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Abstract
Cross-lingual topic modeling (CLTM) is an001
essential task in the field of data mining and002
natural language processing, aiming to extract003
aligned and semantically coherent topics from004
bilingual corpora. Recent advances in cross-005
lingual neural topic models have widely lever-006
aged bilingual dictionaries to achieve word-007
level topic alignment. However, two critical008
challenges remain in cross-lingual topic mod-009
eling, the topic mismatch issue and the de-010
generation of intra-lingual topic interpretabil-011
ity. Due to linguistic diversity, some trans-012
lated word pairs may not represent seman-013
tically coherent topics despite being lexical014
equivalents, and the objective of cross-lingual015
topic alignment in CLTM can consequently016
degrade topic interpretability within intra lan-017
guages. To address these issues, we propose018
a novel document-level prototype-based con-019
trastive learning paradigm for cross-lingual020
topic modeling. Additionally, we design a021
retrieval-based positive sampling strategy for022
contrastive learning without data augmentation.023
Furthermore, we introduce ProtoXTM, a cross-024
lingual neural topic model based on doucment-025
level prototype-based contrastive learning. Ex-026
tensive experiments indicate that our approach027
achieves state-of-the-art performance on cross-028
lingual and mono-lingual benchmarks, demon-029
strating enhanced topic interpretability.030

1 Introduction031

Cross-lingual topic modeling (CLTM) aims to dis-032

cover aligned and semantically coherent structures033

in bilingual corpora. CLTM has been widely ap-034

plied in various natural language processing (NLP)035

tasks, including cross-lingual information retrieval036

(Vulić et al., 2013), entity linking (Zhang et al.,037

2013), sentiment analysis (Lin et al., 2016), and038

trend tracking (Tsou et al., 2020). The traditional039

polylingual topic model (Mimno et al., 2009) dis-040

covers aligned topics using tuple-based comparable041

documents in different languages.042

Britney Spears picked up her first ever Grammy for h
er   Toxic, which was named best   

.
song dance record-

ing

“世界 歌日”大型公益 歌朗诵音乐会人民教师专场
在首都师范大学附属中学举行，艺术家们演绎了古
今中外 的 来自北京各区县的中小学校
长、教师代表观看演出。

诗 诗

诗人 名篇佳作 , 

Intra-lingual 

Doc-Topic Distribution

Intra-lingual 

Doc-Topic Distribution

Related words

Translation-pair words

Figure 1: A motivating example of topic mismatch issue
in cross-lingual topic modeling.

However, in real-world scenarios, obtaining 043

bilingual parallel corpora is challenging. Previ- 044

ous studies (Shi et al., 2016; Yuan et al., 2018; 045

Yang et al., 2019; Wu et al., 2020, 2023a) have 046

leveraged external information, such as bilingual 047

word dictionaries to achieve topic alignment. De- 048

spite the success of these works, cross-lingual topic 049

modeling still faces two critical issues. 050

Topic Mismatch: Do translation-based word 051

pairs always guarantee semantically similar and 052

well-aligned topics? As illustrated by our moti- 053

vating example in Figure 1, we observe a case 054

where translation word pairs appear in two seman- 055

tically distinct negative bilingual documents. The 056

english word "song" and the chinese word "诗", 057

highlighted in blue, form a translation pair words. 058

The red and green words are words that are se- 059

mantically related to blue anchor words within doc- 060

uments of each languages. However, the two docu- 061

ments exhibit divergent topic distributions within 062

their respective intra-lingual corpora. This issue 063

arises due to linguistic diversity and cultural differ- 064

ences. 065

Degenerating intra-lingual topic interpretabil- 066

ity: We investigate the topics generated by a state- 067

of-the-art cross-lingual neural topic model, In- 068

foCTM (Wu et al., 2023a) and a mono-lingual neu- 069
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ral topic model, BERTopic (Grootendorst, 2022).070

Table 1 presents the top-related words for the topic071

"music" identified by each model. In the topic072

produced by InfoCTM, several underlined words073

are aligned translation pairs and English words074

in parentheses are ground-truth translation of Chi-075

nese words. Although these words are correctly076

aligned across languages, they detract from the077

intra-lingual topic interpretability. In contrast, the078

topic generated by BERTopic comprises semanti-079

cally consistent words that clearly represent the080

theme. This observation suggests that the objective081

of alignment in cross-lingual topic models such as082

InfoCTM can compromise intra-lingual topic inter-083

pretability. To address these issues, our proposed084

approach focuses on two key aspects:085

First, We pre-train separate mono-lingual NTMs086

to cluster documents based on topics in each087

language. This prevents the deterioration of088

intra-lingual topic interpretability during CLTM089

training. Second, unlike word-level alignment,090

we propose a document-level contrastive learn-091

ing method to align topics at the document-level.092

However, document-level contrastive learning re-093

main additional challenges, such as (1) depend-094

ing data augmentation technique for generating095

positive samples (Nguyen et al., 2024) and (2)096

necessary high computational costs on large-scale097

datasets. To overcome these challenges, we pro-098

pose Retrieval-based Positive Sampling (RPS)099

strategy for document-level contrastive learning100

without data augmentation. Our RPS method101

leverages the traditional information retrieval al-102

gorithm, BM25 (Robertson and Zaragoza, 2009)103

to sample positive documents in the target lan-104

guage corpus. In addition, we propose a con-105

trastive learning paradigm for cross-lingual topic106

modeling, termed Document-level Prototype-based107

Contrastive Learning (DPCL). Unlike standard108

instance-wise contrastive learning, our DPCL per-109

forms contrastive learning based on topic clus-110

ter prototypes, enabling computational efficiency111

even with large-scale datasets. Furthermore, we in-112

troduce ProtoXTM, a cross-lingual neural topic113

modeling framework based on document-level114

prototype-based contrastive learning. ProtoXTM115

mitigates both the degenerating intra-lingual topic116

interpretability issue and the topic mismatch issue,117

thereby enhancing cross-lingual topic alignment118

while preserving the interpretability of intra-lingual119

topics.120

In a nutshell, our main contributions can be sum-121

InfoCTM BERTopic

Topic # 13 Topic # 157

EN ZH EN

sing 秀(show) albums
concert 高潮(climax) chart
exhibit 唱歌(singing) album
artist 演出(performance) charts
album 歌(song) soundtrack
songs 展(exhibition) band

rap 直播(broadcast) musicians
broadcast 演艺(performance) singles

song 游(tour) dj
travel 艺术家(artist) songs

Table 1: Comparison of topics generated by InfoCTM
(Wu et al., 2023a) and BERTopic (Grootendorst, 2022)
on ECNews dataset.

marized as follows: 122

• To the best of our knowledge, we are the first 123

to identify two critical issues in cross-lingual 124

topic modeling, the topic mismatch issue and 125

the degeneration of intra-lingual topic inter- 126

pretability. 127

• We propose DPCL, a novel document- 128

level prototype-based contrastive learning 129

paradigm tailored for effective cross-lingual 130

topic modeling. Moreover, we design a 131

retrieval-based positive sampling strategy for 132

contrastive learning without data augmenta- 133

tion to support DPCL. 134

• We introduce ProtoXTM, a novel cross- 135

lingual neural topic modeling framework 136

based on document-level prototype-based con- 137

trastive learning, which addresses the topic 138

mismatch issue and the degeneration of intra- 139

lingual topic interpretability. 140

• We conduct extensive experiments on non- 141

parallel bilingual benchmark datasets and 142

show ProtoXTM outperforms state-of-the-art 143

cross-lingual and mono-lingual topic model 144

baselines, generate coherent and aligned top- 145

ics and transferable document representations. 146

2 Related Works 147

Mono-lingual Topic Modeling. Inspired by Auto- 148

Encoding Variational Bayes (Kingma and Welling, 149

2013) neural variational inference based on Vari- 150

ational AutoEncoder (VAE) has been proposed to 151

approximate the posterior distribution. ProdLDA 152
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(Srivastava and Sutton, 2017) overcomes the lim-153

itations of the reparameterization trick in VAE by154

employing a Laplacian approximation for Dirichlet155

parameters. Recently, (Wu et al., 2024a; Xu et al.,156

2023; Bianchi et al., 2021a,b; Akash and Chang,157

2024) has demonstrated improved topic quality by158

integrating contextualized embeddings from large159

language models.160

Cross-lingual Topic Modeling. The traditional161

polylingual topic model (PLTM) (Mimno et al.,162

2009) was introduced using a similar approach to163

mono-lingual probabilistic topic models like LDA164

(Latent Dirichlet Allocation) (Blei et al., 2003).165

For cross-lingual topic alignment in non-parallel166

corpora, privious studies (Jagarlamudi and Daumé,167

2010; Shi et al., 2016; Yuan et al., 2018; Hao and168

Paul, 2018; Yang et al., 2019) proposed word-level169

topic alignment methods based on bilingual dictio-170

naries. To the best of our knowledge, (Wu et al.,171

2020) were the first to propose the Neural Multi-172

lingual Topic Model (NMTM), which incorporates173

topic-word distributions across languages using a174

bilingual dictionary to achieve cross-lingual topic175

alignment. Subsequently, (Wu et al., 2023a) ad-176

dressed dictionary limitations and repetitive topic177

issues by introducing a cross-lingual vocabulary178

linking method and mutual information maximiza-179

tion to align the topic-word distributions of positive180

word pairs across languages.181

Contrastive Learning. Contrastive learning is182

a widely used technique in machine learning that183

focuses on improving data representations by learn-184

ing similarities and differences between data points185

(Oord et al., 2018; Wu et al., 2018; Hadsell et al.,186

2006). In mono-lingual topic modeling, recent stud-187

ies (Han et al., 2023; Wu et al., 2022; Nguyen and188

Luu, 2021; Nguyen et al., 2024) have leveraged189

contrastive learning to generate coherent topics.190

For cross-lingual topic modeling, contrastive learn-191

ing has also been explored in aligning topics across192

different languages (Zosa and Pivovarova, 2022;193

Wu et al., 2023a). However, M3L-Contrast (Zosa194

and Pivovarova, 2022) exclusively relies on pre-195

aligned bilingual corpora, whereas InfoCTM (Wu196

et al., 2023a) applies contrastive learning on the197

word-level (i.e., topic-word distribution). Distinct198

from this work, our approach focuses on document-199

level contrastive learning for cross-lingual topic200

modeling.201

3 Proposed Methodology 202

Problem Setting. We denote non-parallel bilin- 203

gual corpus as X1,X2 on language l1 and lan- 204

guage l2, which consists of M1, M2 documents 205

{xi
l1}M1

i=1, {xj
l2}M2

j=1. Two primary goal of CLTM 206

are (1) topic inference and transfer, inferring 207

the corresponding document-topic distribution θl1i 208

, θl2j ∈ RK where K is the number of topics from 209

X1, X2 and CLTM should be a transfer between 210

similar documents on across languages. For (2) 211

topic discovery and alignment, k-th topic-word 212

distribution βl1
k ∈ RV1 and βl2

k ∈ RV2 are seman- 213

tically consistent across languages where V1, V2 214

are the vocabulary size. In addition, we mainly 215

aim for topic alignment on across languages by 216

considering a group of documents with similar top- 217

ics on intra-lingual corpus. For this purpose, we 218

need to integrate the informations of the document- 219

topic distribution on the intra-lingual corpus into 220

the CLTM training objective. 221

3.1 Overview: Model Architecture 222

In this subsection, we brief introduce our Pro- 223

toXTM architecture. We follow NMTM (Wu et al., 224

2020) architecture, VAE-based shared encoder net- 225

work and double decoder network structure for 226

CLTM. Inspired by (Bianchi et al., 2021b; Zosa and 227

Pivovarova, 2022), replace input BoW with pre- 228

trained contextualized multilingual embeddings 229

from (Reimers and Gurevych, 2019). The frame- 230

work is shown in the bottom of Figure 2 and a 231

detailed description of ProtoXTM is described in 232

the following. 233

Shared Encoder Network. The shared encoder 234

network of ProtoXTM is a multi-layer perceptron 235

(MLP) architecture designed to encode text xl1 and 236

xl2 into an unified latent space. Contextualized 237

representation of document as input and processes 238

it through fully connected layers with Softplus acti- 239

vations and dropout for regularization. The shared 240

encoder maps the hidden representation to the µ 241

and Σ of a Gaussian distribution using separate lin- 242

ear layers, followed by batch normalization (BN) 243

to stabilize and regularize the latent space. 244

Unified Latent Space. Our ProtoXTM uses pre- 245

trained contextualized multilingual embeddings 246

and shared encoder to represent texts in differ- 247

ent languages in an unified latent space, stabiliz- 248

ing the comparison between semantically consis- 249

tent documents. The latent representation z is 250

stochastically sampled using the reparameteriza- 251
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tion trick (Kingma and Welling, 2013), formulated252

as z = µ+Σ⊙ ϵ, where ⊙ denotes the Frobenius253

inner product and ϵ ∼ N (0, 1). Here, zl1 and zl2254

represent the latent representations of documents255

in languages l1 and l2, respectively. The topic rep-256

resentation is further normalized into a probability257

simplex to obtain the document-topic distribution258

matrix θl1 , θl2 ∈ ∆K by a softmax function θl1 =259

softmax(zl1) and θl2 = softmax(zl2). Our DPCL260

method can consider both intra-lingual and cross-261

lingual topics of a document in an unified latent262

space.263

Double Decoder Network. The double decoder264

network of ProtoXTM is designed to independently265

reconstruct BoW representations for different lan-266

guages while leveraging an unified latent topic267

space. Each language has a dedicated decoder con-268

sisting of topic-word distribution matrix βl1 , βl2269

and a corresponding BN layer to stabilize recon-270

struction documents.271

3.2 ProtoXTM Framework272

In this subsection, we introduce our ProtoXTM273

framework. Our framework ProtoXTM consists of274

the following three stages.275

3.2.1 Stage 1: Pre-training and Document276

Clustering277

Our one of the primary goal is to achieve topic278

alignment across languages while maintaining279

intra-lingual topic coherence. Recent studies (Sia280

et al., 2020; Grootendorst, 2022; Han et al., 2023)281

have demonstrated that clustering-based topic mod-282

eling approaches can effectively discover coherent283

topics. However, document clustering heavily de-284

pends on the quality of contextualized embeddings285

(Zhang et al., 2022). As an alternative, we apply a286

standard mono-lingual NTM, CTM (Bianchi et al.,287

2021b) to infer the document-topic distributions288

for each intra-lingual corpus. Based on the inferred289

document-topic distributions, we assign each doc-290

ument to the topic with the highest probability as291

follows:292

θli = [p1, p2, . . . , pk], (1)293

label(xi
l) := arg max

n∈{1,...,k}
pn, (2)294

where
∑k

n=1 pn = 1, pn ≥ 0∀n. Denoted by295

label(xi
l) is a cluster pseudo label of document xi

l296

and θli is a doc-topic distribution of document xi
l297

on intra-lingual corpus of language l. Our approach 298

serves as a pseudo-labeling mechanism, clustering 299

documents in the intra-lingual corpus according to 300

their most probable topic. 301

3.2.2 Stage 2: Retrieval-based Positive 302

Sampling 303

Our positive sampling strategy for document-level 304

contrastive learning consists of two-step process, 305

as described in Figure 2, in the upper right corner. 306

In Figure 2, we illustrate only the scenario in which 307

l1 serves as the source language and l2 as the target 308

language. 309

Topic Translation and Word Replacement. 310

For sample semantically similar documents (i.e., 311

positive samples) across languages for each cluster, 312

we translate the topic representations obtained from 313

Stage 1 using a pre-trained neural machine transla- 314

tion model (M2M) (Fan et al., 2021). Specifically, 315

the top-k words representing each topic are con- 316

catenated into a single sentence, which is then trans- 317

lated at the sentence level. The translated sentence 318

is subsequently split back into individual words. If 319

any translated word does not exist in the target vo- 320

cabulary set, it is replaced with its nearest neighbor 321

in the vocabulary using a pre-trained word embed- 322

ding (FastText) (Bojanowski et al., 2017). 323

Retrieval-based Positive Sampling. We utilize 324

BM25, a traditional ranking function in the field 325

of information retrieval. For each query within 326

a topic, BM25 is used to compute the relevance 327

scores between the query and all documents in 328

the target language corpus. The BM25 scores for 329

all queries within the topic are then summed to 330

compute the BM25 score for the each topic, as 331

follows: 332

BM25(Dt
j , Qk) 333

=
∑n

i=1 IDF(qi) ·
f(qi,D

t
j)·(m1+1)

f(qi,Dt
j)+m1·

(
1−b+b·

|Dt
j
|

avgdl

) ,
(3) 334

where f(qi, D
t
j) is the number of times that the 335

keyword qi occurs in a document Dt
j , |Dt

j | is the 336

length of the document Dt
j in the words, avgdl 337

is the average document length in the text col- 338

lection from which documents are drawn. m1 339

and b are hyper-parameters for BM25, denoted 340

by Dt
j ∈ Xt = {Dt

1, . . . , D
t
N}, where Xt is 341

target language corpus and Qk denote the query 342

set of words representing the k − th topic in the 343

source language, defined as Qk = {q1, q2, ..., qn}, 344

where qi ∈ Qk. IDF(qi) is the inverse document 345
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mPLM Stage1: Pre-training and Clustering

Stage3

Stage2: Retrieval-based Positive Sampling

Topic

Translation
Corpus

Sampling

Document 
Clustering

Topic

Translation
Corpus

Sampling

BM25

BM25

Shared 

Encoder Unified Topic Space

Cluster Documents Positive Documents

Pull

Push

C: Cluster group S: Sampled group

Figure 2: Overall process of our proposed methodology.

frequency (IDF) for the query’s keyword qi, and346

BM25 takes into account the extent to which that347

keyword appears in the Xt. We define the top-n348

documents with the highest BM25 scores as the349

positive samples for the cluster representing the350

corresponding topic. The our entire positive sam-351

pling strategy is performed bidirectionally across352

different languages.353

3.2.3 Stage 3: Topic Alignment by DPCL354

In this subsection, we propose a novel contrastive355

learning method named DPCL, which employs356

document-level prototype-based contrastive learn-357

ing instead of standard instance-wise contrastive358

learning. We use InfoNCE (Oord et al., 2018)359

to compute the loss functions for both directions.360

From the stage1 and stage2, we obtain i − th361

cluster group ci of In the intra-lingual corpus362

of language l1, denoted as ci = {zl11 , . . . , zl1m}363

and i − th sampled group si of language l2 cor-364

pus, denoted as si = {zl21 , . . . , zl2n }, where C =365

{c1, . . . , ck}, S = {s1, . . . , sk}. Denoted by C366

and S are entire cluster group set and entire sam-367

pled group set, respectively. The entire group of368

documents belonging to the same cluster is treated369

as the anchor. The anchor feature is defined as370

the prototypes of all documents in the mini-batch371

that belong to the each cluster. Similarly, the con- 372

trastive feature is defined as the prototypes of all 373

positive samples from the other language that are 374

associated with the anchor cluster in the mini-batch. 375

For a given source language l1 and target language 376

l2, we compute the anchor prototype pl1i and the 377

positive prototype pl1+i as follows: 378

pl1i =
1

m

m∑
k=1

zl1k , zl1k ∈ ci (4) 379

pl1+i =
1

n

n∑
k=1

zl2k , zl2k ∈ si (5) 380

For the anchor prototype, negative samples in- 381

clude all documents in the mini-batch except for 382

those belonging to the anchor cluster and its pos- 383

itive samples in the other language. Since docu- 384

ments in the same language but belonging to differ- 385

ent clusters are expected to represent different top- 386

ics, our negative sampling strategy considers intra- 387

lingual topic distributions while enabling alignment 388

with other language documents that share similar 389

topics. LDPCL−l12 is defined for the case where 390

the source language is l1 and the target language is 391

l2. Based on the above description, we formulate 392
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LDPCL−l12 as follow:393

LDPCL−l12 = − 1

K

K∑
i=1

[
(pl1i · p

l1+
i /τ)

− log

(
r∑

j=0

exp(pl1i · z
l1−
j /τ) +

r∑
j=0

exp(pl1i · z
l2−
j /τ)

)]
,

where zl1−j ∈ {zl1 \ ci}, zl2−j ∈ {zl2 \ si}
(6)394

Overall loss function LDPCL include LDPCL−l12 ,395

LDPCL−l21 and τ is a temperature hyper-396

parameter, LDPCL as follows:397

LDPCL = LDPCL−l12 + LDPCL−l21 (7)398

3.2.4 Overall Training Objective399

We follow (Bianchi et al., 2021b), the generative400

objective function for ProtoXTM is the same as401

ELBO of VAE (Kingma and Welling, 2013) which402

needs to be maximized in order to maximize the403

log-likelihood of the input pre-trained multi-lingual404

document embeddings. Our topic modeling objec-405

tive function of language l1 as follows:406

Ll1 =
1

M1

M1∑
i=1

[
−(xl1

i )
⊤ log

(
softmax(βl1θl1i )

)
+ KL

(
q(zl1 | xl1

i ) ∥ p(z
l1)
)]

(8)407

The first term represents the reconstruction error,408

quantified by the cross-entropy between the recon-409

structed document and the input document. On the410

other hand, the second term is the KL divergence of411

the learned an unified latent space distribution. In412

language l2, the topic modeling objective function413

operates in the same manner as in l1. The overall414

objective function for ProtoXTM is formulated as415

follows:416

L = Ll1 + Ll2 + λ ∗ LDPCL, (9)417

where λ control hyperparameter the relative signif-418

icance of LDPCL. Denoted by Ll1 and Ll2 are the419

topic modeling objective function of language l1420

and languege l2, respectively. Please refer to the de-421

tailed training process of Stage 3 in our ProtoXTM422

framework in Algorithm 1 in Appendix B.423

4 Experiments424

4.1 Experimental Setup425

We have conducted the experiments using TopMost426

(Wu et al., 2024b), a comprehensive toolkit for com-427

paring and optimizing topic modeling in various 428

scenarios.1 429

Datasets. We conduct experiments on two 430

benchmark English-Chinese bilingual datasets: EC- 431

News and Amazon Review. Datasets were already 432

included in TopMost in pre-processed formats. The 433

statistics of the processed datasets are shown in Ta- 434

ble 7 in Appendix A. 435

Baselines. We compare our ProtoXTM with 436

the following cross-lingual and mono-lingual topic 437

models. Following cross-lingual topic models, 438

(1) NMTM (Wu et al., 2020), the first cross- 439

lingual neural topic model based on VAE, and 440

(2) InfoCTM (Wu et al., 2023a), a state-of-the-art 441

cross-lingual neural topic model using mutual in- 442

formation maximization. Following mono-lingual 443

topic models, (3) ProdLDA (Srivastava and Sutton, 444

2017), a VAE-based standard neural topic model, 445

(4) ETM (Dieng et al., 2020), which incorporates 446

word embedding to model topics, (5) ZeroshotTM 447

(Bianchi et al., 2021b), a neural topic model replac- 448

ing input BoW with contextualized embeddings. 449

(6) BERTopic (Grootendorst, 2022), a clustering- 450

based method, apply pre-trained document embed- 451

dings, and (7) ECRTM (Wu et al., 2023b), which 452

topic embedding clustering regularization to im- 453

prove topic coherence. 454

Evaluation Metrics. To evaluate topic coher- 455

ence quality, we adopt two complementary per- 456

spectives. (1) Cross-lingual topic coherence, mea- 457

sured by CNPMI (Cross-lingual Normalized Point- 458

wise Mutual Information) (Hao et al., 2018), is 459

a widely used metric for assessing both the coher- 460

ence and alignment of cross-lingual topics. CNPMI 461

evaluates the degree to which semantically simi- 462

lar words appear across languages within a topic, 463

thereby capturing cross-lingual consistency. (2) 464

Intra-lingual topic coherence is assessed using 465

NPMI (Normalized Point-wise Mutual Informa- 466

tion) (Lau et al., 2014), which assigns higher scores 467

to topics where the top-related word pairs exhibit 468

high co-occurrence probability relative to their 469

marginal probabilities. Additionally, Cv (Coher- 470

ence Value) (Röder et al., 2015) is employed as an- 471

other coherence metric. Based on Fitelson’s confir- 472

mation measure and computed via a sliding window 473

approach over the reference corpus, Cv has been 474

shown to correlate well with human judgments of 475

topic quality. Furthermore, to evaluate the qual- 476

ity of the document-topic distributions, we employ 477

1https://github.com/BobXWu/TopMost
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ECNews Amazon Review

CNPMI NPMI – EN NPMI – ZH Cv – EN Cv – ZH CNPMI NPMI – EN NPMI – ZH Cv – EN Cv – ZH

ProdLDA -0.2084 -0.2393 0.3881 0.3646 -0.2121 -0.2303 0.4199 0.3879
ETM -0.1974 -0.1566 0.3695 0.3658 -0.2219 -0.2160 0.4310 0.3338
ZeroshotTM -0.1548 -0.0628 0.4101 0.4486 -0.0970 -0.1518 0.4451 0.3973
BERTopic -0.0699 -0.0949 0.4027 0.5214 -0.0268 -0.1933 0.4075 0.4116
ECRTM -0.2909 -0.2888 0.4922 0.3722 -0.0818 -0.1852 0.4652 0.3639

NMTM 0.0253 -0.1757 -0.1607 0.3941 0.3620 0.0455 -0.1526 -0.2062 0.4153 0.4152
InfoCTM 0.0370 -0.2409 -0.2601 0.4301 0.4055 0.0275 -0.2305 -0.2699 0.4117 0.3362
ProtoXTM (ours) 0.0717 -0.0847 -0.0076 0.4456 0.5334 0.0564 -0.0979 -0.1635 0.4570 0.4130

Table 2: Cross-lingual and intra-lingual topic coherence measures, for models containing 10 topics. The best-
performing method is highlighted in bold.

ECNews Amazon Review

Purity NMI Purity NMI

NMTM 0.5832 0.2574 0.5820 0.0245
InfoCTM 0.5768 0.2227 0.6287 0.0264

ProtoXTM (ours) 0.6204 0.2752 0.6292 0.0298

Table 3: Performance comparison on document-topic
distribution transferability. The best-performing method
is highlighted in bold.

a document clustering task using two evaluation478

metrics, Purity and NMI (Normalized Mutual Infor-479

mation) (Manning et al., 2008). NMI quantifies the480

mutual information between the predicted topic as-481

signments and the ground-truth labels, normalized482

to fall within the range [0, 1]. Purity measures the483

extent to which each cluster contains data points484

from a single class.485

4.2 Experimental Results486

Topic Quality. For a given dataset, we have re-487

ported the mean value over 5 random runs. Tables488

2 and 9 present the results of three topic coherence489

measures for 10 and 20 topics, respectively. We490

compute all topic coherence measures using the491

top 15 related words for each topic. From the re-492

sults, ProtoXTM improves CNPMI performance by493

up to 93.8% and outperforms other cross-lingual494

topic model baselines in every settings by solv-495

ing the problem of topic mismatch between trans-496

lated words across languages through document-497

level topic alignment. ProtoXTM demonstrated498

competitive performance in intra-lingual topic co-499

herence compared to various mono-lingual neural500

topic models. While NMTM and InfoCTM exhib-501

ited lower intra-lingual topic coherence than other502

mono-lingual topic models, ProtoXTM achieved503

high topic coherence even within an intra-lingual504

language while performing cross-lingual topic505

alignment. This result indicates that ProtoXTM en-506

CNPMI NPMI – EN NPMI – ZH Cv – EN Cv – ZH

w/o DPCL 0.0420 -0.0950 -0.0656 0.4131 0.4520
DPCL-EN only 0.0442 -0.0989 -0.0830 0.4130 0.4328
DPCL-ZH only 0.0529 -0.0896 -0.0788 0.4264 0.4478

ProtoXTM 0.0621 -0.0838 -0.0731 0.4413 0.4566

Table 4: Ablation studies on the ECNews dataset.

ables topic alignment while preserving intra-lingual 507

topic coherence across different languages and 508

our topic-based clustering approach using mono- 509

lingual topic models can mitigate the issue of de- 510

generated intra-lingual topic coherence in cross- 511

lingual topic models. 512

Doc-Topic Distribution Quality. To evaluate 513

the language transferability of document-topic dis- 514

tributions in cross-lingual topic models, we con- 515

catenated the infered document-topic distributions 516

from two different languages. Following (Adhya 517

and Sanyal, 2024), each document was assigned to 518

the topic with the highest probability in document- 519

topic distribution. Intuitively, an integrated cluster 520

contains documents from both languages, mean- 521

ing that the quality of these clusters reflects the 522

degree of transferability across languages. Table 3 523

present the results of clustering performance for 20 524

clusters, respectively. From the results, we could 525

find that our ProtoXTM outperforms clustering per- 526

formances with the other baselines. These results 527

indicate that ProtoXTM facilitates language trans- 528

fer across different languages by enabling semanti- 529

cally similar documents to share topics through the 530

inferred document-topic distributions of the other 531

language. 532

4.3 Ablation Study 533

We conduct an ablation study on the ECNews 534

for 20 topics, Table 4 presents the comparison of 535

different variations of the our ProtoXTM frame- 536

work. The w/o DPCL variant removes the overall 537

DPCL loss function from the ProtoXTM frame- 538

7



CNPMI NPMI – EN NPMI – ZH Cv – EN Cv – ZH

ProtoXTM (I) 0.0648 -0.0851 -0.0245 0.4497 0.5253
ProtoXTM (P) 0.0717 -0.0847 -0.0076 0.4456 0.5334

Table 5: Comparison of contrastive learning strategy
using topic coherence metrics.

Batch size 500 1000 5000 10000 20000 30000

ProtoXTM (I) 2.33s 2.58s 4.27s 6.71s 14.96s 44.29s
ProtoXTM (P) 2.65s 2.70s 2.77s 3.25s 3.34s 4.02s

Table 6: Comparison of runtime performance on con-
trastive learning perspective.

work, relying solely on pre-trained multilingual539

embeddings without our topic alignment mecha-540

nism. w/o DPCL achieves competitive CNPMI541

performance compared to InfoCTM. These results542

indicate that document-level alignment induced543

by pre-trained multilingual document embeddings544

contributes positively to topic alignment. The545

DPCL-EN only variant uses English documents546

as anchor samples while incorporating only sam-547

pled chinese documents, meaning it does not con-548

sider topic structures within the chinese corpus549

itself. Likewise, DPCL-ZH only does not consider550

topic structures within the english corpus itself.551

The experimental results indicate that both DPCL-552

EN only and DPCL-ZH only achieve improved553

CNPMI scores compared to w/o DPCL, reflecting554

enhanced cross-lingual topic alignment. However,555

intra-lingual topic coherence does not show sub-556

stantial improvement in these settings, suggesting557

that unidirectional DPCL may lead to a loss of intra-558

lingual topic information within each monolingual559

corpus. In contrast, ProtoXTM demonstrates im-560

proved performance across all topic coherence mea-561

sures except NPMI-ZH. By incorporating bidirec-562

tional topic information between the two languages,563

ProtoXTM enables mutual enhancement and rein-564

forcement of the topic structures in each language.565

Our approach simultaneously improves both intra-566

lingual topic interpretability and cross-lingual topic567

alignment.568

4.4 Learning Strategy Analysis569

In this subsection, we explore two different570

document-level contrastive learning strategies in571

our ProtoXTM framework. We compare standard572

instance-wise contrastive learning with our DPCL573

method in terms of topic coherence quality and run-574

time performance on ECNews dataset. Denoted by575

ProtoXTM (I) is the standard instance-wise contr-576

asitve learning method and ProtoXTM (P) is our 577

DPCL method. As shown in Table 5, our DPCL 578

method outperforms the standard instance-wise 579

contrastive learning in CNPMI and intra-lingual 580

topic coherence, except for Cv-EN. These results 581

suggest that, in contrastive learning, comparing 582

prototypes representing clusters rather than each 583

documents is more effective in topic alignment and 584

coherence. Generally, contrastive learning meth- 585

ods that utilize negative samples within a mini- 586

batch suffer from degraded representation quality 587

as batch size decreases (Grill et al., 2020). De- 588

pending on the data scale, performance can be im- 589

proved through a large batch size (Chen et al., 2020; 590

Tian et al., 2020). As shown in Table 6, standard 591

instance-wise contrastive learning encounters train- 592

ing speed degradation with large batch sizes. In 593

contrast, our DPCL method demonstrates robust 594

training speed performance even under large batch 595

size conditions. Please refer to Appendix E for 596

more detailed our findings. 597

5 Conclusion 598

In this paper, we identify two critical issues in 599

cross-lingual topic modeling, the topic mismatch 600

issue and the degeneration of intra-lingual topic in- 601

terpretability. Furthermore, we propose a novel 602

cross-lingual neural topic modeling framework, 603

ProtoXTM, effectively mitigates topic mismatch is- 604

sue and intra-lingual topic degradation by retrieval- 605

based positive sampling strategy and document- 606

level prototype-based contrastive learning. Ex- 607

tensive experimental results demonstrate that Pro- 608

toXTM outperforms the baseline methods in both 609

cross-lingual and intra-lingual topic coherence, and 610

can infer document-topic distributions with high 611

transferability. 612

Limitations 613

Our proposed methodology has achieved promis- 614

ing enhancements by mitigating the topic mismatch 615

and intra-lingual topic degradation issues in cross- 616

lingual topic modeling. However, we consider the 617

following remaining several limitations as future 618

work. First, while we employ traditional retrieval 619

algorithms such as BM25 for positive sampling 620

in document-level contrastive learning, we antici- 621

pate that more powerful information retrieval meth- 622

ods based on large language models (LLMs) could 623

further enhance contrastive learning performance. 624

Second, although we utilize an open-source Neu- 625
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ral Machine Translation (NMT) model for cross-626

lingual topic alignment. However, we leave a com-627

prehensive investigation of this sensitivity for fu-628

ture work. Third, the experiments in our work are629

limited to the English–Chinese benchmark. While630

previous work (Wu et al., 2023a) demonstrates631

promising results for Japanese language with lim-632

ited translation resources cross-lingual topic align-633

ment in truly low-resource languages, where bilin-634

gual dictionaries are entirely unavailable, remains635

an open challenge. Lastly, determining the opti-636

mal number of topics is still an unresolved prob-637

lem in topic modeling (Stammbach et al., 2023).638

Since the number of topics is a critical hyperparam-639

eter that significantly affects model performance,640

identifying an optimal topic number that balances641

both cross-lingual topic alignment and topic in-642

terpretability in CLTM is an important research643

direction for future work.644
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A Dataset 915

In this section, we provide detailed description of 916

the bilingual benchmark datasets used in our ex- 917

periments. ECNews is a bilingual news dataset in 918

English and Chinese, consisting of six categories: 919

business, education, entertainment, sports, technol- 920

ogy, and fashion. Amazon Review is a bilingual 921

review dataset collected from the Amazon website 922

in both English and Chinese. For both datasets, 923

we use the preprocessed versions provided by the 924

TopMost toolkit (Wu et al., 2024b). The statistics 925

of the preprocessed datasets are presented in Table 926

7. 927

B Training Algorithm 928

In this section, we provide detailed training pro- 929

cedure of Stage3 in our ProtoXTM framework. 930

Before training the our model, the cluster labels 931

yc
l1 ,yc

l2 and sampled labels ys
l1 ,ys

l2 are pre- 932

computed during Stage 1 and Stage 2, respectively. 933

The detailed training algorithm for Stage 3 of Pro- 934

toXTM is presented in Algorithm 1. 935

C Implementation Details 936

In this section, we describe the training environ- 937

ment and model architecture details. All mod- 938

els were implemented using PyTorch 2.1.0 and 939

Python 3.10, and experiments were conducted on 940

a machine equipped with a GeForce RTX 3090 941

GPU. The encoder network is a 3-layer multi- 942

layer perceptron (MLP) with a hidden layer di- 943

mension of 128, and model parameters were op- 944

timized using the Adam optimizer (Kingma and 945

Ba, 2014) with a learning rate of 2e-2. For pre- 946

trained multilingual document embeddings, we 947

used the paraphrase-multilingual-MiniLM-L12-v2 948
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Dataset Language #Train Docs #Vocabulary labels
Amazon Review English 25,000 5,000 2

Chinese 25,000 5,000 2
ECNews English 46,870 5,000 6

Chinese 50,000 5,000 6

Table 7: Statistics of the preprocessed datasets

model from Sentence-Transformers2. Addition-949

ally, we employed 200-dimensional FastText em-950

beddings for both English and Chinese as the pre-951

trained word embeddings.952

D Hyperparameter Setting953

In this section, we describe all hyperparameter set-954

tings used in our experiments with the ProtoXTM955

framework. In Stage 1, the number of topics for the956

pre-training of the separated mono-lingual neural957

topic models is set to 50. All other settings fol-958

low the configuration of (Bianchi et al., 2021b). In959

Stage 2, the number of query words in each query960

set (i.e., top-related words) is set to 10, the word961

replacement threshold is 0.4, and 30 documents962

are sampled as positives within each cluster group.963

The BM25 ranking function is used with its default964

configuration of (Robertson and Zaragoza, 2009).965

In Stage 3, we set the temperature τ to 0.3 and the966

LDPCL weight λ to 1.2 and the batch size B to967

1024. We use grid search to determine the value of968

the above hyperparameter and all hyperparameter969

settings are kept fixed across our experiments on970

all datasets.971

E Contrastive Learning Strategy Analysis972

In this section, we explain the details of our con-973

trastive learning strategy analysis in subsection 4.4.974

The objective function of ProtoXTM (I), which975

employs the standard instance-wise contrastive976

learning is as follows:977

LICL−l12 = − 1

M1

M1∑
i=1

[
n∑

j=0

(zl1i · z
l1+
j /τ)

− log

(
r∑

j=0

exp(zl1i · z
l1−
j /τ) +

r∑
j=0

exp(zl1i · z
l2−
j /τ)

)]
,

where zl1−j ∈ {zl1 \ ci}, zl2−j ∈ {zl2 \ si}
(10)978

Denoted as LICL−l12 , this variant refers to the979

strandard instance-wise contrastive learning where980

2https://huggingface.co/sentence-transformers

the source language is l1 and the target language 981

is l2, and zl1+ represents documents sampled from 982

the corresponding group. All hyperparameters are 983

set identically to those used in ProtoXTM (P), and 984

the overall objective function of ProtoXTM (I) is 985

as follows: 986

L = Ll1 + Ll2 + λ ∗ LICL, (11) 987

where LICL = LICL−l12 +LICL−l21 . We analyze 988

the standard instance-wise contrastive learning and 989

our DPCL method in terms of both topic quality 990

and runtime performance. 991

Topic Quality: As shown in the experimental 992

results in Table 5, our DPCL method outperforms 993

the standard instance-wise contrastive learning ap- 994

proach in both cross-lingual and intra-lingual topic 995

coherence. Previous studies (Han et al., 2023; 996

Nguyen and Luu, 2021; Nguyen et al., 2024) have 997

demonstrated the effectiveness of contrastive learn- 998

ing for topic modeling, but conventional contrastive 999

learning methods are primarily designed for sen- 1000

tence embedding learning (Xu et al., 2023). In 1001

contrast, our DPCL method is tailored toward effec- 1002

tive topic alignment and inference for cross-lingual 1003

topic modeling, rather than learning representations 1004

of each documents. 1005

Efficiency: Table 6 presents the runtime per- 1006

formance of ProtoXTM (I) and ProtoXTM (P) 1007

across varying batch sizes, ranging from 500 to 1008

30,000. In the instance-wise contrastive learning 1009

setting, all documents participate in contrastive 1010

learning, leading to increased computational cost as 1011

the batch size grows. However, the DPCL method 1012

maintains a fixed number of prototypes represent- 1013

ing topics, regardless of batch size, with only the 1014

number of negative samples increasing within the 1015

mini-batch. As a result, our DPCL method remains 1016

robust even with large batch sizes, indicating its po- 1017

tential for effective topic alignment and inference 1018

on large-scale datasets. 1019
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F Case Study1020

In this section, for qualitative analysis of topic1021

quality, we report the topic word examples yielded1022

by different baseline methods and our ProtoXTM1023

model on the ECNews dataset in Table 8. In our1024

case study, we set the number of topics to 201025

and conducted qualitative analysis on two repre-1026

sentative topics: “fashion” and “study”. For Chi-1027

nese terms, the corresponding ground-truth English1028

translations are provided in parentheses, and words1029

with underlines indicate those that lack topical con-1030

sistency. As shown in Table 8, NMTM and In-1031

foCTM exhibit reduced interpretability by either1032

presenting different topics across the two languages1033

or including inconsistent words within topics. In1034

contrast, we observe that the topics generated by1035

ProtoXTM contain semantically coherent words1036

and consistently express similar topic across lan-1037

guages.1038

G Quantitative Experimental Results1039

In this section, we report our quantitative experi-1040

mental results for topic quality analysis. Table 91041

present the results of three topic coherence mea-1042

sures for 20 topics.1043
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Methods Top-related word examples

NMTM

EN-Topic#13: fashionably youtube videos runway facetime
ZH-Topic#13: 时装(fashion)设计师(designer)嘉宾(guest)评选(selection)时尚(fad)
EN-Topic#18: education school loans charter college
ZH-Topic#18: 录取(admit)本科(undergraduate course)分数线(cutline)批次(group)院校(college)

InfoCTM

EN-Topic#6: designers math speed models fashion
ZH-Topic#6: 流行(trend)时装(fashion)模特(model)传播(spread)周末(weekend)
EN-Topic#3: students pilot education pleasure college
ZH-Topic#3: 学子(student)教室(classroom)教学(teaching)测试(test)教师(teacher)

ProtoXTM

EN-Topic#15: fashion style dress clothing vintage
ZH-Topic#15: 时尚(fad)穿(wear)设计(design)造型(styling)外套(overcoat)
EN-Topic#13: college education students university campus
ZH-Topic#13: 考试(exam)学生(student)学校(school)大学(university)教育(education)

Table 8: Top-related word examples generated by different baseline methods.

ECNews Amazon Review

CNPMI NPMI – EN NPMI – ZH Cv – EN Cv – ZH CNPMI NPMI – EN NPMI – ZH Cv – EN Cv – ZH

ProdLDA -0.2602 -0.2469 0.4660 0.4081 -0.2189 -0.2567 0.4135 0.4112
ETM -0.2044 -0.1531 0.4101 0.3915 -0.1988 -0.1926 0.3932 0.3409
ZeroshotTM -0.1330 -0.0749 0.4251 0.4494 -0.0928 -0.1795 0.4424 0.3830
BERTopic -0.0679 -0.1165 0.4256 0.4969 -0.0414 -0.1952 0.4055 0.3960
ECRTM -0.2375 -0.2669 0.4519 0.4111 -0.1048 -0.1818 0.4978 0.3621

NMTM 0.0279 -0.1829 -0.1390 0.4142 0.3967 0.0251 -0.1823 -0.2051 0.4200 0.3610
InfoCTM 0.0419 -0.2274 -0.2413 0.4224 0.3922 0.0397 -0.2301 -0.2333 0.4479 0.3471
ProtoXTM (ours) 0.0621 -0.0838 -0.0731 0.4413 0.4566 0.0645 -0.0830 -0.1692 0.4456 0.3826

Table 9: Cross-lingual and intra-lingual topic coherence measures, for models containing 20 topics. The best-
performing method is highlighted in bold.
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Algorithm 1 Training Procedure of Stage3 in Pro-
toXTM framework
Input: mini-batch size B, pre-trained document

embeddings xl1 ,xl2 , cluster labels yc
l1 ,yc

l2 ,
sampled labels ys

l1 ,ys
l2 , topic number K,

temperature τ , LDPCL weight λ
Output: learned shared encoder f , encoder

parameter Wenc, decoder parameter W l1
dec,

W l2
dec, topic-word distributions matrix βl1 ,βl2 ,

document-topic distribution matrix θl1 ,θl2

1: Initialize parameters Wenc, W l1
dec, W

l2
dec

2: for each training epoch t = 1 to T do
3: for batch of B documents (xl1 ,xl2) do
4: Encode documents with f :
5: zl1 ← f(xl1), zl2 ← f(xl2)
6: Compute anchor prototypes using cluster

labels yc
l1 ,yc

l2 by Eq. 4
7: Compute positive prototypes using sam-

pled labels ys
l1 ,ys

l2 by Eq. 5
8: Compute LDPCL by Eq. 6,7.
9: Compute document-topic distributions:

10:

θl1 ← softmax(zl1),
θl2 ← softmax(zl2)

11: Compute reconstructed documents:

12:

x̂l1 ← softmax(βl1θl1),

x̂l2 ← softmax(βl2θl2)
13: Compute Ll1 and Ll2 by Eq. 8
14: Compute total loss by Eq.9
15: Update all parameters with gradient∇L
16: end for
17: end for
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