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ABSTRACT

The Neural Radiance Fields (NeRF) have been recently applied to reconstruct
building-scale and even city-scale scenes. To model a large-scale scene efficiently,
a dominant strategy is to employ a divide-and-conquer paradigm via performing
scene decomposition, which decomposes a complex scene into parts that are fur-
ther processed by different sub-networks. Existing large-scale NeRFs mainly use
heuristic hand-crafted scene decomposition, with regular 3D-distance-based or
physical-street-block-based schemes. Although achieving promising results, the
hand-crafted schemes limit the capabilities of NeRF in large-scale scene model-
ing in several aspects. Manually designing a universal scene decomposition rule
for different complex scenes is challenging, leading to adaptation issues for dif-
ferent scenarios. The decomposition procedure is not learnable, hindering the
network from jointly optimizing the scene decomposition and the radiance fields
in an end-to-end manner. The different sub-networks are typically optimized inde-
pendently, and thus hand-crafted rules are required to composite them to achieve
a better consistency. To tackle these issues, we propose Switch-NeRF, a novel
end-to-end large-scale NeRF with learning-based scene decomposition. We de-
sign a gating network to dispatch 3D points to different NeRF sub-networks. The
gating network can be optimized together with the NeRF sub-networks for dif-
ferent scene partitions, by a design with the Sparsely Gated Mixture of Experts
(MoE). The outputs from different sub-networks can also be fused in a learn-
able way in the unified framework to effectively guarantee the consistency of
the whole scene. Furthermore, the proposed MoE-based Switch-NeRF model
is carefully implemented and optimized to achieve both high-fidelity scene re-
construction and efficient computation. Our method establishes clear state-of-
the-art performances on several large-scale datasets. To the best of our knowl-
edge, we are the first to propose an applicable end-to-end sparse NeRF network
with learning-based decomposition for large-scale scenes. Codes are released at
https://github.com/MiZhenxing/Switch-NeRF.

1 INTRODUCTION

The Neural Radiance Fields (NeRF) method (Mildenhall et al., 2020) has gathered wide popularity
in novel-view synthesis and 3D reconstruction due to its high quality and simplicity. It encodes a 3D
scene from multiple 2D posed images. The original NeRF typically targets small scenes or objects,
while in real-world applications such as autonomous driving and augmented reality (AR) / virtual
reality (VR), building NeRF models to effectively handle large-scale scenes is critically important.

The problem of a large-scale NeRF is that more data typically requires a higher network capacity
(number of network parameters). A naı̈ve solution is to densely increase the network width and
depth. However, this will also greatly increase the computation for each sample and is harder to
optimize. A more applicable network should have a large capacity while maintaining almost con-
stant computational cost for each sample. Therefore, building an applicable large-scale NeRF can be
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Figure 1: Different kinds of decomposition methods. The dot lines mean non-differentiable opera-
tions. The solid lines mean differentiable operations that can be trained by back-propagation. The
Mega-NeRF (Turki et al., 2022) clusters pixels by 3D sampling distances to centroids in training.
The Block-NeRF (Tancik et al., 2022) clusters images by dividing the whole scene according to
street blocks. The sub-networks in both methods are trained separately. Our Switch-NeRF learns to
decompose the 3D points by a trainable gating network and the whole network is trained end-to-end.

considered as building a sparse neural network. The core of the design is to select different network
parameters (i.e. sub-networks) for different inputs. This procedure can be formulated as a scene
decomposition problem in the NeRF task. Each sub-network handles a different part of the scene.

Along the scene decomposition and learning a sparse neural network, recent Mega-NeRF (Turki
et al., 2022) and Block-NeRF (Tancik et al., 2022) have extended NeRF to building-scale and even
city-scale scenes based on heuristic hand-crafted scene decomposition. As depicted in Fig. 1, the
Mega-NeRF and Block-NeRF simply use 3D sampling distances or street blocks to decompose the
scene and train different NeRF models separately. With promising results on large-scale scenes,
their hand-crafted scene decomposition methods still lead to several issues. The large-scale scenes
are essentially complex and irregular. Designing a universal scene decomposition rule for different
scenes is extremely challenging in a hand-crafted way. This accordingly brings adaptation issues for
distinct scenarios in the real world. Hand-crafted rules require rich priors of the target scene, such
as the structure of the scene, to deploy the partition centroids as in Mega-NeRF and the physical
distribution of the scene images as in Block-NeRF. These priors may not be available in practical
applications. The hand-crafted decomposition is not learnable, hindering the network from jointly
optimizing the scene decomposition and the radiance fields in an end-to-end manner. The gaps
between the decomposition, composition and NeRF optimization may lead to sub-optimal results.
Besides, the different sub-networks are typically trained separately, leading to possible inconsistency
among different sub-networks. To handle this problem, they usually set overlapping among adjacent
partitions in training and use hand-crafted rules in inference to composite results from different
sub-networks. (Tancik et al., 2022; Turki et al., 2022).

To address above-mentioned issues, in this paper, we make the following contributions.

An end-to-end framework for joint learning of scene decomposition and NeRF. We present
Switch-NeRF, an end-to-end sparse neural network framework, which jointly learns the scene de-
composition and NeRF. As shown in Fig. 1c, we propose a learnable gating network for scene
decomposition. It dynamically selects and sparsely activates a sub-network for each 3D point. The
overall network is trained end-to-end without any heuristic intervention. We do not require any pri-
ors of the 3D scene shape or the distribution of scene images, leading to a generic framework for
large-scale scenes. Since the selection of sub-networks in training is a discrete operation, a criti-
cal problem is how to back-propagate gradients into the gating network. We use the strategy from
the Sparsely-Gated Mixture-of-Experts (MoE) (Shazeer et al., 2017) to deal with this problem. We
structure our sub-networks as NeRF experts for different scene partitions. 3D points are dispatched
into different NeRF experts based on the gating network. Besides the gating network, we also de-
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sign a head to unify the predictions of multiple NeRF experts, which aligns the high-level implicit
features from different NeRF experts to effectively address the inconsistency problem.

Efficient network design and implementation. With the framework design of Switch-NeRF, how-
ever, optimizing and implementing it efficiently and stably is not trivial. In NeRF, the number of 3D
points in a forward pass is orders of magnitude larger than that of the input tokens in other NLP and
vision tasks within an MoE framework. Dispatching samples to different NeRF experts inevitably
introduces large computation and memory usage. Therefore, we consider dispatching 3D points
only once with an effective gating network, and we design a deeper gating network to guarantee
enough parameters to boost the accuracy of the scene rendering. Another common design in MoE
implementations (Hwang et al., 2022) is to define a capacity factor to limit the number of tokens dis-
patched to each expert. This dynamically drops overflow 3D points for our NeRF experts. It works
well when training the network but brings a large influence on the testing accuracy. To address this
issue, we implement a full dispatch operation by CUDA based on Tutel (Hwang et al., 2022) to
significantly improve the testing performance, while avoiding unnecessary memory allocation.

High-quality results. Extensive experiments are conducted on challenging benchmarks with large-
scale scenes. Qualitative results demonstrate that our network can learn reasonable decomposition
of large-scale complex scenes. Our model also establishes state-of-the-art performances. It shows
clearly more superior results with much less network parameters compared to those hand-crafted
decomposition counterparts.

2 RELATED WORK

Neural Radiance Field. The Neural Radiance Field (NeRF) is proposed by Mildenhall et al. (2020)
to use volumetric rendering for novel view synthesis from posed images. It encodes a 3D scene into
a multilayer perceptron (MLP), which is simple and requires very limited priors of the scene. Due to
the success of NeRF in high-quality rendering and 3D reasoning, many works have been proposed
to improve its efficiency (Reiser et al., 2021; Yu et al., 2021; Müller et al., 2022), accuracy (Barron
et al., 2021; Verbin et al., 2022) and apply it to challenging scenes (Zhang et al., 2020; Martin-
Brualla et al., 2021; Xiangli et al., 2022) and 3D reconstruction tasks (Wang et al., 2021).

We pay more attention to the closely related works, i.e. NeRF methods for large-scale scenes. As
shown in Fig. 1a, Mega-NeRF (Turki et al., 2022) proposes to use a simple 3D distance-based
method to cluster training pixels into parts that can be trained separately by different NeRF models.
It samples centroids uniformly in the 3D scene and groups 3D points in testing. Block-NeRF (Tancik
et al., 2022) proposes to scale NeRF to city-level scenes. As shown in Fig. 1b, it divides the whole
scene based on physical distribution of the scene images, i.e. partitioning through street blocks. The
scene images in different street blocks are trained separately by sub-networks. In the testing, both
methods consider offline fusion of prediction results from different sub-networks. In contrast to
Mega-NeRF and Block-NeRF which use hand-craft scene decomposition, our Switch-NeRF jointly
learns the scene decomposition and a large-scale NeRF in an end-to-end manner. Our method is
not dependent on any priors of the 3D shape and the physical image distribution of a target scene.
Therefore, our method is more generic for arbitrary large-scale scenes.

Mixture of Experts (MoE). Modern MoE methods mainly follow the work of Shazeer et al.
(2017). It proposes a Sparsely-Gated-Mixture-of-Experts layer in place of the feed-forward net-
work (i.e. FFN or MLP) in a language model. It designs a vanilla Top-k gating network to dispatch
samples into k experts, and proposes an auxiliary loss for balancing the training of different ex-
perts. The MoE has been widely used in Natural Language Processing (NLP) (Lepikhin et al., 2021;
Fedus et al., 2022) and Vision (Riquelme et al., 2021). Switch Transformer (Fedus et al., 2022)
suggests that Top-2 gating is not necessary. It trains a network of high quality with Top-1 gating to
largely reduce the dispatch computation and communication. Besides, different gating mechanisms
are also proposed, such as Hash Routing (Roller et al., 2021) and BASE (Lewis et al., 2021). There
have been popular implementations of MoE in Mesh-TensorFlow (Shazeer et al., 2018), Deepspeed
(Rajbhandari et al., 2022) and Tutel (Hwang et al., 2022), which focus on improving large-scale
distributed training. To the best of our knowledge, none of the existing works considers develop-
ing a Mixture-of-NeRF-Experts (MoNE) for large-scale scenes. We design an effective structure
of MoNE for jointly learning scene decomposition and NeRF, and also improve the efficiency of
MoNE by handling the issue of dispatching large-scale 3D points to different NeRF experts.
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Figure 2: The framework our Switch-NeRF. A 3D point x will first go through a gating network and
then be dispatched to only one expert according to the gating network output. The expert output is
multiplied by the corresponding gate value and sent to a head for density σ and color c prediction
with direction d and appearance embedding. The rendering loss is used for supervision. The images
on the left of each expert are the visualization of 3D radiance fields handled by different experts.

3 SWITCH-NERF

Our Switch-NeRF is a Sparse Neural Radiance Field network targeting large-scale scenes. A frame-
work overview of Switch-NeRF is depicted in Fig. 2. We represent a large-scale 3D scene as a sparse
5D radiance function FΘ : (x,d) → (c, σ), where (x,d) are a 3D point and its view direction, (c, σ)
are predicted color and density, Θ represents network parameters. FΘ sparsely activates only a part
of its parameters for an input x each time. The overall structure of our network mainly consists of a
gating network G, a set of n experts {Ei}ni=1, and a shared prediction head H for generating σ and
c. The actual inputs of our network are the positional encoding (PE(x),PE(d)) for (x,d) as in the
vanilla NeRF (Mildenhall et al., 2020). We omit PE(·) in our following equations for simplicity.

Given an input (x,d), we first send x into the gating network and obtain the gate values G(x). Then,
we apply a Top-1 operation on G(x) to determine which expert should be activated. As shown in
Fig. 2, only one expert (i.e. Expert 2) is activated. The point x will be dispatched to this selected
expert. Other experts do not participate in the processing of x. The output feature of the expert E(x)
will be multiplied by the gate value corresponding to this expert. This makes the gating network be
trained jointly with the expert networks. After that, the feature is used to predict the density σ and
color c together with d and the appearance embedding AE. In the next, we first introduce details of
the trainable gating and our gating network architecture in Sec. 3.1. Then we introduce our expert
and head network architectures in Sec. 3.2. We discuss the capacity factor and full dispatch in Sec.
3.3. We finally formulate the rendering procedure and our loss functions in Sec. 3.4.

3.1 SPARSE GATING IN SWITCH-NERF

The sparse gating network plays an important role in our Switch-NeRF because it determines the
optimization routes of different NeRF experts. In Switch-NeRF, we only consider one gating net-
work because there is a very large number of 3D points that require gating and dispatching in NeRF
optimization. Multiple gating operations will largely decrease the training and testing speed.

Trainable gating in Switch-NeRF. The trainable gating in our network follows the mechanism in
the MoE method Switch Transformer (Shazeer et al., 2017). The gate values G(x) is a vector of
n-dimensions normalized via Softmax, in which G(x)i represents the probability of selecting the
i-th NeRF expert. We apply a Top-1 function on G(x) to sparsely select only 1 expert Es from a set
of NeRF experts, i.e. {Ei}ni=1, for each 3D point. The input x will be dispatched into the selected
expert Es and obtain an output Es(x). The final output Ẽ(x) the output of Es multiplied by the
corresponding gate value:

Ẽ(x) = G(x)sEs(x). (1)
As the predicted gate values are multiplied to the corresponding outputs of NeRF experts, the
gating network can be optimized together with the NeRF experts in the backward pass. This
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makes the network able to directly learn scene decomposition during network training. Our net-
work structure is highly sparse because we use Top-1 to select only one experts for each sample.
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Figure 3: The architectures of
our gating, one expert and the
head networks. It shows the for-
ward pass of a point. It goes
through the gating network and a
selected expert, and is passed to
a shared prediction head.

Gating network architecture. In previous MoE meth-
ods (Shazeer et al., 2017; Lepikhin et al., 2021), the gating net-
work is typically a simple linear mapping. This choice is reason-
able as they usually have multiple MoE layers. The input of gat-
ing networks in deep MoE layers can be high-level features from
previous layers. Therefore, their gating networks share more in-
formation from the main network. Let the original input be the
3D point x. Typically x will first go through a sub-network S
with several layers and learn an internal feature S(x). The real
gating operation of the deep MoE layers can be written as:

G(x) = Softmax(Linear(S(x))). (2)

Therefore, the gating networks in these methods actually share
an S network from the main network.

Considering that we only use one gate network in our Switch-
NeRF for efficiency, allocating more parameters for our gating
network is necessary to learn powerful gating. We can put the
gating network closer to the prediction head. It will share more
parameters with the main network. However, this will also make
each sample point share more layers before the gating network.
In this case, the capacity of the whole network shrinks, as the
network capacity is controlled by the number of layers of each
unshared expert. Therefore, as shown in the Fig. 3, we put the
gating network at the beginning of Switch-NeRF to maximize
the layer numbers of the expert networks. In order to allocate more parameters to the gating network,
we use a shallow MLP instead of a linear mapping. Our gating network G(x) consists of 4 Linear
layers and 1 LayerNorm as shown in Fig. 3. Our design balances the efficiency, network sparsity
and the number of parameters in the gating network.

3.2 EXPERT AND HEAD NETWORKS

NeRF Expert Network. The set of n NeRF experts {Ei}ni=1 in Switch-NeRF contains most of the
network parameters. As shown in Fig. 3, each expert in Switch-NeRF is a deep MLP with a skip
connection. The structure and depth of the experts are aligned with the main structure of vanilla
NeRF. Each expert only processes a part of the 3D points, determined by the gating network. The
output of the selected expert is multiplied by the corresponding gate value to obtain a feature vector
Ẽ(x). This feature vector is then used to predict density σ and the direction-dependent color c. By
increasing the number of NeRF experts n, we can easily scale the network’s capacity.

Unified NeRF Head. The head network H is designed for the final predictions of each input sample.
It is shared for all the samples, as shown in Fig. 3. After obtaining the expert output Ẽ(x), we use a
Linear layer with a Softplus activation (Zheng et al., 2015) to predict σ. The use of Softplus follows
Mip-NeRF (Barron et al., 2021) for stable prediction of σ. Then, Ẽ(x) goes through a Linear layer
and is concatenated with PE(d) and an appearance embedding AE. The color c is predicted from
the concatenated feature by an MLP. The appearance embedding AE is a trainable vector to capture
image-level photometric and environmental variations (Martin-Brualla et al., 2021).

3.3 CAPACITY FACTOR AND FULL DISPATCH

Capacity factor for training. In our Switch-NeRF, to efficiently dispatch 3D points to different ex-
perts is important. Einops-based dispatch (Lepikhin et al., 2021) causes memory overflow due to the
large number of 3D points. In our training, we use the CUDA-based fast dispatch in Tutel (Hwang
et al., 2022). Following previous MoE methods (Lepikhin et al., 2021), we set a capacity factor for
each NeRF expert in the training. It caps the number of sample points dispatched to each NeRF
expert, leading to uniform tensor shapes, balanced computation and communication. Let B be the
batch size of the whole network, Cf be a capacity factor and n be the number of NeRF experts.
Then the maximum number of sample points going into each NeRF expert is Be = ceil(kBCf

n ).
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Cf = 4.0

Figure 4: In the uniform dispatch,
each expert has the same tensor
shapes. It will drop overflow to-
kens and perform padding. The
full dispatch makes sure each point
will be processed by an expert.
The images rendered by uniform
dispatch have apparent artifacts.

The dispatch with a capacity factor can be called a uniform
dispatch. Fig. 4 shows the uniform dispatch with Cf = 1.0.
Overflow points are dropped. If the capacity is not fully used,
it will be zero-padded. A larger capacity factor decreases
the dropping ratio but increases the memory and computa-
tion. In our network, we set the capacity factor to 1.0 without
requiring extra memory. We use the Batch Prioritized Rout-
ing (Riquelme et al., 2021) to improve the training with lower
expert capacity.

Full dispatch for testing. Previous MoE methods usually use
the uniform dispatch for both the training and testing (Lepikhin
et al., 2021; Fedus et al., 2022), which inevitably drops sample
points. In our Switch-NeRF, although the uniform dispatch
works well in the training, we observe that dropping sample
points can significantly decrease the test accuracy. A possible
reason is that we do not use stacked MoE layers and skip con-
nections between them as previous MoE methods usually do,
to maintain the network efficiency. To improve the testing ac-
curacy, we implement an efficient full dispatch strategy based
on Pytorch, CUDA, and Tutel. It can dispatch all the points
to their corresponding expert with only slight memory increase. A description of the strategy is
depicted in Fig. 4. With this efficient full dispatch, we can largely improve the test accuracy.
3.4 VOLUME RENDERING AND LOSSES

Our volume rendering procedure follows the vanilla NeRF (Mildenhall et al., 2020). The training
data of Switch-NeRF consists of multiple posed images. For each pixel in the training images, we
back-project a camera ray r into a 3D space. A set of N samples are sampled along the ray. For
each sample (x,d), our network FΘ predicts a volume density σ and a color c = (r, g, b). Let δi be
the distance between adjacent points. The expected color Ĉ(r) of this pixel is synthesized along the
ray by the volume rendering function in NeRF (Mildenhall et al., 2020):

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj), (3)

Rendering loss. The main loss of Switch-NeRF is the rendering loss Lr. After rendering the color
Ĉ(r) of a ray from our network through Equation 3, we compute Lr for supervision:

Lr =
∑
r∈R

∥C(r)− Ĉ(r)∥2, (4)

where R is the set of sampled rays. C(r) is the ground truth color of ray r in the training images.

Auxiliary loss tackling imbalanced optimization. One problem of training MoE-based networks
is that the gating network can favor only a few experts (Shazeer et al., 2017). The optimization
and utilization of NeRF experts will thus be imbalanced. This could even cause several experts
not trained, and then the whole network converges to a sub-optimal solution and cannot scale well
through the training since some of the network capacities are not fully utilized. Following Shazeer
et al. (2017); Lepikhin et al. (2021), we use an auxiliary loss La to regularize the gating network and
balance the utilization of NeRF experts. Specifically, following the differentiable load balancing loss
proposed in GShard (Lepikhin et al., 2021), we define our auxiliary loss as follows. Given n NeRF
experts and a batch B with N sample points, let ci be the number of points dispatched to each expert
Ei by Top-1. We first compute the gating values mi distributed to Ei with mi =

∑
x∈B G(x)i. The

auxiliary loss La can be computed as La = n
N2

∑n
i cimi. This auxiliary loss encourages balanced

gating because it is minimized when the dispatching is ideally balanced. Under the balanced gating,
ci and mi are both expected to be N

n . Then
∑n

i cimi will be N2/n. The loss La will be 1.

The total loss L is the weighted sum of the above-mentioned two losses:

L = Lr + λLa (5)

where λ is the weight for our auxiliary loss. We set λ = 5 × 10−4 for all our main results and it is
sufficient to balance the utilization of experts.
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Figure 5: The comparison of the rendered images from Mega-NeRF and our Switch-NeRF. Our
method renders more details and tiny structures than Mega-NeRF. Please zoom in to see the details.

Table 1: The testing results of our Switch-NeRF on large-scale datasets. Our method gets state-of-
the-art accuracy compared to the dense NeRF, NeRF++ and the sparse Mega-NeRF.

Dataset Metrics NeRF NeRF++ SVS DeepView Mega-NeRF Switch-NeRF

Building
PSNR↑ 19.54 19.48 12.59 13.28 20.93 21.54
SSIM↑ 0.525 0.520 0.299 0.295 0.547 0.579
LPIPS↓ 0.512 0.514 0.778 0.751 0.504 0.474

Rubble
PSNR↑ 21.14 20.90 13.97 14.47 24.06 24.31
SSIM↑ 0.522 0.519 0.323 0.310 0.553 0.562
LPIPS↓ 0.546 0.548 0.788 0.734 0.516 0.496

Residence
PSNR↑ 19.01 18.99 16.55 13.07 22.08 22.57
SSIM↑ 0.593 0.586 0.388 0.313 0.628 0.654
LPIPS↓ 0.488 0.493 0.704 0.767 0.489 0.457

Sci-Art
PSNR↑ 20.70 20.83 15.05 12.22 25.60 26.52
SSIM↑ 0.727 0.755 0.493 0.454 0.770 0.795
LPIPS↓ 0.418 0.393 0.716 0.831 0.390 0.360

Campus
PSNR↑ 21.83 21.81 13.45 13.77 23.42 23.62
SSIM↑ 0.521 0.520 0.356 0.351 0.537 0.541
LPIPS↓ 0.630 0.630 0.773 0.764 0.618 0.609

4 EXPERIMENTS
4.1 DATASETS, METRICS AND VISUALIZATION

Datasets. We use the Building, Rubble datasets from Mill 19 (Turki et al., 2022) and Residence,
Sci-Art, Campus datasets from UrbanScene3D (Liu et al., 2021) to evaluate our Switch-NeRF. Each
scene contains thousands of high-resolution images. The camera parameters for all the images are
the same as Mega-NeRF (Turki et al., 2022). These datasets cover large enough areas while they
can still be handled by consumer-level workstations with commonly used GPUs.

Metrics. We use the PSNR, SSIM (Wang et al., 2004) (both higher is better), and VGG implementa-
tion of LPIPS (Zhang et al., 2018) (lower is better) to quantitatively evaluate our results on the novel
view synthesis. The PSNR is to measure the mean squared error between two images in logarithmic
space. The SSIM focuses more on structural similarity. The LPIPS measures perceptual similarity.

Visualization. Besides the rendered images, we visualize the 3D radiance fields. We sample 3D
points along rays and use the α = 1 − exp(−σiδi) as the opacity of each 3D point. We use Point
Cloud Library (Rusu & Cousins, 2011) to show the color and opacity of each 3D point.

4.2 SETTING

Similar to NeRF++ (Zhang et al., 2020) and Mega-NeRF, the 3D scene space is spilt into a fore-
ground and a background. We use 8 experts with Top-1 gating and Cf = 1.0 for the foreground to
end-to-end learn scene decomposition, and one original NeRF in the background. This differs from
Mega-NeRF using a foreground and a background NeRF for each of its 8 sub-networks, requiring
more network parameters. Each of our NeRF experts contains 7 layers with each layer 256 channels.
We sample 256 coarse and 512 fine points per ray in the main network and 128/256 samples in the
background network. We use 8 NVIDIA RTX 3090 GPUs for distributed data-parallel training and
sample 1024 rays for each GPU. We use Adam optimizer (Kingma & Ba, 2015) and a learning rate
decaying exponentially from 5×10−4 to 5×10−5, and use bfloat16 in training and float16 in testing
to reduce memory and time. We train 500k iterations for each dataset and test on validation images.
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Figure 6: The visualization of 3D radiance fields handled by experts in Switch-NeRF and sub-
networks in Mega-NeRF. The Mega-NeRF just regularly decomposes the scene. Our experts are
roughly specialized to different semantic parts of the scene such as buildings, trees and grounds.
4.3 BENCHMARK PERFORMANCE

The main quantitative results are reported in Table 1 and qualitative results in Fig. 5. The statistics
of NeRF (Mildenhall et al., 2020), NeRF++ (Zhang et al., 2020), SVS (Riegler & Koltun), Deep-
View (Flynn et al., 2019), and Mega-NeRF are quoted from Mega-NeRF. The MLP width of NeRF
and NeRF++ is both set to 2048 to obtain a similar capacity between Mega-NeRF and Switch-NeRF.

As shown in Table 1, our Switch-NeRF achieves state-of-the-art accuracy on all the datasets in terms
of PSNR, SSIM, and LPIPS. It produces much better accuracy than NeRF and NeRF++. This con-
firms the effectiveness of scaling NeRF with sparse Mixture-of-Experts instead of densely expanding
the network. Our method also outperforms the sparse Mega-NeRF, showing the advantage of learn-
ing decomposition instead of the hand-crafted scene decomposition. Fig. 5 presents the rendered
images of Mega-NeRF and Switch-NeRF. Our method can render more tiny structures and details
compared to Mega-NeRF. These main results demonstrate the overall performance of our method.

4.4 MODEL ANALYSIS

Table 2: The ablation results on decompo-
sition, gating network design, auxiliary loss
La and the unified head in Switch-NeRF.

PSNR↑ SSIM↑ LPIPS↓

Decom.
Random 20.06 0.455 0.575
Distance 20.50 0.547 0.499

Mega-NeRF 20.93 0.547 0.504

Gate
Linear 20.75 0.532 0.524

w/o Norm 21.39 0.577 0.474
w/o La 15.32 0.363 0.769

w/o unified head 19.72 0.472 0.561

Switch-NeRF 21.54 0.579 0.474

Besides the main results, we perform ablation ex-
periments to analyze different aspects of our model.
The Mill 19 Building scene is used by default.
Decomposition. We analyze our learning-based
decomposition compared to other decomposition
methods. The random decomposition randomly dis-
patches 3D points into sub-networks. The distance
decomposition dispatches 3D points based on the 3D
distances in training and testing. The network de-
sign and the training setup for these variants are the
same as Switch-NeRF. We also include the results of
Mega-NeRF, which uses distances to cluster pixels
in training and 3D points in testing. The results are shown in Table 2. The random decomposition
cannot fully utilize more parameters in the network. The distance decomposition performs better and
is similar to Mega-NeRF. Our Switch-NeRF with learned decomposition achieves the best accuracy.
NeRF expert specialization. We visualize the 3D radiance fields of the UrbanScene3D-Sci-Art for
Mega-NeRF and Switch-NeRF in Fig. 6. The Mega-NeRF partitions the scene into regular parts.
In Switch-NeRF, the experts have been roughly specialized to different semantic parts of the scene.
Experts 1 and 2 focus on different buildings. Expert 3 focuses on the green grasses and trees on
the ground. Expert 5 specializes on other parts of the ground. Our Switch-NeRF can achieve more
reasonable and semantically meaningful scene decomposition in a learning way.

Table 3: The accuracy, test time, test mem-
ory and parameters numbers of Switch-NeRF
and Mega-NeRF with different expert or sub-
network numbers. From 8 to 16 experts, our
network scales much better than Mega-NeRF.

Model PSNR↑ SSIM↑ LPIPS↓ Mem.↓ Time↓ Param.↓
Switch-4 21.00 0.547 0.504 5825M 106s 2.78M
Mega-8 20.93 0.547 0.504 6935M 87.9s 10.8M

Switch-8 21.54 0.579 0.474 5847M 110s 4.53M
Mega-16 21.47 0.590 0.462 8042M 101s 21.6M

Switch-16 22.49 0.625 0.429 5876M 118s 8.05M

Table 4: The accuracy, training memory and
training time with Top-1, Top-2 and capacity
factors. Increasing Cf or using Top-2 in train-
ing can improve the accuracy while increasing
the training time and memory.

Top-k Capacity PSNR↑ SSIM↑ LPIPS↓ Mem.↓ Time↓
1 1.0 21.54 0.579 0.474 10182M 42.5h
1 1.5 21.70 0.594 0.463 12271M 47.4h
2 1.0 21.77 0.590 0.465 14548M 58.7h
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Table 5: Comparisons of parameter number, time, mem-
ory and FLOPs. Although with more training time and
memory, our network uses less testing memory and has
much less parameters while achieving a better accuracy.

Method Test Train Param.↓ FLOPs↓Mem.↓ Time↓ Mem.↓ Time↓
Mega-NeRF 6935M 87.9s 5124M 30.7h 10.8M 0.79M

Switch-NeRF 5847M 110s 10182M 42.5h 4.53M 0.99M

Table 6: The accuracy and testing time of
uniform dispatch with Cf = 2.0 and 4.0
and full dispatch. The full dispatch clearly
perform better with less time usage.

Dispatch PSNR↑ SSIM↑ LPIPS↓ Time (s)↓
Uniform 2.0 17.82 0.410 0.563 131
Uniform 4.0 20.07 0.521 0.507 182

Full 21.54 0.579 0.474 110

Gating network. We analyze different designs of our gating network. As shown in Table 2, the
Linear gating just feeds the PE(x) into a trainable linear layer. The w/o Norm version does not have
a LayerNorm. We also evaluate the gating without the auxiliary loss La. The Linear gating with
fewer parameters does not generate satisfactory results. The MLP+Norm can boost the performance
of our whole network. The network without auxiliary loss La does not even converge. This shows
La is vital for the success of MoE methods, consistent with the observations in Shazeer et al. (2017).
Unified head. We remove the shared unified head and add a head separately for each NeRF expert.
Table 2 shows that without the unified head the accuracy significantly decreases. We also observe
that in this case, the network is not robust enough to the mixed-precision training and testing. A
possible reason is that the gating value is directly multiplied to the predictions rather than the high-
level features, which makes the gating and prediction unstable in training and testing. This verifies
our motivation to design a unified head for multiple NeRF experts.
Scalability. Table 3 shows the accuracy and efficiency of Switch-NeRF with different numbers
of experts. With only 4 experts, we already achieve similar accuracy to Mega-NeRF using 8 sub-
networks. Compared to the model with 8 experts, the model with 16 experts increases the perfor-
mance remarkably, while without a large increase of the memory and time in testing. Compared
to Mega-NeRF with 16 sub-networks, our Switch-NeRF with 16 experts scales much better with a
higher accuracy, fewer number of the parameter and less memory footprint in testing. All of these
prove the scalability of our Switch-NeRF. It can obtain much better results by increasing network
capacity while maintaining almost constant computational and memory costs.
Effect of top-2 and capacity factor. Table 4 studies using Top-2 and Cf when training Switch-
NeRF. Increasing Cf from 1.0 to 1.5 or using Top-2 in training can improve the accuracy while
increasing the training time and memory, especially for Top-2. With our design of Switch-NeRF,
Top-1 with Cf = 1.0 already obtains good results with acceptable efficiency, suggesting that in-
creasing Cf instead of k is better because Cf in training does not affect testing with the full dispatch.
Efficiency. In Table 5, we compare the efficiency of Switch-NeRF with Mega-NeRF. Our model
achieves better accuracy using only half of the parameters of Mega-NeRF. Mega-NeRF uses a back-
ground NeRF and different versions of appearance embeddings (AE) for each sub-network, leading
to much more parameters. As Switch-NeRF is trained end-to-end, it only uses one background
NeRF and one version of AE. Our network is more parameter efficient and with better accuracy.
Since it has a gating network and is trained end-to-end, it reasonably requires more floating point
operations (FLOPs) for each point and costs slightly more memory and time for training. Notably,
compared to Mega-NeRF, it uses around 20% less testing memory, and only a very minor increase
in testing time. Our Switch-NeRF achieves a good efficiency together with a better accuracy.
Full dispatch. We test our trained model with a uniform dispatch and our full dispatch discussed
in Sec. 3.3. A capacity factor Cf of 2.0 and 4.0 with Batch Prioritized Routing (Riquelme et al.,
2021) is used in the uniform dispatch. Table 6 shows that the results of the uniform dispatch with
Cf = 2.0 largely decreases. Although the results with Cf = 4.0 improve, they are still far lower
than the full dispatch. Moreover, it costs more time than the full dispatch because of a large Cf

with zero padding. Fig. 4 shows that images rendered with the uniform dispatch contain much more
artifacts than the full dispatch, proving the effectiveness of the full dispatch in Switch-NeRF.

5 CONCLUSION

In this paper, we present Switch-NeRF. To the best of our knowledge, it is the first sparse large-scale
NeRF with learnable scene decomposition. We propose an end-to-end mixture-of-NeRF-experts
framework to learn scene decomposition jointly with NeRF. We further design and implement an
efficient network architecture and a full dispatch strategy to boost accuracy. Extensive experiments
demonstrate that our network can learn more reasonable scene decomposition and shows state-of-
the-art accuracy on the scene synthesis compared to hand-crafted decomposition methods.
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APPENDIX

A BUNGEENERF DATASET

We compare Switch-NeRF with BungeeNeRF (Xiangli et al., 2022) on the 56Leonard and
Transamerica datasets provided from BungeeNeRF. We first analyze the different motivations and
focuses between the BungeeNeRF and our Switch-NeRF. The BungeeNeRF focuses on modeling
scenes with multi-scales and different levels of details, while Switch-NeRF targets large-scale scene
modeling with large data volumes. BungeeNeRF has several special designs for training. It decom-
poses the training data by predefined scales and uses multi-level supervision for its middle blocks.
It designs special data feeding scheme and model growing training. We conducted experiments on
the BungeeNeRF dataset, and show the performance comparison in Table 7. It is worth noting that
the data volume of BungeeNeRF (around 450 images with 640x360 resolution for each scene) is
similar to the vanilla NeRF but is significantly smaller compared to that of Mega-NeRF (the Build-
ing dataset with 1940 images of 4608x3456 resolution). Thus, we use less experts for BungeeNeRF
dataset. As seen in Table 7, our Switch-NeRF with 4 experts can outperform the BungeeNeRF in all
scales.

Table 7: Comparisons of PSNR on the 56Leonard and Transamerica scenes in BungeeNeRF. Switch-
NeRF with 4 experts outperforms BungeeNeRF in all scales.

Scene Method Scale 1 Scale 2 Scale 3 Scale 4 Avg.

56Leonard
BungeeNeRF 24.120 24.345 25.382 25.112 24.513

Switch-NeRF-2 23.666 24.329 24.676 24.475 24.162
Switch-NeRF-4 24.624 25.263 25.844 25.697 25.196

Transamerica
BungeeNeRF 24.608 24.350 24.357 24.608 24.415

Switch-NeRF-2 24.468 24.233 24.410 23.495 24.220
Switch-NeRF-4 25.242 25.276 25.504 24.672 25.226

B BLOCK-NERF DATASET

We train a Switch-NeRF on the San Francisco Mission Bay Dataset of Block-NeRF (Tancik et al.,
2022). It consists of 12,000 images with an image resolution of around 1200x900. Although the
data volume is similar to the datasets used by Mega-NeRF and Switch-NeRF, the training setting of
Block-NeRF is quite different from ours. The Block-NeRF uses much larger computing and memory
resources in its training setting. It trains each scene block with 32 TPU v3 cores combining offer 512
GB memory, which is not easy to be followed by the common computer workstations. The batch-
size of Block-NeRF for each block is 16384, significantly larger than the averaging batch-size 1024
for each sub-network in Mega-NeRF and Switch-NeRF. The networks of BlockNeRF are trained
with full precision while ours with bfloat16 precision. Besides, an important part of the training
data, i.e., the masks for dynamic objects in the scenes used by Block-NeRF, are also not released in
the available training data. The Block-NeRF does not open-source its code, which makes us difficult
to align its hyper-parameters on their training data.

Due to our lack of comparable computing resources and the unavailability of the same training data
used in Block-NeRF, it is not feasible for us to train a Switch-NeRF based on the same setting as
Block-NeRF, to allow a direct and fair comparison. We thus train our network on the Block-NeRF
dataset with a similar setting used in our paper. We use 8 NVIDIA RTX 3090 GPUs to train a Switch-
NeRF model with 8 experts, and sample 1664 rays for each GPU, resulting in a batch-size of 1664 on
average for each expert. This is far less than the batch-size of 16384 for each Block in Block-NeRF.
The width of each layer is set as 512 as in Block-NeRF. We also use the positional encoding of
Mip-NeRF as used by Block-NeRF. We sample 256 points each ray for the coarse and fine networks
in training, and 512 points each ray for testing. We use the validation dataset of Block-NeRF to
evaluate the performance with the PSNR, SSIM and LPIPS metrics. The experimental results are
shown in Table 8.
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Table 8: Accuracy of Switch-NeRF on the San Francisco Mission Bay Dataset proposed by Block-
NeRF. We train the Switch-NeRF with limited computing resources, , half float precision, and much
smaller batch-size compared to Block-NeRF. Besides, Switch-NeRF does not utilize the important
dynamic object masks that are used by Block-NeRF, as they are not available in the released training
dataset.

Method PSNR↑ SSIM↑ LPIPS↓
Switch-NeRF (8 experts) 23.86 0.762 0.489

C TWO GATING OPERATIONS

We add an additional ablation study on two gating operations. We train a Switch-NeRF with 2 gating
networks, each acting as a gating operation. The first gating network is added after the 1-st linear
layer of the main network, and the second gating network is added after the 4-th linear layer of the
main network. The total number of expert layers is the same as that of the Switch-NeRF using 1
gating network to make them have similar network capacity. The results in terms of both accuracy
and efficiency are shown in Table 9. From the results, we can clearly see that two gating operations
cost more training time, training memory, and testing time, while achieving a similar accuracy to the
model with one gating operation. This suggests that the number of gating operations is not critical
for the model performance, and one gating operation already shows sufficient capabilities in the
dispatch of points.

Table 9: Accuracy and efficiency with different numbers of gating operations. The Switch-NeRF
with two gating operations and the same number of expert layers, does not improve the rendering
accuracy over the model with one gating operation, while consuming more memory and time for
training and testing.

Gating number PSNR↑ SSIM↑ LPIPS↓
Train Test

Mem. Time Mem. Time

1 21.54 0.579 0.474 10182M 42.5h 5847M 110s
2 21.55 0.574 0.477 15315M 56.2h 5838M 152s

D MORE EXPERTS

The expert number directly controls the network capacity of Switch-NeRF. With large-scale scenes
we may need to increase the expert number to get better results. In this section we add more ex-
periments on the expert number. In Table 10, the results show that more experts can consistently
produce better results for larger-scale dataset.

We additionally visualize the 3D radiance fields of a Switch-NeRF trained with 16 experts on the
UrbanScene3D-Sci-Art dataset in Figure 7. Compared with the Figure 6 in the main paper, we
can see that our network can still roughly specialized to different fine-grained semantic parts of the
scene.

Table 10: The accuracy of different expert numbers. Increasing expert number can consistently
improve the accuracy.

Method
Building Sci-Art Campus

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Switch-NeRF-8 21.54 0.579 0.474 26.52 0.795 0.360 23.62 0.541 0.609
Switch-NeRF-16 22.49 0.625 0.429 27.17 0.819 0.327 24.40 0.578 0.553
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Figure 7: The visualization of 3D radiance fields handled by experts in Switch-NeRF with 16 experts
on the UrbanScene3D-Sci-Art dataset.

E FAST RENDERING

We explore the capability of Switch-NeRF to be integrated into fast rendering techniques based on
octrees similar to the interactive exploration used in Mega-NeRF-Dynamic Turki et al. (2022). As
the detailed evaluation protocol for the faster rendering is not provided by Mega-NeRF-Dynamic,
we thus define a protocol to evaluate for both methods, on the validation images of each dataset.
Specifically, we first convert the trained model into a coarse octree. Given a view point, we render
a coarse image directly from the coarse octree. Then, we follow the dynamic octree refinement
strategy proposed by Mega-NeRF-Dynamic, to refine the octree for the current view point for several
rounds by querying the trained model. Here, we consider 16 rounds. We finally render a refined
image from the refined octree. We evaluate both Mega-NeRF model and Switch-NeRF model on
the same fast-rendering protocol we just described, and report the PSNR and average refinement
time of octree in Table 11, and images in Figure 8. As shown in Table 11, since the octrees before
refinement are very coarse, the coarse images for both Mega-NeRF and Switch-NeRF are of low
quality. After the dynamic octree refinement, the quality of images improves. Since the resolution
of refined octrees is still limited, the quality is not comparable to the original model. However,
our Switch-NeRF can obtain similar or better results on the validation datasets compared to Mega-
NeRF. It should be noted that the octrees do not handle the background, and thus the rendered
images may have black regions in both Mega-NeRF and Switch-NeRF, which decreases the PSNR
values. However, as shown in Figure 8, our method can render good quality of refined images in
the foreground. This shows our Switch-NeRF can be flexibly and effectively integrated into existing
faster rendering techniques.

Table 11: The PSNRs of images rendered from the coarse octrees and refined octrees of Switch-
NeRF and Mega-NeRF, and the average time used for dynamic octree refinement. Switch-NeRF can
get similar or better results on the validation datasets compared to Mega-NeRF. Note that the octrees
do not handles background so the rendered images may have black regions in both Mega-NeRF and
Switch-NeRF, which will decrease the PSNR values.

Building Rubble Residence Sci-Art Campus Time

Mega-NeRF
Coarse 14.66 14.99 12.15 10.86 14.95
Refined 16.30 16.93 13.85 13.50 18.30 6.3s

Switch-NeRF
Coarse 14.29 15.16 12.05 10.74 16.05
Refined 16.29 17.04 13.96 13.61 18.66 13.0s
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Figure 8: Images of Switch-NeRF and Mega-NeRF rendered by coarse octrees and refined octrees.
Note that the octrees do not handles background so the rendered images may have black regions in
both Mega-NeRF and Switch-NeRF. This will decrease the PSNR values. However, from the visu-
alization, we can see that Our method can render good quality of refined images in the foreground.
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