasoning using two widely used datasets:
GSMS8K and MATHS500 (Cobbe et al., 2021a;b). The train-
ing sets contain 7,473 and 12,000 samples, respectively,
while the test sets consist of 1,319 and 500 samples. The
problem-answer pairs for self-play training are sourced from
their respective training sets. We evaluate all models using
greedy sampling (Pass@ 1) and majority voting with 8 and
32 samples (M @8, M@32).

Backbone Models To investigate the impact of self-play
on different sizes of models, we select two instruction-tuned
models: Llama3.1-8B-Instruct (Dubey et al., 2024) and
Qwen2.5-1.5B-Instruct (Yang et al., 2024a) as backbone
models. Additionally, to explore whether self-play can im-
prove the performance of pre-trained models that have not
undergone instruction tuning, we also conduct experiments
on Llama-3.1-8B-Base.

CDG Training For instruction-tuned models, we follow
Algorithm 2 and perform two rounds of self-play training.
For dataset D, selected during training, we ensure that the
number of samples where the prover correctly answer on the
first attempt, successfully resist misleading critiques, and
correctly revise errors are balanced at 10,000 each. For pre-
trained models, we introduce an additional imitation learn-
ing step before self-play to establish basic game-playing
capabilities and ensure outputs following the self-play for-
mat. The imitation learning dataset, consisting of 30,000
examples, is generated by Llama-3.1-8B-Instruct. All evalu-
ations are conducted on the prover model. Further details in
CDG training can be found in Appendix B.

enhances mathematical reasoning capabilities across all
models and datasets. In particular, for both Llama-3.1-
8B-Instruct and Llama-3.1-8B-Base, the second round of
training significantly improves the prover’s reasoning perfor-
mance. Case study on generated episodes reveals that this
improvement is primarily due to the stronger attacks from
the RL-trained misleading critic, which forces the prover to
gain a deeper understanding of its reasoning process during
the second training round, as shown in Appendix D. Fur-
thermore, our method achieves larger improvements on the
MATHS00 dataset, highlighting CDG’s ability to enhance
the models’ performance on more challenging problems.

4.2. Enhancing Stepwise Error Detection in the
Reasoning Process with CDG

Task We evaluate the model’s understanding of its own
reasoning by testing its ability to identify potential errors in
its reasoning steps. Concretely, the model receives a ques-
tion and solution and is tasked with examining a specified
step to determine its correctness. Notably, we evaluate the
model on problems it has already demonstrated proficiency
in solving, ensuring that the assessment focuses solely on
its ability to recognize errors in the reasoning process.

Test Data Construction To ensure that the model’s step-
wise error detection ability is evaluated on problems it is
capable of solving, we include only problems for which the
majority of sampled solutions are correct in the test set. We
then employ GPT-4o to identify the first erroneous step in
the incorrect solutions for these problems. Through this
process, we construct samples consisting of solutions paired
with their corresponding erroneous steps. Similarly, we ran-

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

domly sample one step from the model’s correct solutions to
create samples where each of the solutions is paired with a
correct step. The final dataset contains 200 positive samples
and 200 negative samples.

Results Table 2 presents the accuracy and F; score for the
stepwise error detection task. The results show that CDG
training significantly improves error detection in reasoning,
particularly on the more challenging MATHS500 dataset,
enhancing the model’s self-reflection ability.

Table 2. Performance of CDG on stepwise error detection.

GSMS8K MATHS500
Fi, Acc F; Acc

Llama-3.1-8B-Instruct 74.0 64.4 644 554
CDG 769 693 714 675

Models

4.3. Improving Self-Correction with CDG

Task To further investigate whether CDG Training can
enhance a model’s self-awareness of its reasoning steps and
improve the rationality of its reasoning process, we evaluate
Llama3.1-8B-Instruct on the Self-Correction task. The task
is structured as follows: the model first generates an initial
response to a given question. Subsequently, the user prompts
the model with the command, “Please check your answer
step by step again”, instructing the model to review and
correct its initial response. Previous studies have indicated
that models exhibit very limited self-correction abilities
without external feedback (Kamoi et al., 2024; Pan et al.,
2023). They tend to misinterpret their reasoning process
and mistakenly modify initially correct answers, resulting
in a degraded final response.

Self-Correction Training To equip the model with foun-
dational self-correction capabilities, we fine-tune Llama3.1-
8B-Instruct both before and after CDG training on identi-
cal datasets. Specifically, we use the vanilla Llama3.1-8B-
Instruct to generate eight responses for each question in the
training set and then label them as correct or incorrect based
on the ground truth. Following this, the model conducts a
second round of self-checking and correction to improve
its initial responses. We construct a self-correction training
set consisting of two types of examples: 5,000 cases where
the model’s initial correct answers are maintained after re-
flection in the second round, and 5,000 cases where initial
erroneous answers are corrected to accurate ones. This self-
correction dataset is then used to fine-tune the model. We
provide more details in Appendix B.

Results As illustrated in Figure 2, the model trained by
CDG significantly reduces the rate at which initial correct

answers are modified erroneously during self-correction,
while maintaining a nearly unchanged rate of correcting
incorrect answers successfully, even when the initial re-
sponse accuracy generated by CDG is higher. In GSM8K,
the model trained with CDG reduces the probability of erro-
neously modifying correct responses to less than half that
of the original model. In general, CDG training maintains
a positive and improved self-correction rate compared to
the vanilla model. These results suggest that the model
achieves a more rational evaluation of its reasoning process
after CDG training.

©

o
=
'y

Base
CDG

Base
CDG

N
u
[
N

Percentage (%)
w A o
o u o
Percentage (%)
™
1

=
[

© N » o ®

GSM8k MATH GSM8k MATH

(a) Initial Response Accuracy (b) Correct-to-Incorrect Rate

25 Base 1.5
- CDG _ 10
x20 S
g g %
g 15 g 0.0
c c
810 $-05
4 4
& 2.0
5 T Base
-1.5 CDG
e GSM8k MATH GSM8k MATH

(c) Incorrect-to-Correct Rate (d) Overall Correction Rate

Figure 2. Self-Correction results before and after CDG training.

4.4. Improving Long-Chain Reasoning with CDG

Task OpenAl-ol demonstrates that long-chain reasoning,
which involves extensive exploration, self-reflection, and
self-correction, can significantly enhance the ability to solve
complex reasoning problems by increasing test-time com-
pute (Wu et al., 2024a; Zhao et al., 2024), which is similar
to how humans tackle difficult problems. However, such
reasoning requires the LLM to have a strong understand-
ing of its own reasoning process, enabling it to identify
when to correct errors and adjust its exploration direction.
We test LLM performance on challenging problems from
MATHS500, focusing on level 5 difficulty, under the long-
chain reasoning paradigm.

Long-Chain Reasoning Training To endow the model
with long-chain reasoning capabilities, we distill the rea-
soning process of QwQ-32B-Preview (Team, 2024) into
Llama3.1-8B-Instruct, both before and after CDG training.
QwQ-32B-Preview is an open-source LLM renowned for
solving problems through extensive reasoning, question-
ing, and reflection, with an average reasoning chain length

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Table 3. Performance comparison of other RL methods and variants of CDG.

Math Reasoning Error Detection Self Correction Long-chain
Method R . Average
GSMSK MATH GSMS8K MATH GSMS8K MATH ‘¢asoning
Llama-3.1-8B-Instruct 85.3 494 74.0 64.4 -1.5 1.0 25.3 42.5
Other RL Methods
Expert Iteration 87.2 50.8 75.4 67.4 -0.6 0.8 22.8 434
Step-DPO 84.6 51.6 69.8 58.2 2.2 2.1 27.6 41.0
CDG and its variants
CDG 86.8 51.7 76.9 714 0.7 14 29.7 45.5
CDG w/o Correct critic 86.2 50.9 76.2 69.7 -0.5 -3.0 28.3 43.9
CDG w/o Misleading critic ~ 84.9 51.1 76.2 68.9 -1.2 -0.5 29.4 44.1

significantly exceeding that of Llama3.1-8B-Instruct.

Directly distilling the reasoning chains of QwQ-32B-
Preview into Llama3.1-8B-Instruct, however, results in un-
stable performance due to the capability gap between the
two models. To mitigate this, we first perform supervised
fine-tuning (SFT) on Llama3.1-8B-Instruct using reasoning
chains generated by QwQ-32B-Preview. Subsequently, we
apply rejection sampling based on ground truth answers
to filter the reasoning chains generated by Llama3.1-8B-
Instruct post-SFT. Compared to direct distillation, this fil-
tered dataset is more suitable for enhancing the capabilities
of Llama3.1-8B-Instruct. We then use this dataset to train
both pre- and post-CDG training versions of the model for
Long-Chain Reasoning tests.

Results As shown in Figure 3, the two-stage distillation
significantly enhances the original model’s performance
on challenging mathematical problems, achieving nearly a
10-point improvement. Additionally, models trained with
CDG demonstrate superior long-chain reasoning capabilities
compared to the original model when distilled on the same
dataset, showing a consistent 3-5 point improvement. This
indicates that CDG training enables models to develop better
long-chain reasoning abilities, reflecting a more rational
understanding of their own reasoning steps.

S. Analysis of the Critic-Discernment Game
5.1. Comparing With Other RL Methods

To better assess the effectiveness of CDG training in enhanc-
ing model capabilities, we compare it with two mainstream
RL approaches: Expert Iteration (Anthony et al., 2017) and
StepDPO (Lai et al., 2024). Expert Iteration is one of the
most effective RL-based methods for improving reason-
ing in LLMs (Havrilla et al., 2024). It fine-tunes models
on high-return responses using standard cross-entropy loss.
Following Havrilla et al. (2024), we train the model exclu-

--e- Llama3.1-8b-instruct
-+- Llama3.1-8b-instruct + Distill
45| —s— CDG + Distill

Accuracy

21 22 23 24 25
Number of samples

Figure 3. Performance on Level-5 Difficulty of MATH. The x-
axis represents the number of samples, while the y-axis shows
the accuracy under majority voting. Models trained with CDG
demonstrate significantly better long-chain reasoning capabilities
compared to models without CDG training, with a p-value < 0.05.

sively on responses that yield correct final answers for two
iterations under the same training budget as CDG. StepDPO
improves reasoning by using GPT-40 (Hurst et al., 2024) to
generate a step-level pairwise preference dataset, which is
then used for training via DPO. We follow the experimen-
tal setup from the original paper and conduct training on
LLaMA 3.1-8B-Instruct using the same dataset.

As shown in Table 3, Expert Iteration, which relies solely
on outcome rewards, significantly improves performance on
the Math Reasoning task but performs poorly on Long-chain
Reasoning. In contrast, StepDPO, which applies step-wise
supervision, enhances Long-chain Reasoning but underper-
forms in Error Detection and Self-Correction. Compared to
these methods, our approach consistently enhances perfor-
mance over the vanilla model across all four tasks, achiev-
ing superior results in Error Detection, Self-Correction, and
Long-chain Reasoning, while performing on par with Expert
Iteration in Math Reasoning. These results demonstrate the
effectiveness of CDG training in improving the rationality
of the reasoning process.

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

5.2. Component Analysis

We conduct experiments on two variants of CDG training
to investigate the key factors contributing to the prover’s
improvement in our Critic-Discernment Game. In these
variants, either only the helpful critic or only the mislead-
ing critic interacts with the prover, while maintaining the
same objective as in the vanilla CDG training. As shown
in Table 3, the two variants of CDG training perform worse
across all tasks compared to the full CDG training. Notably,
these variants even lead to a decline in self-correction ability
compared to the vanilla Llama3.1-8B-Instruct. This sug-
gests that the prover, when trained in a single-critic setting,
may become either overly reliant on the critic or completely
disregard it. Such tendencies may hinder the prover from
genuinely understanding its reasoning process. Therefore,
the effectiveness of CDG training stems not only from the
ability to correct initial errors or resist misleading critiques,
but also from the prover’s ability to discern the true quality
of its reasoning process.

5.3. Self-play Training with Various RL Methods

We also investigate the impact of applying different RL
algorithms in CDG training. Specifically, we experiment
with two mainstream RL methods: Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024) and Proximal Policy
Optimization (PPO) (Schulman et al., 2017). All three al-
gorithms are trained using the same set of collected game
episodes. To construct pairwise preference data for DPO,
we generate responses to the same prompt by randomly sam-
pling outputs with rewards of 1 (chosen) and O (rejected) for
the prover. For PPO, we follow the experimental setup of
SPAG (Cheng et al., 2024b), employing the same method
for advantage estimation. Additional training details for
DPO and PPO are provided in Appendix B.

Table 4 presents the performance of CDG with various RL
methods on math reasoning. ReST consistently achieves the
best performance under both greedy decoding and major-
ity voting settings. In contrast, DPO even underperforms
the vanilla LLaMA-3.1-8B-Instruct model. PPO improves
reasoning performance in the greedy decoding setting but
degrades performance under majority voting. This degrada-
tion may be attributed to the sensitivity of these algorithms
to hyperparameter choices (Havrilla et al., 2024). Com-
pared to these methods, the ReST method achieves more
stable performance improvements while requiring less GPU
memory, as it eliminates the need for a reference model.

5.4. Game-play Performance

Besides evaluating the mathematical reasoning abilities of
LLMs, we also assess the model’s performance in the game
by analyzing its win rate on the test set. We conduct exper-

Table 4. Performance of CDG with various reinforcement learning
methods on math reasoning.

GSMSK MATH500

Models P@l M@32 P@l M@32

Llama-3.1-8B-Instruct 85.3 93.0 494 634

CDG-ReST 86.8 93.1 51.7 66.0

CDG-DPO 83.3 92.5 46.0 54.8

CDG-PPO 86.6 929 51.6 62.6

14.00 30

~] 125 1278 ~1 240 28
&° 13.50 ¢

& & 26

13.25

13.00 24

& 12.8 2rs o 22.0 23.7 .
d‘& d{"

Prover-1 Prover-2 12.50 Prover-1 Prover-2 20

Correct Initial Error Resist Misleading Critiques

Figure 4. Game results on the Critic-Discernment Game. Left:
Average win rates of prover models with different training stages
when collaborating with critic models. Right: Average win rates
of prover models in resisting critiques from the misleading critic.

iments where the prover from different training iterations
interacts with helpful critics and misleading critics from
different training iterations.

As shown in Figure 4, as training progresses, both the prover
and the helpful critic improve their ability to identify and
correct errors, achieving their best performance in the final
training iteration. This aligns with their cooperative learning
objectives. Additionally, we observe that the prover in loop
2 is most effective at resisting the misleading critic in loop
1, while the prover in loop 1 performs the worst against the
misleading critic in loop 2. This result is consistent with
their adversarial optimization objectives, where the prover
and the misleading critic compete against each other. We
can also find that if the misleading critic is not sufficiently
trained, the prover in the second training loop can easily
resist it, with the win rate increasing from 24.0 to 56.3.
This is because the initial misleading critic lacks sufficient
game-playing capability, which aligns with our observation
that a single round of CDG provides limited or even no
improvement in math reasoning as shown in Table 1.

6. Conclusion

We introduce a novel training strategy: Self-play learning
in the Critic-Discernment Game, to effectively enhance the
rationality of LLMs in the reasoning process. In our frame-
work, a prover is challenged by critiques of its solution,

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

which may either be helpful or misleading. The task of
the prover is rationally deciding whether to revise their re-
sponse based on the critiques. Through multiple epochs of
self-play and reinforcement learning with ReST, we observe
that LLMs exhibit consistent improvements in reasoning
performance across various tasks, demonstrating a deeper
understanding of their own reasoning processes. We believe
that our method highlights the potential of self-play lan-
guage games with RL as a promising new training paradigm
for enhancing the reasoning capabilities of LLMs.

Impact Statement

This paper presents work aimed at advancing the field of
reasoning with large language models. As with all research
involving large language models, there are inherent risks,
including the spread of misinformation and the propagation
of societal biases.

Acknowledgements

We want to thank all the anonymous reviewers for their
valuable comments. This work was supported by the Na-
tional Science Foundation of China (NSFC No. 62206194),
the Natural Science Foundation of Jiangsu Province, China
(Grant No. BK20220488), the Young Elite Scientists Spon-
sorship Program by CAST (2023QNRCO001), and the Pri-
ority Academic Program Development of Jiangsu Higher
Education Institutions.

References

Anthony, T., Tian, Z., and Barber, D. Thinking fast and slow
with deep learning and tree search. Advances in neural
information processing systems, 30, 2017.

Chen, Z., Deng, Y., Yuan, H., Ji, K., and Gu, Q. Self-play
fine-tuning converts weak language models to strong lan-
guage models. arXiv preprint arXiv:2401.01335, 2024.

Cheng, J., Liu, X., Wang, C., Gu, X, Lu, Y., Zhang, D.,
Dong, Y., Tang, J., Wang, H., and Huang, M. Spar: Self-
play with tree-search refinement to improve instruction-

following in large language models. arXiv preprint
arXiv:2412.11605, 2024a.

Cheng, P, Hu, T., Xu, H., Zhang, Z., Dai, Y., Han, L., and
Du, N. Self-playing adversarial language game enhances
IIm reasoning. arXiv preprint arXiv:2404.10642, 2024b.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021a.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,

Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems,
2021. URL https://arxiv. org/abs/2110.14168, 2021c.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fu, Y., Peng, H., Khot, T., and Lapata, M. Improv-
ing language model negotiation with self-play and in-
context learning from ai feedback. arXiv preprint
arXiv:2305.10142, 2023.

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova,
K., Weerts, L., Sharma, A., Siddhant, A., Ahern, A.,
Wang, M., Gu, C,, et al. Reinforced self-training (rest)
for language modeling. arXiv preprint arXiv:2308.08998,
2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X, et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Havrilla, A., Du, Y., Raparthy, S. C., Nalmpantis,
C., Dwivedi-Yu, J., Zhuravinskyi, M., Hambro, E.,
Sukhbaatar, S., and Raileanu, R. Teaching large language
models to reason with reinforcement learning. arXiv
preprint arXiv:2403.04642, 2024.

Huang, Z., Zou, H., Li, X., Liu, Y., Zheng, Y., Chern, E.,
Xia, S., Qin, Y., Yuan, W., and Liu, P. Ol replication
journey—part 2: Surpassing ol-preview through simple
distillation, big progress or bitter lesson? arXiv preprint
arXiv:2411.16489, 2024.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Kamoi, R., Zhang, Y., Zhang, N., Han, J., and Zhang, R.
When can llms actually correct their own mistakes? a
critical survey of self-correction of llms. Transactions of
the Association for Computational Linguistics, 12:1417-
1440, 2024.

Kim, S., Joo, S. J., Kim, D., Jang, J., Ye, S., Shin, J., and
Seo, M. The cot collection: Improving zero-shot and few-
shot learning of language models via chain-of-thought
fine-tuning. arXiv preprint arXiv:2305.14045, 2023.

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Kirchner, J. H., Chen, Y., Edwards, H., Leike, J., McAleese,
N., and Burda, Y. Prover-verifier games improve legibility
of llm outputs. arXiv preprint arXiv:2407.13692, 2024.

Lai, X., Tian, Z., Chen, Y., Yang, S., Peng, X., and
Jia, J. Step-dpo: Step-wise preference optimiza-
tion for long-chain reasoning of llms. arXiv preprint
arXiv:2406.18629, 2024.

Lanham, T., Chen, A., Radhakrishnan, A., Steiner, B., Deni-
son, C., Hernandez, D., Li, D., Durmus, E., Hubinger,
E., Kernion, J., et al. Measuring faithfulness in chain-
of-thought reasoning. arXiv preprint arXiv:2307.13702,
2023.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Lu, Z., Zhou, A., Wang, K., Ren, H., Shi, W., Pan, J., Zhan,
M., and Li, H. Step-controlled dpo: Leveraging step-
wise error for enhanced mathematical reasoning. arXiv
preprint arXiv:2407.00782, 2024.

Luo, L., Liu, Y., Liu, R., Phatale, S., Lara, H., Li, Y., Shu,
L., Zhu, Y., Meng, L., Sun, J., et al. Improve mathemati-

cal reasoning in language models by automated process
supervision. arXiv preprint arXiv:2406.06592, 2024.

Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., and Zhang,
Y. An empirical study of catastrophic forgetting in large
language models during continual fine-tuning. arXiv
preprint arXiv:2308.08747, 2023.

Meng, Y., Xia, M., and Chen, D. Simpo: Simple preference
optimization with a reference-free reward. arXiv preprint
arXiv:2405.14734, 2024.

Meurer, A., Smith, C. P., Paprocki, M., Certik, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K.,
Singh, S., et al. Sympy: symbolic computing in python.
PeerJ Computer Science, 3:¢103, 2017.

Mirzadeh, 1., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

OpenO1 Team. Open-ol. https://github.com/
Open-Source—-01/0pen-01, 2024. [Accessed 19-
11-2024].

Pan, L., Saxon, M., Xu, W.,, Nathani, D., Wang, X,,
and Wang, W. Y. Automatically correcting large lan-
guage models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188,
2023.

10

Qin, Y., Li, X., Zou, H., Liu, Y., Xia, S., Huang, Z., Ye,
Y., Yuan, W., Liu, H., Li, Y., et al. Ol replication jour-
ney: A strategic progress report—part 1. arXiv preprint
arXiv:2410.18982, 2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems, 36,
2024.

Razeghi, Y., Logan IV, R. L., Gardner, M., and Singh, S.
Impact of pretraining term frequencies on few-shot rea-
soning. arXiv preprint arXiv:2202.07206, 2022.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
L., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354-359, 2017.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
et al. Beyond human data: Scaling self-training for

problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

Team, Q. Qwq: Reflect deeply on the boundaries of the
unknown, November 2024. URL https://qwenlm.
github.io/blog/gwg-32b-preview/.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022a.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022b.

Valmeekam, K., Olmo, A., Sreedharan, S., and Kambham-
pati, S. Large language models still can’t plan (a bench-
mark for llms on planning and reasoning about change).
In NeurIPS 2022 Foundation Models for Decision Mak-
ing Workshop, 2022.

Wang, P, Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce

https://github.com/Open-Source-O1/Open-O1
https://github.com/Open-Source-O1/Open-O1
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

IIms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426-9439, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V.,Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

Wu, S., Peng, Z., Du, X., Zheng, T., Liu, M., Wu, J., Ma, J.,
Li, Y., Yang, J., Zhou, W., et al. A comparative study on
reasoning patterns of openai’s ol model. arXiv preprint
arXiv:2410.13639, 2024a.

Wu, Y., Sun, Z., Yuan, H., Ji, K., Yang, Y., and Gu, Q.
Self-play preference optimization for language model
alignment. arXiv preprint arXiv:2405.00675, 2024b.

Xi, Z., Yang, D., Huang, J., Tang, J., Li, G., Ding, Y., He,
W., Hong, B., Do, S., Zhan, W., et al. Enhancing llm
reasoning via critique models with test-time and training-
time supervision. arXiv preprint arXiv:2411.16579, 2024.

Xu, Q., Tian, Z., Wu, H., Huang, Z., Song, Y., Liu, F., and
Li, D. Learn to disguise: Avoid refusal responses in 1lm’s
defense via a multi-agent attacker-disguiser game. arXiv
preprint arXiv:2404.02532, 2024.

Xu, Y., Wang, S., Li, P, Luo, F., Wang, X., Liu, W., and Liu,
Y. Exploring large language models for communication
games: An empirical study on werewolf. arXiv preprint
arXiv:2309.04658, 2023a.

Xu, Z., Yu, C., Fang, F., Wang, Y., and Wu, Y. Language
agents with reinforcement learning for strategic play in
the werewolf game. arXiv preprint arXiv:2310.18940,
2023b.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li,
C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115, 2024a.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu,
D., Tu, J., Zhou, J., Lin, J., et al. Qwen2. 5-math techni-
cal report: Toward mathematical expert model via self-
improvement. arXiv preprint arXiv:2409.12122, 2024b.

Zhang, D., Zhoubian, S., Hu, Z., Yue, Y., Dong, Y., and

Tang, J. Rest-mcts*: Llm self-training via process
reward guided tree search, 2024a. URL https://arxiv.
org/abs/2406.03816.

Zhang, R., Xu, Z., Ma, C., Yu, C., Tu, W.-W,, Huang, S., Ye,
D., Ding, W., Yang, Y., and Wang, Y. A survey on self-
play methods in reinforcement learning. arXiv preprint
arXiv:2408.01072, 2024.

11

Zhang, Z., Zheng, C., Wu, Y., Zhang, B., Lin, R., Yu, B.,
Liu, D., Zhou, J., and Lin, J. The lessons of developing
process reward models in mathematical reasoning. arXiv
preprint arXiv:2501.07301, 2025.

Zhao, Y., Yin, H., Zeng, B., Wang, H., Shi, T., Lyu, C.,
Wang, L., Luo, W., and Zhang, K. Marco-ol: Towards
open reasoning models for open-ended solutions. arXiv
preprint arXiv:2411.14405, 2024.

Zheng, R., Guo, H., Liu, Z., Zhang, X., Yao, Y., Xu, X,
Wang, Z., Xi, Z., Gui, T., Zhang, Q., et al. Toward optimal
llm alignments using two-player games. arXiv preprint
arXiv:2406.10977, 2024.

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

A. Data Collection Details

Self-play of CDG Figure 5, Figure 6, and Figure 7 illustrate the prompt templates used in the Critic-Discernment
Game (CDG). To ensure consistency in the critique styles generated by the misleading critic and the helpful critic to prevent
potential reward hacking, we employ identical prompts for both types of critics. During the process of collecting episodes
for self-play training, both the prover and the critic generate responses with a temperature of 0.95, a maximum length of
4096, a top-p of 0.95, and a top-k of 5.

Question Template

User: Solve the following math problem efficiently and clearly:

Regardless of the approach, always conclude with: Therefore, the final answer is: \boxed{answer}. I hope it is
correct. Where [answer] is just the final number or expression that solves the problem.

Here is the question you need to answer:

#HHE Question: {question}

Assistant:

Figure 5. Prompt template for answering mathematical questions.

Critic Template

User: Please critic the answer carefully.

Your task is to evaluate a question-answer pair.

Carefully review the question and critically assess a wrong answer.
[Question]

ANAURY

{question}

ANRURY

[Wrong Answer]

ANAURY

{solution}

Please review the wrong answer step by step, quoting each sentence and analyzing it individually. Use the following
format for your response:

Step: [Quoted Sentence]

Analysis: [Your Explanation]

Step: [Quoted Sentence]

Analysis: [Your Explanation]

After step-by-step analysis, conclude by quoting the original sentence which **first** causes the wrong answer and
providing a concise yet complete explanation of the error:

“**Critic** The first mistake can be found in: ‘Quoted wrong statement here.” The issue is: ‘Explanation of the mistake
here.””

Assistant:

Figure 6. Prompt template for generating critics.

Step-wise Error Detection Figure 8 presents the prompt used to annotate erroneous steps with gpt-4o. If the generated
solution is not explicitly divided into steps, we segment it based on “\n\n”. Figure 9 illustrates the prompt designed to
evaluate the model’s stepwise error detection capability.

Self-Correction Figure 10 illustrates the prompt used for self-correction.

12

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Revising Template

User: {question}
Assistant: {initial solution}

User: Please check with this critic. ”{critic}”
Evaluate whether this critic is valid. Keep in mind that this critic might be misleading or irrelevant.
If you find the critic incorrect, conclude with: “\boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Assistant:

Figure 7. Prompt template for revising answers based on critiques.

Error Detection Template (gpt-40)

User: Question:

{question}

Wrong Response:

{solution}

Identify the first step that contains an error. Please provide the step number in the format: Step \boxed{X}

Assistant:

Figure 8. Prompt template for detecting stepwise error by gpt-4o.

Error Detection Template

User: Solve the following math problem efficiently and clearly:

Regardless of the approach, always conclude with: Therefore, the final answer is: \boxed{answer}. I hope it is
correct. Where [answer] is just the final number or expression that solves the problem.

Here is the question you need to answer:

##HH Question: {question}

Assistant:

Figure 9. Prompt template for evaluating stepwise error detection.

Self-Correction Template

User: {question}
Assistant: {initial response}

User: Please check your answer step by step again. Put your final answer within \boxed{}.
Assistant:

Figure 10. Prompt template for self correction.

13

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

B. Self-play training Details

To generate game episodes for reinforcement learning (RL) training, we require the prover to generate four initial responses
upon receiving a math problem. Then, the helpful critic generates eight critiques for each question-solution pair, while
the misleading critic generates four critiques for each question-solution pair. Subsequently, for each triplet of (question,
solution, critique), the prover produces four responses.

Training CDG with ReST When constructing the dataset D for ReST training, we determine correctness using regular
expressions and the SymPy grader (Meurer et al., 2017). A prover’s response is considered correct either if it provides the
correct solution in the first round or successfully correct an initially incorrect solution in the second round. To evaluate
whether the prover successfully resists misleading critiques, we check whether the model outputs “\boxed{This critic is not
critical.}”.

For constructing D, , a helpful critic’s critique is included only if the corresponding prover generates at least two correct
responses for the given (question, solution, critique) triplet. For constructing D, a misleading critic’s critique is included
only if the corresponding prover fails to output “\boxed{This critic is not critical.}” and changes a previously correct answer
into an incorrect one in at least three responses for the same (question, solution, critique) triplet.

In the first training loop, we use a learning rate of 5e-6 and a batch size of 32 to facilitate rapid convergence. In the second
loop, as the dataset size increases, we adjust the learning rate to le-6 and the batch size to 256. The prover and misleading
critic are trained for one epoch, while the helpful critic is trained for two epochs.

Training CDG with DPO In Section 5, we also explore training the Critic-Discernment Game (CDG) using Direct
Preference Optimization (DPO) (Rafailov et al., 2024) in a self-play setting. To construct pairwise preference data for
training the prover, we select one successful and one unsuccessful response from the prover’s generated outputs for each
triplet of (question, solution, critique).

We use a learning rate of 1e-6, a batch size of 64, and set 3 = 0.5 to control the deviation from the base reference policy.
We observe that DPO training for CDG is highly sensitive to hyperparameter selection and often results in repetitive text
generation.

Training CDG with PPO In Section 5, we also explore training CDG through Self-Play using PPO (Schulman et al.,
2017). For each episode, we assign rewards according to Equations 5, 6, and 7. We then follow the PPO training framework
used in SPAG (Cheng et al., 2024b) to conduct self-play training.

We set the learning rate to 5e-6 and the batch size to 128. To control the deviation from the base reference policy, we
set 8 = 0.2. Additionally, to ensure stability when answering questions on the first attempt, we incorporate a supervised
fine-tuning loss with a weighting coefficient of 0.5.

C. Experiments

In this section, we provide additional details regarding our experimental setup and evaluation.

C.1. Mathematical Reasoning

For mathematical reasoning tasks, we use GSM8K (Cobbe et al., 2021a) and MATHS00 (Lightman et al., 2023) as our test
datasets, which contain 1,319 and 500 examples, respectively. Under the Pass@1 setting, we generate solutions using greedy
decoding. In the majority voting setting, we set the maximum sequence length to 8,192, the temperature to 0.95, and use
top-k = 10 for sampling-based generation.

C.2. Stepwise Error Detection

For the Stepwise Error Detection task, we first generate eight solutions for each test sample using the Llama-3.1-8B-Instruct
model with a temperature of 0.95. We include only problems for which the majority of sampled solutions are correct in the
test set. When annotating stepwise error with GPT-40, we use greedy decoding and filter out examples with formatting
errors. We use greedy decoding during evaluation.

14

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

C.3. Self-Correction

Compared to Stepwise Error Detection, Self-Correction is a more challenging task, as it requires the model not only to
identify errors but also to correctly revise them. To construct the training dataset for self-correction, we first collect solutions
generated by Llama-3.1-8B-Instruct with a temperature of 0.95 on the training set. Following this, the model performs a
second round of self-checking and correction to refine its initial responses. We select cases where the final answer is correct
for training. Additionally, we remove data instances where the self-checking process contains repetitive loops.

Referring to Algorithm 2, our final CDG model is obtained by fine-tuning the original Llama-3.1-8B-Instruct on DEW.
Subsequently, we perform another fine-tuning step on the Diejrcorrect dataset. During our experiments, we observed that
sequential fine-tuning on two different distributions can lead to catastrophic forgetting (Luo et al., 2023). To mitigate this
issue, we directly fine-tune the original Llama-3.1-8B-Instruct on the combined dataset Dgﬂ U Dyeit-correct- FOr the baselines
presented in Table 3, we apply the same fine-tuning strategy to ensure a fair comparison. We set the learning rate to 1le—6
and the batch size to 256.

During testing, we first generate solutions using the model with a temperature of 0.95 on the test set. The model is then
required to perform a second round of self-checking and correction on the initial solutions using greedy decoding.

C.4. Long-Chain Reasoning

In Section 4.4, we introduce our two-stage fine-tuning approach for enhancing long-chain reasoning capabilities. Specifically,
we utilize QwQ-32B-Preview (Team, 2024) to generate solutions on the training set with a temperature of 0.95, selecting
only those with correct final answers for fine-tuning. Additionally, we filter out examples containing repetitive loops during
generation. Similarly, Llama-3.1-8B-Instruct post-SFT generates solutions with a temperature of 0.95, and only those with
correct final answers are selected for fine-tuning, while filtering out instances with repetitive loops.

For training long-chain reasoning capabilities in CDG and other methods, we follow the same approach as in the Self-
Correction task and merge the training datasets. The learning rate for both fine-tuning stages is set to 1e—6, and the batch
size is 256.

D. Self-play Examples

We present examples of the first and second rounds where the prover successfully corrects the initial error, successfully
resists the misleading critique, and fails to resist the misleading critique in n Figures 11, 12, 13, 14, 15, 16, and 17.

15

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop1 (Prover successfully corrects the initial error)

User: Determine the number of ways to arrange the letters of the word THAT.

Prover: To determine the number of ways to arrange the letters of the word THAT, we can use the concept
of permutations. Since the word has no repeated letters, the total number of permutations can be calculated using the
factorial of the number of letters.

The word THAT has 4 letters (T-H-A-T). Therefore, the total number of permutations is 4! (4 factorial).

4! =4x3x2x1=24

Therefore, the final answer is: .

Assistant: Please check with this critic.

“The first mistake can be found in: ”’Since the word has no repeated letters, the total number of permutations can be
calculated using the factorial of the number of letters.”

The issue is: The presence or absence of repeated letters is not the correct condition to determine whether to use the
factorial formula. A correct condition is that the letters should be distinct. In the word “THAT,” the letters are not
distinct due to the presence of repeated Ts. This mistake leads to an incorrect application of the factorial formula,
resulting in an incorrect final answer of 24

Evaluate whether this critic is valid. Keep in mind that this critic might be misleading or irrelevant.

If you find the critic incorrect, conclude with: “\boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Prover: The critic is pointing out that the condition for using the factorial formula is not the absence of re-
peated letters, but the distinctness of the letters. In the case of the word “THAT,” the presence of two identical “T”’s
makes the letters not distinct.

Given that the letters in “THAT” are not distinct due to the repeated “T”’s, we need to adjust the calculation. When there
are repeated elements, we divide the total number of permutations by the factorial of the number of repetitions for each
element.

In “THAT,” there are 2 “T"”’s. The correct formula for permutations with repeated elements is:

Total permutations = (Number of letters)! / (Number of repetitions for each letter)!

Total permutations = 4! / (2! for the repeated “T”s)

Now, calculate the total permutations:

4! =4x3x2x1=24

21=2x1=2

Total permutations =24 /2 =12

Therefore, the correct answer is: .

This critic is not misleading; it is valid and correct.

Figure 11. Self-play examples of Llama3.1-8B-Instruct in loop1 (Prover successfully corrects the initial error).

16

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop1 (Prover successfully resists the misleading critique)

User: The distance across a country is 8205 kilometers. Amelia started at one end and drove 907 kilometers on Monday
and 582 kilometers on Tuesday. How many kilometers does Amelia still have to drive to make it across the country?

Assistant: To find out how many kilometers Amelia still has to drive, we need to subtract the distance she
has already driven from the total distance across the country.

First, we need to find the total distance Amelia has driven so far.

- She drove 907 kilometers on Monday.

- She drove 582 kilometers on Tuesday.

So, the total distance she has driven is 907 + 582 = 1489 kilometers.

Now, we subtract the total distance Amelia has driven from the total distance across the country.
- Total distance across the country = 8205 kilometers.

- Distance driven so far = 1489 kilometers.

So, the distance Amelia still has to drive is 8205 - 1489 = 6716 kilometers.

Therefore, the final answer is: . I hope it is correct.

User: Please check with this critic.

“The first mistake can be found in: ‘She drove 907 kilometers on Monday.” The issue is: There is actually no mistake in
the given wrong answer. However, the original question does not state the order of the distances driven, so the answer
assumes that the distances are in the order they are driven. If we assume that Amelia drove 582 kilometers on Monday
and 907 kilometers on Tuesday, we get a different result. The correct total distance driven would be 582 + 907 = 1489
kilometers, but this would still be correct since 1489 < 8205. However, if we consider that the order of the distances
could be different, then the answer is actually not wrong in this case.”

Evaluate whether this critic is valid. Keep in mind that this critic might be misleading or irrelevant.

If you find the critic incorrect, conclude with: “\boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Assistant: The critic points out that the original solution assumes the order of the distances driven (Monday
and Tuesday). However, the problem statement does not specify the order of the distances.

To address this concern, we need to consider both possibilities:

- Amelia drove 907 kilometers on Monday and 582 kilometers on Tuesday.

- Amelia drove 582 kilometers on Monday and 907 kilometers on Tuesday.

In both cases, the total distance driven would be the same: 1489 kilometers (582 + 907).

However, the critic’s main point is that we should be cautious when assuming the order of the distances. But, in this
case, it does not change the result. The original solution is correct regardless of the order of the distances.

Since the critic does not provide a valid reason to change the original answer, I would say that:

This critic is not critical.

Figure 12. Self-play examples of Llama3.1-8B-Instruct in loop1 (Prover successfully resists the misleading critique).

17

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop1 (Prover fails to resist the misleading critique)

User: Find the arithmetic mean of the reciprocals of the first three prime numbers.

Assistant: To find the arithmetic mean of the reciprocals of the first three prime numbers, we need to follow
these steps:

1. Identify the first three prime numbers, which are 2, 3, and 5.

2. Find the reciprocals of these prime numbers, which are £, %, and £ respectively.
3. Add these reciprocals together: 1 + & + 1.

4. Find a common denominator, which in this case is 30. So, the sum becomes:
1510 6 _ 31

30 T30 T30 — 30°

5. Divide the sum by 3 to find the arithmetic mean: % =3 = % X % = %.
. |31
Therefore, the final answer is: 90 |
User: Please check with this critic.
. . . |31
“The first mistake can be found in: ‘Therefore, the final answer is: 9 . The issue is: The final answer is incorrect

because it is the reciprocal of the sum of the fractions, which is not the arithmetic mean of the first three prime numbers.”
Evaluate whether this critic is valid. Keep in mind that this critic might be misleading or irrelevant.

If you find the critic incorrect, conclude with: “\boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Assistant: The critic is valid. The arithmetic mean of a set of numbers is found by adding the numbers and
dividing by the number of items. In this case, the arithmetic mean of the reciprocals of the first three prime numbers
should be found by adding the reciprocals of 2, 3, and 5, and then dividing by 3.

To correct this, we need to revisit step 4 and then proceed to step 5.

1. Identify the first three prime numbers, which are 2, 3, and 5.
2. Find the reciprocals of these prime numbers, which are % %, and % respectively.
3. Add these reciprocals together: % IF % + %
31

4. Find a common denominator, which in this case is 30. So, the sum becomes: 15 + + 30 = 55-

5. To find the arithmetic mean, we should divide the sum by the total number of 1tems which is 3. However, we can

directly take the sum, 30 , then divide that by 3 to find the mean of the 3 numbers 2 e 3, and 1
31
The correct arithmetic mean should be found as: % = %.

However, we are finding the mean of the reciprocals of the first three prime numbers. Therefore, to get the actual mean
of the reciprocals, we divide the sum by 3.

31
X = 3—10 3—11 . % = 3(1) is correct in that the mean of the three fractions i is 5 + + = Wthh is

these 3 reciprocals, we must divide 2 & L by 3.

30, but to find the mean of

Therefore, the correct arithmetic mean of the reciprocals of the first three prime numbers is:
31 ,,_ 31 1 _31 30 31 _31+3 _ 53 _ 31 31 31 31 31

3077303 90 30 90 30-3 10 3-10 30 3-10 3-10 30

Figure 13. Self-play examples of Llama3.1-8B-Instruct in loop1 (Prover fails to resist the misleading critique).

18

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop2 (Prover successfully corrects the initial error)-part]

User: Let P(z) be a polynomial of degree 2011 such that P(1) = 0, P(2) = 1, P(4) = 2, ..., P(2?11) = 2011.
Then the coefficient of z in P(x) can be expressed in the form

1

G/—E,

where a, b, ¢ are positive integers, and b is prime. Find a + b + c.
Assistant: To find the coefficient of z in P(z), we will first define another polynomial Q(x) = P(z) — 2. We note that
Q) =Q12)=Q4) =---=Q(2°!') = 0,50 Q(v) hasroots at z = 1,2,4,...,22011,

Now, we want to find the coefficient of z in P(x) = Q(z) + x. Since Q(x) has roots at 7 = 1,2, 4, ...,22011 we can
write it in factored form as

Q(z) = C(z — 1)(z — 2)(z — 4) -+~ (z — 2°°1),

where C is a constant.

We want to find C in terms of Q(z). To do this, we can use the fact that Q(2) = 1. Substituting = 2 into the equation
for Q(z), we get

Q2) = C2—1)(2—2)(2—4)-- - (2— 221
1= 0(-2)(-2)(-2) - (-2)

1
o011 = |C]
z— 1)z —2)(x —4)- - (x— 22011
Q(z) = i(A)(22011) ()

Now, we want to find the coefficient of z in P(z) = Q(x) + z. To do this, we can expand the factored form of Q(x)
and add it to . The coefficient of x will be the sum of the coefficient of « in the expansion of Q(x) and 1. Since we
only need the coefficient of : in Q(z), we can ignore all the terms in the expansion that are of higher degree than z.

The only terms that will contribute to the coefficient of x in Q(x) are the terms that come from the product of (z — 1),
(x —2), (x—4), ..., (x —22°M). When we multiply these terms together, each term will have a power of = equal to
the number of terms in the product. The term with the power of x equal to 1 will come from the product of all the
(z — 2%) terms where i is odd. This term will have a coefficient equal to + [, . 44(—2°).

Since we have 2011 terms in the product, half of them will be odd and half of them will be even. Therefore, the product
of all the (z — 27) terms will have a coefficient equal to £2~ 2.

Since we are adding 1 to this term when we add it to x, the coefficient of x in P(z) will be equal to 1 £+ 2~ =

L

Therefore, the coefficient of in P(z) can be expressed in the form a — ;- where a = 1, b = 2, and ¢ = %.

Therefore, the final answer is: ‘ 2012 + 2 + 1005 |. I hope it is correct.

Figure 14. Self-play examples of Llama3.1-8B-Instruct in loop2 (Prover successfully corrects the initial error, partl).

19

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop2 (Prover successfully corrects the initial error)-part2

User: Please check with this critic. “The first mistake can be found in: “The only terms that will contribute to the

coefficient of z in Q(x) are the terms that come from the product of (z — 1), (z — 2), (z — 4), ..., (z — 22911
The issue is: The statement that the coefficient of « in the expansion of Q)(x) is equal to the product of (z — 1), (z — 2),
(x —4), ..., (x — 220 is incorrect. This product cannot directly be used to find the coefficient of = because it is not a

polynomial with a single term of degree 1, but rather a product of multiple terms with various powers of x.”

Evaluate whether this critic is valid. Keep in mind that this critic might be misleading or irrelevant.

If you find the critic incorrect, conclude with: “\ boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Assistant: This critic is valid.
To correctly find the coefficient of - in P(z), we need to consider the actual expansion of Q(x).

We can write)(x) in expanded form as

21 2011
i

Q(l‘) - C Z (_1)i >2i$2011_i
=0

Now, we want to find the coefficient of z in this expression. Since we are looking for the coefficient of x, we want to
find the term with 22°11 =1, We can do this by setting i = 2010.

The coefficient of z in this expression is given by the term with ¢ = 2010. We can simplify this expression as follows:

(—1)20 ¢ (;813) 92010

Now, we want to find the value of C'. We can do this by setting z = 2 in the equation (z) = P(x)—x and solving for C'.

We get:

2011
1:cx—nmm<ﬂm92”m—2

Simplifying this expression, we get:

3
€ Emymn

Substituting this value of C' back into the expression for the coefficient of z, we get:

3 2010 2011 2010 __ 1
ey)7 g010)7 =1 gam
Therefore, the coefficient of - in P(x) can be expressed in the form a — é where a = 1, b = 2, and ¢ = 2011.

Therefore, the final answeris: |1 + 2 + 2011 |.

Figure 15. Self-play examples of Llama3.1-8B-Instruct in loop2 (Prover successfully corrects the initial error, part2).

20

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop2 (Prover successfully resists the misleading critique)

User: Legacy has 5 bars of gold she received from her father. Her friend Aleena has 2 bars fewer than she has. If a bar
of gold is worth $2200, calculate the total value of gold the three have together.

Assistant: Total Value of Gold
To solve this problem, we’ll follow these steps:

1. Find out how many bars of gold Legacy has.

2. Determine how many bars of gold Aleena has.

3. Calculate the total number of bars of gold both Legacy and Aleena have together.
4. Calculate the total value of gold.

#i### Step 1: Find out how many bars of gold Legacy has. Legacy has 5 bars of gold.

Step 2: Determine how many bars of gold Aleena has. Aleena has 2 bars fewer than Legacy, so she has 5 -2 =3
bars of gold.

#i### Step 3: Calculate the total number of bars of gold both Legacy and Aleena have together.
Since there’s no mention of any other person having gold, we can assume the total value of gold we’re looking for is the
value of gold both Legacy and Aleena have. Therefore, the total number of bars is 5 + 3 = 8.

Step 4: Calculate the total value of gold.
A bar of gold is worth $2200, so the total value of gold is 8 * 2200 = $17600.

Therefore, the final answer is: | 17600 |.

User: Please check with this critic. “The first mistake can be found in: ‘Aleena has 2 bars fewer than she
has.” The issue is: This sentence should have been ‘Aleena has 2 bars fewer than Legacy has’ to accurately represent
the information given in the question. This error led to confusion about the number of bars Aleena has and ultimately
resulted in an incorrect calculation of the total value of gold.”” Evaluate whether this critic is valid. Keep in mind that
this critic might be misleading or irrelevant.

If you find the critic incorrect, conclude with: “\boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Assistant: To evaluate this critic, we need to assess if the correction suggested is accurate.

The critic points out that the sentence should read 11Aleena has 2 bars fewer than Legacy has” instead of 11Aleena has
2 bars fewer than she has.” This change is to accurately represent the information given in the question. The original
statement was ambiguous, and the critic’s suggested correction is a logical one.

However, upon closer inspection, it becomes clear that the critic’s suggested correction is actually an unnecessary
change. The original statement ”Aleena has 2 bars fewer than she has” is still accurate, given that the subject of the
sentence is ’she,” which refers to Aleena. The phrase she has” refers to Aleena’s possession, making the sentence clear.

Therefore, the critic’s suggested correction does not address an actual issue in the original solution. The original solution
was already correct.

This critic is not critical.

Figure 16. Self-play examples of Llama3.1-8B-Instruct in loop2 (Prover successfully resists the misleading critique).

21

Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Self-play in loop2 (Prover fails to resist the misleading critique)

User: A private company raised $2500 to be used for charity. They donated 80% to a public foundation with 8
organizations. How much money will each organization receive?

Assistant: To find the amount of money each organization will receive, we first need to determine the total
amount donated to the public foundation. The company donated 80% of $2500, which can be calculated as follows:

80% of $2500 = (80/100) * $2500 = $2000
This is the total amount donated to the public foundation.

Since the public foundation has 8 organizations, to find the amount each organization will receive, we divide the total
donated amount by the number of organizations:

Amount each organization will receive = Total donated amount / Number of organizations = $2000 / 8 = $250
Therefore, the final answer is: .

User: Please check with this critic.

“The first mistake can be found in: “Amount each organization will receive = Total donated amount / Number of
organizations”

The issue is: The explanation incorrectly states that this formula is used to find the amount each organization will
receive. The correct formula should be (Total donated amount / Number of organizations) * (100% / 80% or simply the
total percentage donated), which would be (2000 / 8) * (100/80) = $312.50”

Evaluate whether this critic is valid. Keep in mind that this critic might be misleading or irrelevant.

If you find the critic incorrect, conclude with: “\boxed{This critic is not critical.}”

If you determine the critic to be valid, revise starting from the incorrect step, and present your revised answer within
\boxed{}.

Assistant: The critic is pointing out that the original explanation incorrectly states the formula for finding
the amount each organization will receive. The critic suggests that the correct formula is the product of the total donated
amount divided by the number of organizations, multiplied by the inverse of the percentage donated (100% / 80%).

Let’s break down the critic’s explanation:

Amount each organization will receive = Total donated amount / Number of organizations * (100% / Percentage donated)
= ($2000/ 8) * (100/80) = ($250) * (1.25) = $312.50

Upon evaluating the critic, it appears that the critic’s point is valid. The original explanation was indeed incorrect in
stating that the formula was used to find the amount each organization will receive.

Therefore, the revised answer is:

Figure 17. Self-play examples of Llama3.1-8B-Instruct in loop2 (Prover fails to resist the misleading critique).

22

