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ABSTRACT

Knowledge graph (KG) embedding methods learn geometric representations of
entities and relations to predict plausible missing knowledge. These representa-
tions are typically assumed to capture rule-like inference patterns. However, our
theoretical understanding of the kinds of inference patterns that can be captured
in this way remains limited. Ideally, KG embedding methods should be expres-
sive enough such that for any set of rules, there exists an embedding that exactly
captures these rules. This principle has been studied within the framework of
region-based embeddings, but existing models are severely limited in the kinds of
rule bases that can be captured. We argue that this stems from the use of repre-
sentations that correspond to the Cartesian product of two-dimensional regions.
As an alternative, we propose RESHUFFLE, a simple model based on ordering
constraints that can faithfully capture a much larger class of rule bases than ex-
isting approaches. Moreover, the embeddings in our framework can be learned
by a Graph Neural Network (GNN), which effectively acts as a differentiable rule
base. This has some practical advantages, e.g. ensuring that embeddings can be
easily updated as new knowledge is added to the KG. At the same time, since the
resulting representations can be used similarly to standard KG embeddings, our
approach is significantly more efficient than existing approaches to differentiable
reasoning. The GNN-based formulation also allows us to study how bounded
inference can be captured. We show in particular that bounded reasoning with
arbitrary sets of closed path rules can be captured in this way.

1 INTRODUCTION

Knowledge graph (KG) embeddings (Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016;
Sun et al., 2019) are geometric representations of knowledge graphs. Such representations are typi-
cally used to infer plausible knowledge that is not explicitly stated in the KG. An important research
question is concerned with the kinds of regularities that can be captured by different kinds of mod-
els. While standard approaches are often difficult to analyse from this perspective, region-based
approaches make these regularities more explicit (Gutiérrez-Basulto & Schockaert, 2018; Abboud
et al., 2020; Pavlovic & Sallinger, 2023; Charpenay & Schockaert, 2024). Essentially, in such ap-
proaches, each entity e is represented by an embedding e ∈ Rd and each relation r is represented
by a geometric region Xr ⊆ R2d. We say that the triple (e, r, f) is captured by the embedding iff
e⊕f ∈ Xr, where we write ⊕ for vector concatenation. In this way, we can naturally associate a KG
with a given embedding. The key advantage of region-based models is that we can also associate
a rule base with the embedding, where the rules reflect the spatial configuration of the regions Xr.
However, not all rule bases can be captured in this way. As a simple example, models based on
TransE (Bordes et al., 2013) cannot distinguish between the rules r1(X,Y )∧ r2(Y,Z) → r3(X,Z)
and r2(X,Y ) ∧ r1(Y, Z) → r3(X,Z). This particular limitation can be avoided by using more so-
phisticated region-based models (Pavlovic & Sallinger, 2023; Charpenay & Schockaert, 2024), but
even these models remain limited in terms of which rule bases they can capture. This appears to be
related to the fact that these models use regions which are the Cartesian product of d two-dimensional
regions, i.e. Xr = Ar

1 × ... × Ar
d, with Ar

i ⊆ R2. To check whether (e, r, f) is captured, we then
check whether (ei, fi) ∈ Ar

i for each i ∈ {1, ..., d}, with e = (e1, ..., ed) and f = (f1, ..., fd).
We will refer to such approaches as coordinate-wise models. Existing models primarily differ in
how these two-dimensional regions are defined, e.g. ExpressivE (Pavlovic & Sallinger, 2023) uses
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parallelograms for this purpose, while Charpenay & Schockaert (2024) used octagons. Using more
flexible region-based representations typically leads to overfitting. In this paper, we go beyond
coordinate-wise models but aim to avoid overfitting by otherwise keeping the model as simple as
possible, by learning regions which are defined in terms of ordering constraints of the form ei ≤ fj .

We show that this model, which we term RESHUFFLE, can capture a larger class of rule bases than
existing region-based models. For instance, to the best of our knowledge, RESHUFFLE is the first
that can capture (some) rule bases with cyclic dependencies. Furthermore, we show that entity em-
beddings in our framework can be learned using a monotonic Graph Neural Network (GNN) with
randomly initialised node embeddings. This GNN effectively serves as a differentiable approxima-
tion of a rule base, acting on the initial representations of the entities to ensure that they capture the
consequences that can be inferred from the KG. An important practical consequence is that our KG
embeddings can be efficiently updated when new knowledge becomes available. Thus, our model is
particularly well suited for KG completion in the inductive setting, where we need to predict links
between entities that were not seen during training. From a theoretical point of view, the GNN-based
formulation allows us to study bounded inference, where the number of layers of the GNN can be re-
lated to the number of inference steps. In particular, we show that our model is capable of faithfully
capturing bounded inference with arbitrary sets of closed path rules. Finally, while the main focus
of this paper is on advancing our theoretical understanding of the expressivity of knowledge graph
embeddings, we also empirically evaluate RESHUFFLE on the task of inductive KG completion,
where we find that it outperforms existing differentiable rule learning strategies.

2 RELATED WORK

Region-based models Despite the vast amount of work on KG embeddings in the last decade, the
reasoning abilities of most existing models are poorly understood. The main exception comes from
a line of work that has focused on region-based representations (Gutiérrez-Basulto & Schockaert,
2018; Abboud et al., 2020; Zhang et al., 2021; Leemhuis et al., 2022; Pavlovic & Sallinger, 2023;
Charpenay & Schockaert, 2024). Essentially, the region-based view makes explicit which triples
and rules are captured by a given embedding. This allows us to study what kinds of semantic
dependencies a given model is capable of capturing, which is important for ensuring that models
have the right inductive bias, especially for settings where reasoning is important. Existing work
has uncovered various limitations of existing models. For instance, Gutiérrez-Basulto & Schockaert
(2018) revealed that bilinear models such as RESCAL (Nickel et al., 2011), DistMult (Yang et al.,
2015), TuckER (Balazevic et al., 2019) and ComplEx (Trouillon et al., 2016) cannot capture relation
hierarchies in a faithful way. Gutiérrez-Basulto & Schockaert (2018) studied the expressivity of
models where regions can be represented using arbitrary convex polytopes, finding that arbitrary
sets of closed path rules can be faithfully captured by such representations. However, learning
arbitrary polytopes is not feasible in practice for high-dimensional spaces, hence more recent works
has focused on finding regions that are easier to learn while still retaining some of the theoretical
advantages, such as Cartesian products of boxes (Abboud et al., 2020), cones (Zhang et al., 2021;
Leemhuis et al., 2022), parallelograms (Pavlovic & Sallinger, 2023) and octagons (Charpenay &
Schockaert, 2024). However, all these models are significantly more limited in the kinds of rules
that they can capture. For instance, while the use of parallelograms and octagons makes it possible
to capture some closed path rules, in practice we want to capture sets of such rules. This is only
known to be possible under rather restrictive conditions (see Section 3).

Inductive KG completion Standard benchmarks for KG completion only test the reasoning abil-
ities of models to a limited extent. For instance, BoxE (Abboud et al., 2020) achieves strong re-
sults on these benchmarks, despite provably being incapable of modelling simple rules such as
r1(X,Y ) ∧ r2(Y, Z) → r3(X,Z). In our experiments, we will therefore focus on the problem
of inductive KG completion (Teru et al., 2020). In the inductive setting, we need to predict links
between entities that are different from those that were seen during training. To perform this task,
models need to learn semantic dependencies between the relations, and then exploit this knowledge
when making predictions. This can be achieved in different ways. A natural strategy is to learn rules
from the training KG, either explicitly using models such as AnyBURL (Meilicke et al., 2019) and
RNNLogic (Qu et al., 2021) or implicitly using differentiable rule learners such as Neural-LP (Yang
et al., 2017), DRUM (Sadeghian et al., 2019) and NCRL (Cheng et al., 2023). In practice, better
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results have been obtained using GNNs. For instance, some approaches (Teru et al., 2020) reduce
the problem of link prediction to a graph classification problem. They first construct a subgraph
containing paths connecting the head entity with some candidate tail entity, and then use a GNN to
predict a score from this subgraph. Such approaches suffer from limited scalability, as answering a
link prediction query requires constructing and processing such a subgraph for each candidate tail
entity. NBFNet (Zhu et al., 2021) alleviates this limitation, by using a single GNN that processes
the entire graph. The resulting node embeddings can then be used to score the different candidate
tail entities. However, the node embeddings are query-specific, meaning that this model still re-
quires a new forward pass of the GNN for each query, which is considerably less efficient than using
KG embeddings. While we use a GNN for computing entity embeddings, once these embeddings
have been learned, we can use them to answer arbitrary link prediction queries. RESHUFFLE is thus
considerably more efficient than the aforementioned GNN-based models for inductive KG comple-
tion. ReFactor GNN (Chen et al., 2022) also uses a GNN to learn entity embeddings, by simulating
the training dynamic of traditional KG embedding methods such as TransE (Bordes et al., 2013).
However, their method has the disadvantage that all embeddings have to be recomputed when new
triples are added to the KG. Moreover, their model inherits the limitations of traditional embedding
models when it comes to faithfully modelling rules. Conceptually, our method has more in common
with differentiable rule learning methods than with subgraph classification strategies. Indeed, each
layer of the GNN updates the entity embeddings by essentially simulating the application of rules.
Moreover, our model can simulate the deductive chaining of rules, which makes it fundamentally
different from Neural-LP and DRUM, which focus on one-off rule application. Finally, while we
focus on methods that learn by analysing the structure of a given KG, in some domains it is also
possible to exploit prior knowledge, for instance by leveraging LLMs (Zhu et al., 2024).

3 PROBLEM SETTING

Let R be a set of relations, E a set of entities, and G ⊆ E × R × E a knowledge graph. Similar
to standard KG embedding models, our aim is to learn a vector e ∈ Rd for every entity e ∈ E
and a scoring function sr for every relation r ∈ R such that sr(e, f) reflects the plausibility of
the triple (e, r, f). In region-based models, this scoring function is defined in terms of a geometric
region Xr ⊆ Rd. Specifically, the triple (e, r, f) is then considered to be captured by the embedding
iff e ⊕ f ∈ Xr, where we write e ⊕ f to denote vector concatenation. The scoring function sr
then reflects how close e⊕ f is to the region Xr (which is formalised in different ways by different
models). A key advantage of region-based models is that they offer a mechanism for modelling rules.
Let us write η to denote a given region-based embedding, i.e. η(e) ∈ Rd denotes the embedding of
the entity e ∈ E and η(r) ⊆ R2d denotes the region representing the relation r ∈ R. Similar to
existing (differentiable) rule-based methods for KG completion (Yang et al., 2017; Meilicke et al.,
2019; Sadeghian et al., 2019; Qu et al., 2021; Cheng et al., 2023), we focus on so-called closed path
rules, which are rules ρ of the following form:

r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1) (1)

We refer to r1(X1, X2)∧r2(X2, X3)∧...∧rp(Xp, Xp+1) as the body of the rule and to r(X1, Xp+1)
as the head. We say that η captures this rule if for all vectors x1, ...,xp+1 ∈ Rn we have:

(x1 ⊕ x2 ∈ η(r1)) ∧ .... ∧ (xp ⊕ xp+1 ∈ η(rp)) ⇒ (x1 ⊕ xp+1 ∈ η(r)) (2)

Apart from their practical significance, our focus on closed path rules is also motivated by the
observation that existing region-based models have particular limitations when it comes to cap-
turing this kind of rules. Some approaches, such as BoxE (Abboud et al., 2020) are not capable
of capturing such rules at all. More recent approaches (Pavlovic & Sallinger, 2023; Charpenay
& Schockaert, 2024) are capable of capturing closed path rules, but with significant limitations.
Specifically, given a set of closed path rules P , we ideally want an embedding η that captures
every rule in P while not capturing any rules that are not entailed by P . Charpenay & Schock-
aert (2024) showed this to be possible, provided that every non-trivial rule entailed from P is
a closed path rule in which r1, ..., rp, r are all distinct relations. For instance, rules of the form
r1(X1, X2)∧ r1(X2, X3) → r(X1, X3) and r1(X1, X2)∧ r2(X2, X3) → r1(X1, X3) were not al-
lowed in their construction. Similarly, they cannot capture rule bases with cyclic dependencies such
as P = {r1(X1, X2) ∧ r2(X2, X3) → r3(X1, X3), r3(X1, X2) ∧ r4(X2, X3) → r1(X1, X3)}.
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In the following, we write P ∪ G |= (e, r, f) to denote that the triple (e, r, f) can be entailed from
the rule base P and the knowledge graph G. More precisely, we have P ∪ G |= (e, r, f) iff either
(e, r, f) ∈ G or P contains a rule of the form (1) such that P∪G |= (e, r1, e2), P∪G |= (e2, r2, e3),
..., P ∪ G |= (ep, rp, f) for some entities e2, ..., ep. We furthermore write P |= ρ for a rule ρ of
the form (1) to denote that P entails ρ w.r.t. the standard notion of entailment from propositional
logic (when interpreting rules in terms of material implication). Note that while we consider both
a knowledge graph G and a rule base P in our analysis, in practice only the knowledge graph G is
given. We study whether our model is capable of capturing rule bases because this is a necessary
condition to allow it to learn semantic dependencies in the form of rules.

4 MODELING RELATIONS USING ORDERING CONSTRAINTS

Our aim is to introduce a knowledge graph embedding model which is more general than existing
coordinate-wise region-based embeddings, but which remains simple enough to make the represen-
tations learnable in practice. The central idea is to rely on ordering constraints. Specifically, we
model each relation r using a region Xr of the following form:

Xr = {(e1, ..., ed, f1, ..., fd) | ∀i ∈ Ir . eσr(i) ≤ fi} (3)

where the representation of a region r is parameterised by a set of coordinates Ir ⊆ {1, ..., d} and
a mapping σr : Ir → {1, ..., d}. We thus need a maximum of 2d parameters to completely specify
the embedding of a given relation. Note that in the special case where Ir = ∅, we have Xr = Rd.
Example 1. Let e = (0, 0, 0), f = (0, 0, 1) and g = (2, 2, 0) be the embeddings of entities e, f, g.
Let the relations r1, r2, r3 be represented as follows: Ir1 = {3}, Ir2 = {1, 2}, Ir3 = {1}, σr1(3) =
2, σr2(1) = σr2(2) = 3 and σr3(1) = 2. Then we find that e ⊕ f ∈ Xr1 , meaning that the triple
(e, r1, f) is captured. Indeed, for e⊕f ∈ Xr1 to hold, we need eσr1 (3)

= e2 ≤ f3, which is satisfied.
We similarly find that (f, r2, g) is captured, because fσr2 (1)

= f3 ≤ g1 and fσr2 (2)
= f3 ≤ g2.

The following example illustrates how the use of ordering constraints allows us to capture rules.
Example 2. Consider a rule of the form r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z). This rule is captured
by an embedding of the form (3) if for each i ∈ Ir3 we have that i ∈ Ir2 , σr2(i) ∈ Ir1 and
σr1(σr2(i)) = σr3(i). For instance, the relations r1, r2, r3 from Example 1 satisfy these conditions.
In general, if these conditions are satisfied and we have (e, r1, f) and (f, r2, g) in G, then for each
i ∈ Ir3 we have: eσr1

(σr2
(i)) ≤ fσr2

(i) ≤ gi. Since we assumed σr1(σr2(i)) = σr3(i) it follows that
eσr3

(i) ≤ gi for every i ∈ Ir and thus that the embedding captures the triple (e, r3, f).

We will come back to the analysis of how rules can be modelled using ordering constraints in the next
section. We now turn our focus to how (a differentiable approximation of) the ordering constraints
can be learned. Note that we can characterise Xr as follows:

Xr = {e⊕ f | max(Are, f) = f} (4)

where the maximum is applied component-wise and the matrix Ar ∈ Rd×d is constrained such that
(i) all components are either 0 or 1 and (ii) at most one component in each row is non-zero. The
format of (4) suggests how entity embeddings in our framework can be learned using a GNN. A
practical advantage of using a GNN for this purpose is that we can use our model for inductive KG
completion. As we will see in the next section, the use of a GNN also has an important theoretical
advantage, as it allows us to capture bounded reasoning with arbitrary sets of closed path rules.

Learning embeddings with GNNs Let us write e(l) ∈ Rd for the representation of entity e in
layer l of the GNN. The embeddings e(0) are initialised randomly, such that (i) all coordinates are
non-negative, (ii) the coordinates of different entity embeddings are sampled independently, and (iii)
there are at least two distinct values that have a non-negative probability of being sampled for each
coordinate. Starting from (4), we naturally end up with the following message-passing GNN:

f (l+1) = max
(
{f (l)} ∪ {Are

(l) | (e, r, f) ∈ G}
)

(5)

However, because the model relies on randomly initialised entity embeddings, the dimensionality of
the entity embeddings needs to be sufficiently high. At the same time, the number of parameters that
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have to be learned for each relation should be sufficiently low to prevent overfitting. For this reason,
we decouple the number of parameters from the dimensionality of the embeddings. Specifically, we
learn matrices Ar of the following form:

Ar = Br ⊗ Ik (6)

where we write ⊗ for the Kronecker product, Ik is the k-dimensional identity matrix and Br is an
ℓ× ℓ matrix, with d = kℓ, where the rows of Br are constrained similarly as those of Ar, i.e. each
row is either a one-hot vector or a 0-vector. To make the computation of the GNN updates more
efficient, we represent each entity using a matrix Z

(l)
e ∈ Rℓ×k and compute the updates as follows:

Z
(l+1)
f = max

(
{Z(l)

f } ∪ {BrZ
(l)
e | (e, r, f) ∈ G}

)
(7)

We will refer to this model as RESHUFFLE. Note that a triple (e, r, f) is captured at layer l if:

BrZ
(l)
e ⪯ Z

(l)
f

where X ⪯ Y denotes that max(X,Y) = Y. A rule of the form (1) is satisfied if:

BrpBrp−1 · · ·Br1 ⪯ Br (8)

In practice, we learn a soft approximation of the matrices Br. Specifically, to learn the matrix Br, we
choose each row i as the first ℓ coordinates of a vector softmax(bri,1, ..., b

r
i,ℓ+1), where bri,1, ..., b

r
i,ℓ+1

are learnable parameters. Note that we need ℓ+1 parameters to allow for the possibility of some rows
to be all 0s, which we empirically found to be important. The number of parameters per relation is
thus quadratic in ℓ. However, due to the use of the softmax operation, these representations can still
be learned effectively (Lavoie et al., 2023). We experimented with a number of further strategies for
imposing sparsity, but were not able to outperform the basic softmax formulation.

5 CONSTRUCTING GNNS FROM RULE GRAPHS

In equation (8) we already showed how a given closed path rule can be captured in RESHUFFLE.
However, our main question of interest is whether it is possible to faithfully capture a set of closed
path rules P . More precisely, in this paper we study the following question: can parameters be found
for the matrices Br such that all rules entailed by P are captured, and only those rules. Rather than
constructing the matrices Br directly, we first introduce the notion of a rule graph, which will serve
as a convenient abstraction for studying this problem. We then explain how we can construct the
matrices Br from a given rule graph. Throughout this paper, we will assume that G contains the
triple (e, eq, e) for every e ∈ E , with eq a relation which does not appear in the rule base P . This
assumption corresponds to the common practice of adding self-loops GNN models.

Rule graphs We associate with the rule base P a labelled multi-graph H, i.e. a set of triples
(n1, r, n2). Note that this graph is formally equivalent to a knowledge graph, but the nodes in
this case do not correspond to entities. Rather, as we will see, they correspond to the different
rows/columns of the matrices Br. A path in H from n1 to np+1 is a sequence of triples of the
form (n1, r1, n2), (n2, r2, n3), ..., (np, rp, np+1). The type of this path is given by the sequence of
relations r1; r2; ...; rp. The eq-reduced type of the path is obtained by removing all occurrences eq
in r1; r2; ...; rp. For instance, for a path of type r1; eq; eq; r2; eq, the eq-reduced type is r1; r2.
Definition 1. A rule graph H for a given rule base P is a labelled multi-graph, where the labels are
taken from R, such that the following properties are satisfied:

(R1) For every relation r ∈ R, there is some edge in H labelled with r.

(R2) For every node n in H and every r ∈ R, it holds that n has at most one incoming r-edge.

(R3) Suppose there is an r-edge in H from node n1 to node n2. Suppose furthermore that P |=
r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1). Then there is a path in
H from n1 to n2 whose eq-reduced type is r1; ...; rp.

(R4) Suppose for every two nodes connected by an r-edge, there is a path connecting these nodes
whose eq-reduced type belongs to {(r11; ...; r1p1), ..., (rq1; ...; rqpq )}. Then there is some
i ∈ {1, ..., q} such that that P |= ri1(X1, X2) ∧ ... ∧ ripi(Xpi , Xpi+1) → r(X1, Xpi+1).

5
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n1

n2

n3

n4

n5

r3

r1

r2 r4

r5

eq

(a) Rule graph for P1.

n1 n2

n3

n4
r1

r2
r3

r4
eq

(b) Rule graph for P2.

Figure 1: Rule graphs for the rule bases from Example 3.

This definition reflects the fact that a rule is captured when the ordering constraints associated with
its body entail the ordering constraints associated with its head, as was illustrated in Example 2.
Specifically, this requirement is captured by condition (R3). Condition (R4) is needed to ensure that
only the rules in P are captured. Conditions (R1) and (R2) are needed because, in the construction
we consider below, the nodes of the rule graph will correspond to the rows of the matrices Br.
Condition (R1) ensures that Br contains at least one non-zero component for each relation r, while
(R2) ensures that each row of Br has at most one non-zero component.

Example 3. Let P1 contain the following rules:

r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z)

r4(X,Y ) ∧ r5(Y,Z) → r2(X,Z)

A corresponding rule graph is shown in Figure 1a. Next, we illustrate how rule graphs can some-
times be constructed for rule bases with cyclic dependencies. Let P2 contain the following rules:

r2(X,Y ) ∧ r3(Y,Z) → r1(Y, Z)

r1(X,Y ) ∧ r4(Y,Z) → r2(X,Z)

A corresponding rule graph is shown in Figure 1b.

Constructing GNNs Given a rule graph H, we define the corresponding parameters of the GNN
as follows. Specifically, we need to define the matrix Br for every r. Each node from the rule graph
is associated with one row/column of Br. Let n1, ..., nℓ be an enumeration of the nodes in the rule
graph. The corresponding matrix Br = (bij) is defined as:

bij =

{
1 if H has an r-edge from nj to ni

0 otherwise
(9)

Note that because of condition (R2), there will be at most one non-zero element in each row of Br,
in accordance with the assumptions that we made in Section 4.

The following result shows that the constructed GNN indeed captures all the rules from P . Specif-
ically, we show that the embeddings which are learned by the GNN (upon convergence) capture all
triples that are entailed by P ∪ G. Note that, thanks to the use of the maximum in (7), the GNN
always converges after a finite number of iterations.

Proposition 1. Let P be a rule base and G a knowledge graph. Suppose P∪G |= (a, r, b). Let H be
a rule graph for P and let Z(l)

e be the entity representations that are learned by the corresponding
RESHUFFLE model, as defined in (9). Assume Z(m)

e = Z
(m+1)
e for every entity e (m ∈ N). It holds

that BrZ
(m)
a ⪯ Z

(m)
b .

We also need to show that the GNN does not capture rules which are not entailed by P . However,
for any triple (e, r, f) there is always a chance that it is captured by the model, even if P ∪ G ̸|=
(e, r, f), due to the fact that the entity embeddings are initialised randomly. However, by choosing
the dimensionality of the entity embeddings to be sufficiently large, we can make the probability of
this happening arbitrarily small. As before, we write ℓ to denote the number of rows in Ze and k
for the number of columns. Note that the value of k does not affect the number of parameters of the
model, since the size of the matrices Br only depends on ℓ and the entity embeddings are randomly
initialised. In practice, we can thus simply choose k to be sufficiently large.

6
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Proposition 2. Let P be a rule base and G a knowledge graph. Let H be a rule graph for P and
let Z(l)

e be the entity representations that are learned by the corresponding RESHUFFLE model, as
defined in (9). For any ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for any m ∈ N and
(a, r, b) ∈ E ×R× E such that P ∪ G ̸|= (a, r, b), we have

Pr[BrZ
(m)
a ⪯ Z

(m)
b ] ≤ ε

6 CONSTRUCTING RULE GRAPHS

We now return to the central question of this paper: given a rule base P , is it possible to construct a
RESHUFFLE model which captures the rules entailed by P and only those rules? Thanks to Propo-
sitions 1 and 2 we know that this is the case when a rule graph for P exists. The key question thus
becomes whether it is always possible to construct such a rule graph. As the following result shows,
if there are no cyclic dependencies in P , a rule graph always exits.

Proposition 3. Let P be a rule base. Assume that we can rank the relations in R as r1, ..., r|R|,
such that for every rule in P with ri in the body and rj in the head, it holds that i < j. There exists
a rule graph for P .

It follows in particular that the class of rule bases that can be captured with RESHUFFLE models is
strictly larger than the class of rule bases that has been considered in previous work (Charpenay &
Schockaert, 2024). Unfortunately, it turns out that there exist rule bases with cyclic dependencies
for which no valid rule graph can be found. This is illustrated in the next example.

Example 4. Let P contain the following rule:

r1(X,Y ) ∧ r2(Y,Z) ∧ r1(Z,U) → r2(X,U)

To see why there is no rule graph for P , consider the following knowledge graph G:

G={(x1, r1, x2), (x2, r1, x3), ..., (xl−1, r1, rl), (xl, r2, xl+1), (xl+1, r1, xl+2), ..., (xk, r1, xk+1)}

We have that P ∪ G |= (x1, r2, xk+1) only if the number of repetitions of r1 at the start of the
sequence matches the number of repetitions at the end, but rule graphs cannot encode this.

The argument from the previous example can be formalised as follows. Let P be a set of closed
path rules. Let R1 be the set of relations from R that appear in the head of some rule in P . For any
r ∈ R1, we can consider a context-free grammar with two types of production rules:

• For each rule of the form (1), there is a production rule r ⇒ r1r2...rp.

• For each r ∈ R1, there is a production rule r ⇒ r.

The elements of (R\R1)∪{r | r ∈ R1} are treated as terminal symbols, those in R1 as non-terminal
symbols, and r is the starting symbol. Let us write Lr for the corresponding language.

Proposition 4. Let P be a set of closed path rules and suppose that there exists a rule graph H
for P . Let R1 be the set of relations that appear in the head of some rule in P . It holds that the
language Lr is regular for every r ∈ R1.

This result shows that we cannot capture arbitrary rule bases using rule graphs. For instance, for the
rule base from Example 4, we have Lr2 = {r(l)1 r2r

(l)
1 | l ∈ N \ {0}}, where we write x(l) for the

string that consists of l repetitions of x. It is well-known that the language Lr2 is not regular, hence
it follows from Proposition 4 that no rule graph exists for this rule base.

Following the negative result that arises from Proposition 4, we now establish two important positive
results. First, in Section 6.1, inspired by regular grammars, we introduce a special class of rule bases
with cyclic dependencies for which a rule graph is guaranteed to exist. Second, in Section 6.2, we
focus on the practically important setting of bounded inference: since GNNs use a fixed number of
layers in practice, what mostly matters is what can be derived in a bounded number of steps. It turns
out that if we only care about such inferences, we can capture arbitrary sets of closed path rules.
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6.1 LEFT-REGULAR RULE BASES

To show that many rule bases with cyclic dependencies can still be faithfully modelled, we consider
the following notion of a left-regular rule base, inspired by left-regular grammars.
Definition 2. Let P be a rule base. Let R1 be the set of relations that appear in the head of a rule
from P . We call P left-regular if every rule is of the following form:

r1(X,Y ) ∧ r2(Y, Z) → r3(X,Z) (10)
such that r2 /∈ R1.

While Definition 2 only considers rules with two relations in the body, rules with more than two
atoms can straightforwardly be simulated by introducing fresh relations. The following result shows
that left-regular rule bases can always be faithfully captured by a RESHUFFLE model.
Proposition 5. For any left-regular set of closed path rules P , there exists a rule graph for P .

6.2 BOUNDED INFERENCE

In practice, the GNN can only carry out a finite number of inference steps. Rather than requiring that
the resulting embeddings capture all triples that can be inferred from P ∪ G, it is natural to merely
require that the result captures all triples that can be inferred using a bounded number of inference
steps. We know from Proposition 4 that it is not always possible to construct a rule graph for a given
rule base P . To address this, we now weaken the notion of a rule graph, aiming to capture reasoning
up to a fixed number of inference steps. In the following, we will assume that P only contains rules
with two relations in the body, i.e. rules such as the one in (4) (but without imposing the requirement
that r2 /∈ R1). Note that we can assume this w.l.o.g. as any set of closed path rules can be converted
in such a format by introducing fresh relations.

Let us write P ∪G |=m (e, r, f) to denote that (e, r, f) can be derived from P ∪G in m steps. More
precisely, we have P∪G |=0 (e, r, f) iff (e, r, f) ∈ G. Furthermore, we have P∪G |=m (e, r, f), for
m > 0, iff P ∪G |=m−1 (e, r, f) or there is a rule r1(X1, X2)∧ r2(X2, X3) → r(X1, X3) in P and
an entity g ∈ E such that P ∪G |=m1 (e, r1, g) and P ∪G |=m2 (g, r2, f), with m = m1 +m2 +1.
Definition 3. Let m ∈ N. We call H an m-bounded rule graph for P if H satisfies conditions
(R1)–(R3) as well as the following weakening of (R4):

(R4m) Suppose for every two nodes connected by an r-edge, there is a path connecting these
two nodes whose eq-reduced type belongs to {(r11; ...; r1p1

), ..., (rq1; ...; rqpq
)}, with

p1, ..., pq ≤ m+ 1. Then there is some i ∈ {1, ..., q} such that that P |=m ri1(X1, X2) ∧
... ∧ ripi

(Xpi
, Xpi+1

) → r(X1, Xpi+1
).

Given an m-bounded rule graph, we can construct a corresponding GNN in the same way as in
Section 5. Moreover, Proposition 1 remains valid for m-bounded rule graphs, as its proof does not
depend on (R4). Proposition 2 can be weakened as follows.
Proposition 6. Let P be a rule base and G a knowledge graph. Let H be an m-bounded rule graph
for P and let Z(l)

e be the entity representations that are learned by the corresponding RESHUFFLE
model, as defined in (9). For any ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for any
i ≤ m+ 1 and (a, r, b) ∈ E ×R× E such that P ∪ G ̸|=m (a, r, b), we have

Pr[BrZ
(i)
a ⪯ Z

(i)
b ] ≤ ε

Proposition 7. For any set of closed path rules P , there exists an m-bounded rule graph for P .

7 EXPERIMENTAL RESULTS

Thus far, we have shown that RESHUFFLE is capable of capturing bounded reasoning for arbitrary
sets of closed path rules, as well as complete reasoning for several important special cases. We
now complement this theoretical analysis with an empirical evaluation, to show that suitable model
parameters can be effectively learned in practice, and to compare the performance of RESHUFFLE
with existing differentiable rule learning strategies. For this evaluation, we focus on the task of
inductive KG completion, as the need to capture reasoning patterns is intuitively more important for
this setting compared to the traditional (i.e. transductive) setting.
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Table 1: Hits@10 for 50 negative samples on inductive KGC split by method type (GNN-based vs.
rule-based vs. differentiable rule-based).

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

G
N

N CoMPILE 0.676 0.829 0.846 0.874 0.836 0.798 0.606 0.754 0.583 0.938 0.927 0.751
GraIL 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734 0.595 0.933 0.914 0.732
NBFNet 0.845 0.949 0.946 0.947 0.946 0.897 0.904 0.889 0.644 0.953 0.967 0.928

R
ul

e RuleN 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716 0.535 0.818 0.773 0.614
AnyBURL 0.604 0.823 0.847 0.849 0.867 0.828 0.656 0.796 0.683 0.835 0.798 0.652

D
iff

-R DRUM 0.529 0.587 0.529 0.559 0.744 0.689 0.462 0.671 0.194 0.786 0.827 0.806
Neural-LP 0.529 0.589 0.529 0.559 0.744 0.689 0.462 0.671 0.408 0.787 0.827 0.806
RESHUFFLE 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812

Table 2: Hits@10 for 50 negative samples on inductive KGC for each ablation of RESHUFFLE.

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

RESHUFFLE2 0.304 0.569 0.385 0.916 0.293 0.309 0.155 0.270 0.488 0.558 0.334 0.370
RESHUFFLEnL 0.744 0.890 0.903 0.917 0.698 0.685 0.618 0.682 0.627 0.738 0.886 0.815
RESHUFFLE 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812

Datasets We evaluate RESHUFFLE on the three standard benchmarks for inductive knowledge
graph completion (KGC) that were derived by Teru et al. (2020) from three datasets: FB15k-237,
WN18RR, and NELL-995. Each of these inductive benchmarks contains four different dataset vari-
ants, named v1 to v4, and each of these variants consists of two graphs, a training and a testing graph,
which are sampled from the original dataset as follows. The training graph GTrain was obtained by
randomly sampling different numbers of entities and selecting their k-hop neighbourhoods. Next,
to construct a disjoint testing graph GTest, the entities of GTrain were removed from the initial graph,
and the same sampling procedure was repeated. Each of these graphs was split into a train set
(80%), validation set (10%), and test set (10%). Thus, the three inductive benchmarks consist in
total of twelve datasets: FB15k-237 v1-4, WN18RR v1-4, and NELL-995 v1-4. Furthermore, each
of these datasets consists of six graphs: the train, validation, and test splits of GTrain and GTest. The
supplementary materials provide additional information about these benchmarks.

Experimental setup Following Teru et al. (2020), we train RESHUFFLE on the train split of GTrain,
tune our model’s hyper-parameters on the validation split of GTrain, and finally evaluate the best
model on the test split of GTest. As discussed by Anil et al. (2024), some approaches in the literature
have been evaluated in different ways, e.g. by tuning hyper-parameters on the validation split of
GTest, and their reported results are thus not directly comparable. To account for small performance
fluctuations, we repeat our experiments three times and report RESHUFFLE’s average performance.1
For the final evaluation, we select the hyper-parameter configuration with the highest Hits@10 score
on the validation split of GTrain. In accordance with Teru et al. (2020), we evaluate RESHUFFLE’s
test performance on 50 negatively sampled entities per triple of the test split of GTest and report the
Hits@10 scores. We list further details about the experimental setup in the supplementary materials.
To facilitate RESHUFFLE’s reuse by our community, we will provide its source code in a public
GitHub repository upon acceptance of our paper.

Baselines As the analysis in Sections 5 and 6 reveals, our GNN model acts as a kind of differen-
tiable rule base. We therefore compare RESHUFFLE to existing approaches for differentiable rule
learning: Neural-LP (Yang et al., 2017) and DRUM (Sadeghian et al., 2019). We also compare our
method to two classical rule learning methods: RuleN (Meilicke et al., 2018) and AnyBURL (Meil-
icke et al., 2019). Finally, we include a comparison with GNN-based approaches: CoMPILE (Mai
et al., 2021), GraIL (Teru et al., 2020), and NBFNet (Zhu et al., 2021).

1Results for all seeds and the resulting standard deviations are provided in the supplementary materials.
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Results Table 1 reports the performance of RESHUFFLE on the inductive benchmarks. The results
of RESHUFFLE were obtained by us; AnyBURL and NBFNet results are from Anil et al. (2024);
Neural-LP, DRUM, RuleN, and GraIL results are from Teru et al. (2020); and CoMPILE results are
from Mai et al. (2021). Table 1 reveals that RESHUFFLE consistently outperforms the differentiable
rule learners DRUM and Neural-LP, often by a significant margin (with WN18RR-v1 the only ex-
ception). Compared to the traditional rule learners, RESHUFFLE performs clearly better on FB15k-
237 and NELL-995 (apart from v1) but underperforms on the WN18RR benchmarks. Anil et al.
(2024) found that the kind of rules which are needed for WN18RR are much noisier compared to
those than those which are needed for FB15k-237 and NELL-995. Our use of ordering constraints
may be less suitable in such cases. Finally, compared to the GNN-based methods, RESHUFFLE
outperforms CoMPILE and GraIL on FB15k-237 and NELL-995 v1 and v4 while again (mostly)
underperforming on WN18RR. RESHUFFLE consistently underperforms the state-of-the-art method
NBFNet. Recall, however, that our approach is significantly more efficient than such GNN-based
approaches, as RESHUFFLE can score the plausibility of a given triple almost instantaneously. In
contrast, NBFNet (Zhu et al., 2021) requires one forward pass of the GNN for every query, whereas
methods such as GraIL (Teru et al., 2020) even need one forward pass for each candidate link for
every query. Moreover, thanks to the use of max-pooling in the GNN, our embeddings can straight-
forwardly be updated when new knowledge becomes available. Finally, as the analysis by Anil et al.
(2024) revealed, the performance of rule based methods can be significantly improved by combining
them with other methods. The main issue is that for many queries, no strong evidence is available
for any of the answer candidates, which rule based methods struggle with. To outperform methods
such as NBFNet, rule based approach thus need to be combined with some kind of fallback model.
A detailed analysis of this is outside the scope of this work.

Finally, we empirically investigate RESHUFFLE’s components. We consider two variants for this
ablation study, namely: (i) RESHUFFLEnL, which does not add a self-loop relation to the KG (i.e.
triples of the form (e, eq, e)); and (ii) RESHUFFLE2, which allows for more general Br matrices. In
particular, different from RESHUFFLE, which applies the softmax function on the rows of Br (see
Section 4), RESHUFFLE2 squares the Br matrices component-wise, thereby allowing them to con-
tain arbitrary positive values. For a fair comparison, we train each of RESHUFFLE’s versions with
the same hyper-parameter values, experimental setup, and evaluation protocol (see supplementary
materials). Table 2 depicts the outcome of this study. It reveals that RESHUFFLE performs compara-
ble to or better than RESHUFFLEnL and dramatically outperforms RESHUFFLE2 on all benchmarks.
The similar performance of RESHUFFLE and RESHUFFLEnL on most datasets suggests that the
self-loop relation only matters in specific cases, which may not occur frequently in some datasets.
The poor performance of RESHUFFLE2 is as expected since allowing arbitrary positive parameters
makes overfitting the training data more likely.

8 CONCLUSIONS

The region-based view of KG embeddings makes it possible to formally analyse which kinds of
inference patterns are captured by a given embedding. An important question, which was left unan-
swered by previous work, is whether a region-based embedding model can be found which is capable
of capturing arbitrary sets of closed path rules, while still ensuring that embeddings can be learned
effectively in practice. In this context, we proposed a novel approach based on ordering constraints
between reshuffled entity embeddings. This model, called RESHUFFLE, was chosen because it al-
lows us to escape the limitations of coordinate-wise approaches while otherwise remaining as simple
as possible. We found that RESHUFFLE has several interesting properties. Most significantly, we
showed that bounded reasoning with arbitrary sets of closed path rules can be faithfully captured.
We also revealed two special cases where exact reasoning is possible, which go significantly beyond
what is (known to be) possible with existing region based models. From a practical point of view,
our GNN formulation enables an efficient approach to inductive KG completion, where the result-
ing entity embeddings can moreover be efficiently updated as new knowledge is added to the KG.
Empirically, we found our approach to outperform existing differentiable rule learners, while under-
performing the state-of-the-art more generally. This latter result reflects the fact that (differentiable)
rule based methods are less suitable when we need to weigh different pieces of weak evidence. In
such cases, when further evidence becomes available, we may want to revise earlier assumptions,
which is not possible with RESHUFFLE. Developing effective models that can provably simulate
non-monotonic (or probabilistic) reasoning thus remains as an important challenge for future work.
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A CONSTRUCTING GNNS FROM RULE GRAPHS

Let P be a set of closed path rules and let H be a corresponding rule graph, satisfying the conditions
(R1)–(R4). We also assume that a knowledge graph G is given. We show that the GNN, which
is constructed based on H, correctly simulates the rules from P . For the proofs, it will be more
convenient to characterise the GNN in terms of operations on the coordinates of entity embeddings.
Specifically, let Zi = {(i− 1)k+ 1, ..., (i− 1)k+ k} and let Nr ⊆ {n1, ..., nℓ} be the set of nodes
from the rule graph H which have an incoming edge labelled with r. We define:

Ir =
⋃

ni∈Nr

Zi

Let ni ∈ Nr and let (nj , ni) be the unique incoming edge with label r. Then we define (t ∈
{1, ..., k}):

σr((i− 1)k + t) = (j − 1)k + t

Now let us define:

µr(e1, ..., ed) = (e′1, ..., e
′
d)

where e′i = eσr(i) if i ∈ Ir and e′i = 0 otherwise. Let e(l) be the entity embedding corresponding to
the matrix Z

(l)
e . In other words, if we write zij for the components of Z(l)

e and ei for the components
of e(l), then we have zij = e(i−1)k+j . For a matrix X = (xij), let us write flatten(X) for the vector
that is obtained by concatenating the rows of X. In particular, flatten(Z(l)

e ) = e(l). The following
lemma reveals how the GNN constructed from the rule graph H can be characterised in terms of
entity embeddings.

Lemma 1. It holds that flatten(BrZ
(l)
e ) = µr(e

(l)).

Proof. Let us write flatten(BrZ
(l)
e ) = (x1, ..., xd), µr(e

(l)) = (y1, ..., yd) and e(l) = (e1, ..., ed).
Let i ∈ {1, ..., ℓ}. Let us first assume that ni does not have any incoming edges in H which are
labelled with r. In that case, row i of Br consists only of 0s and we have x(i−1)k+1 = ... =
x(i−1)k+k = 0. Similarly, we then also have (i − 1)k + j /∈ Ir for j ∈ {1, ..., k} and thus
y(i−1)k+1 = ... = y(i−1)k+k = 0. Now assume that there is an edge from nj to ni which is labelled
with r. Then we have that row i of Br is a one-hot vector with 1 at position j. Accordingly, we have
x(i−1)k+t = e(j−1)k+t for t ∈ {1, ..., k}. Accordingly we then have σr((i−1)k+ t) = (j−1)k+ t
and thus y(i−1)k+t = e(j−1)k+t.

For a sequence of relations r1, ..., rp, we define µr1;...;rp as follows. We define µr1;...;rp(x1, ..., xd)
= (y1, ..., yd), where (i ∈ {1, ..., ℓ}, t ∈ {1, ..., k}):

y(i−1)k+t =


x(j−1)k+t if there is an r1; ...; rp path

from nj to ni

0 otherwise
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Note that if there is an r1; ...; rk path arriving at node ni in the rule graph, it has to be unique, given
that each node has at most one incoming edge of a given type. In the following, we will also use
Ir1;...;rp , defined as follows:

Ir1;...;rp

= {(i− 1)k + t | there is an r1; ...; rp path ending in ni}

We have the following result.

Lemma 2. For r1, ..., rp ∈ R we have

µr1;...;rp(x1, ..., xd) = µrp(...µr1(x1, ..., xd)...)

Proof. It is sufficient to show

µr1;...;rp(x1, ..., xd) = µrp(µr1;...;rp−1(x1, ..., xd))

We have µr1;...;rp−1
(x1, ..., xd) = (y1, ..., yd), with

y(i−1)k+t =


x(j−1)k+t if there is an r1; ...; rp−1 path

from nj to ni

0 otherwise

We furthermore have µrp(y1, ..., yd) = (z1, ..., zd) with

z(i−1)k+t =


y(j−1)k+t if there is an rp-edge

from nj to ni

0 otherwise

Taking into account the definition of (y1, ..., yd), we have y(j−1)k+t ̸= 0 only if there is an
r1; ...; rp−1 path from some node nl to the node nj , in which case we have y(j−1)k+t = x(l−1)k+t.
In other words, we have:

z(i−1)k+t =


x(l−1)k+t if there is an r1; ...; rp−1 path

from nl to some nj and an
rp edge from nj to ni

0 otherwise

In other words, we have

z(i−1)k+t =


x(l−1)k+t if there is an r1; ...; rp path

from nl to ni

0 otherwise

We thus have (z1, ..., zd) = µr1;...;rp(x1, ..., xd).

We also have the following result.

Lemma 3. Suppose P |= r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1). There
exists paths of type r11; ...; r

1
q1 and r21; ...; r

2
q2 and ... and rl1; ...; r

l
ql

, all of whose eq-reduced type is
r1; ...; rp, such that for every embedding (x1, ..., xd) we have:

µr(x1, ..., xd) ≼
l

max
i=1

µri1;...;r
i
qi
(x1, ..., xd)

Proof. This follows immediately from the fact that whenever there is an r-edge between two nodes
n and n′, there must also be a path between these nodes whose eq-reduced type is r1; ...; rp, because
of condition (R3).

The following result shows that the GNN will correctly predict all triples that can be inferred from
G ∪ P .
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Proposition 8. Let P be a rule base and G a knowledge graph. Suppose P∪G |= (a, r, b). Let H be
a rule graph for P and let Z(l)

e be the entity representations that are learned by the corresponding
GNN. Assume Z

(m)
e = Z

(m+1)
e for every entity e (m ∈ N). It holds that BrZ

(m)
a ⪯ Z

(m)
b .

Proof. Because of Lemma 1, it is sufficient to show that µr(a
(m)) ⪯ b(m). If G contains the

triple (a, r, b) then the result is trivially satisfied. Otherwise, P ∪ G |= r(a, b) implies that
P |= r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1), for some r1, ..., rp, r ∈ R
such that G contains triples (a, r1, a2), (a2, r2, a3), ..., (ap, rp, b), for some a2, ..., ap ∈ E . Because
(a, r1, a2) ∈ G, by construction, it holds for each i ∈ N that:

µr1(a
(i)) ≼ a

(i+1)
2

Similarly, because (a2, r2, a3) ∈ G, we have µr2(a
(i+1)
2 ) ≼ a

(i+2)
3 and thus

µr2(µr1(a
(i))) ≼ µr2(a

(i+1)
2 ) ≼ a

(i+2)
3

In other words, we have
µr1;r2(a

(i)) ≼ a
(i+2)
3

Continuing in the same way, we find that

µr1;...;rp−1;rp(a
(i)) ≼ b(i+p)

Now consider a path of type r′1; ...; r
′
q whose eq-reduced type is r1; ...; rp. Then we have that G con-

tains triples of the form (a, r′1, b2), (b2, r2, b3), ..., (bp, r
′
q, b). Indeed, the only triples that need to be

considered in addition to the triples (a, r1, a2), (a2, r2, a3), ..., (ap, rp, b) are of the form (ai, eq, ai),
which we have assumed to belong to G for every ai ∈ E . For every path of type r′1; ...; r

′
q whose

eq-reduced type is r1; ...; rp, we thus find entirely similarly to before that

µr′1;...;r
′
q
(a(i)) ≼ b(i+p)

Because of Lemma 3, this implies
µr(a

(i)) ≼ b(i+p)

In particular, we have
µr(a

(m)) ≼ b(m+p)

and because of the assumption that the GNN has converged after m steps, we also have µr(a
(m)) ≼

b(m).

For e ∈ E , let pathsG(e) be the set of all paths in the knowledge graph G which end in e. For
a path π in pathsG(e), we write head(π) for the entity where the path starts and rels(π) for the
corresponding sequence of relations. For an entity e, we write embm(e) for its embedding in layer
m, i.e. embm(e) = e(m). The following observation follows immediately from the construction of
the GNN, together with Lemma 2.
Lemma 4. For any entity e ∈ E it holds that

e(m) ⪯ max
(
e(0), max

π∈pathsG(e)
µrels(π)

(
emb0(head(π))

))
We will also need the following technical lemma.
Lemma 5. Suppose P ∪ G ̸|= (a, r, b). Then there is some i ∈ {1, ..., ℓ} such that:

• Zi ⊆ Ir; and

• whenever π ∈ pathsG(b) with head(π) = a, it holds that Irels(π) ∩ Zi = ∅.

Proof. Let us write Zr = {i ∈ {1, ..., ℓ} |Zi ⊆ I1r }. Note that i ∈ Zr iff node ni in H has
an incoming r-edge. It thus follows from condition (R1) that Zr ̸= ∅. Suppose that for every
i ∈ Zr, there was some π ∈ pathsG(b) with head(π) = a such that Irels(π) ∩ Zi ̸= ∅. Let us write
X = {rels(π) |π ∈ pathsG(b), head(π) = a, Irels(π) ∩ Zi ̸= ∅}. We then have that for every r-edge
in H, there is a path τ connecting the same nodes, with rels(τ) ∈ X . From Condition (R4), it then
follows that P ∪ G |= (a, r, b), a contradiction.
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The following result shows that the GNN is unlikely to predict triples that cannot be inferred from
G ∪ P , as long as the embeddings are sufficiently high-dimensional.
Proposition 9. Let P be a rule base and G a knowledge graph. Let H be a rule graph for P and let
Z

(l)
e be the entity representations that are learned by the corresponding GNN. For any ε > 0, there

exists some k0 ∈ N such that, when k ≥ k0, for any m ∈ N and (a, r, b) ∈ E × R × E such that
P ∪ G ̸|= (a, r, b), we have

Pr[BrZ
(m)
a ⪯ Z

(m)
b ] ≤ ε

Proof. First, note that because of Lemma 1, what we need to show is equivalent to:

Pr[µr(a
(m)) ⪯ b(m)] ≤ ε

Let (a, b) ∈ E × E be such that P ∪ G ̸|= (a, r, b). From Lemma 5, we know that there is some
i ∈ {1, ..., ℓ} such that Zi ⊆ I1r and whenever π ∈ pathsG(b) with head(π) = a, it holds that
Irels(π) ∩ Zi = ∅. The following condition is clearly a necessary requirement for µr(a

(m)) ⪯ b(m):

∀j ∈ Zi . µr(a
(m)) ≼j b

(m)

where we write (x1, ..., xd) ≼j (y1, ..., yd) for xj ≤ yj . We need in particular also that:

∀j ∈ Zi . µr(a
(0)) ≼j b

(m)

Due to Lemma 4 this is equivalent to requiring that for every j ∈ Zi we have:

µr(a
(0))≼j max

(
b(0), max

π∈pathsG(b)
µrels(π)

(
emb0(head(π))

))
We can view the coordinates of the input embeddings as random variables. The latter condition is
thus equivalent to a condition of the following form:

∀j ∈ Zi . A
r
j ≤ max(Bj , X

1
j , ..., X

p
j )

where Ar
j is the random variable corresponding to the jth coordinate of µr(a

(0)), Bj is the jth

coordinate of b(0) and X1
j , ..., X

p
j are the random variables corresponding to the jth coordinate of

the vectors µrels(π)

(
emb0(head(π))). By construction, we have that the coordinates of different

entity embeddings are sampled independently and that there are at least two distinct values that have
a non-negative probability of being sampled for each coordinate. This means that there exists some
value λ > 0 such that Pr[Ar

j > Bj ] ≥ λ and Pr[Ar
j > Xt

j ] ≥ λ for each t ∈ {1, ..., p}. Moreover,
since we have that whenever π ∈ pathsG(b) with head(π) = a it holds that Irels(π) ∩ Zi = ∅, it
follows that the random variable Ar

j is not among Bj , X
1
j , ..., X

p
j . We thus have:

Pr[∀j ∈ Zi . A
r
j ≤ max(Bj , X

1
j , ..., X

p
j )]

≤
(
1− λp+1

)|Zi|

=
(
1− λp+1

)k
≤ e−kλp+1

The value of p is upper bounded by ℓ · |E|, with ℓ the number of nodes in the rule graph. By choosing
k sufficiently large, we can thus make this probability arbitrarily small. In particular:

e−kλp+1

≤ ε ⇔ k ≥ 1

λp+1
log

1

ε

B CONSTRUCTING RULE GRAPHS

B.1 PROOF OF PROPOSITION 3

Let P be a rule base which satisfies the conditions of Proposition 3, and let r1, ..., r|R| be the
corresponding ranking of the relations. We construct a rule graph H for P as follows.
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1. We add the node n0.

2. For each relation r ∈ R, we add a node nr, and we connect n0 to nr with an r-edge.

3. For i going from |R| to 1:

(a) For each rule rj1(X1, X2)∧ ...∧ rjq (Xq, Xq+1) → ri(X1, Xq+1) with ri in the head
and each ri edge between nodes n and n′ in H, we create fresh nodes n1, ..., nq and
add an rj1 -link from n to n1, an rj2 link from n1 to n2, ..., an rjq -link from nq to n′.

Clearly the process terminates after a finite number of steps, noting that the new edges that are
added for a rule rj1(X1, X2)∧ ...∧ rjq (Xq, Xq+1) → ri(X1, Xq+1) cannot be ri-edges, due to the
assumption that P is free from cyclic dependencies. We also trivially have that condition (R1) is
satisfied.

To see why (R2) is satisfied, first note that this is clearly the case after the first two steps have
been completed. In the third step, when processing a rule rj1(X1, X2) ∧ ... ∧ rjq (Xq, Xq+1) →
ri(X1, Xq+1) and an edge from n to n′, the only existing node where an incoming edge is added is
n′ (where the other edges end in a fresh node). However, by construction, n′ can only have incoming
rj-edges with j ≥ i whereas jq < i because of the assumption that P is free from cyclic dependen-
cies. The addition of the rjq -link from nq to n′ can thus not cause (R2) to become unsatisfied. It
follows that (R2) still holds after the third step of the construction algorithm is finished.

Finally, the fact that (R3) and (R4) are satisfied straightforwardly follows from the construction.

B.2 PROOF OF PROPOSITION 4

We write R1 for the set of relations that appear in the head of some rule from the considered rule
base, and R2 = R \R1 for the remaining relations.

Let α(ri) = ri if ri ∈ R2 and α(ri) = ri otherwise. We clearly have that α(r1)...α(rk) ∈ Lr iff P
entails the following rule:

r1(X1, X2) ∧ ... ∧ rk(Xk, Xk+1) → r(X1, Xk+1)

Since we have assumed that P has a rule graph, thanks to conditions (R3) and (R4), we can check
whether this rule is valid by checking whether for each edge labelled with r there is a path connecting
the same nodes whose eq-reduced type is r1; ...; rk. Let (ni, nj) be a an edge labelled with r. Then,
we can construct a finite state machine (FSM) from H by treating ni as the start node and nj as the
unique final node and interpreting eq edges as ε-transitions (i.e. corresponding to the empty string).
Clearly, this FSM will accept the string r1...rk if there is a path labelled with r1; ...; rk connecting ni

to nj . For each edge labelled with r, we can construct such an FSM. Let F1, ..., Fm be the languages
associated with these FSMs. By construction, Lr is the intersection of F1, ..., Fm. Since F1, ..., Fm

are regular, it follows that Lr is regular as well.

B.3 LEFT REGULAR RULE BASES

Given a left-regular rule base P , we construct the corresponding rule graph H as follows.

1. We add the node n0.

2. For each relation r ∈ R, we add a node nr, and we connect n0 to nr with an r-edge.

3. For each rule of the form (10), we add an r2-edge from nr1 to nr3 .

4. For each node n with multiple incoming r-edges for some r ∈ R, we do the following. Let
♯r be the number of incoming r-edges for node n. Let p = maxr∈R ♯r. We create fresh
nodes n1, ..., np−1 and add eq-edges from ni to ni−1 (i ∈ {1, ..., p− 1}), where we define
n0 = n. Let r ∈ R be such that ♯r > 1. Let n′

0, ..., n
′
q be the nodes with an r-link to n;

then we have q ≤ p − 1. For each i ∈ {1, ..., q} we replace the edge from n′
i to n by an

edge from n′
i to ni.

We now illustrate the construction process with an example.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

n0neq

nr2 nr1 nr3

nr4

n1

nr5

n2eq

r2
r1 r3

r4

r5

r2

r2

eq

r2

eq

Figure 2: Rule graph for Example 5.
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Figure 3: Rule graph for Example 6.

Example 5. Let P contain the following rules:

r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z)

r4(X,Y ) ∧ r2(Y,Z) → r3(X,Z)

r5(X,Y ) ∧ r2(Y,Z) → r3(X,Z)

The corresponding rule graph is depicted in Figure 2. The nodes n1 and n2 were introduced in
step 4 of the construction process. Before this step, there were r2-edges from nr4 to nr3 and from
nr5 to nr3 . The node nr3 thus had three incoming r2-edges, which violates condition (R2). This is
addressed through the use of eq edges in step 4.

Note that the rule graph may have loops, as illustrated next.
Example 6. Let P contain the following rule:

r1(X,Y ) ∧ r2(Y,Z) → r1(X,Z)

The corresponding rule graph is shown in Figure 3.

The proposed construction process clearly terminates after a finite number of steps. To prove Propo-
sition 5, we show that the proposed construction yields a valid rule graph for P , i.e. that the resulting
rule graph H satisfies (R1)–(R4).

The fact that (R1) is satisfied follows from the following lemma.
Lemma 6. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. For every r ∈ R, it holds that H contains an outgoing r-edge
from n0.

Proof. Let r ∈ R. The edge from n0 to nr is added in step 2 of the construction process. This edge
may be removed in step 4, but in that case, a new r-edge is added from n0 to a fresh node.

The fact that (R2) is satisfied follows immediately from the construction in step 4. We now move to
condition (R3).
Lemma 7. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. If P contains the rule r1(X1, X2)∧ r2(X2, X3) → r3(X1, X3),
then whenever two nodes n and n′ are connected in H by a path whose eq-reduced type is r3, there
is some node n′′ such that n and n′′ are connected by a path whose eq-reduced type is r1 and n′′

and n′ are connected by a path whose eq-reduced type is r2.
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Proof. The stated assertion clearly holds after step 3 of the construction method. Indeed, the only
r3-edge in H is from n0 to nr3 . Note in particular that no r3 edges can be added in step 3, given our
assumption that P is left-regular. Finally, it is also easy to see that this property remains satisfied
after step 4.

The next lemma shows that (R3) is satisfied.
Lemma 8. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. Suppose nodes n and n′ are connected with an edge of type r
and suppose P |= r1(X1, X2)∧ r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) → r(X1, Xp+1). Then there is a
path whose eq-reduced type is r1; ...; rp from n to n′.

Proof. Assume P |= r1(X1, X2)∧ r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) → r(X1, Xp+1). Let n and n′

be nodes connected by an edge of type r. We show the result by structural induction. First, suppose
p = 2. In this case, the considered rule is of the form r1(X1, X2)∧r2(X2, X3) → r(X1, X3). It then
follows from Lemma 7 that there is a path whose eq-reduced type is r1; r2 connecting n and n′. Let
us now consider the inductive case. If p > 3 then r1(X1, X2)∧ r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) →
r(X1, Xp+1) is derived from at least two rules in P (given that the rules in P were restricted to have
only two atoms in the body). The last step of the derivation of this rule is done by secting some rule
s1(X,Y ) ∧ s2(Y,Z) → r(X,Z) from P such that

P |= r1(X1, X2) ∧ ... ∧ ri−1(Xi−1, Xi) → s1(X1, Xi)

P |= ri(Xi, Xi+1) ∧ ... ∧ rp(Xp, Xp+1) → s2(Xi, Xp+1)

If there is a path from n to n′ whose eq-reduced type is r, we know from Lemma 7 that there must
be a path from n to n′′ with eq-reduced type s1-edge and a path from n′′ to n′ with eq-reduced type
s2, for some node n′′ in H. By induction, we furthermore know that there must then be a path with
eq-reduced type r1; ...; ri−1 from n to n′′ and a path with eq-reduced type ri; ...; rp from n′′ to n′.
Thus, we find that there must be a path with eq-reduced type r1; ...; rp from n to n′.

The fact that (R4) is satisfied follows from the next lemma.
Lemma 9. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. Suppose there is a path in H from n0 to nr whose eq-reduced
type is r1; ...; rp. Then it holds that P |= r1(X1, X2) ∧ ... ∧ rp(Xp, Xp1

) → r(X1, Xp+1).

Proof. The result clearly holds after step 2. We show that the result remains valid after each iteration
of step 3. Suppose in step 3 we add an r2-edge between nr1 and nr3 . This means that:

P |= r1(X,Y ) ∧ r2(Y, Z) → r3(X,X)

Let τ be a path from n0 to nr. If τ does not contain the new r2-edge, then the fact that the result
is valid for τ follows by induction. Now, suppose that τ contains the new r2 edge. Then τ is of the
form ri1 ; ...; ris ; r2; rj1 ; ...; rjt . By induction we have:

P |= ri1(X1, X2) ∧ ... ∧ ris(Xs, Xs+1) → r1(X1, Xs+1)

Clearly there is a path from n0 to nr3 with eq-reduced type r3. In particular, there is a path from n0

to nr3 with eq-reduced type r3; rj1 ; ...rjt . By induction, we thus have:

P |= r3(X0, X1) ∧ rj1(X1, X2) ∧ ...

∧ rjt(Xt, Xt1) → r(X0, Xt+1)

Together we find that the stated result is satisfied.

Finally, we need to show that the result remains satisfied after step 4. This is clearly the case, as this
step replaces edges of type r with paths of type r; eq; ...; eq. The eq-reduced types of the paths from
n0 to nr thus remain unchanged after this step.

Proposition 10. Let P be a left-regular set of closed path rules and let H be the graph obtained
using the proposed construction method. It holds that H satisfies (R1)–(R4).

Proof. The fact that (R1), (R3) and (R4) are satisfied follows immediately from Lemmas 6, 8 and 9.
The fact that (R2) is satisfied follows trivially from the construction.
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B.4 BOUNDED INFERENCE

B.4.1 PROOF OF PROPOSITION 6

Let pathsmG (b) be the set of all paths in G of length at most m which are ending in b.

Lemma 10. For any entity e ∈ E it holds that

e(m) ⪯ max
(
e(0), max

π∈pathsmG (e)
µrels(π)

(
emb0(head(π))

))
Proof. This follows immediately from the construction of the GNN.

Lemma 11. Let ℓ be the number of nodes in the given m-bounded rule graph. Suppose P ∪ G ̸|=m

(a, r, b). Then there is some i ∈ {1, ..., ℓ} such that:

• Zi ⊆ Ir; and

• whenever π ∈ pathsm+1
G (b) with head(π) = a, it holds that Irels(π) ∩ Zi = ∅.

Proof. This lemma is shown in exactly the same way as Lemma 5, simply replacing pathsG(b) by
pathsm+1

G (b) and replacing Condition (R4) by Condition (R4m).

Proposition 11. Let P be a rule base and G a knowledge graph. Let H be an m-bounded rule graph
for P and let Z(l)

e be the entity representations that are learned by the corresponding GNN. For any
ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for any i ≤ m+1 and (a, r, b) ∈ E×R×E
such that P ∪ G ̸|=m (a, r, b), we have

Pr[BrZ
(i)
a ⪯ Z

(i)
b ] ≤ ε

Proof. This result is shown in the same way as Proposition 2, by relying on Lemma 11 instead of
Lemma 5.

B.4.2 PROOF OF PROPOSITION 7

Given a set of closed path rules P we can construct an m-bounded rule graph as follows.

1. We add the node n0.

2. For each relation r ∈ R, we add a node nr, and we connect n0 to nr with an r-edge.

3. We repeat the following until convergence. Let r ∈ R and assume there is an r-edge from
n to n′. Let r1(X,Y )∧ r2(Y, Z) → r(X,Z) be a rule from P and suppose that there is no
r1; r2 path connecting n and n′. Suppose furthermore that the edge (n, n′) is on some path
from n0 to a node nr′ , with r′ ∈ R whose length is at most m. We add a fresh node n′′ to
the rule graph, an r1-edge from n to n′′, and an r2-edge from n′′ to n′.

4. For each r ∈ R and r-edge (n, n′) such that for some rule r1(X,Y )∧r2(Y, Z) → r(X,Z)
from P there is no r1; r2 path connecting n and n′, we do the following:

(a) We add a fresh node n′′, an r1-edge from n to n′′ and an r2-edge from n′′ to n′.
(b) We repeat the following until convergence. For each r′-edge from n to n′′ and each

rule r′1(X,Y ) ∧ r′2(Y, Z) → r′(X,Z) from P , we add an r′1 edge from n to n′′ and
an r′2-loop to n′′ (if no such edges/loops exist yet).

(c) We repeat the following until convergence. For each r′-edge from n′′ to n′ and each
rule r′1(X,Y )∧r′2(Y,Z) → r′(X,Z) from P , we add an r′1-loop to n′′ and an r′2-edge
from n′′ to n′ (if no such edges/loops exist yet).

(d) We repeat the following until convergence. For each r′-loop at n′′, and each rule
r′1(X,Y )∧ r′2(Y,Z) → r′(X,Z) from P , we add an r′1-loop and an r′2-loop to n′′ (if
no such loops exist yet).
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Figure 4: Rule graph for Example 7.
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5. For each node n with multiple incoming r-edges for one or more relations from R, we do
the following. Let ♯r be the number of incoming r-edges for node n. Let p = maxr∈R ♯r.
We create fresh nodes n1, ..., np−1 and add eq-edges from ni to ni−1 (i ∈ {1, ..., p − 1}),
where we define n0 = n. Let r ∈ R be such that ♯r > 1. Let n′

0, ..., n
′
q be the nodes with

an r-link to n; then we have q ≤ p − 1. For each i ∈ {1, ..., q} we replace the edge from
n′
i to n by an edge from n′

i to ni.

We illustrate the construction process with two examples.
Example 7. Let us consider the following set of rules:

r1(X,Y ) ∧ r2(Y, Z) → r3(X,Z)

r3(X,Y ) ∧ r1(Y, Z) → r2(X,Z)

The corresponding 1-bounded rule graph is shown in Fig. 4.
Example 8. Let us consider the following set of rules:

r1(X,Y ) ∧ r2(Y, Z) → r3(X,Z)

r4(X,Y ) ∧ r5(Y, Z) → r1(X,Z)

r4(X,Y ) ∧ r5(Y, Z) → r2(X,Z)

The corresponding 2-bounded rule graph is shown in Fig. 5. Note how this graph is in fact also a
rule graph: due to the fact that there are no cyclic dependencies in the rule base P ∪ G |=2 (e, r, g)
is equivalent with P ∪ G |= (e, r, g).

The construction process clearly terminates after a finite number of steps. Indeed, only edges that
are on a path of length m are expanded in step 3, and given that there are only finitely many such
paths, step 3 must terminate. It is also straightforward to see that the other steps must terminate. We
now show that the construction process yields a valid m-bounded rule graph.

Conditions (R1) and (R2) are clearly satisfied. Next, we show that condition (R3) is satisfied.
Lemma 12. Let P be a set of closed path rules and let H be the resulting m-bounded rule graph,
constructed using the proposed process. Suppose nodes n and n′ are connected with an edge of type
r and suppose P |= ri1(X1, X2)∧ ri2(X2, X3)∧ ...∧ rip(Xp, Xp+1) → r(X1, Xp+1). Then there
is a path connecting n to n′, whose eq-reduced type is ri1 ; ...; rip .
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Proof. First, we show that at the end of step 4, there must be a path of type ri1 ; ...; rip connecting n
and n′. By construction, we immediately have that whenever two nodes (n, n′) are connected with
an ri-edge and P contains the rule rj(X,Y ) ∧ rl(Y,Z) → ri(X,Z) it holds that there exists some
node n′′ such that there is an rj-edge from n to n′′ and an rl edge from n′′ to n′. The existence of
a path of type ri1 ; ...; rip then follows in the same way as in the proof of Lemma 8. It remains to
be shown that the proposition remains valid after step 5. However, the paths in the final graph are
those that can be found in the graph after step 4, with the possible addition of some eq-edges. This
means in particular that after step 5, there must still be a path from n to n′ whose eq-reduced type is
ri1 ; ...; rip .

Finally, the fact that (R4m) is satisfied follows from the following lemma.
Lemma 13. Let P be a set of closed path rules, and let H be the resulting m-bounded rule graph,
constructed using the process outlined above. Suppose there is a path from n0 to nr whose eq-
reduced type if r1; ...; rp, with p ≤ m+1. Then it holds that P |= r1(X1, X2)∧ ...∧rp(Xp, Xp1

) →
r(X1, Xp+1).

Proof. We clearly have that the proposition holds after step 3 of the construction method. After step
3, if there is an r-link between nodes n and n′ and a rule r1(X,Y )∧ r2(Y, Z) → r(X,Z) such that
n and n′ are not connected by an r1; r2 path, it must be the case that any path from n0 to some node
nr which contains the edge (n, n′) must have a length of at least m + 1. It follows that any path
from n0 to some node nr which contains an edge that was added during step 4 must have length at
least m+ 2. We thus have in particular that the proposition still holds after step 4. The paths in the
final graph are those that can be found in the graph after step 4, with the possible addition of some
eq-edges. Since the proposition only depends on the eq-reduced types of the paths, the result still
holds after step 5.

Together, we have shown the following result.
Proposition 12. Let P be a set of closed path rules and let H be the graph obtained using the
proposed construction method for m-bounded rule graphs. It holds that H satisfies (R1)–(R3) and
(R4m).

C EXPERIMENTAL DETAILS

This section lists additional details about our experiment’s setup, benchmark datasets, and evaluation
protocol. Section C.1 discusses further details of RESHUFFLE, while Section C.2 some additional
implementation details. The origins and licenses of the standard benchmarks for inductive KGC are
discussed in Section C.3. Details on RESHUFFLE’s hyper-parameter optimisation are discussed in
Section C.4. Finally, details about the evaluation protocol, together with the complete evaluation
results, are provided in Section C.5.

C.1 MODEL DETAILS

To initialise the entity embeddings, we set each coordinate to 0 or 1, with 50% probability. To train
the model, we use the following scoring function for a given triple (e, r, f):

s(e, r, f) = −∥ReLU(Br Z
(m)
e − Z

(m)
f )∥2

where m denotes the number of GNN layers. Note that s(e, r, f) = 0 reaches its maximal value
of 0 iff BrZ

(m)
e ⪯ Z

(m)
f . For each (e, r, f) ∈ G we add an inverse triple (f, rinv, e) to G. For

each entity e, we also add the triple (e, eq, e) to G. Following the literature (Teru et al., 2020; Zhu
et al., 2021), RESHUFFLE’s training process uses negative sampling under the partial completeness
assumption (PCA) (Galárraga et al., 2013), i.e., for each training triple (e, r, f) ∈ G, N triples
(negative samples) are created by replacing e or f in (e, r, f) by randomly sampled entities e′, f ′ ∈
E . To train RESHUFFLE, we minimise the margin ranking loss, defined as follows:

L(e, r, f) =

N∑
i=1

max(0, s(e′i, r, f
′
i)− s(e, r, f) + λ) (11)
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Table 3: Number of relation, entities, and triples of the train, validation, and test split of the training
and testing graph of the inductive benchmarks, split by corresponding benchmark versions v1-4.

RTrain ETrain GTrain RTest ETest GTest

FB
15

k-
23

7 v1 180 1594 5226 142 1093 2404
v2 200 2608 12085 172 1660 5092
v3 215 3668 22394 183 2501 9137
v4 219 4707 33916 200 3051 14554

W
N

18
R

R v1 9 2746 6678 8 922 1991
v2 10 6954 18968 10 2757 4863
v3 11 12078 32150 11 5084 7470
v4 9 3861 9842 9 7084 15157

N
E

L
L

-9
95 v1 14 3103 5540 14 225 1034

v2 88 2564 10109 79 2086 5521
v3 142 4647 20117 122 3566 9668
v4 76 2092 9289 61 2795 8520

where (e′i, r, f
′
i) is the ith negative sample and λ > 0 is a hyper-parameter, called the margin. At an

intuitive level, the margin ranking loss pushes scores of true triples (i.e., those within the training
graph) to be larger by at least λ than the scores of triples that are likely false (i.e., negative samples).

C.2 IMPLEMENTATION DETAILS

RESHUFFLE is trained on an NVIDIA Tesla V100 PCIe 32 GB GPU. We train RESHUFFLE for up
to 1000 epochs, minimizing the margin ranking loss (see Equation 11) with the Adam optimiser
(Kingma & Ba, 2015). If the Hits@10 score on the validation split of GTrain does not increase by at
least 1% within 100 epochs, we stop the training early.

RESHUFFLE was implemented using the Python library PyKEEN 1.10.1 (Ali et al., 2021). PyKEEN
employs the MIT license and offers numerous benchmarks for KGC, facilitating the comfortable
reuse of RESHUFFLE’s code for upcoming applications and comparisons. Upon acceptance of our
paper, we will provide RESHUFFLE’s source code in a public GitHub repository to further facilitate
the reuse of RESHUFFLE by our community.

C.3 BENCHMARKS

Table 3 states the entity, relation, and triple counts of the training and test graphs, for each of the
considered benchmarks.

We did not find a license for any of the three inductive benchmarks nor their corresponding trans-
ductive supersets. Furthermore, WN18RR is a subset of the WordNet database (Miller, 1995), which
states lexical relations of English words. We also did not find a license for this dataset. FB15k-237
is a subset of FB15k (Bordes et al., 2013), which is a subset of Freebase (Toutanova & Chen, 2015),
a collaborative database that contains general knowledge, such as about celebrities and awards, in
English. We did not find a license for FB15k-237 but found that FB15k (Bordes et al., 2013) uses
the CC BY 2.5 license. Finally, NELL-995 (Xiong et al., 2017) is a subset of NELL (Carlson et al.,
2010), a dataset that was extracted from semi-structured and natural-language data on the web and
that includes information about e.g., cities, companies, and sports teams. Also for NELL, we did
not find any license information.

C.4 HYPER-PARAMETER OPTIMISATION

Following Teru et al. (2020), we manually tune RESHUFFLE’s hyper-parameters on the validation
split of GTrain. We use the following ranges for the hyperparameters: the number of RESHUFFLE’s
layers #Layers ∈ {3, 4, 5}, the embedding dimensionality parameters l ∈ {20, 25, 30} and k ∈
{40, 60, 80}, the loss margin λ ∈ {0.5, 1.0, 2.0}, and finally the learning rate lr ∈ {0.005, 0.01}.
We use the same batch and negative sampling size for all runs. In particular, we set the batch size to
1024 and the negative sampling size to 100. We report the best hyper-parameters for RESHUFFLE
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Table 4: RESHUFFLE’s best-performing hyper-parameters on FB15k-237 v1-4, WN18RR v1-4, and
NELL-995 v1-4.

#Layers l k λ lr

FB
15

k-
23

7 v1 4 25 80 2.0 0.005
v2 3 30 60 1.0 0.005
v3 5 25 40 0.5 0.005
v4 3 30 80 1.0 0.01

W
N

18
R

R v1 3 20 40 1.0 0.01
v2 3 20 60 0.5 0.01
v3 3 20 40 1.0 0.01
v4 3 30 80 1.0 0.01

N
E

L
L

-9
95 v1 3 20 80 2.0 0.005

v2 4 30 60 2.0 0.01
v3 4 25 40 0.5 0.01
v4 4 30 60 1.0 0.01

Table 5: RESHUFFLE’s benchmark Hits@10 scores on all seeds together with the mean (mean) and
standard deviation (stdv) of Hits@10.

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4
Seed 1 0.751 0.879 0.905 0.918 0.713 0.727 0.614 0.693 0.630 0.874 0.871 0.816
Seed 2 0.744 0.892 0.908 0.916 0.707 0.726 0.574 0.690 0.650 0.860 0.893 0.808
Seed 3 0.746 0.883 0.897 0.918 0.710 0.736 0.617 0.698 0.635 0.848 0.881 0.812

mean 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812
stdv 0.004 0.007 0.005 0.001 0.003 0.006 0.024 0.004 0.010 0.013 0.011 0.004

split by each inductive benchmark in Table 4. Finally, we reuse the same hyper-parameters for each
of RESHUFFLE’s ablations, namely, RESHUFFLEnL and RESHUFFLE2.

C.5 EVALUATION PROTOCOL AND COMPLETE RESULTS

Following the standard evaluation protocol for inductive KGC, introduced by Teru et al. (2020),
we evaluate RESHUFFLE’s final performance on the test split of the testing graph by measuring the
ranking quality of any test triple r(e, f) over 50 randomly sampled entities e′i ∈ E and f ′

i ∈ E :
r(e′i, f) and r(e, f ′

i) for all 1 ≤ i ≤ 50. Following Teru et al. (2020), we report the Hits@10 metric,
i.e., the proportion of true triples (those within the test split of the testing graph) among the predicted
triples whose rank is at most 10.

Table 5 states RESHUFFLE’s benchmark results over all inductive datasets, as well as their means
and standard deviations.
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