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ABSTRACT

Many tools exist that attempt to detect dependence between random variables, a
core question across a wide range of machine learning, statistical, and scientific
endeavors. Although several statistical tests guarantee eventual detection of any
dependence with enough samples, standard tests may require an exorbitant amount
of samples for detecting subtle dependencies between high-dimensional random
variables with complex distributions. In this work, we study two related ways
to learn powerful independence tests. First, we show how to construct powerful
statistical tests with finite-sample validity by using variational estimators of mutual
information, such as the InfoNCE or NWJ estimators. Second, we establish a
close relationship between these variational mutual information-based tests and
tests based on the Hilbert-Schmidt Independence Criterion (HSIC), showing that
learning a variational bound in the former case is closely related to learning kernels,
typically parameterized by deep networks, in the latter. Finally, we show how to
find a representation that maximizes the asymptotic power of an HSIC test, proving
that this procedure works and demonstrating empirically the practical improvement
of our tests (with HSIC tests generally outperforming the variational ones) on
difficult problems of detecting structured dependence.

1 INTRODUCTION

Independence testing, the question of using paired samples to determine whether a random variable
X and another Y are associated with one another or if they are statistically independent, is one of
the most common tasks across scientific and data-based fields. Traditional methods make strong
parametric assumptions, for instance assuming that X and Y are jointly normal so that dependence is
characterized by covariance, and/or operate only in limited settings, for instance the tabular setting
of the celebrated χ2 test or Fisher’s exact test. Applying these approaches to high-dimensional
continuous data is difficult at best.

One characterization of independence is the (Shannon) mutual information (MI): this quantity is zero
if two random variables are independent, and positive if they are dependent. Substantial effort has
been made in estimating this quantity with a variety of estimators; see e.g. the broad list based on
binning, nearest-neighbors, kernel density estimation, and so on implemented by Szabó (2014). In
high dimensions, however, recent work has focused on estimating variational bounds defined by deep
networks (see e.g. Poole et al., 2019), which can ideally learn problem-specific structure. To our
knowledge, this class of estimators has not yet been used to construct statistical tests of independence:
in particular, if we run the estimation algorithm and estimate a lower bound on the MI of 0.12, does
that mean that the variables are (perhaps weakly) dependent, or might that be due to random noise on
the samples we saw? The first contribution of this paper is to construct and evaluate tests of this form.

Mutual information, though, is notoriously difficult to estimate (Paninski, 2003). If the question we
want to ask is “are X and Y dependent,” we can also consider turning to a different characterization
of dependence which may be statistically easier to estimate. The Hilbert-Schmidt Independence
Criterion (HSIC), introduced by Gretton et al. (2005), measures the total cross-covariance between
feature representations of X and Y , and can be estimated from samples efficiently. The construction
supports even infinite-dimensional features in a reproducing kernel Hilbert space (RKHS), equivalent
to choosing a kernel function. With appropriate choices of kernel (see Szabó & Sriperumbudur,
2018), the HSIC is also zero if and only if X ⊥⊥ Y . Székely et al. (2007) and Lyons (2013) separately
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(b) Power vs. m; d = 4
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(c) Power vs. m; d = 10
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(d) Power vs. m; d = 15

Figure 1: Vanilla kernel-based HSIC tests struggle on high-dimensional data. (a) A bimodal Gaussian
mixture, with visible dependence between X and Y . (b)-(d) Test power as we add an increasing
number of independent noise dimensions. When d = 4 the median heuristic (HSIC-M) confidently
detects dependence between X and Y with a reasonably large sample size, but struggles when d = 10
or d = 15. Our method (HSIC-D) detects dependence in high dimensions with many fewer samples.

proposed distance covariance tests, which measure the covariance of pairwise distances between
X values with distances between Y values; this can be viewed as HSIC with a particular kernel
(Sejdinovic et al., 2013). Our second contribution describes how HSIC, in fact, is a lower bound on
mutual information, and that tests based on either are closely related.

Alternatively, we can characterize an independence problem as a two-sample one. Two-sample
problems are concerned with the question: given samples from P and Q, is P = Q? Under this
framework, when we consider samples from the joint distributions Pxy and Px × Py , the two-sample
problem characterizes an equivalent independence problem between variables X and Y . One way we
can measure the discrepancy between Pxy and Px × Py is with a class of distances on probability
measures called integral probability metrics (IPM). Defining an IPM using critic functions in an
RKHS, we recover the kernel-based Maximum-Mean Discrepancy (MMD) Gretton et al. (2012a).

Any reasonable choice of kernel, such as the Gaussian kernel with unit bandwidth or the distance
kernel that recovers distance covariance, will eventually be able to detect any fixed dependence with
enough samples. In practice, however, this scheme can perform extremely poorly; if the data varies
on a very different scale, it will take exorbitant quantities of data to achieve any reasonable test power.

Thus, tests using Gaussian kernels often rely on the median heuristic to choose a kernel relevant to
the data at hand: choosing a bandwidth based on the median pairwise distance among data points
(Gretton et al., 2012a). While this is a reasonable first guess for many data types, there exist datasets
where it can be dramatically better to instead select a bandwidth that optimizes a measure of test
power (Sutherland et al., 2017). Beyond that, there exist many distributions where no Gaussian
kernel performs well – for instance, many problems on natural image data or involving sparsity – but
Gaussian kernels applied to latent representations of such data do. As an extreme example, consider
random variables whose twelfth through fifteenth decimal places are always equal. Representations
based on Euclidean distance will require an exorbitant number of samples to detect dependence, but a
representation that extracts only the relevant decimal places will do so very quickly.

This concept similarly applies to tests based on mutual information. In fact, we can view estimation
of a variational MI bound as learning a representation of the data that maximizes its measure of depen-
dency. Thus, learning representations of the data that make any dependency more explicit is central to
developing more powerful independence tests. Our final contribution involves developing a scheme
to learn these optimal representations for both kernel-based and certain MI-based independence tests.

Our kernel-based method method involves learning the representation that maximizes the asymptotic
power of a test based on HSIC. This expression is dominated by the signal-to-noise ratio of HSIC to
its standard deviation. We show that we can estimate this quantity from finite samples in quadratic
time, and that it is consistent. We then construct a valid test via data splitting and permutation testing
(e.g. Rindt et al., 2021). Our overall approach builds on prior work in kernel two-sample testing
(Gretton et al., 2012b; Jitkrittum et al., 2016; Sutherland et al., 2017; Liu et al., 2020), but translated
to the independence testing setting. Our comprehensive experiments also provide empirical evidence
that a reframing of the MMD-based two-sample test into an independence test is not optimal; a
phenomenon we attribute to the statistical properties of both estimators.
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2 TESTS BASED ON VARIATIONAL MUTUAL INFORMATION BOUNDS

Problem 1 (Independence testing). Let Z = (X,Y ) ∼ Pxy on a domain X × Y , and Px and
Py the corresponding marginal distributions on X and Y . We observe m independent samples
{(x1, y1), . . . , (xm, ym)} from Pxy. We conduct a null hypothesis significance test, with the null
hypothesis H0 : Pxy = Px × Py (so X ⊥⊥ Y ), and the alternative H1 : Pxy ̸= Px × Py (i.e. X ⊥̸⊥ Y ).

We wish to solve this problem without making strong (parametric) assumptions about the form of Pxy ,
Px, or Py. Most independence tests are based on estimating the “amount” of dependence between
X and Y , or equivalently the discrepancy between between Pxy and Px × Py. Given a nonnegative
quantity which is zero if X ⊥⊥ Y , we can reject H0 if our estimate is large enough that we are
confident the true value is positive.

The most famous such quantity is the (Shannon) mutual information. It can be defined as the
Kullback-Liebler divergence of Pxy from Px × Py , and is zero if and only if X ⊥⊥ Y ; equivalently, it
is the amount by which knowledge of Y decreases the entropy of X . While many estimators exist
based roughly on various forms of density estimation (see e.g. Szabó, 2014), as discussed above
these can fail to detect subtle or structured forms of dependence with reasonable numbers of samples.
Variational estimators of mutual information give an opportunity for problem-specific representations.
As an example, consider the following lower bound (van den Oord et al., 2018; Poole et al., 2019),
called InfoNCE for its connection to noise-contrastive estimation (Gutmann & Hyvärinen, 2012):

If ,KNCE(X;Y ) = E
(xi,yi)∼PK

xy

[
Îf ,KNCE

]
≤ I(X;Y ) Îf ,KNCE =

1

K

K∑
i=1

log
ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)
.

Here K is a batch size, which in our setting will typically be the total number of available points.
Each f : X × Y → R leads to a different lower bound; the largest If ,KNCE is the tightest bound. In
practice, users typically parameterize f as a deep network and maximize Îf ,KNCE on minibatches from
a training set, providing an opportunity for f to learn useful feature adapted to the problem at hand.
There are a variety of bounds of this general type; Poole et al. (2019) give a unified accounting of
many. Different bounds yield different bias-variance tradeoffs, but run up against various limitations
on the possibility of estimation (Song & Ermon, 2020; McAllester & Stratos, 2020).

For independence testing, the key question is whether the true value I(X;Y ) > 0. This is guaranteed
if a lower bound, such as If ,KNCE for some particular f and K, is positive at the population level, i.e.
with the true expectation. To estimate this, by far the easiest approach is data splitting: choose f to
maximize Îf ,KNCE on (minibatches from) a training set, then evaluate Îf ,KNCE on the heldout test set.

How large should Îf ,KNCE be in order to be confident that If ,KNCE > 0? That is, what does the distribution
of Îf ,KNCE look like when I(X;Y ) = 0, and hence If ,KNCE ≤ 0? For a given f , we can answer this
question with permutation testing, which estimates values under the null hypothesis (Pxy = Px ×Py)
by randomly shuffling the test data, breaking dependence. To construct a test with probability of false
rejection at most α, we can compute the empirical (1−α) quantile from this permuted set, as long as
we include the original paired data in this shuffling (Hemerik & Goeman, 2018, Theorem 2). We
reject the null hypothesis if this quantile is smaller than the test statistic

Îf ,KNCE =
1

K

K∑
i=1

f(xi, yi)−
1

K

K∑
i=1

log

 1

K

K∑
j=1

ef(xi,yj)

 . (1)

Written in this form, notice that the second term of ÎNCE is permutation-invariant: the test statistic
and each of its permuted versions are 1

K

∑K
i=1 f(xi, yi) shifted by the same constant. Thus, although

this second term plays a vital role in selecting the critic function f , at test time the only thing that
matters is whether the mean value of f(x, y) is higher for the true pairings than for random pairs. The
same is true for the NWJ (Nguyen et al., 2010), DV (Donsker & Varadhan, 1983), IJS, and Iα lower
bounds as discussed by Poole et al. (2019), as well as the MINE estimator (Belghazi et al., 2018).
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3 TESTS WITH THE HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al., 2005) is also zero if and only if
X and Y are independent when an appropriate kernel is chosen. Unlike the mutual information, it is
easy to estimate from samples. We will expand on its relationship to mutual information in Section 4.

To define HSIC, we first briefly review positive-definite kernels. A (real-valued) kernel is a function
k : X × X → R which can be expressed as the inner product between feature maps ϕ : X → F ,
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩F , where F is any Hilbert space. A special case is F = Rp and k(x, x′) =
ϕ(x) · ϕ(x′). For every kernel function, there exists a unique space called the reproducing kernel
Hilbert space (RKHS), which consists of functions f : X → R. The key reproducing property of an
RKHS F states that for any function f ∈ F and any point x ∈ X , we have ⟨f, ϕ(x)⟩F = f(x).

Suppose we have a kernel k on X with RKHS F and feature map ϕ, as well as another kernel l on Y
with RKHS G and feature map ψ. Let ⊗ denote the outer product.1 The cross-covariance operator is

Cxy = E
xy

[(
ϕ(x)− E

x
ϕ(x)

)
⊗
(
ψ(y)− E

y
ψ(y)

)]
;

for kernels with finite-dimensional feature maps, this is exactly the standard (cross-)covariance
matrix between the features of X and those of Y . Under mild integrability conditions on the kernel
and the distributions,2 the reproducing property shows that ⟨f, Cxyg⟩ = Cov(f(X), g(Y )) for all
f ∈ F , g ∈ G. One definition of independence is whether there exist any correlated “test functions”
f and g. Thus, for rich enough choices of kernel – using universal k and l suffices, but is not necessary
(Szabó & Sriperumbudur, 2018) – we have that X ⊥⊥ Y if and only if the operator Cxy = 0. We
can thus check whether the operator is zero, and hence whether X ⊥⊥ Y , by checking the squared
Hilbert-Schmidt norm of Cxy, HSIC(X,Y ) = ∥Cxy∥2HS. With finite-dimensional features, this
corresponds to the squared Frobenius norm of the feature cross-covariance matrix.

Another way to interpret HSIC is as a distance between Pxy and Px×Py , similarly to how the mutual
information is the KL divergence between those same distributions.
Proposition 2 (Gretton et al., 2012a, Theorem 25). Let k and l be kernels on X and Y , and define a
kernel on X × Y by h

(
(x, y), (x′, y′)

)
= k(x, x′)l(y, y′) with RKHS H. Then√

HSICk,l(X,Y ) = MMDh(Pxy,Px × Py) = sup
f∈H

∥f∥H≤1

E
(X,Y )∼Pxy

[f(X,Y )]− E
X∼Px

Y ′∼Py

[f(X,Y ′)]

=

√√√√ E
(X,Y ),(X′,Y ′)∼Pxy

Y ′′,Y ′′′∼Py

[
k(X,X ′)l(Y, Y ′)− 2k(X,X ′)l(Y, Y ′′) + k(X,X ′)l(Y ′′, Y ′′′)

]
.

Taking the last form and rearranging to save repeated computation yields two similar, popular
estimators of HSIC. “The biased estimator” is HSIC(P̂xy, P̂x × P̂y) for empirical distributions P̂ :

ĤSICb(X,Y ) =
1

m2
⟨K,HLH⟩F for ⟨A,B⟩F =

∑
ij

AijBij , (2)

where here K is them×mmatrix with entries kij = k(xi, xj), L similarly has entries lij = l(yi, yj),
and H is the “centering matrix” Im − 1

m1m1⊤
m (so the estimator can be easily implemented without

matrix multiplication). This estimator has O(1/m) bias, but is consistent.

The other common estimator, “the unbiased estimator,” is a U -statistic (Song et al., 2012):

ĤSICu(X,Y ) =
1

m(m− 3)

[
⟨K̃, L̃⟩F +

1⊤mK̃1m1⊤mL̃1m

(m− 1)(m− 2)
− 21⊤mK̃L̃1m

m− 2

]
, (3)

where K̃ and L̃ are m×m matrices whose diagonal entries are zero but whose off-diagonal entries
agree with those of K or L. It is unbiased, E ĤSICu(X,Y ) = HSIC(X,Y ); it is also consistent,
and can be computed in the same O(m2) time as ĤSICb, without matrix multiplication.

1Analogously to Euclidean outer products, f ⊗ g : G → F is given by [f ⊗ g]g′ = f⟨g, g′⟩G .
2It suffices that E[

√
k(x, x)l(y, y)] <∞; this is guaranteed for any distributions when k, l are bounded.
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Either statistic can be used with a permutation test to construct a test of independence with finite-
sample validity, in the same way as described for mutual information bounds. Unlike in that case,
by simply picking e.g. distance or Gaussian kernels for k and l, we can guarantee that if X ̸⊥⊥ Y

then HSIC(X,Y ) > 0, in which case
√
m(ĤSICu − HSIC)

d→ N (0, σ2
H1

) (Song et al., 2012,

Theorem 5). By contrast, when HSIC = 0, it is m ĤSICu (rather than
√
mĤSICu) that converges in

distribution to something with complex dependence on Px, Py, k, and l. Thus, if we consider a test
statistic m ĤSICu, when HSIC = 0 this statistic has mean zero and standard deviation Θ(1). When
HSIC > 0, though, the statistic has mean and standard deviation Θ(

√
m) → ∞. Thus, as m→ ∞,

eventually the test will reject if X ⊥̸⊥ Y (Rindt et al., 2021).

4 CONNECTING HSIC AND MUTUAL INFORMATION TESTS

HSIC as an MI lower bound. Suppose the kernel h on (x, y) pairs of Proposition 2 is bounded:
supx∈X ,y∈Y h((x, y), (x, y)) ≤ ν2 for ν ≥ 0. Then |f(x, y)| = |⟨f, ϕh(x, y)⟩H| ≤ ν∥f∥H by the
reproducing property and Cauchy-Schwarz, so ∥f∥H ≥ 1

ν supx,y|f(x, y)| = 1
ν ∥f∥∞. We thus have√

HSIC(X,Y ) ≤ sup
f :∥f∥∞≤ν

E
(X,Y )∼Pxy

[f(X,Y )]− E
X∼Px

Y ′∼Py

[f(X,Y ′)] = 2ν TV(Pxy,Px×Py), (4)

where TV is the total variation distance between distributions (Sriperumbudur et al., 2012)3 Applying
standard bounds relating the total variation to the KL divergence, we obtain the following.
Proposition 3. In the setting of Proposition 2, suppose supx∈X ,y∈Y h((x, y), (x, y)) ≤ ν2. Then

1

2ν2
HSIC(X,Y ) ≤ I(X;Y ) and − log

(
1− 1

4ν2
HSIC(X,Y )

)
≤ I(X;Y ).

Proof. The first bound applies Pinsker’s inequality, which relates total variation to KL, to (4). The
second instead applies the bound of Bretagnolle & Huber (1978) (also see Canonne, 2023).

The second bound is tighter for large values of I(X;Y ), but both are monotonic in HSIC(X,Y )/ν2.
We could thus consider, as in Section 2, choosing kernels k, l to maximize a lower bound on I(X;Y ),
by maximizing HSIC(X,Y )/ν2. Indeed, maximizing HSIC has been used by previous applications
in many areas (e.g. Blaschko & Gretton, 2009; Song et al., 2012; Li et al., 2021; Dong et al., 2023).

HSIC and variational MI tests. Now consider a test based on MMDf (Pxy,Px × Py) using
a kernel of the form h((x, y), (x′, y′)) = f(x, y)f(x′, y′) for some real-valued function f . (If
f(x, y) = f1(x)f2(y), this is an HSIC test.) Because ϕh(x, y) = f(x, y) ∈ R is a valid feature map,
every function in H is of the form αf(x, y) with ∥αf∥H = |α|. By Proposition 2,

MMDf (Pxy,Px×Py)
2 =

(
sup
|α|≤1

α (E f(X,Y )− E f(X,Y ′))

)2

=
(
E f(X,Y )−E f(X,Y ′)

)2
.

The plug-in estimator corresponding to the biased HSIC estimator (2) would yield the test statistic

M̂MD
2

b =

 1

m

m∑
i=1

f(xi, yi)−
1

m2

m∑
i=1

m∑
j=1

f(xi, yj)

2

. (5)

(If f(x, y) = f1(x)f2(y), this is ĤSICb.) Comparing (5) to (1) with K = m, we can see that the
main term T̂ = 1

m

∑
i f(xi, yi) is identical. The other term is permutation-invariant; it is the mean

of T̂ over all possible permutations, T̄ . Thus, a permutation test based on (5) asks how far the value
of T̂ for the true data is from T̄ , while a test based on (1) is equivalent to asking how much the value
of T̂ exceeds T̄ . The only difference is that (5) gives a two-sided test, while (1) is a one-sided test.4

3Sriperumbudur et al. (2012) define the TV as twice the more common definition, which we use here.
4Li et al. (2021, Section 3.1) also found a relationship between HSIC and INCE for categorical Y .
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Our usual test uses ĤSICu of (3) instead of ĤSICb, but the difference in estimators is typically small.
Thus, if we use deep kernels of the form k(x, x′) = f(x)f(x′) and l(y, y′) = g(y)g(y′), the HSIC
test5 is nearly equivalent to the NCE test with a separable critic function (x, y) 7→ f(x)g(y). The
NCE test chooses a critic by maximizing the NCE estimate; while we could choose a (different) critic
by maximizing the HSIC, we will now see there is a better approach.

5 LEARNING REPRESENTATIONS FOR INDEPENDENCE TESTING

Typically, a mutual information lower bound is considered better if the population value of the bound
is larger: that makes it a tighter bound. This viewpoint, however, neglects the issue of statistical
estimation of that bound, e.g. the difference between If ,KNCE and Îf ,KNCE. The best statistical test,
among tests with appropriate Type I (false rejection) control, is the one with highest test power: the
probability of correctly rejecting the null hypothesis H0 when X ⊥̸⊥ Y .

To warm up, we can first consider the behavior of a permutation test based on (1) or the many
other mutual information bounds based only on T̂ = 1

m

∑m
i=1 f(xi, yi). Each bound will choose

a different f during training, but at test time, only T̂ matters. Let T = EPxy
f(x, y) and T0 =

EPx×Py f(x, y). Assuming 0 < σ2 = Var f(x, y) < ∞, the central limit theorem implies that
1
σ

√
m(T̂ − T )

d→ N (0, 1). Then the rejection threshold r should be such that, denoting a ∼ b to
mean limm→∞ a/b = 1, and using Φ as the standard normal cdf,

α = Pr
H0

(T̂ > r) = Pr
H0

(
T̂ − T0
σH0

/
√
m
>

r − T0
σH0

/
√
m

)
∼ Φ

(
T0 − r

σH0
/
√
m

)
;

implying r ∼ T0 − Φ−1(α)
σH0√
m

. Similar logic tells us that the finite sample power is roughly
(recalling T , T0, σH0

, σH1
do not depend on m)

Pr
H1

(
T̂ > r

)
∼ Φ

(
T − r

σH1/
√
m

)
∼ Φ

(√
m
T − T0
σH1

+
σH0

σH1

Φ−1(α)

)
.

This argument shows that, as long as T > T0 and T̂ has finite positive variance under both H0 and
H1, a test based on T̂ will eventually reject any fixed alternative with probability 1. How quickly in
m it reaches high power, however, is dominated by the signal-to-noise ratio (SNR) (T − T0)/σH1

.
When we choose a test based on maximizing the value of a mutual information lower bound, we
maximize a criterion such as (1), which does not directly correspond to the test power. Instead, we
would perhaps be better served by maximizing (T − T0)/σH1

, or rather, an empirical estimate of that
quantity. We will shortly see that a very similar argument applies to HSIC as well, with essentially
the same signal-to-noise ratio.

Asymptotic test power (HSIC). Similarly to the aforementioned T̂ -based tests, we can analyze
the power of tests based on HSIC. Letting Φ denote the standard normal CDF and r be the threshold
found by permutation testing, Proposition 5 implies the asymptotic test power is

PrH1

(
m ĤSICu > r

)
= PrH1

(√
m

σH1

(ĤSICu −HSIC) >
r√

mσH1

−
√
mHSIC

σH1

)
∼ Φ

(√
mHSIC

σH1

− r√
mσH1

)
, (6)

where a ∼ b means limm→∞ a/b = 1. It follows that for any given Pxy , k, and l, HSIC and σH1
are

constants, and Proposition 5 tells us that r also converges to a constant. Thus, as the sample size m
grows, the test power is dominated by the first term6, and so maximizing the following approximate

5This version is closely related to a witness two-sample test (Kübler et al., 2022) used for independence.
6This statement, while true in the limit m→∞, does not fully describe the setting for finite m: for instance,

a test which is only near the rejection threshold will have r ≈ m HSIC, in which case the two terms are of
approximately equal size. As in Footnote 10, though, we can estimate the power of an m-sample test with n
samples: here we use n samples to approximately maximize the power of a test with m→∞ samples. Deka &
Sutherland (2023) estimate an analogue of (6) rather than just (7) in a related setting.
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test power maximizes the limiting power of the test as m→ ∞:

J(X,Y ; k, l) =
HSIC(X,Y ; k, l)

σH1(X,Y ; k, l)
. (7)

This signal-to-noise ratio is parallel to the one for T̂ -based tests. Indeed, as argued in Section 4, when
considering kernels k(x, x′) = f1(x)f1(x

′) and l(y, y′) = f2(y)f2(y
′), an estimate of J based on the

biased HSIC estimator yields the exact same SNR as for T̂ -based tests when f(x, y) = f1(x)f2(y).
In practice, we choose to estimate HSIC with its unbiased estimator so that

Ĵλ(X,Y ; k, l) =
ĤSICu(X,Y ; k, l)

σ̂λ
H1

(X,Y ; k, l)
, (8)

where σ̂λ
H1

(X,Y ; k) =

√
16(R− ĤSIC

2

u) + λ is a regularized variance estimator. Here R is exactly
the estimate from Proposition 5; following Song et al. (2012), it can be computed more efficiently
with R = ((n−4)!)2

4n((n−1)!)2 ∥h∥
2, where the vector h is

h = (n− 2)2
(
K̃ ◦ L̃

)
1− n(K̃1) ◦ (L̃1) + (1⊤L̃1)K̃1+ (1⊤K̃1)L̃1− (1⊤K̃L̃1)1

+ (n− 2)
(
(1⊤(K̃ ◦ L̃)1)1− K̃L̃1− L̃K̃1

)
,

with ◦ denoting elementwise multiplication on matrices, and 1 = (1, . . . , 1) ∈ Rn. Given sets
of possible kernels, we can approximately identify the kernels (k, l) yielding the asymptotically
most powerful HSIC test by maximizing (8). Typically, we run some variant of a gradient-based
optimization algorithm to maximize (8) with respect to the parameters of k and/or l.

Kernel architecture. One way we can perform an HSIC-based test on representations of the data is
by incorporating a featurizer that acts on samples just before passing through a kernel. When our
feature mapping is parameterized by deep networks, we get the class of deep kernels (Wilson et al.,
2016), which have been successfully used in two-sample testing (Sutherland et al., 2017; Liu et al.,
2020; 2021) and many other settings (e.g. Li et al., 2017; Arbel et al., 2018; Jean et al., 2018; Li et al.,
2021). We use the following deep kernels for X and Y :

kω(x, x
′) = (1− ϵX)κX(fω(x), fω(x

′)) + ϵX qX(x, x′)

lγ(y, y
′) = (1− ϵY )κY (gγ(y), gγ(y

′)) + ϵY qY (y, y
′).

Here fω and gγ are deep networks with parameters in ω, γ, which extract relevant features from X or
Y to a feature space RD. These features are then used inside a Gaussian kernel κ on the space RD,
to compute the baseline similarity between data points. We then take a convex combination of that
kernel with a Gaussian kernel q on the input space; the weight of this component is determined by a
parameter ϵ ∈ (0, 1) 7. The lengthscale of κ as well as the mixture parameter ϵ are included in the
overall parameters, ω or γ, and learned during the optimization process.

Overall representation learning algorithm. The overall procedure, written based on full-batch
gradient ascent for simplicity, is shown in Algorithm 1. In practice, we use AdamW (Loshchilov &
Hutter, 2019), and draw minibatches in epochs; experimental details are given in Appendix D.1.

Time complexity. Let EX be the cost of computing an embedding fω(x), EY be the cost of
computing an embedding fγ(y), and L the cost of computing kω(x, x′) and lγ(y, y′) given the
embeddings. Each training iteration costs O

(
KEX +KEY +K2L

)
, where K is the minibatch

size. Typically for practical values ofK, EX +EY ≫ KL, so the cost is “almost” linear in practice.8

7Using ϵ > 0 provides a “backup” to the deep kernel, perhaps giving some signal early in optimization when
the deep kernel features are not yet useful, and guaranteeing that the overall kernel is characteristic.

8Equation (8) could use block estimators (Zaremba et al., 2014) or incomplete U -statistics (Blom, 1976) to
reduce O(K2L) to O(KβL) for any β ≤ 2, at the cost of increased variance (see Ramdas et al., 2015).
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Algorithm 1 HSIC-based independence testing with learned representations
Input: SZ = (SX , SY ), various hyperparameters used below;
ω ← ω0; γ ← γ0; λ← 10−8; Split the data into Str

Z ∪ Ste
Z ; (Str

X , Str
Y )← Str

Z ; (Ste
X , Ste

Y )← Ste
Z ;

# Phase 1: train the kernel parameters ω and γ on Str
Z

for T = 1, 2, . . . , Tmax do
Z = (X,Y )← minibatch from Str

Z = (Str
X , Str

Y );
Ĵλ(ω, γ)← ĤSICu(X,Y ; kω, lγ) / σ̂

λ
H1

(X,Y ; kω, lγ); # as in Equation (8)
ω ← ω + η∇ωĴλ(ω, γ); γ ← γ + η∇γ Ĵλ(ω, γ); # maximize Ĵλ(ω, γ)

# Phase 2: permutation test with kω and lγ on Ste
Z

perm0 ← ĤSICu(S
te
X , Ste

Y ; kω, lγ) # our main estimate
for i = 1, 2, . . . , nperm do

permi ← ĤSICu(shuffle(Ste
X ), Ste

Y ; kω, lγ) # no need to shuffle both sets
Output: kω , lγ , perm0, p-value 1

nperm

∑nperm

i=0 1(permi ≥ perm0)

MMD-based independence test. Alternatively to independence tests based on HSIC, we can
reformulate the independence problem into a two-sample one, by asking if paired samplesZ = (X,Y )

and Z̃ = (X̃, Ỹ ) drawn from Pxy and Px×Py come from the same distribution. To simulate from the
null distribution Px × Py, we can shuffle the samples Y = (y1, ..., ym) by some permutation group
σ : [m] → [m] so that Ỹ = (yσ(1), ..., yσ(m)), thereby breaking dependence. With this framing, we
can instead maximize the SNR for the corresponding MMD-based two-sample problem, as done by
Liu et al. (2020). Although HSIC is theoretically identical to MMD for specific choice of kernels
(Proposition 2), we find that the statistical properties of these estimators are different, particularly
with respect to how estimation under the null distribution Px × Py is performed.

In particular, we notice that MMD estimators based on a single shuffling of the samples exhibit
large variance compared to HSIC, which we detail in Appendix C.4. Moreover, as we consider more
shufflings of the data, the biased MMD estimator converges to the biased HSIC estimator. This
suggests that HSIC estimators handle paired samples more efficiently than its MMD counterpart.
Intuitively, this is because HSIC natively considers all possible sample pairings (xi, yj) of the data
when estimating with respect to Px × Py, whereas MMD with a single shuffling is only able to
consider m such pairs. We explore this phenomenon in more detail in Appendix C.3.

Theoretical analysis. Does optimizing the estimator Ĵλ of (8) in fact approximately optimize the
asymptotic test power J in (7)? Theorem 4 shows that, if the training set size is reasonably large and
we can optimize the estimates successfully, we can learn a kernel that generalizes nearly optimally
and is hence powerful for large m, not just overfitting to the training set (and finding a bad test).

Theorem 4. Under Assumptions (A) to (C), let Θ ⊆ Ω× Γ be a set of kernel parameters θ ∈ Θ for
which σ2

θ ≥ s2, and n be the training set size; take λ = Θ
(
n−1/3

)
. Then

sup
θ:=(ω,γ)∈Θ

∣∣∣Ĵλ(X,Y ; kω, lγ)− J(X,Y ; kω, lγ)
∣∣∣ = Õp

(
1

s2n1/3

[
1

s
+ Lk + Ll +

√
DΩ +

√
DΓ

])
.

If there are unique best kernels (kω∗ , lγ∗) maximizing J(X,Y ; kω, lγ), then the maximizer of
Ĵλ(X,Y ; kω, lγ) converges in probability to (kω∗ , lγ∗) as n→ ∞.

Appendix B states and proves a nonasymptotic version of this result; the assumptions and proof
techniques are based on those of Liu et al. (2020).

6 EXPERIMENTS

Baselines. We compare our HSIC-based (HSIC-D/Dx/O) and MI-based (InfoNCE/NWJ) tests with
various baselines. All tests are performed via permutation testing.

• HSIC-D: HSIC using deep kernels on each space X and Y; simultaneously trained via Section 5.
• HSIC-Dx: HSIC using a tied deep kernel, i.e. kω = lγ , and trained via Section 5.
• HSIC-O: HSIC using Gaussian kernels, with each bandwidth parameter optimized via Section 5.
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(a) HDGM-10
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(d) RatInABox

Figure 2: Empirical power vs sample size m for different datasets, when trained with a large training
set. The average test power is computed over 5 training runs, where the empirical power is determined
over 100 permutation tests. The shaded region covers one standard error from the mean.

• HSIC-M: HSIC using Gaussian kernels, with bandwidth selected via the median heuristic.
• HSIC-Agg (Schrab et al., 2023): aggregating Gaussian kernels, with their default settings.
• MMD-D: The method of Liu et al. (2020) applied to Pxy vs Px × Py ,9 with a kernel on X × Y .
• C2ST-S (Lopez-Paz & Oquab, 2017) / C2ST-L (Cheng & Cloninger, 2022): Sign/logit-based

classifier two-sample test for Pxy vs Px × Py .

• InfoNCE (van den Oord et al., 2018; Poole et al., 2019): the statistic ÎNCE as in (1).

• NWJ (Nguyen et al., 2010; Poole et al., 2019): another mutual information bound statistic ÎNWJ.

Datasets. We consider three informative synthetic datasets, where the true answers are known.

• High-dimensional Gaussian mixture. The distribution HDGM-d has d total dimensions (divided
between X and Y ), but has dependence only between two of them:

[X1, Y⌊d/2⌋, . . . , X⌈d/2⌉, Y1] ∼
2∑

i=1

1

2
N

0d,

 1 0.5(−1)i 0T
d−2

0.5(−1)i 1 0T
d−2

0d−2 0d−2 Id−2

 ,

where the odd dimensions are taken to be from Px and even dimensions to be from Py . Moreover, for
d ≥ 4 the dependent variables X1 and Y⌊d/2⌋ are at different dimensions. We perform independence
tests at dimensions 4, 8, 10, 20, 30, 40, and 50.

• Sinusoid (Sejdinovic et al., 2012). We sample from sinusoidally dependent data with distribution
Pxy ∝ 1 + sin(ℓx) sin(ℓy) on support X × Y = [−π, π]2. Higher frequencies ℓ produce subtler
departures from the uniform distribution, resulting in a harder independence problem; we use ℓ = 4.
A visualization of this density is given in Figure 10.

• RatInABox (George et al., 2024). RatInABox simulates hippocampal cells of a rat in motion. In
particular, we test for dependence between firing rates of grid cells and the rat’s head direction. Grid
cells respond near points in a grid covering the environment surface, and should be subtly connected
to head direction because of the geometry of the “box” (Figure 9). We consider 8 grid cells, and
simulate motion for 100 000 seconds, taking a measurement every 5 seconds as our dataset.

Power versus test size. We first compare how well methods identify dependency with a large
available training set, by comparing the rate at which the learned tests achieve perfect power (1.0) as
the test set size m increases. Results on the HDGM problems are given in Figures 1 and 5. We use a
training size of 10,000 for HDGM ≤ 30, 100,000 for HDGM > 30, and 2000 validation samples for
all dimensions. For the Sinusoid problem, we train all optimization-based tests on 5,000 samples
and use 1,000 for validation; the results are shown in Figure 2 (c). RatInABox results are shown in
Figure 2 (d); we use a training size of 4,000 samples with no validation.

Overall, HSIC-D outperforms baselines, and is able to reach perfect power at smaller test sizes m.
We note that HSIC-O perform reasonably well for simpler problems like Sinusoid, but struggle to
on harder problems like RatInABox. This suggests that no Gaussian kernel on the input data is
well-suited for the task. On the other hand, such kernels applied to optimal representations of the
data (HSIC-D) are the most powerful.

9Specifically, we compare the given samples to a single shuffling of the given samples.
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(d) m = 1000

Figure 3: Empirical power vs dimension across various test sample sizes m = {100, 200, 500, 1000}
for HDGM. The shaded region covers one standard error over 5 training runs.
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Figure 4: Empirical power vs dataset size. HDGM and Sinusoid uses a consistent 7:2:1 train-val-test
split across all dataset sizes, while RatInABox maintains a 3:2 train-test split. HISC-Agg and HSIC-M
do not split the data. The shaded region covers one standard deviation over 5 training runs.

We also note that MMD-D underperforms HSIC-D in almost all settings, despite their equivalence
under certain kernel functions. We attribute this to the increased variance of the MMD estimator
when using only a single shuffling of the data, detailed in Appendix C.3.

Power versus dimension. We demonstrate the effectiveness of our method at various dimensions
d/2 by examining the empirical test power at HDGM-d for d ∈ {4, 8, 10, 20, 30, 40, 50} with fixed
test sizes m. We use the same training splits as before. Results are shown in Figure 3. Overall,
HSIC-D exhibits the highest test power across all dimensions. When a small number of test samples
are used (i.e., m = 100) the performance of HSIC-D slightly degrades with increasing dimension,
while at larger test sample sizes it consistently has near-perfect power.

Power versus dataset size. A drawback to kernel selection via optimization is that we must hold out
a split of the data for training. In contrast, HSIC-M and HSIC-Agg are able to utilize the entirety of
the dataset for their test. To examine this trade-off, we consider consistent data splitting at datasets
of varying sizes. For the HDGM and Sinusoid problems we use a 7:2:1 train-val-test split, and for
RatInABox we use a 3:2 train-test split. Conversely, HSIC-M and HSIC-Agg use the entire dataset for
testing. Results are shown in Figure 4. Heuristic methods are able to take advantage of the additional
test samples and outperform some data-splitting methods at smaller dataset sizes; for large dataset
sizes the reverse is true.

Optimizing J versus optimizing HSIC. Rather than optimizing objective J , we can maximize the
test statistic HSIC; however, doing so makes no guarantees on the test power. Figure 8 compares
these objectives and demonstrates that optimizing J is preferred over optimizing the HSIC.

7 CONCLUSION AND FUTURE WORK

Independence testing aims to see if two paired random variables are statistically independent. We
explored two families of tests to address this problem. The first are tests based on variational mutual
information estimators, which, to the best of our knowledge, we are the first to construct. The second
are tests based on maximizing the asymptotic power, which was explored for the two-sample problem
but not for independence testing. Our findings show that learning representations of the data via our
proposed methods lead to powerful tests, with HSIC-based tests generally outperforming MI-based
ones. Future work may look to extend this learning scheme to conditional independence testing and
apply this to causal discovery. Meanwhile, we may also look into approaches for mitigating, or even
removing, the data-splitting procedure as done by Biggs et al. (2023) and Kübler et al. (2020).
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A ASYMPTOTICS OF HSIC ESTIMATORS

Proposition 5 (Song et al., 2012, Theorem 5). Under the alternative hypothesis H1 : Pxy ̸= Px×Py ,
the unbiased estimator of HSIC is asymptotically normal: with m samples,

√
m(ĤSICu −HSIC)

d→ N (0, σ2
H1

). (9)

The asymptotic variance of
√
m ĤSICu, σ2

H1
, can be consistently estimated from n samples10 as

16
(
R−HSIC2

)
, whereR = 1

n

∑n
i=1

(
(n−4)!
(n−1)!

∑
(j,q,r)∈in3 / {i} h(i, j, q, r)

)2
. Here iℓn\{i} denotes

the set of all ℓ-tuples drawn without replacement from the set {1, . . . , n} \ {i}, and h(i, j, q, r) =
1
24

∑(i,j,q,r)
(s,t,u,v) kst(lst+ luv −2lsu) , where the sum ranges over all 4! = 24 ways to assign the distinct

indices {i, j, q, r} to the four variables (s, t, u, v) without replacement.

The behavior of the estimator is different under the null hypothesis (X ⊥⊥ Y ); in this regimem ĤSICu

(rather than
√
mĤSICu) converges in distribution to something with complex dependence on Px, Py ,

k, and l.

Proposition 6 (Gretton et al., 2007, Theorem 2). Under the null hypothesis H0 : Pxy = Px × Py,
the U-statistic estimator of HSIC is degenerate. In this case mĤSICu converges in distribution to

mĤSICu
d→

∞∑
ℓ=1

λℓ(z
2
ℓ − 1),

where zℓ
iid∼ N (0, 1), and λℓ are the solutions to the eigenvalue problem

λℓψℓ(zj) =

∫
hijqrψℓ(zi) dFi,q,r,

where hijqr := h(i, j, q, r) is defined in Proposition 5, and Fi,q,r denotes the probability measure
with respect to variables zi, zq , and zr.

B UNIFORM CONVERGENCE ANALYSIS

B.1 PRELIMINARIES

We start by defining the notation used in the proofs. Let kernels kω and lγ be parameterized by some
ω and γ, and samples (Xi, Yi) ∼ Pxy drawn i.i.d. from the joint distribution. We denote the n× n

gram matrices of kω and lγ by K(ω) and L(γ) respectively. We will often omit the kernel parameters
ω and γ when it is clear from the context.

Let η be the HSIC test statistic and η̂ to be its U-statistic estimator given by

η̂ =
1

(n)4

∑
(i,j,q,r)∈in4

Hijqr,

where (n)k = n!/(n− k)! is the Pochhammer symbol and in4 is all possible 4-tuples drawn without
replacement from 1 to n. H is the kernel gram matrix of the U-statistic defined by

Hijqr =
1

4!

(i,j,q,r)∑
(a,b,c,d)

Kab (Lab + Lcd − 2Lac) ,

where sum represents all 4! combinations of tuples (a, b, c, d) that can be selected without replacement
from (i, j, q, r).

10Typically m = n, but we might want to use a few (n) samples to roughly estimate the power of an m-sample
test with m≫ n, as done in a different context by Sutherland & Deka (2019); Deka & Sutherland (2023).
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B.2 MAIN RESULTS

Our main uniform convergence results require the following assumptions.

(A) The set of kernel parameters Ω lies in a Banach space of dimension DΩ, and the set of kernel
parameters Γ lies in a Banach space of dimension DΓ. Furthermore, each parameter space
is bounded by RΩ and RΓ respectively, i.e.,

Ω ⊆ {ω | ∥ω∥ ≤ RΩ},
Γ ⊆ {γ | ∥γ∥ ≤ RΓ}.

(B) The kernels kω and lv are uniformly bounded:

sup
ω∈Ω

sup
x∈X

kω(x, x) ≤ νk,

sup
γ∈Γ

sup
x∈Y

lγ(y, y) ≤ νl.

For the kernels we use in practice, νk = νl = 1.
(C) Both kernels k and l are Lipschitz with respect to the parameter space: for all x, x′ ∈ X and

ω, ω′ ∈ Ω
|kω(x, x′)− kω′(x, x′)| ≤ Lk∥ω − ω′∥,

and for all y, y′ ∈ Y and γ, γ′ ∈ Γ

|lγ(y, y′)− lγ′(y, y′)| ≤ Ll∥γ − γ′∥.

Theorem 7. Under Assumptions (A) to (C), let Θ ⊆ Ω× Γ be the set of kernel parameters θ ∈ Θ for
which σ2

θ ≥ s2, and take λ = n−1/3. Assume νk, νl ≥ 1. Then, with probability at least 1− δ,

sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − ηθ
σθ

∣∣∣∣ ≤ 2νkνl
s2n1/3

[
1

s
+

9216ν2kν
2
l√

n

+

(
12288ν2kν

2
l +

8s

n1/6

)(
Lk

νk
+
Ll

νl
+

√
2 log

4

δ
+ 2DΩ log(4RΩ

√
n) + 2DΓ log(4RΓ

√
n)

)]
,

and thus, treating νk, νl as constants,

sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − ηθ
σθ

∣∣∣∣ = ÕP

(
1

s2n1/3

[
1

s
+ Lk + Ll +

√
DΩ +

√
DΓ

])
.

Proof. Let σ̂2
θ,λ := σ̂2

θ + λ be our regularized variance estimator from which we can assume is
positive. We start by decomposing

sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − ηθ
σθ

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − η̂θ
σθ,λ

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ η̂θσθ,λ − η̂θ
σθ

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ η̂θσθ − ηθ
σθ

∣∣∣∣
= sup

θ

|η̂θ|
σ̂θ,λ · σθ,λ

|σ̂2
θ,λ − σ2

θ,λ|
σ̂θ,λ + σθ,λ

+ sup
θ

|η̂θ|
σθ,λ · σθ

|σ2
θ,λ − σ2

θ |
σθ,λ + σθ

+ sup
θ

1

σθ
|η̂θ − ηθ|

≤ 4νkνl

s
√
λ(s+

√
λ)

sup
θ

|σ̂2
θ − σ2

θ |+
4νkνlλ

s
√
s2 + λ(s+

√
s2 + λ)

+
1

s
sup
θ

|η̂θ − ηθ|

≤ 4νkνl

s2
√
λ
sup
θ

|σ̂2
θ − σ2

θ |+
1

s
sup
θ

|η̂θ − ηθ|+
2νkνlλ

s3
.

Proposition 8 and Proposition 9 show the uniform convergence of η̂θ and σ̂θ, from which we get that
with probability at least 1− δ, the error is at most

sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − ηθ
σθ

∣∣∣∣ ≤ 2νkνlλ

s3
+

18432ν3kν
3
l

s2n
√
λ

+

[
8192ν3kν

3
l

s2
√
λn

+
8νkνl
s
√
n

](
Lk

νk
+
Ll

νl

)
+

[
24576ν3kν

3
l

s2
√
λn

+
16νkνl
s
√
n

]√
2 log

4

δ
+ 2DΩ log(4RΩ

√
n) + 2DΓ log(4RΓ

√
n).
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Taking λ = n−1/3 gives

sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − ηθ
σθ

∣∣∣∣ ≤ 2νkνl
s3n1/3

+
18432ν3kν

3
l

s2n5/6
+

[
8192ν3kν

3
l

s2n1/3
+

8νkνl
s
√
n

](
Lk

νk
+
Ll

νl

)
+

[
24576ν3kν

3
l

s2n1/3
+

16νkνl
s
√
n

]√
2 log

4

δ
+ 2DΩ log(4RΩ

√
n) + 2DΓ log(4RΓ

√
n).

Using νk, νl ≥ 1 we can slightly simplify our bound to

sup
θ∈Θ

∣∣∣∣ η̂θσ̂θ,λ − ηθ
σθ

∣∣∣∣ ≤ [24576ν3kν3ls2n1/3
+

16νkνl
s
√
n

](
Lk

νk
+
Ll

νl
+

√
2 log

4

δ
+ 2DΩ log(4RΩ

√
n) + 2DΓ log(4RΓ

√
n)

)

+
2νkνl
s3n1/3

+
18432ν3kν

3
l

s2n5/6

B.3 UNIFORM CONVERGENCE RESULTS

This subsection pertains to uniform convergence results of η̂θ and σ̂θ, and are are used in the proof of
Theorem 7.

Proposition 8. Under assumptions (A) to (C), we have that with probability at least 1− δ,

sup
θ∈Θ

|η̂θ − ηθ| ≤
8νkνl√
n

(
Lk

νk
+
Ll

νl
+ 2

√
2 log

2

δ
+ 2DΩ log(4RΩ

√
n) + 2DΓ log(4RΓ

√
n)

)
.

Proof. We use ϵ-net arguments on both spaces Ω and Γ. Let {ωi}TΩ
i=1 be arbitrarily placed centers

with radius ρΩ such that any point ω ∈ Ω satisfies min ∥ω − ωi∥ ≤ ρΩ. Similarly, let {γi}TΓ
i=1 be

centers with radius ρΓ satisfying min ∥γ − γi∥ ≤ ρΓ for any γ ∈ Γ. Assumption (B) ensures this
is possible with at most TΩ = (4RΩ/ρΩ)

DΩ and TΓ = (4RΓ/ρΓ)
DΓ points respectively (Cucker &

Smale, 2002, Proposition 5).

We can decompose the convergence bound into simpler components and tackle each component
individually

sup
θ∈Θ

|η̂θ − ηθ| ≤ sup
θ

|η̂θ − η̂θ′ |+ max
ω′∈{ω1,...,ωTΩ

}
γ′∈{γ1,...,γTΓ

}

|η̂θ′ − ηθ′ |+ sup
θ

|ηθ′ − ηθ|.

First, let us analyze |ηθ − ηθ′ | for any θ, θ′ ∈ Θ. Recall that η = E[H1234] where H1234 =
1
4!

∑(1,2,3,4)
(a,b,c,d) Kab(Lab + Lcd − 2Lac). We have that

|H(θ)
1234 −H

(θ′)
1234| ≤

1

4!

(1234)∑
(abcd)

∣∣∣K(ω)
ab (L

(γ)
ab + L

(γ)
cd − 2L(γ)

ac )−K
(ω′)
ab (L

(γ′)
ab + L

(γ′)
cd − 2L(γ′)

ac )
∣∣∣

≤ 1

4!

(1234)∑
(abcd)

(∣∣∣K(ω)
ab L

(γ)
ab −K

(ω′)
ab L

(γ′)
ab

∣∣∣+ ∣∣∣K(ω)
ab L

(γ)
cd −K

(ω′)
ab L

(γ′)
cd

∣∣∣+ 2
∣∣∣K(ω′)

ab L(γ′)
ac −K

(ω)
ab L

(γ)
ac

∣∣∣) .
From Assumption (A) we know that |Kab| ≤ νk and |Lab| ≤ νl, and via Assumption (C) we notice
that ∣∣∣K(ω)

ab L
(γ)
ab −K

(ω′)
ab L

(γ′)
ab

∣∣∣ = ∣∣∣K(ω)
ab L

(γ)
ab −K

(ω)
ab L

(γ′)
ab +K

(ω)
ab L

(γ′)
ab −K

(ω′)
ab L

(γ′)
ab

∣∣∣
≤
∣∣∣K(ω)

ab

∣∣∣ ∣∣∣L(γ)
ab − L

(γ′)
ab

∣∣∣+ ∣∣∣L(γ′)
ab

∣∣∣ ∣∣∣K(ω)
ab −K

(ω′)
ab

∣∣∣
≤ νkLl∥v − v′∥+ νlLk∥ω − ω′∥
≤ νkLlρΓ + νlLkρΩ.
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This expression is true for all three components of |H(θ)
1234 −H

(θ′)
1234| and so it follows that

|ηθ − ηθ′ | =
∣∣∣E[H(θ)

1234]− E[H(θ′)
1234]

∣∣∣ ≤ E
∣∣∣H(θ)

1234 −H
(θ′)
1234

∣∣∣ ≤ 4νkLlρΓ + 4νlLkρΩ,

|η̂θ − η̂θ′ | =

∣∣∣∣∣∣ 1

(n)4

∑
(i,j,q,r)∈in4

H
(θ)
ijqr −H

(θ′)
ijqr

∣∣∣∣∣∣ ≤ 1

(n)4

∑
(i,j,q,r)∈in4

∣∣∣H(θ)
1234 −H

(θ′)
1234

∣∣∣ ≤ 4νkLlρΓ + 4νlLkρΩ.

Now, we study the random error function ∆ := η̂ − η. Note that E∆ = 0 since η̂ is unbiased, and
|Hijqr| ≤ 4νkνl via Assumption (A). This η̂, and hence ∆, satisfies bounded differences. Let F
denote the kernel tensor H but with sample (Xℓ, Yℓ) replaced by (X ′

ℓ, Y
′
ℓ ) so that F agrees with H

except at indicies ℓ, and let η̂′ = 1
(n)4

∑
(i,j,q,r)∈in4

Fijqr be it’s HSIC estimator.

For convenience, we denote (i, j, q, r) ∈ in4 simply as (i, j, q, r), and (i, j, q)\k to be the set of
3-tuples drawn without replacement from in3 that exclude the number k. We can compute the maximal
bounded difference |∆−∆′| = |η̂ − η̂′| as

|η̂ − η̂′| =

∣∣∣∣∣∣ 1

(n)4

∑
(i,j,q,r)

Hijqr − Fijqr

∣∣∣∣∣∣ ≤ 1

(n)4

∑
(i,j,q,r)

|Hijqr − Fijqr| (10)

=
1

(n)4

 ∑
(j,q,r)\ℓ

|Hℓjqr − Fℓjqr|︸ ︷︷ ︸
≤8νkνl

+
∑

(i,q,r)\ℓ

|Hiℓqr − Fiℓqr|+
∑

(i,j,r)\ℓ

|Hijℓr − Fijℓr|+
∑

(i,j,q)\ℓ

|Hijqℓ − Fijqℓ|


=

1

(n)4

(
(n− 1)3 · 8νkνl · 4

)
=

32νkνl
n

.

Then, applying McDiarmid’s inequality on ∆ := η̂ − η followed by a union bound over the TΩTΓ
center pairs gives us, with probability at least 1− δ, that

max
ω′∈{ω1,...,ωTΩ

}
γ′∈{γ1,...,γTΓ

}

|η̂θ′ − ηθ′ | ≤ 32νkνl

√
1

2n
log

2TΩTΓ
δ

=
16νkνl√

n

√
2 log

2

δ
+ 2 log TΩ + 2 log TΓ

=
16νkνl√

n

√
2 log

2

δ
+ 2DΩ log

4RΩ

ρΩ
+ 2DΓ log

4RΓ

ρΓ
.

Finally, we combine these results to get our uniform convergence bound:

sup
θ∈Θ

|η̂θ − ηθ| ≤ 8νkLlρΓ + 8νlLkρΩ +
16νkνl√

n

√
2 log

2

δ
+ 2DΩ log

4RΩ

ρΩ
+ 2DΓ log

4RΓ

ρΓ

= 8νkνl

(
Lk

νk
ρΩ +

Ll

νl
ρΓ +

2√
n

√
2 log

2

δ
+ 2DΩ log

4RΩ

ρΩ
+ 2DΓ log

4RΓ

ρΓ

)
.

Setting ρΩ = ρΓ = 1/
√
n yields the desired result.

Proposition 9. Under assumptions (A) to (C), we have that with probability at least 1− δ,

sup
θ∈Θ

|σ̂2
θ−σ2

θ | ≤
2048ν2kν

2
l√

n

(
Lk

νk
+
Ll

νl
+ 3

√
2 log

2

δ
+ 2DΩ log(4RΩ

√
n) + 2DΓ log(4RΓ

√
n) +

9

4
√
n

)
.

Proof. We use an ϵ-net argument on both spaces Ω and Γ. Using the same construction as in
Proposition 8, we once again decompose our convergence bound:

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ sup
θ

|σ̂2
θ − σ̂2

θ′ |+ max
ω′∈{ω1,...,ωTΩ

}
γ′∈{γ1,...,γTΓ

}

|σ̂2
θ′ − σ2

θ′ |+ sup
θ

|σ2
θ′ − σ2

θ |.
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First, let us analyze |σ2
θ − σ2

θ′ | for any θ, θ′ ∈ Θ. Recall that σ2 = 16
(
E[H1234H1567]− η2

)
. It

follows that

|σ2
θ − σ2

θ′ | = 16
∣∣∣E[H(θ)

1234H
(θ)
1567 −H

(θ′)
1234H

(θ′)
1567]− E[H(θ)

1234H
(θ)
5678] + E[H(θ′)

1234H
(θ′)
5678]]

∣∣∣
≤ 16E

∣∣∣H(θ)
1234H

(θ)
1567 −H

(θ′)
1234H

(θ′)
1567

∣∣∣+ 16E
∣∣∣H(θ)

1234H
(θ)
5678 −H

(θ′)
1234H

(θ′)
5678

∣∣∣ .
Under Assumptions (A) and (C) we know that |H1234| ≤ 4νkνl and |H(θ)

1234 −H
(θ′)
1234| ≤ 4νkLlρΓ +

4νlLkρΩ. As such, we have

|H(θ)
1234H

(θ)
1567 −H

(θ′)
1234H

(θ′)
1567| ≤ |H(θ)

1234H
(θ)
1567 −H

(θ)
1234H

(θ′)
1567|+ |H(θ)

1234H
(θ′)
1567 −H

(θ′)
1234H

(θ′)
1567|

= |H(θ)
1234||H

(θ)
1567 −H

(θ′)
1567|+ |H(θ′)

1567||H
(θ)
1234 −H

(θ′)
1234|

≤ 32νkνl(νkLlρΓ + νlLkρΩ)

This expression is true for both components of |σ2
θ − σ2

θ′ | and so it follows that

|σ2
θ − σ2

θ′ | ≤ 1024νkνl(νkLlρΓ + νlLkρΩ). (11)
Similarly, replacing the expectations E[H1234H1567] and E[H1234H5678] with the respective estima-
tors

1
(n)4(n−1)3

∑
(ijqr),(bcd)\iHijqrHibcd and 1

(n)24

∑
(ijqr),(abcd)HijqrHabcd give us the same bound

|σ̂2
θ − σ̂2

θ′ | ≤ 1024νkνl(νkLlρΓ + νlLkρΩ). (12)
Next, using Lemma 10 and Lemma 11 followed by a union bound over the TΩTΓ center combinations
gives us, with probability at least 1− δ,

max
ω′∈{ω1,...,ωTΩ

}
γ′∈{γ1,...,γTΓ

}

|σ̂2
θ′ − σ2

θ′ | ≤ 6144ν2kν
2
l

√
2

n
log

2TΩTΓ
δ

+
4608ν2kν

2
l

n
(13)

≤ 2048ν2kν
2
l√

n

(
3

√
2 log

2

δ
+ 2DΩ log

4RΩ

ρΩ
+ 2DΓ log

4RΓ

ρΓ
+

9

4
√
n

)
.

Finally, we combine Equations (11) to (13) to get

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤
2048ν2kν

2
l√

n

(
3

√
2 log

2

δ
+ 2DΩ log

4RΩ

ρΩ
+ 2DΓ log

4RΓ

ρΓ
+

9

4
√
n
+
√
n

(
Lk

νk
ρΩ +

Ll

νl
ρΓ

))
.

Setting ρΩ = ρΓ = 1/
√
n gives us our desired uniform convergence bound.

Lemma 10. For any kernels k and l satisfying Assumption (A), with probability at least 1− δ we
have

|σ̂2 − E σ̂2| ≤ 6144ν2kν
2
l

√
2

n
log

2

δ
.

Proof. We apply McDiarmid’s inequality to σ̂2. First, we show that the variance estimator satisfies
bounded differences. For convenience, we denote (i, j, q, r) ∈ in4 simply as (i, j, q, r), and (i, j, q)\k
to be the set of 3-tuples drawn without replacement from in3 that exclude the number k. Recall that

σ̂2 = 16

 1

(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

HijqrHibcd − η̂2

 .

Let F denote the kernel tensor H but with sample (Xℓ, Yℓ) replaced by (X ′
ℓ, Y

′
ℓ ) so that F agrees

with H except at indices ℓ, and let η̂′ and σ̂′2 denote the HSIC and its variance estimators according
to this updated sample set. The deviation is then

|σ̂2 − σ̂′2| ≤ 16

(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

|HijqrHibcd − FijqrFibcd|+ 16|η̂2 − η̂′2|.
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We bound the first term by noticing that ∆ := HijqrHibcd − FijqrFibcd is zero when none of the
indices {i, j, q, r, b, c, d} is ℓ. Let S := {(i, j, q, r, b, c, d) : (i, j, q, r) ∈ in4 , (b, c, d) ∈ in3\{i}, ℓ ∈
{i, j, q, r, b, c, d}} be the set of indices where ∆ may be non-zero. By Assumption (A) we know that
|∆| ≤ 32ν2kν

2
l . Thus, we can bound the first term by

16

(n)4(n− 1)3

∑
S

|∆| = 512ν2kν
2
l

(n)4(n− 1)3
|S|

=
512ν2kν

2
l

(n)4(n− 1)3

4(n− 1)23︸ ︷︷ ︸
ℓ∈{i,j,q,r}

+3(n− 1)(n− 2)2(n− 1)3︸ ︷︷ ︸
ℓ∈{b,c,d}

− 9(n− 1)3(n− 2)2︸ ︷︷ ︸
ℓ∈{j,q,r} and ℓ∈{b,c,d}


= 512ν2kν

2
l

(
16

n
− 9

n− 1

)
≤ 8192ν2kν

2
l

n
(∀n > 1).

We can bound the second term using |η̂| ≤ 4νkνl (Assumption (A)) and the bounded difference result
(10) from Proposition 8:

16|η̂2 − η̂′2| = 16|η̂ + η̂′||η̂ − η̂′| ≤ 16 · 8νkνl ·
32νkνl
n

=
4096ν2kν

2
l

n
.

Combining these two terms, the maximal bounded difference for σ̂2 is

|σ̂2 − σ̂′2| ≤ 12288ν2kν
2
l

n
.

Finally, applying McDiarmid’s inequality gives us, with probability at least 1− δ,

|σ̂2 − E σ̂2| ≤ 6144ν2kν
2
l

√
2

n
log

2

δ
.

Lemma 11. For any kernels k and l satisfying Assumption (A), the bias is bounded by

|E σ̂2 − σ2| ≤ 4608ν2kν
2
l

n
.

Proof. The expectation of the variance estimator is

E σ̂2 = 16

 1

(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

E[HijqrHibcd]−
1

(n)24

∑
(i,j,q,r)
(a,b,c,d)

E[HijqrHabcd]

 .

First, we can break down the left-hand sum into only terms of E[H1234H1567] by considering the cases
where {i, j, q, r, b, c, d} are unique. Let S = {(i, j, q, r, b, c, d) : (i, j, q, r) ∈ in4 , (b, c, d) ∈ in3\{i}}
be the set of all possible indices of our left-hand sum. It follows that∑

S

E[HijqrHibcd] =
∑

(i,j,q,r,b,c,d)∈in7

E[HijqrHibcd] +
∑
S\in7

E[HijqrHibcd].

If all indices are unique, then the expectation E[HijqrHibcd] is equivalent to E[H1234H1567]; other-
wise, we can bound the expectation by 16ν2kν

2
l via Assumption (A). Thus, the bound on the left-hand

sum is ∑
(i,j,q,r)
(b,c,d)\i

E[HijqrHibcd] ≤ (n)7 E[H1234H1567] +
(
(n)4(n− 1)3 − (n)7

)
16ν2kν

2
l .
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Similarly, we can break down the right-hand sum into only terms of E[H1234H5678]. Let R =
{(i, j, q, r, a, b, c, d) : (i, j, q, r) ∈ in4 , (a, b, c, d) ∈ in4} be the possible indices of our right-hand sum.
We have that∑

(i,j,q,r)
(a,b,c,d)

E[HijqrHabcd] =
∑

(i,j,q,r,a,b,c,d)∈in8

E[HijqrHabcd] +
∑
R\in8

E[HijqrHabcd]

≤ (n)8 E[H1234H5678] +
(
(n)24 − (n)8

)
16ν2kν

2
l .

Now, using these two results and Assumption (A), we can compute a bound on the desired bias of σ̂2:

|E σ̂2 − σ2| = 16

∣∣∣∣∣∣∣∣
1

(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

E[HijqrHibcd]− E[H1234H1567]−
1

(n)24

∑
(i,j,q,r)
(a,b,c,d)

E[HijqrHabcd] + E[H1234H5678]

∣∣∣∣∣∣∣∣
≤ 16

∣∣∣∣∣∣∣
(
1− (n)7

(n)4(n− 1)3

)16ν2kν
2
l − E[H1234H1567]︸ ︷︷ ︸

−16ν2
kν

2
l ≤·≤16ν2

kν
2
l

+

(
1− (n)8

(n)24

)E[H1234H5678]︸ ︷︷ ︸
0≤·≤16ν2

kν
2
l

−16ν2kν
2
l


∣∣∣∣∣∣∣ .

≤ 16

(
1− (n)7

(n)4(n− 1)3

)
32ν2kν

2
l < 512ν2kν

2
l · 9

n
(∀n ≥ 4)

=
4608ν2kν

2
l

n
.
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C ADDITIONAL EXPERIMENTS

C.1 HIGH-DIMENSIONAL GAUSSIAN MIXTURE
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(e) HDGM-30

500 1000 1500 2000
test samples

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
ow

er

(f) HDGM-40
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(g) HDGM-50

Figure 5: Empirical power vs test size for the HDGM problem at dimensions d = {2, 4, 5, 10, 15, 20}.
The average test power is computed over 5 training instances and the shaded region covers one
standard error from the mean.

C.2 TYPE-I ERROR

Table 1 shows that the type-I error rates for our optimization-based tests are well-controlled.

Method HDGM-4 HDGM-8 HDGM-10 HDGM-20 HDGM-30 HDGM-40 HDGM-50 Sinusoid RatInABox
HSIC-D 0.043 0.043 0.050 0.050 0.062 0.057 0.052 0.050 0.048
MMD-D 0.048 0.055 0.040 0.053 0.048 0.048 0.055 0.054 0.050
C2ST-L 0.060 0.030 0.053 0.048 0.053 0.058 0.045 0.046 0.048
InfoNCE 0.046 0.046 0.046 0.054 0.044 0.050 0.048 0.048 0.045

NWJ 0.050 0.054 0.058 0.052 0.044 0.064 0.054 0.052 0.042

Table 1: Average type-I error rates under the null distribution over 400 tests. We use m = 512
samples.

C.3 MMD VS. HSIC: SAMPLE PAIRINGS

One possible explanation why HSIC outperforms MMD in independence testing is that it utilizes
paired samples more efficiently. Consider the mean of the product kernel under the null hypothesis,
E[k(X, X̃)l(Y, Ỹ )], which exists as a component of HSIC. The U-statistic estimator of this term is

1

(m)4

∑
(i,j,q,r)∈im4

k(Xi, Xj)l(Yq, Yr). (14)

For MMD framed as an independence problem, we first permute the samples (Yi)i=1..m by
some permutation group σ to simulate the null hypothesis, and then perform an MMD test be-
tween (Xi, Yi)i=1..m and (Xi, Yσ(i))i=1..m. Under this approach, the mean product kernel term
E[k(X, X̃)l(Y, Ỹ )] is estimated by

1

(m)2

∑
(i,j)∈im2

k(Xi, Xj)l(Yσ(i), Yσ(j)).
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This estimator is biased and seems to suffer from high variance, which we detail in the following
Appendix C.4. Additionally, we expect that as we consider more permutation groups, i.e., more
samples from the null distribution, the biased MMD estimator should more closely approximate
the biased HSIC estimator. To see this, consider the collection of permutation groups {σq}q=1..m

satisfying σm(i) = i and σj(i) = σj+1(i+1) so that each successive permutation group is a shifting
of its elements to the right by one position. Then, the samples (Xi, Yσq(i))i∈[m],q∈[m] consist of
all possible m2 pairings of (Xi, Yj)i∈[m]j∈[m]. For an MMD test between (Xi, Yi)i=1..m and all
pairings (Xi, Yσq(i))i∈[m],q∈[m], a biased estimator for the mean product kernel term under H0 is

1

m4

∑
i,j,q,r

k(Xi, Xj)l(Yσq(i), Yσr(j))

which is equivalent to the V-statistic estimator used in HSIC. We test this equivalence by plotting the
empirical power of MMD-based independence tests using varying numbers of permutation groups
{σq}q=1..G from G = 1 to G = m in Figure 6. We see that as we consider more permutation groups,
which corresponds to using more pairs (Xi, Yj) from the null distribution, the MMD test power
seems to converge to the HSIC test power.
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Figure 6: We perform an MMD-based independence test (blue) onm = 50 samples from the Sinusoid
problem with frequency ℓ = 1. We use Gaussian kernels with bandwidth 2 for both k and l. We vary
the number of pairings (Xi, Yj) used for simulating the null hypothesis from m to m(m− 1). The
green line corresponds to an HSIC-based independence test under identical settings. The shaded
region indicates one standard deviation from the mean over 5 tests.

C.4 MMD VS. HSIC: ASYMPTOTIC VARIANCE

We show estimates of the asymptotic variance of HSIC and MMD along a training trajectory in
Figure 7. For MMD we consider both a single shuffling of the data (MMD-full), as well as a split
shuffling (MMD-split) where we use half the data for our joint distribution sample, and the other half
to permute for our product-of-marginals sample.

We note that the initial variance of MMD-split is substantially higher than that of MMD-full, which is
much higher than the variance of HSIC. We hypothesize this makes the MMD-based objective harder
to optimize, and gives a possible explanation for why MMD-split performs worse than MMD-full.
MMD-split/full also exhibit greater final variances, particularly at larger batch sizes.

C.5 OPTIMIZING J VS. HSIC

We examine the trade-off between optimizing the approximate test power J versus just the test
statistic HSIC. The results on power versus test size are show in Figure 8. Optimizing our proposed
objective J significantly outperforms optimizing HSIC for all problems.

C.6 TRAINING TIMES

We compare the training times of all methods in Table 2. Our method is comparable in speed to C2ST
and MMD, and vastly faster than the variational mutual information bound methods InfoNCE and

22
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(b) n = 512
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(c) n = 1024

Figure 7: Estimates of the asymptotic variance of HSIC (blue), MMD with a single permutation
(orange), and MMD with a split permutation (green) along a training trajectory for HDGM-10 at
sample sizes n=128 (a), n=512 (b), and n=1024 (c).
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(c) HDGM-50
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(d) RatInABox

Figure 8: Test power using deep kernels optimized for the approximate asymptotic test power J (red)
versus optimizing just the test statistic HSIC (blue).

NWJ since both those methods require function evaluations for every possible pair of samples at each
training step.

Table 2: Approximate training times for the
HDGM-30 problem over 1,000 epochs on a
GeForce RTX 4060. Times are rounded to the
nearest minute

Training Time
HSIC 41 m
C2ST 34 m
MMD 44 m
InfoNCE 8 h 38 m
NWJ 8 h 42 m

D EXPERIMENT DETAILS

Figure 9: RatInABox simulation envi-
ronment. The red dot is the current po-
sition of the rat and the purple circles
indicate the past trajectory over 5 sec-
onds. The box is designed to have only
a single protruding wall.

Figure 10: Samples drawn from the sinusoidal problem
with frequency ℓ = 1 (left) and ℓ = 4 (right). We
consider the latter frequency in our experiments.
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D.1 TRAINING & TEST DETAILS

We design the featurizers ϕω and ϕκ of our deep kernels kω and lκ to be neural networks with ReLU
activations. We avoid using normalization as it may affect test power. Moreover, we make the
Gaussian bandwidth of both kω and lκ a learnable parameter, as well as the smoothing rate ϵ. To
make comparisons as fair as possible, we use similar neural network architectures for each deep
learning based method. In general, we let the featurizer of HSIC-D and MMD-D be identical up to
a concatenation layer which concatenates X and Y to frame the problem as a two-sample test. We
construct the C2ST-S/L classifier as the MMD-D featurizer plus a linear layer classification head with
scalar output, and we let both C2ST-S/L and InfoNCE use identical architectures for the classifier
and critic. Detailed descriptions of each architecture are demonstrated in the following subsections.

All optimization-based methods (HSIC-D/Dx/O, MMD-D, C2ST-S/L, InfoNCE) are first trained on
an identical split of the data, and then tested on the remaining split. In contrast, HSIC-M selects
the median bandwidth based on the entire dataset, and is evaluated on the test set. We train our
models using the AdamW optimizer with a learning rate of 1e-4 over 1,000 epochs for HDGM
and RatInABox and 10,000 epochs for Sinusoid. We use a batch size of 512. All methods are
implemented in PyTorch and trained on a NVIDIA A100SXM4 GPU.

Once learned, each methods’ empirical power is evaluated on 100 test sets (Ste1
Z , ..., Ste100

Z ). Each
test set contains m test samples Stei

Z = (Ztei
1 , ..., Ztei

N ), which are then used to compute the average
rejection rate under the null via a permutation test. We use 500 permutations for each test and with a
predetermined type-I error rate of 0.05.

D.2 ARCHITECTURES

In all experiments we consider deep kernels with Gaussian feature and smoothing kernels κ and q,
where each bandwidth is a trainable parameter randomly initialized around 1.0. We let the smoothing
weight ϵ also be a learnable parameter initialized to 0.01. No batch normalization is used and all
hidden layers use ReLU activations. Dataset-specific designs are elaborated below.

High-dimensional Gaussian mixture. We use a feed-forward network for our deep kernel featurizer
with latent dimensions 2d, 3d, and 2d. Details of each model is given in Table 3.

Sinusoid. The deep kernel featurizer is taken to be a feed-forward network with widths 1x8x12x8.
C2st, infoNCE, and NWJ use a similar architecture –one with widths 2x8x12x8x1– which includes
an additional scalar output layer.

RatInABox. We use a feed-forward featurizer with details given in Table 4. Unlike the previous two
problems, the sample spaces X and Y are not equivalent, and so the deep featurizers for k and l have
different architectures.

dataset model input featurizer

HDGM-4

HSIC-D X or Y [ 2 → 4 → 6 → 4 ]

MMD-D [X, Y] [ 4 → 8 → 12 → 8 ]

C2ST-S/L [X, Y] [ 4 → 8 → 12 → 8 → 1 ]

HDGM-8

HSIC-D X or Y [ 4 → 8 → 12 → 8 ]

MMD-D [X, Y] [ 8 → 16 → 24 → 16 ]

C2ST-S/L [X, Y] [ 8 → 16 → 24 → 16 → 1 ]

HDGM-10

HSIC-D X or Y [ 5 → 10 → 15 → 10 ]

MMD-D [X, Y] [ 10 → 20 → 30 → 20 ]

C2ST-S/L [X, Y] [ 10 → 20 → 30 → 20 → 1 ]

HDGM-20

HSIC-D X or Y [ 10 → 20 → 30 → 20 ]

MMD-D [X, Y] [ 20 → 40 → 60 → 40 ]

C2ST-S/L [X, Y] [ 20 → 40 → 60 → 40 → 1 ]

dataset model input featurizer

HDGM-30

HSIC-D X or Y [ 15 → 30 → 45 → 30 ]

MMD-D [X, Y] [ 30 → 60 → 90 → 60 ]

C2ST-S/L [X, Y] [ 30 → 60 → 90 → 60 → 1 ]

HDGM-40

HSIC-D X or Y [ 20 → 40 → 60 → 40 ]

MMD-D [X, Y] [ 40 → 80 → 120 → 80 ]

C2ST-S/L [X, Y] [ 40 → 80 → 120 → 80 → 1 ]

HDGM-50

HSIC-D X or Y [ 25 → 50 → 75 → 50 ]

MMD-D [X, Y] [ 50 → 100 → 150 → 100 ]

C2ST-S/L [X, Y] [ 50 → 100 → 150 → 100 → 1 ]

Table 3: Featurizer architectures used in deep kernels for HSIC-D, MMD-D, and classifier architecture
used for C2ST-S/L on the HDGM problem. Brackets denote a sequence of linear layers with
corresponding input and output features.
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method input network

HSIC-D
X [ 8 → 32 → 64 → 32 ]

Y [ 2 → 4 → 8 → 4 ]

MMD-D [X, Y] [ 10 → 32 → 64 → 32 ]

C2ST-S/L [X, Y] [ 10 → 32 → 64 → 32 → 1 ]

Table 4: Featurizer architectures used in deep kernels for HSIC-D, MMD-D, and classifier architecture
used for C2ST-S/L on the RatInABox problem. Brackets denote a sequence of linear layers with
corresponding input and output features.

E REBUTTAL MATERIAL

We’ll integrate this into the rest of the paper in a future revision.

E.1 WINE DATASET

• Wine Quality (Paulo et al., 2009). Details physicochemical properties (e.g., sugar, pH, chlorides)
of different types of red and white wines and their perceived quality as an integer value from 1 to 10.
We test for dependency between residual sugar levels and quality.
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(b) Power vs. Testsize

Figure 11: (a) Empirical power vs dataset size. We train optimization-based methods with a 3:2
train-test split across all dataset sizes. HSIC-Agg/M use the entire dataset for testing. (b) Empirical
power vs test size. All optimization-based models are first trained on 2000 samples with a 3:2
train-test split, then evaluated at test sizes of m = {50, 100, 200, 500}. The shaded region covers one
standard deviation over 3 training runs

E.2 MUT TEST

This section evaluates tests based on maximizing the signal-to-noise ratio (T − T0)/σH1
of the T̂

statistic, as discussed in the beginning of Section 5. We estimate this quantity on a batch ofm samples
with

T̂ − T̂0
σ̂H1

=
1
m

∑m
i=1 f(Xi, Yi)− 1

m2

∑m
i=1

∑m
j=1 f(Xi, Yj)√

1
m

∑m
i=1

(
f(Xi, Yi)− 1

m

∑m
j=1 f(Xj , Yj)

)2
+ λ

for a small positive λ. To choose an arbitrary name, we call these tests MuT for now.

E.2.1 EXPERIMENTAL RESULTS

Results on the HDGM, Sinusoid and RatInABox problems are shown below.
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(a) HDGM-10
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(b) Sinusoid
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(c) RatInABox

Figure 12: Empirical power vs dataset size for (a) HDGM-10, (b) Sinusoid, and (c) RatInABox. The
gray line corresponds to optimizing the MuT SNR. Note that in (a), MuT is hidden behind other
baselines (with trivial 0.05 power).
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Figure 13: Empirical power vs test size for (a) HDGM-4, (b) Sinusoid, and (c) RatInABox. The gray
line corresponds to optimizing the MuT SNR.

E.2.2 WHY DOESN’T IT WORK BETTER?

Strikingly, optimizing the estimated asymptotic power of the test based on the critic doesn’t seem to
do better than choosing the critic based on the mutual information bounds InfoNCE or NWJ. Why is
this? First, let’s compare MuT to InfoNCE on RatInABox more closely in Table 5.

MuT InfoNCE
Run Power@128 Power@2000 SNR Power@128 Power@2000 SNR
1 0.09 ± 0.02 0.39 ± 0.03 0.03 ± 0.02 0.13 ± 0.02 0.75 ± 0.04 0.007 ± 0.003

2 0.09 ± 0.03 0.30 ± 0.02 0.02 ± 0.02 0.15 ± 0.03 0.81 ± 0.03 0.011 ± 0.005

3 0.06 ± 0.02 0.11 ± 0.03 0.02 ± 0.02 0.13 ± 0.04 0.66 ± 0.03 0.010 ± 0.005

Table 5: SNR values of MuT and InfoNCE tests over three runs on the RatInABox problem. We
use 3000 training samples; each value is the mean and standard deviation of 100 tests for the given
trained critic.

The MuT tests do indeed obtain larger average SNR values (by a factor of two or three), but have
notably lower empirical powers, contradicting our argument about the asymptotic power. For both
models, we empirically observe that the ratio σH0

/σH1
≈ 1 (see Figure 14); thus the asymptotic

power should be roughly Φ
(√
m SNR− 1 · Φ−1(1− α)

)
. Taking SNR 0.025 and α = 0.05 gives

a predicted power of approximately 0.09 for m = 128 and 0.30 for m = 2000; this agrees fairly
closely with the empirical power obtained by MuT. The asymptotics are thus apparently explaining
this test well.

With SNR 0.01, however, the predicted power of these InfoNCE tests would be 0.06 and 0.11; far
below the actual observed power of about 0.13 and 0.75. What happened?

Figure 15 shows that the particular value of the test statistic and the rejection threshold are highly
dependent on one another. (Each test corresponds to separately sampled test sets, with the same
critic function.) There is a substantial 45% correlation between the two for MuT, but for InfoNCE
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the correlation is 99%. While the permutation tests do achieve the appropriate level, this coupling
between the test statistic and the test threshold is not accounted for in our asymptotic analysis,
explaining InfoNCE’s strong departure from that regime. We do not yet understand why InfoNCE
exhibits such strong coupling here; this is a very interesting area for future work.
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Figure 14: Histograms of f(xi, yi) and f(xi, yj) across 10,000 samples (with shuffled points based
on a single permutation), for run 1 on RatInABox from Table 5.
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Figure 15: The estimated T̂ and the rejection threshold obtained by permutation testing with level α,
for 500 sample sets of run 1 on RatInABox from Table 5. The line corresponding to the rejection
boundary is marked, and rejecting points are colored yellow.
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