
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIABLE REASONING ABOUT KNOWLEDGE
GRAPHS WITH RESHUFFLED EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge graph (KG) embedding methods learn geometric representations of
entities and relations to predict plausible missing knowledge. These representa-
tions are typically assumed to capture rule-like inference patterns. However, our
theoretical understanding of the kinds of inference patterns that can be captured
in this way remains limited. Ideally, KG embedding methods should be expres-
sive enough such that for any set of rules, there exists an embedding that exactly
captures these rules. This principle has been studied within the framework of
region-based embeddings, but existing models are severely limited in the kinds of
rule bases that can be captured. We argue that this stems from the use of repre-
sentations that correspond to the Cartesian product of two-dimensional regions.
As an alternative, we propose RESHUFFLE, a simple model based on ordering
constraints that can faithfully capture a much larger class of rule bases than ex-
isting approaches. Moreover, the embeddings in our framework can be learned
by a Graph Neural Network (GNN), which effectively acts as a differentiable rule
base. This has some practical advantages, e.g. ensuring that embeddings can be
easily updated as new knowledge is added to the KG. At the same time, since the
resulting representations can be used similarly to standard KG embeddings, our
approach is significantly more efficient than existing approaches to differentiable
reasoning. The GNN-based formulation also allows us to study how bounded
inference can be captured. We show in particular that bounded reasoning with
arbitrary sets of closed path rules can be captured in this way.

1 INTRODUCTION

Knowledge graph (KG) embeddings (Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016;
Sun et al., 2019) are geometric representations of knowledge graphs. Such representations are typi-
cally used to infer plausible knowledge that is not explicitly stated in the KG. An important research
question is concerned with the kinds of regularities that can be captured by different kinds of mod-
els. While standard approaches are often difficult to analyse from this perspective, region-based
approaches make these regularities more explicit (Gutiérrez-Basulto & Schockaert, 2018; Abboud
et al., 2020; Pavlovic & Sallinger, 2023; Charpenay & Schockaert, 2024). Essentially, in such ap-
proaches, each entity e is represented by an embedding e ∈ Rd and each relation r is represented
by a geometric region Xr ⊆ R2d. We say that the triple (e, r, f) is captured by the embedding iff
e⊕f ∈ Xr, where we write ⊕ for vector concatenation. In this way, we can naturally associate a KG
with a given embedding. The key advantage of region-based models is that we can also associate
a rule base with the embedding, where the rules reflect the spatial configuration of the regions Xr.
However, not all rule bases can be captured in this way. As a simple example, models based on
TransE (Bordes et al., 2013) cannot distinguish between the rules r1(X,Y)∧ r2(Y,Z) → r3(X,Z)
and r2(X,Y) ∧ r1(Y, Z) → r3(X,Z). This particular limitation can be avoided by using more so-
phisticated region-based models (Pavlovic & Sallinger, 2023; Charpenay & Schockaert, 2024), but
even these models remain limited in terms of which rule bases they can capture. This appears to be
related to the fact that these models use regions which are the Cartesian product of d two-dimensional
regions, i.e. Xr = Ar

1 × ... × Ar
d, with Ar

i ⊆ R2. To check whether (e, r, f) is captured, we then
check whether (ei, fi) ∈ Ar

i for each i ∈ {1, ..., d}, with e = (e1, ..., ed) and f = (f1, ..., fd).
We will refer to such approaches as coordinate-wise models. Existing models primarily differ in
how these two-dimensional regions are defined, e.g. ExpressivE (Pavlovic & Sallinger, 2023) uses

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

parallelograms for this purpose, while Charpenay & Schockaert (2024) used octagons. Using more
flexible region-based representations typically leads to overfitting. In this paper, we go beyond
coordinate-wise models but aim to avoid overfitting by otherwise keeping the model as simple as
possible, by learning regions which are defined in terms of ordering constraints of the form ei ≤ fj .

We show that this model, which we term RESHUFFLE, can capture a larger class of rule bases than
existing region-based models. For instance, to the best of our knowledge, RESHUFFLE is the first
that can capture (some) rule bases with cyclic dependencies. Furthermore, we show that entity em-
beddings in our framework can be learned using a monotonic Graph Neural Network (GNN) with
randomly initialised node embeddings. This GNN effectively serves as a differentiable approxima-
tion of a rule base, acting on the initial representations of the entities to ensure that they capture the
consequences that can be inferred from the KG. An important practical consequence is that our KG
embeddings can be efficiently updated when new knowledge becomes available. Thus, our model is
particularly well suited for KG completion in the inductive setting, where we need to predict links
between entities that were not seen during training. From a theoretical point of view, the GNN-based
formulation allows us to study bounded inference, where the number of layers of the GNN can be re-
lated to the number of inference steps. In particular, we show that our model is capable of faithfully
capturing bounded inference with arbitrary sets of closed path rules. Finally, while the main focus
of this paper is on advancing our theoretical understanding of the expressivity of knowledge graph
embeddings, we also empirically evaluate RESHUFFLE on the task of inductive KG completion,
where we find that it outperforms existing differentiable rule learning strategies.

2 RELATED WORK

Region-based models Despite the vast amount of work on KG embeddings in the last decade, the
reasoning abilities of most existing models are poorly understood. The main exception comes from
a line of work that has focused on region-based representations (Gutiérrez-Basulto & Schockaert,
2018; Abboud et al., 2020; Zhang et al., 2021; Leemhuis et al., 2022; Pavlovic & Sallinger, 2023;
Charpenay & Schockaert, 2024). Essentially, the region-based view makes explicit which triples
and rules are captured by a given embedding. This allows us to study what kinds of semantic
dependencies a given model is capable of capturing, which is important for ensuring that models
have the right inductive bias, especially for settings where reasoning is important. Existing work
has uncovered various limitations of existing models. For instance, Gutiérrez-Basulto & Schockaert
(2018) revealed that bilinear models such as RESCAL (Nickel et al., 2011), DistMult (Yang et al.,
2015), TuckER (Balazevic et al., 2019) and ComplEx (Trouillon et al., 2016) cannot capture relation
hierarchies in a faithful way. Gutiérrez-Basulto & Schockaert (2018) studied the expressivity of
models where regions can be represented using arbitrary convex polytopes, finding that arbitrary
sets of closed path rules can be faithfully captured by such representations. However, learning
arbitrary polytopes is not feasible in practice for high-dimensional spaces, hence more recent works
has focused on finding regions that are easier to learn while still retaining some of the theoretical
advantages, such as Cartesian products of boxes (Abboud et al., 2020), cones (Zhang et al., 2021;
Leemhuis et al., 2022), parallelograms (Pavlovic & Sallinger, 2023) and octagons (Charpenay &
Schockaert, 2024). However, all these models are significantly more limited in the kinds of rules
that they can capture. For instance, while the use of parallelograms and octagons makes it possible
to capture some closed path rules, in practice we want to capture sets of such rules. This is only
known to be possible under rather restrictive conditions (see Section 3).

Inductive KG completion Standard benchmarks for KG completion only test the reasoning abil-
ities of models to a limited extent. For instance, BoxE (Abboud et al., 2020) achieves strong re-
sults on these benchmarks, despite provably being incapable of modelling simple rules such as
r1(X,Y) ∧ r2(Y, Z) → r3(X,Z). In our experiments, we will therefore focus on the problem
of inductive KG completion (Teru et al., 2020). In the inductive setting, we need to predict links
between entities that are different from those that were seen during training. To perform this task,
models need to learn semantic dependencies between the relations, and then exploit this knowledge
when making predictions. This can be achieved in different ways. A natural strategy is to learn rules
from the training KG, either explicitly using models such as AnyBURL (Meilicke et al., 2019) and
RNNLogic (Qu et al., 2021) or implicitly using differentiable rule learners such as Neural-LP (Yang
et al., 2017), DRUM (Sadeghian et al., 2019) and NCRL (Cheng et al., 2023). In practice, better

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

results have been obtained using GNNs. For instance, some approaches (Teru et al., 2020) reduce
the problem of link prediction to a graph classification problem. They first construct a subgraph
containing paths connecting the head entity with some candidate tail entity, and then use a GNN to
predict a score from this subgraph. Such approaches suffer from limited scalability, as answering a
link prediction query requires constructing and processing such a subgraph for each candidate tail
entity. NBFNet (Zhu et al., 2021) alleviates this limitation, by using a single GNN that processes
the entire graph. The resulting node embeddings can then be used to score the different candidate
tail entities. However, the node embeddings are query-specific, meaning that this model still re-
quires a new forward pass of the GNN for each query, which is considerably less efficient than using
KG embeddings. While we use a GNN for computing entity embeddings, once these embeddings
have been learned, we can use them to answer arbitrary link prediction queries. RESHUFFLE is thus
considerably more efficient than the aforementioned GNN-based models for inductive KG comple-
tion. ReFactor GNN (Chen et al., 2022) also uses a GNN to learn entity embeddings, by simulating
the training dynamic of traditional KG embedding methods such as TransE (Bordes et al., 2013).
However, their method has the disadvantage that all embeddings have to be recomputed when new
triples are added to the KG. Moreover, their model inherits the limitations of traditional embedding
models when it comes to faithfully modelling rules. Conceptually, our method has more in common
with differentiable rule learning methods than with subgraph classification strategies. Indeed, each
layer of the GNN updates the entity embeddings by essentially simulating the application of rules.
Moreover, our model can simulate the deductive chaining of rules, which makes it fundamentally
different from Neural-LP and DRUM, which focus on one-off rule application. Finally, while we
focus on methods that learn by analysing the structure of a given KG, in some domains it is also
possible to exploit prior knowledge, for instance by leveraging LLMs (Zhu et al., 2024).

3 PROBLEM SETTING

Let R be a set of relations, E a set of entities, and G ⊆ E × R × E a knowledge graph. Similar
to standard KG embedding models, our aim is to learn a vector e ∈ Rd for every entity e ∈ E
and a scoring function sr for every relation r ∈ R such that sr(e, f) reflects the plausibility of
the triple (e, r, f). In region-based models, this scoring function is defined in terms of a geometric
region Xr ⊆ Rd. Specifically, the triple (e, r, f) is then considered to be captured by the embedding
iff e ⊕ f ∈ Xr, where we write e ⊕ f to denote vector concatenation. The scoring function sr
then reflects how close e⊕ f is to the region Xr (which is formalised in different ways by different
models). A key advantage of region-based models is that they offer a mechanism for modelling rules.
Let us write η to denote a given region-based embedding, i.e. η(e) ∈ Rd denotes the embedding of
the entity e ∈ E and η(r) ⊆ R2d denotes the region representing the relation r ∈ R. Similar to
existing (differentiable) rule-based methods for KG completion (Yang et al., 2017; Meilicke et al.,
2019; Sadeghian et al., 2019; Qu et al., 2021; Cheng et al., 2023), we focus on so-called closed path
rules, which are rules ρ of the following form:

r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1) (1)

We refer to r1(X1, X2)∧r2(X2, X3)∧...∧rp(Xp, Xp+1) as the body of the rule and to r(X1, Xp+1)
as the head. We say that η captures this rule if for all vectors x1, ...,xp+1 ∈ Rn we have:

(x1 ⊕ x2 ∈ η(r1)) ∧ ∧ (xp ⊕ xp+1 ∈ η(rp)) ⇒ (x1 ⊕ xp+1 ∈ η(r)) (2)

Apart from their practical significance, our focus on closed path rules is also motivated by the
observation that existing region-based models have particular limitations when it comes to cap-
turing this kind of rules. Some approaches, such as BoxE (Abboud et al., 2020) are not capable
of capturing such rules at all. More recent approaches (Pavlovic & Sallinger, 2023; Charpenay
& Schockaert, 2024) are capable of capturing closed path rules, but with significant limitations.
Specifically, given a set of closed path rules P , we ideally want an embedding η that captures
every rule in P while not capturing any rules that are not entailed by P . Charpenay & Schock-
aert (2024) showed this to be possible, provided that every non-trivial rule entailed from P is
a closed path rule in which r1, ..., rp, r are all distinct relations. For instance, rules of the form
r1(X1, X2)∧ r1(X2, X3) → r(X1, X3) and r1(X1, X2)∧ r2(X2, X3) → r1(X1, X3) were not al-
lowed in their construction. Similarly, they cannot capture rule bases with cyclic dependencies such
as P = {r1(X1, X2) ∧ r2(X2, X3) → r3(X1, X3), r3(X1, X2) ∧ r4(X2, X3) → r1(X1, X3)}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In the following, we write P ∪ G |= (e, r, f) to denote that the triple (e, r, f) can be entailed from
the rule base P and the knowledge graph G. More precisely, we have P ∪ G |= (e, r, f) iff either
(e, r, f) ∈ G or P contains a rule of the form (1) such that P∪G |= (e, r1, e2), P∪G |= (e2, r2, e3),
..., P ∪ G |= (ep, rp, f) for some entities e2, ..., ep. We furthermore write P |= ρ for a rule ρ of
the form (1) to denote that P entails ρ w.r.t. the standard notion of entailment from propositional
logic (when interpreting rules in terms of material implication). Note that while we consider both
a knowledge graph G and a rule base P in our analysis, in practice only the knowledge graph G is
given. We study whether our model is capable of capturing rule bases because this is a necessary
condition to allow it to learn semantic dependencies in the form of rules.

4 MODELING RELATIONS USING ORDERING CONSTRAINTS

Our aim is to introduce a knowledge graph embedding model which is more general than existing
coordinate-wise region-based embeddings, but which remains simple enough to make the represen-
tations learnable in practice. The central idea is to rely on ordering constraints. Specifically, we
model each relation r using a region Xr of the following form:

Xr = {(e1, ..., ed, f1, ..., fd) | ∀i ∈ Ir . eσr(i) ≤ fi} (3)

where the representation of a region r is parameterised by a set of coordinates Ir ⊆ {1, ..., d} and
a mapping σr : Ir → {1, ..., d}. We thus need a maximum of 2d parameters to completely specify
the embedding of a given relation. Note that in the special case where Ir = ∅, we have Xr = Rd.
Example 1. Let e = (0, 0, 0), f = (0, 0, 1) and g = (2, 2, 0) be the embeddings of entities e, f, g.
Let the relations r1, r2, r3 be represented as follows: Ir1 = {3}, Ir2 = {1, 2}, Ir3 = {1}, σr1(3) =
2, σr2(1) = σr2(2) = 3 and σr3(1) = 2. Then we find that e ⊕ f ∈ Xr1 , meaning that the triple
(e, r1, f) is captured. Indeed, for e⊕f ∈ Xr1 to hold, we need eσr1 (3)

= e2 ≤ f3, which is satisfied.
We similarly find that (f, r2, g) is captured, because fσr2 (1)

= f3 ≤ g1 and fσr2 (2)
= f3 ≤ g2.

The following example illustrates how the use of ordering constraints allows us to capture rules.
Example 2. Consider a rule of the form r1(X,Y) ∧ r2(Y,Z) → r3(X,Z). This rule is captured
by an embedding of the form (3) if for each i ∈ Ir3 we have that i ∈ Ir2 , σr2(i) ∈ Ir1 and
σr1(σr2(i)) = σr3(i). For instance, the relations r1, r2, r3 from Example 1 satisfy these conditions.
In general, if these conditions are satisfied and we have (e, r1, f) and (f, r2, g) in G, then for each
i ∈ Ir3 we have: eσr1

(σr2
(i)) ≤ fσr2

(i) ≤ gi. Since we assumed σr1(σr2(i)) = σr3(i) it follows that
eσr3

(i) ≤ gi for every i ∈ Ir and thus that the embedding captures the triple (e, r3, f).

We will come back to the analysis of how rules can be modelled using ordering constraints in the next
section. We now turn our focus to how (a differentiable approximation of) the ordering constraints
can be learned. Note that we can characterise Xr as follows:

Xr = {e⊕ f | max(Are, f) = f} (4)

where the maximum is applied component-wise and the matrix Ar ∈ Rd×d is constrained such that
(i) all components are either 0 or 1 and (ii) at most one component in each row is non-zero. The
format of (4) suggests how entity embeddings in our framework can be learned using a GNN. A
practical advantage of using a GNN for this purpose is that we can use our model for inductive KG
completion. As we will see in the next section, the use of a GNN also has an important theoretical
advantage, as it allows us to capture bounded reasoning with arbitrary sets of closed path rules.

Learning embeddings with GNNs Let us write e(l) ∈ Rd for the representation of entity e in
layer l of the GNN. The embeddings e(0) are initialised randomly, such that (i) all coordinates are
non-negative, (ii) the coordinates of different entity embeddings are sampled independently, and (iii)
there are at least two distinct values that have a non-negative probability of being sampled for each
coordinate. Starting from (4), we naturally end up with the following message-passing GNN:

f (l+1) = max
(
{f (l)} ∪ {Are

(l) | (e, r, f) ∈ G}
)

(5)

However, because the model relies on randomly initialised entity embeddings, the dimensionality of
the entity embeddings needs to be sufficiently high. At the same time, the number of parameters that

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

have to be learned for each relation should be sufficiently low to prevent overfitting. For this reason,
we decouple the number of parameters from the dimensionality of the embeddings. Specifically, we
learn matrices Ar of the following form:

Ar = Br ⊗ Ik (6)

where we write ⊗ for the Kronecker product, Ik is the k-dimensional identity matrix and Br is an
ℓ× ℓ matrix, with d = kℓ, where the rows of Br are constrained similarly as those of Ar, i.e. each
row is either a one-hot vector or a 0-vector. To make the computation of the GNN updates more
efficient, we represent each entity using a matrix Z

(l)
e ∈ Rℓ×k and compute the updates as follows:

Z
(l+1)
f = max

(
{Z(l)

f } ∪ {BrZ
(l)
e | (e, r, f) ∈ G}

)
(7)

We will refer to this model as RESHUFFLE. Note that a triple (e, r, f) is captured at layer l if:

BrZ
(l)
e ⪯ Z

(l)
f

where X ⪯ Y denotes that max(X,Y) = Y. A rule of the form (1) is satisfied if:

BrpBrp−1 · · ·Br1 ⪯ Br (8)

In practice, we learn a soft approximation of the matrices Br. Specifically, to learn the matrix Br, we
choose each row i as the first ℓ coordinates of a vector softmax(bri,1, ..., b

r
i,ℓ+1), where bri,1, ..., b

r
i,ℓ+1

are learnable parameters. Note that we need ℓ+1 parameters to allow for the possibility of some rows
to be all 0s, which we empirically found to be important. The number of parameters per relation is
thus quadratic in ℓ. However, due to the use of the softmax operation, these representations can still
be learned effectively (Lavoie et al., 2023). We experimented with a number of further strategies for
imposing sparsity, but were not able to outperform the basic softmax formulation.

5 CONSTRUCTING GNNS FROM RULE GRAPHS

In equation (8) we already showed how a given closed path rule can be captured in RESHUFFLE.
However, our main question of interest is whether it is possible to faithfully capture a set of closed
path rules P . More precisely, in this paper we study the following question: can parameters be found
for the matrices Br such that all rules entailed by P are captured, and only those rules. Rather than
constructing the matrices Br directly, we first introduce the notion of a rule graph, which will serve
as a convenient abstraction for studying this problem. We then explain how we can construct the
matrices Br from a given rule graph. Throughout this paper, we will assume that G contains the
triple (e, eq, e) for every e ∈ E , with eq a relation which does not appear in the rule base P . This
assumption corresponds to the common practice of adding self-loops GNN models.

Rule graphs We associate with the rule base P a labelled multi-graph H, i.e. a set of triples
(n1, r, n2). Note that this graph is formally equivalent to a knowledge graph, but the nodes in
this case do not correspond to entities. Rather, as we will see, they correspond to the different
rows/columns of the matrices Br. A path in H from n1 to np+1 is a sequence of triples of the
form (n1, r1, n2), (n2, r2, n3), ..., (np, rp, np+1). The type of this path is given by the sequence of
relations r1; r2; ...; rp. The eq-reduced type of the path is obtained by removing all occurrences eq
in r1; r2; ...; rp. For instance, for a path of type r1; eq; eq; r2; eq, the eq-reduced type is r1; r2.
Definition 1. A rule graph H for a given rule base P is a labelled multi-graph, where the labels are
taken from R, such that the following properties are satisfied:

(R1) For every relation r ∈ R, there is some edge in H labelled with r.

(R2) For every node n in H and every r ∈ R, it holds that n has at most one incoming r-edge.

(R3) Suppose there is an r-edge in H from node n1 to node n2. Suppose furthermore that P |=
r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1). Then there is a path in
H from n1 to n2 whose eq-reduced type is r1; ...; rp.

(R4) Suppose for every two nodes connected by an r-edge, there is a path connecting these nodes
whose eq-reduced type belongs to {(r11; ...; r1p1), ..., (rq1; ...; rqpq)}. Then there is some
i ∈ {1, ..., q} such that that P |= ri1(X1, X2) ∧ ... ∧ ripi(Xpi , Xpi+1) → r(X1, Xpi+1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

n1

n2

n3

n4

n5

r3

r1

r2 r4

r5

eq

(a) Rule graph for P1.

n1 n2

n3

n4
r1

r2
r3

r4
eq

(b) Rule graph for P2.

Figure 1: Rule graphs for the rule bases from Example 3.

This definition reflects the fact that a rule is captured when the ordering constraints associated with
its body entail the ordering constraints associated with its head, as was illustrated in Example 2.
Specifically, this requirement is captured by condition (R3). Condition (R4) is needed to ensure that
only the rules in P are captured. Conditions (R1) and (R2) are needed because, in the construction
we consider below, the nodes of the rule graph will correspond to the rows of the matrices Br.
Condition (R1) ensures that Br contains at least one non-zero component for each relation r, while
(R2) ensures that each row of Br has at most one non-zero component.

Example 3. Let P1 contain the following rules:

r1(X,Y) ∧ r2(Y,Z) → r3(X,Z)

r4(X,Y) ∧ r5(Y,Z) → r2(X,Z)

A corresponding rule graph is shown in Figure 1a. Next, we illustrate how rule graphs can some-
times be constructed for rule bases with cyclic dependencies. Let P2 contain the following rules:

r2(X,Y) ∧ r3(Y,Z) → r1(Y, Z)

r1(X,Y) ∧ r4(Y,Z) → r2(X,Z)

A corresponding rule graph is shown in Figure 1b.

Constructing GNNs Given a rule graph H, we define the corresponding parameters of the GNN
as follows. Specifically, we need to define the matrix Br for every r. Each node from the rule graph
is associated with one row/column of Br. Let n1, ..., nℓ be an enumeration of the nodes in the rule
graph. The corresponding matrix Br = (bij) is defined as:

bij =

{
1 if H has an r-edge from nj to ni

0 otherwise
(9)

Note that because of condition (R2), there will be at most one non-zero element in each row of Br,
in accordance with the assumptions that we made in Section 4.

The following result shows that the constructed GNN indeed captures all the rules from P . Specif-
ically, we show that the embeddings which are learned by the GNN (upon convergence) capture all
triples that are entailed by P ∪ G. Note that, thanks to the use of the maximum in (7), the GNN
always converges after a finite number of iterations.

Proposition 1. Let P be a rule base and G a knowledge graph. Suppose P∪G |= (a, r, b). Let H be
a rule graph for P and let Z(l)

e be the entity representations that are learned by the corresponding
RESHUFFLE model, as defined in (9). Assume Z(m)

e = Z
(m+1)
e for every entity e (m ∈ N). It holds

that BrZ
(m)
a ⪯ Z

(m)
b .

We also need to show that the GNN does not capture rules which are not entailed by P . However,
for any triple (e, r, f) there is always a chance that it is captured by the model, even if P ∪ G ̸|=
(e, r, f), due to the fact that the entity embeddings are initialised randomly. However, by choosing
the dimensionality of the entity embeddings to be sufficiently large, we can make the probability of
this happening arbitrarily small. As before, we write ℓ to denote the number of rows in Ze and k
for the number of columns. Note that the value of k does not affect the number of parameters of the
model, since the size of the matrices Br only depends on ℓ and the entity embeddings are randomly
initialised. In practice, we can thus simply choose k to be sufficiently large.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proposition 2. Let P be a rule base and G a knowledge graph. Let H be a rule graph for P and
let Z(l)

e be the entity representations that are learned by the corresponding RESHUFFLE model, as
defined in (9). For any ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for any m ∈ N and
(a, r, b) ∈ E ×R× E such that P ∪ G ̸|= (a, r, b), we have

Pr[BrZ
(m)
a ⪯ Z

(m)
b] ≤ ε

6 CONSTRUCTING RULE GRAPHS

We now return to the central question of this paper: given a rule base P , is it possible to construct a
RESHUFFLE model which captures the rules entailed by P and only those rules? Thanks to Propo-
sitions 1 and 2 we know that this is the case when a rule graph for P exists. The key question thus
becomes whether it is always possible to construct such a rule graph. As the following result shows,
if there are no cyclic dependencies in P , a rule graph always exits.

Proposition 3. Let P be a rule base. Assume that we can rank the relations in R as r1, ..., r|R|,
such that for every rule in P with ri in the body and rj in the head, it holds that i < j. There exists
a rule graph for P .

It follows in particular that the class of rule bases that can be captured with RESHUFFLE models is
strictly larger than the class of rule bases that has been considered in previous work (Charpenay &
Schockaert, 2024). Unfortunately, it turns out that there exist rule bases with cyclic dependencies
for which no valid rule graph can be found. This is illustrated in the next example.

Example 4. Let P contain the following rule:

r1(X,Y) ∧ r2(Y,Z) ∧ r1(Z,U) → r2(X,U)

To see why there is no rule graph for P , consider the following knowledge graph G:

G={(x1, r1, x2), (x2, r1, x3), ..., (xl−1, r1, rl), (xl, r2, xl+1), (xl+1, r1, xl+2), ..., (xk, r1, xk+1)}

We have that P ∪ G |= (x1, r2, xk+1) only if the number of repetitions of r1 at the start of the
sequence matches the number of repetitions at the end, but rule graphs cannot encode this.

The argument from the previous example can be formalised as follows. Let P be a set of closed
path rules. Let R1 be the set of relations from R that appear in the head of some rule in P . For any
r ∈ R1, we can consider a context-free grammar with two types of production rules:

• For each rule of the form (1), there is a production rule r ⇒ r1r2...rp.

• For each r ∈ R1, there is a production rule r ⇒ r.

The elements of (R\R1)∪{r | r ∈ R1} are treated as terminal symbols, those in R1 as non-terminal
symbols, and r is the starting symbol. Let us write Lr for the corresponding language.

Proposition 4. Let P be a set of closed path rules and suppose that there exists a rule graph H
for P . Let R1 be the set of relations that appear in the head of some rule in P . It holds that the
language Lr is regular for every r ∈ R1.

This result shows that we cannot capture arbitrary rule bases using rule graphs. For instance, for the
rule base from Example 4, we have Lr2 = {r(l)1 r2r

(l)
1 | l ∈ N \ {0}}, where we write x(l) for the

string that consists of l repetitions of x. It is well-known that the language Lr2 is not regular, hence
it follows from Proposition 4 that no rule graph exists for this rule base.

Following the negative result that arises from Proposition 4, we now establish two important positive
results. First, in Section 6.1, inspired by regular grammars, we introduce a special class of rule bases
with cyclic dependencies for which a rule graph is guaranteed to exist. Second, in Section 6.2, we
focus on the practically important setting of bounded inference: since GNNs use a fixed number of
layers in practice, what mostly matters is what can be derived in a bounded number of steps. It turns
out that if we only care about such inferences, we can capture arbitrary sets of closed path rules.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.1 LEFT-REGULAR RULE BASES

To show that many rule bases with cyclic dependencies can still be faithfully modelled, we consider
the following notion of a left-regular rule base, inspired by left-regular grammars.
Definition 2. Let P be a rule base. Let R1 be the set of relations that appear in the head of a rule
from P . We call P left-regular if every rule is of the following form:

r1(X,Y) ∧ r2(Y, Z) → r3(X,Z) (10)
such that r2 /∈ R1.

While Definition 2 only considers rules with two relations in the body, rules with more than two
atoms can straightforwardly be simulated by introducing fresh relations. The following result shows
that left-regular rule bases can always be faithfully captured by a RESHUFFLE model.
Proposition 5. For any left-regular set of closed path rules P , there exists a rule graph for P .

6.2 BOUNDED INFERENCE

In practice, the GNN can only carry out a finite number of inference steps. Rather than requiring that
the resulting embeddings capture all triples that can be inferred from P ∪ G, it is natural to merely
require that the result captures all triples that can be inferred using a bounded number of inference
steps. We know from Proposition 4 that it is not always possible to construct a rule graph for a given
rule base P . To address this, we now weaken the notion of a rule graph, aiming to capture reasoning
up to a fixed number of inference steps. In the following, we will assume that P only contains rules
with two relations in the body, i.e. rules such as the one in (4) (but without imposing the requirement
that r2 /∈ R1). Note that we can assume this w.l.o.g. as any set of closed path rules can be converted
in such a format by introducing fresh relations.

Let us write P ∪G |=m (e, r, f) to denote that (e, r, f) can be derived from P ∪G in m steps. More
precisely, we have P∪G |=0 (e, r, f) iff (e, r, f) ∈ G. Furthermore, we have P∪G |=m (e, r, f), for
m > 0, iff P ∪G |=m−1 (e, r, f) or there is a rule r1(X1, X2)∧ r2(X2, X3) → r(X1, X3) in P and
an entity g ∈ E such that P ∪G |=m1 (e, r1, g) and P ∪G |=m2 (g, r2, f), with m = m1 +m2 +1.
Definition 3. Let m ∈ N. We call H an m-bounded rule graph for P if H satisfies conditions
(R1)–(R3) as well as the following weakening of (R4):

(R4m) Suppose for every two nodes connected by an r-edge, there is a path connecting these
two nodes whose eq-reduced type belongs to {(r11; ...; r1p1

), ..., (rq1; ...; rqpq
)}, with

p1, ..., pq ≤ m+ 1. Then there is some i ∈ {1, ..., q} such that that P |=m ri1(X1, X2) ∧
... ∧ ripi

(Xpi
, Xpi+1

) → r(X1, Xpi+1
).

Given an m-bounded rule graph, we can construct a corresponding GNN in the same way as in
Section 5. Moreover, Proposition 1 remains valid for m-bounded rule graphs, as its proof does not
depend on (R4). Proposition 2 can be weakened as follows.
Proposition 6. Let P be a rule base and G a knowledge graph. Let H be an m-bounded rule graph
for P and let Z(l)

e be the entity representations that are learned by the corresponding RESHUFFLE
model, as defined in (9). For any ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for any
i ≤ m+ 1 and (a, r, b) ∈ E ×R× E such that P ∪ G ̸|=m (a, r, b), we have

Pr[BrZ
(i)
a ⪯ Z

(i)
b] ≤ ε

Proposition 7. For any set of closed path rules P , there exists an m-bounded rule graph for P .

7 EXPERIMENTAL RESULTS

Thus far, we have shown that RESHUFFLE is capable of capturing bounded reasoning for arbitrary
sets of closed path rules, as well as complete reasoning for several important special cases. We
now complement this theoretical analysis with an empirical evaluation, to show that suitable model
parameters can be effectively learned in practice, and to compare the performance of RESHUFFLE
with existing differentiable rule learning strategies. For this evaluation, we focus on the task of
inductive KG completion, as the need to capture reasoning patterns is intuitively more important for
this setting compared to the traditional (i.e. transductive) setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Hits@10 for 50 negative samples on inductive KGC split by method type (GNN-based vs.
rule-based vs. differentiable rule-based).

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

G
N

N CoMPILE 0.676 0.829 0.846 0.874 0.836 0.798 0.606 0.754 0.583 0.938 0.927 0.751
GraIL 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734 0.595 0.933 0.914 0.732
NBFNet 0.845 0.949 0.946 0.947 0.946 0.897 0.904 0.889 0.644 0.953 0.967 0.928

R
ul

e RuleN 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716 0.535 0.818 0.773 0.614
AnyBURL 0.604 0.823 0.847 0.849 0.867 0.828 0.656 0.796 0.683 0.835 0.798 0.652

D
iff

-R DRUM 0.529 0.587 0.529 0.559 0.744 0.689 0.462 0.671 0.194 0.786 0.827 0.806
Neural-LP 0.529 0.589 0.529 0.559 0.744 0.689 0.462 0.671 0.408 0.787 0.827 0.806
RESHUFFLE 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812

Table 2: Hits@10 for 50 negative samples on inductive KGC for each ablation of RESHUFFLE.

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

RESHUFFLE2 0.304 0.569 0.385 0.916 0.293 0.309 0.155 0.270 0.488 0.558 0.334 0.370
RESHUFFLEnL 0.744 0.890 0.903 0.917 0.698 0.685 0.618 0.682 0.627 0.738 0.886 0.815
RESHUFFLE 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812

Datasets We evaluate RESHUFFLE on the three standard benchmarks for inductive knowledge
graph completion (KGC) that were derived by Teru et al. (2020) from three datasets: FB15k-237,
WN18RR, and NELL-995. Each of these inductive benchmarks contains four different dataset vari-
ants, named v1 to v4, and each of these variants consists of two graphs, a training and a testing graph,
which are sampled from the original dataset as follows. The training graph GTrain was obtained by
randomly sampling different numbers of entities and selecting their k-hop neighbourhoods. Next,
to construct a disjoint testing graph GTest, the entities of GTrain were removed from the initial graph,
and the same sampling procedure was repeated. Each of these graphs was split into a train set
(80%), validation set (10%), and test set (10%). Thus, the three inductive benchmarks consist in
total of twelve datasets: FB15k-237 v1-4, WN18RR v1-4, and NELL-995 v1-4. Furthermore, each
of these datasets consists of six graphs: the train, validation, and test splits of GTrain and GTest. The
supplementary materials provide additional information about these benchmarks.

Experimental setup Following Teru et al. (2020), we train RESHUFFLE on the train split of GTrain,
tune our model’s hyper-parameters on the validation split of GTrain, and finally evaluate the best
model on the test split of GTest. As discussed by Anil et al. (2024), some approaches in the literature
have been evaluated in different ways, e.g. by tuning hyper-parameters on the validation split of
GTest, and their reported results are thus not directly comparable. To account for small performance
fluctuations, we repeat our experiments three times and report RESHUFFLE’s average performance.1
For the final evaluation, we select the hyper-parameter configuration with the highest Hits@10 score
on the validation split of GTrain. In accordance with Teru et al. (2020), we evaluate RESHUFFLE’s
test performance on 50 negatively sampled entities per triple of the test split of GTest and report the
Hits@10 scores. We list further details about the experimental setup in the supplementary materials.
To facilitate RESHUFFLE’s reuse by our community, we will provide its source code in a public
GitHub repository upon acceptance of our paper.

Baselines As the analysis in Sections 5 and 6 reveals, our GNN model acts as a kind of differen-
tiable rule base. We therefore compare RESHUFFLE to existing approaches for differentiable rule
learning: Neural-LP (Yang et al., 2017) and DRUM (Sadeghian et al., 2019). We also compare our
method to two classical rule learning methods: RuleN (Meilicke et al., 2018) and AnyBURL (Meil-
icke et al., 2019). Finally, we include a comparison with GNN-based approaches: CoMPILE (Mai
et al., 2021), GraIL (Teru et al., 2020), and NBFNet (Zhu et al., 2021).

1Results for all seeds and the resulting standard deviations are provided in the supplementary materials.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results Table 1 reports the performance of RESHUFFLE on the inductive benchmarks. The results
of RESHUFFLE were obtained by us; AnyBURL and NBFNet results are from Anil et al. (2024);
Neural-LP, DRUM, RuleN, and GraIL results are from Teru et al. (2020); and CoMPILE results are
from Mai et al. (2021). Table 1 reveals that RESHUFFLE consistently outperforms the differentiable
rule learners DRUM and Neural-LP, often by a significant margin (with WN18RR-v1 the only ex-
ception). Compared to the traditional rule learners, RESHUFFLE performs clearly better on FB15k-
237 and NELL-995 (apart from v1) but underperforms on the WN18RR benchmarks. Anil et al.
(2024) found that the kind of rules which are needed for WN18RR are much noisier compared to
those than those which are needed for FB15k-237 and NELL-995. Our use of ordering constraints
may be less suitable in such cases. Finally, compared to the GNN-based methods, RESHUFFLE
outperforms CoMPILE and GraIL on FB15k-237 and NELL-995 v1 and v4 while again (mostly)
underperforming on WN18RR. RESHUFFLE consistently underperforms the state-of-the-art method
NBFNet. Recall, however, that our approach is significantly more efficient than such GNN-based
approaches, as RESHUFFLE can score the plausibility of a given triple almost instantaneously. In
contrast, NBFNet (Zhu et al., 2021) requires one forward pass of the GNN for every query, whereas
methods such as GraIL (Teru et al., 2020) even need one forward pass for each candidate link for
every query. Moreover, thanks to the use of max-pooling in the GNN, our embeddings can straight-
forwardly be updated when new knowledge becomes available. Finally, as the analysis by Anil et al.
(2024) revealed, the performance of rule based methods can be significantly improved by combining
them with other methods. The main issue is that for many queries, no strong evidence is available
for any of the answer candidates, which rule based methods struggle with. To outperform methods
such as NBFNet, rule based approach thus need to be combined with some kind of fallback model.
A detailed analysis of this is outside the scope of this work.

Finally, we empirically investigate RESHUFFLE’s components. We consider two variants for this
ablation study, namely: (i) RESHUFFLEnL, which does not add a self-loop relation to the KG (i.e.
triples of the form (e, eq, e)); and (ii) RESHUFFLE2, which allows for more general Br matrices. In
particular, different from RESHUFFLE, which applies the softmax function on the rows of Br (see
Section 4), RESHUFFLE2 squares the Br matrices component-wise, thereby allowing them to con-
tain arbitrary positive values. For a fair comparison, we train each of RESHUFFLE’s versions with
the same hyper-parameter values, experimental setup, and evaluation protocol (see supplementary
materials). Table 2 depicts the outcome of this study. It reveals that RESHUFFLE performs compara-
ble to or better than RESHUFFLEnL and dramatically outperforms RESHUFFLE2 on all benchmarks.
The similar performance of RESHUFFLE and RESHUFFLEnL on most datasets suggests that the
self-loop relation only matters in specific cases, which may not occur frequently in some datasets.
The poor performance of RESHUFFLE2 is as expected since allowing arbitrary positive parameters
makes overfitting the training data more likely.

8 CONCLUSIONS

The region-based view of KG embeddings makes it possible to formally analyse which kinds of
inference patterns are captured by a given embedding. An important question, which was left unan-
swered by previous work, is whether a region-based embedding model can be found which is capable
of capturing arbitrary sets of closed path rules, while still ensuring that embeddings can be learned
effectively in practice. In this context, we proposed a novel approach based on ordering constraints
between reshuffled entity embeddings. This model, called RESHUFFLE, was chosen because it al-
lows us to escape the limitations of coordinate-wise approaches while otherwise remaining as simple
as possible. We found that RESHUFFLE has several interesting properties. Most significantly, we
showed that bounded reasoning with arbitrary sets of closed path rules can be faithfully captured.
We also revealed two special cases where exact reasoning is possible, which go significantly beyond
what is (known to be) possible with existing region based models. From a practical point of view,
our GNN formulation enables an efficient approach to inductive KG completion, where the result-
ing entity embeddings can moreover be efficiently updated as new knowledge is added to the KG.
Empirically, we found our approach to outperform existing differentiable rule learners, while under-
performing the state-of-the-art more generally. This latter result reflects the fact that (differentiable)
rule based methods are less suitable when we need to weigh different pieces of weak evidence. In
such cases, when further evidence becomes available, we may want to revise earlier assumptions,
which is not possible with RESHUFFLE. Developing effective models that can provably simulate
non-monotonic (or probabilistic) reasoning thus remains as an important challenge for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. BoxE: A box
embedding model for knowledge base completion. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library for Training and Evaluating Knowl-
edge Graph Embeddings. Journal of Machine Learning Research, 22(82):1–6, 2021. URL
http://jmlr.org/papers/v22/20-825.html.

Akash Anil, Vı́ctor Gutiérrez-Basulto, Yazmı́n Ibáñez-Garcı́a, and Steven Schockaert. Inductive
knowledge graph completion with gnns and rules: An analysis. In Nicoletta Calzolari, Min-Yen
Kan, Véronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings
of the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy, pp. 9036–9049. ELRA
and ICCL, 2024. URL https://aclanthology.org/2024.lrec-main.792.

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. TuckER: Tensor factorization for
knowledge graph completion. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 5184–
5193. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1522. URL
https://doi.org/10.18653/v1/D19-1522.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp.
2787–2795, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Toward an architecture for never-ending language learning. In Maria Fox and David
Poole (eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010, pp. 1306–1313. AAAI Press, 2010. doi: 10.1609/
AAAI.V24I1.7519. URL https://doi.org/10.1609/aaai.v24i1.7519.

Victor Charpenay and Steven Schockaert. Capturing knowledge graphs and rules with octagon
embeddings. CoRR, abs/2401.16270, 2024. doi: 10.48550/ARXIV.2401.16270. URL https:
//doi.org/10.48550/arXiv.2401.16270.

Yihong Chen, Pushkar Mishra, Luca Franceschi, Pasquale Minervini, Pontus Stenetorp, and Se-
bastian Riedel. Refactor gnns: Revisiting factorisation-based models from a message-passing
perspective. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/66f7a3df255c47b2e72f30b310a7e44a-Abstract-Conference.html.

Kewei Cheng, Nesreen K. Ahmed, and Yizhou Sun. Neural compositional rule learning for
knowledge graph reasoning. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=F8VKQyDgRVj.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. AMIE: associa-
tion rule mining under incomplete evidence in ontological knowledge bases. In Daniel Schwabe,
Virgı́lio A. F. Almeida, Hartmut Glaser, Ricardo Baeza-Yates, and Sue B. Moon (eds.), 22nd In-
ternational World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013,
pp. 413–422. International World Wide Web Conferences Steering Committee / ACM, 2013. doi:
10.1145/2488388.2488425. URL https://doi.org/10.1145/2488388.2488425.

11

https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
http://jmlr.org/papers/v22/20-825.html
https://aclanthology.org/2024.lrec-main.792
https://doi.org/10.18653/v1/D19-1522
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.1609/aaai.v24i1.7519
https://doi.org/10.48550/arXiv.2401.16270
https://doi.org/10.48550/arXiv.2401.16270
http://papers.nips.cc/paper_files/paper/2022/hash/66f7a3df255c47b2e72f30b310a7e44a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/66f7a3df255c47b2e72f30b310a7e44a-Abstract-Conference.html
https://openreview.net/forum?id=F8VKQyDgRVj
https://openreview.net/forum?id=F8VKQyDgRVj
https://doi.org/10.1145/2488388.2488425

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vı́ctor Gutiérrez-Basulto and Steven Schockaert. From knowledge graph embedding to ontol-
ogy embedding? an analysis of the compatibility between vector space representations and
rules. In Michael Thielscher, Francesca Toni, and Frank Wolter (eds.), Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR
2018, Tempe, Arizona, 30 October - 2 November 2018, pp. 379–388. AAAI Press, 2018. URL
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Ankit Vani, Michael Noukhovitch, Kenji
Kawaguchi, and Aaron C. Courville. Simplicial embeddings in self-supervised learning and
downstream classification. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=RWtGreRpovS.

Mena Leemhuis, Özgür L. Özçep, and Diedrich Wolter. Learning with cone-based geometric
models and orthologics. Ann. Math. Artif. Intell., 90(11-12):1159–1195, 2022. doi: 10.1007/
S10472-022-09806-1. URL https://doi.org/10.1007/s10472-022-09806-1.

Sijie Mai, Shuangjia Zheng, Yuedong Yang, and Haifeng Hu. Communicative message passing for
inductive relation reasoning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 4294–4302. AAAI Press, 2021. doi: 10.1609/AAAI.V35I5.16554.
URL https://doi.org/10.1609/aaai.v35i5.16554.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner
Stuckenschmidt. Fine-grained evaluation of rule- and embedding-based systems for knowl-
edge graph completion. In Denny Vrandecic, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena Simperl (eds.),
The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey,
CA, USA, October 8-12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in Com-
puter Science, pp. 3–20. Springer, 2018. doi: 10.1007/978-3-030-00671-6\ 1. URL https:
//doi.org/10.1007/978-3-030-00671-6_1.

Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt.
Anytime bottom-up rule learning for knowledge graph completion. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pp. 3137–3143. ijcai.org, 2019. doi: 10.24963/IJCAI.2019/435. URL
https://doi.org/10.24963/ijcai.2019/435.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, 1995.
doi: 10.1145/219717.219748. URL https://doi.org/10.1145/219717.219748.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Lise Getoor and Tobias Scheffer (eds.), Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28
- July 2, 2011, pp. 809–816. Omnipress, 2011. URL https://icml.cc/2011/papers/
438_icmlpaper.pdf.

Aleksandar Pavlovic and Emanuel Sallinger. ExpressivE: A spatio-functional embedding for knowl-
edge graph completion. In The Eleventh International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=xkev3_np08z.

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic:
Learning logic rules for reasoning on knowledge graphs. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=tGZu6DlbreV.

12

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=RWtGreRpovS
https://openreview.net/forum?id=RWtGreRpovS
https://doi.org/10.1007/s10472-022-09806-1
https://doi.org/10.1609/aaai.v35i5.16554
https://doi.org/10.1007/978-3-030-00671-6_1
https://doi.org/10.1007/978-3-030-00671-6_1
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.1145/219717.219748
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/forum?id=tGZu6DlbreV

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: end-to-
end differentiable rule mining on knowledge graphs. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 15321–15331, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HkgEQnRqYQ.

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by sub-
graph reasoning. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 9448–9457. PMLR, 2020. URL http://proceedings.mlr.press/
v119/teru20a.html.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and their
Compositionality, CVSC 2015, Beijing, China, July 26-31, 2015, pp. 57–66. Association for Com-
putational Linguistics, 2015. doi: 10.18653/V1/W15-4007. URL https://doi.org/10.
18653/v1/W15-4007.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q. Weinberger
(eds.), Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceed-
ings, pp. 2071–2080. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/
trouillon16.html.

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
(eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pp. 564–573. Asso-
ciation for Computational Linguistics, 2017. doi: 10.18653/V1/D17-1060. URL https:
//doi.org/10.18653/v1/d17-1060.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Yoshua Bengio and Yann LeCun
(eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1412.6575.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules
for knowledge base reasoning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
2319–2328, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
0e55666a4ad822e0e34299df3591d979-Abstract.html.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone em-
beddings for multi-hop reasoning over knowledge graphs. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 19172–19183, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/a0160709701140704575d499c997b6ca-Abstract.html.

13

https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v119/teru20a.html
http://proceedings.mlr.press/v119/teru20a.html
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.18653/v1/d17-1060
https://doi.org/10.18653/v1/d17-1060
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Hua-
jun Chen, and Ningyu Zhang. Llms for knowledge graph construction and reasoning: recent
capabilities and future opportunities. World Wide Web (WWW), 27(5):58, 2024. doi: 10.1007/
S11280-024-01297-W. URL https://doi.org/10.1007/s11280-024-01297-w.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural
bellman-ford networks: A general graph neural network framework for link prediction.
In Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 29476–29490, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html.

A CONSTRUCTING GNNS FROM RULE GRAPHS

Let P be a set of closed path rules and let H be a corresponding rule graph, satisfying the conditions
(R1)–(R4). We also assume that a knowledge graph G is given. We show that the GNN, which
is constructed based on H, correctly simulates the rules from P . For the proofs, it will be more
convenient to characterise the GNN in terms of operations on the coordinates of entity embeddings.
Specifically, let Zi = {(i− 1)k+ 1, ..., (i− 1)k+ k} and let Nr ⊆ {n1, ..., nℓ} be the set of nodes
from the rule graph H which have an incoming edge labelled with r. We define:

Ir =
⋃

ni∈Nr

Zi

Let ni ∈ Nr and let (nj , ni) be the unique incoming edge with label r. Then we define (t ∈
{1, ..., k}):

σr((i− 1)k + t) = (j − 1)k + t

Now let us define:

µr(e1, ..., ed) = (e′1, ..., e
′
d)

where e′i = eσr(i) if i ∈ Ir and e′i = 0 otherwise. Let e(l) be the entity embedding corresponding to
the matrix Z

(l)
e . In other words, if we write zij for the components of Z(l)

e and ei for the components
of e(l), then we have zij = e(i−1)k+j . For a matrix X = (xij), let us write flatten(X) for the vector
that is obtained by concatenating the rows of X. In particular, flatten(Z(l)

e) = e(l). The following
lemma reveals how the GNN constructed from the rule graph H can be characterised in terms of
entity embeddings.

Lemma 1. It holds that flatten(BrZ
(l)
e) = µr(e

(l)).

Proof. Let us write flatten(BrZ
(l)
e) = (x1, ..., xd), µr(e

(l)) = (y1, ..., yd) and e(l) = (e1, ..., ed).
Let i ∈ {1, ..., ℓ}. Let us first assume that ni does not have any incoming edges in H which are
labelled with r. In that case, row i of Br consists only of 0s and we have x(i−1)k+1 = ... =
x(i−1)k+k = 0. Similarly, we then also have (i − 1)k + j /∈ Ir for j ∈ {1, ..., k} and thus
y(i−1)k+1 = ... = y(i−1)k+k = 0. Now assume that there is an edge from nj to ni which is labelled
with r. Then we have that row i of Br is a one-hot vector with 1 at position j. Accordingly, we have
x(i−1)k+t = e(j−1)k+t for t ∈ {1, ..., k}. Accordingly we then have σr((i−1)k+ t) = (j−1)k+ t
and thus y(i−1)k+t = e(j−1)k+t.

For a sequence of relations r1, ..., rp, we define µr1;...;rp as follows. We define µr1;...;rp(x1, ..., xd)
= (y1, ..., yd), where (i ∈ {1, ..., ℓ}, t ∈ {1, ..., k}):

y(i−1)k+t =

x(j−1)k+t if there is an r1; ...; rp path

from nj to ni

0 otherwise

14

https://doi.org/10.1007/s11280-024-01297-w
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Note that if there is an r1; ...; rk path arriving at node ni in the rule graph, it has to be unique, given
that each node has at most one incoming edge of a given type. In the following, we will also use
Ir1;...;rp , defined as follows:

Ir1;...;rp

= {(i− 1)k + t | there is an r1; ...; rp path ending in ni}

We have the following result.

Lemma 2. For r1, ..., rp ∈ R we have

µr1;...;rp(x1, ..., xd) = µrp(...µr1(x1, ..., xd)...)

Proof. It is sufficient to show

µr1;...;rp(x1, ..., xd) = µrp(µr1;...;rp−1(x1, ..., xd))

We have µr1;...;rp−1
(x1, ..., xd) = (y1, ..., yd), with

y(i−1)k+t =

x(j−1)k+t if there is an r1; ...; rp−1 path

from nj to ni

0 otherwise

We furthermore have µrp(y1, ..., yd) = (z1, ..., zd) with

z(i−1)k+t =

y(j−1)k+t if there is an rp-edge

from nj to ni

0 otherwise

Taking into account the definition of (y1, ..., yd), we have y(j−1)k+t ̸= 0 only if there is an
r1; ...; rp−1 path from some node nl to the node nj , in which case we have y(j−1)k+t = x(l−1)k+t.
In other words, we have:

z(i−1)k+t =

x(l−1)k+t if there is an r1; ...; rp−1 path

from nl to some nj and an
rp edge from nj to ni

0 otherwise

In other words, we have

z(i−1)k+t =

x(l−1)k+t if there is an r1; ...; rp path

from nl to ni

0 otherwise

We thus have (z1, ..., zd) = µr1;...;rp(x1, ..., xd).

We also have the following result.

Lemma 3. Suppose P |= r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1). There
exists paths of type r11; ...; r

1
q1 and r21; ...; r

2
q2 and ... and rl1; ...; r

l
ql

, all of whose eq-reduced type is
r1; ...; rp, such that for every embedding (x1, ..., xd) we have:

µr(x1, ..., xd) ≼
l

max
i=1

µri1;...;r
i
qi
(x1, ..., xd)

Proof. This follows immediately from the fact that whenever there is an r-edge between two nodes
n and n′, there must also be a path between these nodes whose eq-reduced type is r1; ...; rp, because
of condition (R3).

The following result shows that the GNN will correctly predict all triples that can be inferred from
G ∪ P .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proposition 8. Let P be a rule base and G a knowledge graph. Suppose P∪G |= (a, r, b). Let H be
a rule graph for P and let Z(l)

e be the entity representations that are learned by the corresponding
GNN. Assume Z

(m)
e = Z

(m+1)
e for every entity e (m ∈ N). It holds that BrZ

(m)
a ⪯ Z

(m)
b .

Proof. Because of Lemma 1, it is sufficient to show that µr(a
(m)) ⪯ b(m). If G contains the

triple (a, r, b) then the result is trivially satisfied. Otherwise, P ∪ G |= r(a, b) implies that
P |= r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1), for some r1, ..., rp, r ∈ R
such that G contains triples (a, r1, a2), (a2, r2, a3), ..., (ap, rp, b), for some a2, ..., ap ∈ E . Because
(a, r1, a2) ∈ G, by construction, it holds for each i ∈ N that:

µr1(a
(i)) ≼ a

(i+1)
2

Similarly, because (a2, r2, a3) ∈ G, we have µr2(a
(i+1)
2) ≼ a

(i+2)
3 and thus

µr2(µr1(a
(i))) ≼ µr2(a

(i+1)
2) ≼ a

(i+2)
3

In other words, we have
µr1;r2(a

(i)) ≼ a
(i+2)
3

Continuing in the same way, we find that

µr1;...;rp−1;rp(a
(i)) ≼ b(i+p)

Now consider a path of type r′1; ...; r
′
q whose eq-reduced type is r1; ...; rp. Then we have that G con-

tains triples of the form (a, r′1, b2), (b2, r2, b3), ..., (bp, r
′
q, b). Indeed, the only triples that need to be

considered in addition to the triples (a, r1, a2), (a2, r2, a3), ..., (ap, rp, b) are of the form (ai, eq, ai),
which we have assumed to belong to G for every ai ∈ E . For every path of type r′1; ...; r

′
q whose

eq-reduced type is r1; ...; rp, we thus find entirely similarly to before that

µr′1;...;r
′
q
(a(i)) ≼ b(i+p)

Because of Lemma 3, this implies
µr(a

(i)) ≼ b(i+p)

In particular, we have
µr(a

(m)) ≼ b(m+p)

and because of the assumption that the GNN has converged after m steps, we also have µr(a
(m)) ≼

b(m).

For e ∈ E , let pathsG(e) be the set of all paths in the knowledge graph G which end in e. For
a path π in pathsG(e), we write head(π) for the entity where the path starts and rels(π) for the
corresponding sequence of relations. For an entity e, we write embm(e) for its embedding in layer
m, i.e. embm(e) = e(m). The following observation follows immediately from the construction of
the GNN, together with Lemma 2.
Lemma 4. For any entity e ∈ E it holds that

e(m) ⪯ max
(
e(0), max

π∈pathsG(e)
µrels(π)

(
emb0(head(π))

))
We will also need the following technical lemma.
Lemma 5. Suppose P ∪ G ̸|= (a, r, b). Then there is some i ∈ {1, ..., ℓ} such that:

• Zi ⊆ Ir; and

• whenever π ∈ pathsG(b) with head(π) = a, it holds that Irels(π) ∩ Zi = ∅.

Proof. Let us write Zr = {i ∈ {1, ..., ℓ} |Zi ⊆ I1r }. Note that i ∈ Zr iff node ni in H has
an incoming r-edge. It thus follows from condition (R1) that Zr ̸= ∅. Suppose that for every
i ∈ Zr, there was some π ∈ pathsG(b) with head(π) = a such that Irels(π) ∩ Zi ̸= ∅. Let us write
X = {rels(π) |π ∈ pathsG(b), head(π) = a, Irels(π) ∩ Zi ̸= ∅}. We then have that for every r-edge
in H, there is a path τ connecting the same nodes, with rels(τ) ∈ X . From Condition (R4), it then
follows that P ∪ G |= (a, r, b), a contradiction.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The following result shows that the GNN is unlikely to predict triples that cannot be inferred from
G ∪ P , as long as the embeddings are sufficiently high-dimensional.
Proposition 9. Let P be a rule base and G a knowledge graph. Let H be a rule graph for P and let
Z

(l)
e be the entity representations that are learned by the corresponding GNN. For any ε > 0, there

exists some k0 ∈ N such that, when k ≥ k0, for any m ∈ N and (a, r, b) ∈ E × R × E such that
P ∪ G ̸|= (a, r, b), we have

Pr[BrZ
(m)
a ⪯ Z

(m)
b] ≤ ε

Proof. First, note that because of Lemma 1, what we need to show is equivalent to:

Pr[µr(a
(m)) ⪯ b(m)] ≤ ε

Let (a, b) ∈ E × E be such that P ∪ G ̸|= (a, r, b). From Lemma 5, we know that there is some
i ∈ {1, ..., ℓ} such that Zi ⊆ I1r and whenever π ∈ pathsG(b) with head(π) = a, it holds that
Irels(π) ∩ Zi = ∅. The following condition is clearly a necessary requirement for µr(a

(m)) ⪯ b(m):

∀j ∈ Zi . µr(a
(m)) ≼j b

(m)

where we write (x1, ..., xd) ≼j (y1, ..., yd) for xj ≤ yj . We need in particular also that:

∀j ∈ Zi . µr(a
(0)) ≼j b

(m)

Due to Lemma 4 this is equivalent to requiring that for every j ∈ Zi we have:

µr(a
(0))≼j max

(
b(0), max

π∈pathsG(b)
µrels(π)

(
emb0(head(π))

))
We can view the coordinates of the input embeddings as random variables. The latter condition is
thus equivalent to a condition of the following form:

∀j ∈ Zi . A
r
j ≤ max(Bj , X

1
j , ..., X

p
j)

where Ar
j is the random variable corresponding to the jth coordinate of µr(a

(0)), Bj is the jth

coordinate of b(0) and X1
j , ..., X

p
j are the random variables corresponding to the jth coordinate of

the vectors µrels(π)

(
emb0(head(π))). By construction, we have that the coordinates of different

entity embeddings are sampled independently and that there are at least two distinct values that have
a non-negative probability of being sampled for each coordinate. This means that there exists some
value λ > 0 such that Pr[Ar

j > Bj] ≥ λ and Pr[Ar
j > Xt

j] ≥ λ for each t ∈ {1, ..., p}. Moreover,
since we have that whenever π ∈ pathsG(b) with head(π) = a it holds that Irels(π) ∩ Zi = ∅, it
follows that the random variable Ar

j is not among Bj , X
1
j , ..., X

p
j . We thus have:

Pr[∀j ∈ Zi . A
r
j ≤ max(Bj , X

1
j , ..., X

p
j)]

≤
(
1− λp+1

)|Zi|

=
(
1− λp+1

)k
≤ e−kλp+1

The value of p is upper bounded by ℓ · |E|, with ℓ the number of nodes in the rule graph. By choosing
k sufficiently large, we can thus make this probability arbitrarily small. In particular:

e−kλp+1

≤ ε ⇔ k ≥ 1

λp+1
log

1

ε

B CONSTRUCTING RULE GRAPHS

B.1 PROOF OF PROPOSITION 3

Let P be a rule base which satisfies the conditions of Proposition 3, and let r1, ..., r|R| be the
corresponding ranking of the relations. We construct a rule graph H for P as follows.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1. We add the node n0.

2. For each relation r ∈ R, we add a node nr, and we connect n0 to nr with an r-edge.

3. For i going from |R| to 1:

(a) For each rule rj1(X1, X2)∧ ...∧ rjq (Xq, Xq+1) → ri(X1, Xq+1) with ri in the head
and each ri edge between nodes n and n′ in H, we create fresh nodes n1, ..., nq and
add an rj1 -link from n to n1, an rj2 link from n1 to n2, ..., an rjq -link from nq to n′.

Clearly the process terminates after a finite number of steps, noting that the new edges that are
added for a rule rj1(X1, X2)∧ ...∧ rjq (Xq, Xq+1) → ri(X1, Xq+1) cannot be ri-edges, due to the
assumption that P is free from cyclic dependencies. We also trivially have that condition (R1) is
satisfied.

To see why (R2) is satisfied, first note that this is clearly the case after the first two steps have
been completed. In the third step, when processing a rule rj1(X1, X2) ∧ ... ∧ rjq (Xq, Xq+1) →
ri(X1, Xq+1) and an edge from n to n′, the only existing node where an incoming edge is added is
n′ (where the other edges end in a fresh node). However, by construction, n′ can only have incoming
rj-edges with j ≥ i whereas jq < i because of the assumption that P is free from cyclic dependen-
cies. The addition of the rjq -link from nq to n′ can thus not cause (R2) to become unsatisfied. It
follows that (R2) still holds after the third step of the construction algorithm is finished.

Finally, the fact that (R3) and (R4) are satisfied straightforwardly follows from the construction.

B.2 PROOF OF PROPOSITION 4

We write R1 for the set of relations that appear in the head of some rule from the considered rule
base, and R2 = R \R1 for the remaining relations.

Let α(ri) = ri if ri ∈ R2 and α(ri) = ri otherwise. We clearly have that α(r1)...α(rk) ∈ Lr iff P
entails the following rule:

r1(X1, X2) ∧ ... ∧ rk(Xk, Xk+1) → r(X1, Xk+1)

Since we have assumed that P has a rule graph, thanks to conditions (R3) and (R4), we can check
whether this rule is valid by checking whether for each edge labelled with r there is a path connecting
the same nodes whose eq-reduced type is r1; ...; rk. Let (ni, nj) be a an edge labelled with r. Then,
we can construct a finite state machine (FSM) from H by treating ni as the start node and nj as the
unique final node and interpreting eq edges as ε-transitions (i.e. corresponding to the empty string).
Clearly, this FSM will accept the string r1...rk if there is a path labelled with r1; ...; rk connecting ni

to nj . For each edge labelled with r, we can construct such an FSM. Let F1, ..., Fm be the languages
associated with these FSMs. By construction, Lr is the intersection of F1, ..., Fm. Since F1, ..., Fm

are regular, it follows that Lr is regular as well.

B.3 LEFT REGULAR RULE BASES

Given a left-regular rule base P , we construct the corresponding rule graph H as follows.

1. We add the node n0.

2. For each relation r ∈ R, we add a node nr, and we connect n0 to nr with an r-edge.

3. For each rule of the form (10), we add an r2-edge from nr1 to nr3 .

4. For each node n with multiple incoming r-edges for some r ∈ R, we do the following. Let
♯r be the number of incoming r-edges for node n. Let p = maxr∈R ♯r. We create fresh
nodes n1, ..., np−1 and add eq-edges from ni to ni−1 (i ∈ {1, ..., p− 1}), where we define
n0 = n. Let r ∈ R be such that ♯r > 1. Let n′

0, ..., n
′
q be the nodes with an r-link to n;

then we have q ≤ p − 1. For each i ∈ {1, ..., q} we replace the edge from n′
i to n by an

edge from n′
i to ni.

We now illustrate the construction process with an example.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

n0neq

nr2 nr1 nr3

nr4

n1

nr5

n2eq

r2
r1 r3

r4

r5

r2

r2

eq

r2

eq

Figure 2: Rule graph for Example 5.

n0

nr1

nr2

neq

r1

r2

r2

eq

Figure 3: Rule graph for Example 6.

Example 5. Let P contain the following rules:

r1(X,Y) ∧ r2(Y,Z) → r3(X,Z)

r4(X,Y) ∧ r2(Y,Z) → r3(X,Z)

r5(X,Y) ∧ r2(Y,Z) → r3(X,Z)

The corresponding rule graph is depicted in Figure 2. The nodes n1 and n2 were introduced in
step 4 of the construction process. Before this step, there were r2-edges from nr4 to nr3 and from
nr5 to nr3 . The node nr3 thus had three incoming r2-edges, which violates condition (R2). This is
addressed through the use of eq edges in step 4.

Note that the rule graph may have loops, as illustrated next.
Example 6. Let P contain the following rule:

r1(X,Y) ∧ r2(Y,Z) → r1(X,Z)

The corresponding rule graph is shown in Figure 3.

The proposed construction process clearly terminates after a finite number of steps. To prove Propo-
sition 5, we show that the proposed construction yields a valid rule graph for P , i.e. that the resulting
rule graph H satisfies (R1)–(R4).

The fact that (R1) is satisfied follows from the following lemma.
Lemma 6. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. For every r ∈ R, it holds that H contains an outgoing r-edge
from n0.

Proof. Let r ∈ R. The edge from n0 to nr is added in step 2 of the construction process. This edge
may be removed in step 4, but in that case, a new r-edge is added from n0 to a fresh node.

The fact that (R2) is satisfied follows immediately from the construction in step 4. We now move to
condition (R3).
Lemma 7. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. If P contains the rule r1(X1, X2)∧ r2(X2, X3) → r3(X1, X3),
then whenever two nodes n and n′ are connected in H by a path whose eq-reduced type is r3, there
is some node n′′ such that n and n′′ are connected by a path whose eq-reduced type is r1 and n′′

and n′ are connected by a path whose eq-reduced type is r2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. The stated assertion clearly holds after step 3 of the construction method. Indeed, the only
r3-edge in H is from n0 to nr3 . Note in particular that no r3 edges can be added in step 3, given our
assumption that P is left-regular. Finally, it is also easy to see that this property remains satisfied
after step 4.

The next lemma shows that (R3) is satisfied.
Lemma 8. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. Suppose nodes n and n′ are connected with an edge of type r
and suppose P |= r1(X1, X2)∧ r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) → r(X1, Xp+1). Then there is a
path whose eq-reduced type is r1; ...; rp from n to n′.

Proof. Assume P |= r1(X1, X2)∧ r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) → r(X1, Xp+1). Let n and n′

be nodes connected by an edge of type r. We show the result by structural induction. First, suppose
p = 2. In this case, the considered rule is of the form r1(X1, X2)∧r2(X2, X3) → r(X1, X3). It then
follows from Lemma 7 that there is a path whose eq-reduced type is r1; r2 connecting n and n′. Let
us now consider the inductive case. If p > 3 then r1(X1, X2)∧ r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) →
r(X1, Xp+1) is derived from at least two rules in P (given that the rules in P were restricted to have
only two atoms in the body). The last step of the derivation of this rule is done by secting some rule
s1(X,Y) ∧ s2(Y,Z) → r(X,Z) from P such that

P |= r1(X1, X2) ∧ ... ∧ ri−1(Xi−1, Xi) → s1(X1, Xi)

P |= ri(Xi, Xi+1) ∧ ... ∧ rp(Xp, Xp+1) → s2(Xi, Xp+1)

If there is a path from n to n′ whose eq-reduced type is r, we know from Lemma 7 that there must
be a path from n to n′′ with eq-reduced type s1-edge and a path from n′′ to n′ with eq-reduced type
s2, for some node n′′ in H. By induction, we furthermore know that there must then be a path with
eq-reduced type r1; ...; ri−1 from n to n′′ and a path with eq-reduced type ri; ...; rp from n′′ to n′.
Thus, we find that there must be a path with eq-reduced type r1; ...; rp from n to n′.

The fact that (R4) is satisfied follows from the next lemma.
Lemma 9. Let P be a left-regular set of closed path rules and let H be the graph obtained using
the proposed construction method. Suppose there is a path in H from n0 to nr whose eq-reduced
type is r1; ...; rp. Then it holds that P |= r1(X1, X2) ∧ ... ∧ rp(Xp, Xp1

) → r(X1, Xp+1).

Proof. The result clearly holds after step 2. We show that the result remains valid after each iteration
of step 3. Suppose in step 3 we add an r2-edge between nr1 and nr3 . This means that:

P |= r1(X,Y) ∧ r2(Y, Z) → r3(X,X)

Let τ be a path from n0 to nr. If τ does not contain the new r2-edge, then the fact that the result
is valid for τ follows by induction. Now, suppose that τ contains the new r2 edge. Then τ is of the
form ri1 ; ...; ris ; r2; rj1 ; ...; rjt . By induction we have:

P |= ri1(X1, X2) ∧ ... ∧ ris(Xs, Xs+1) → r1(X1, Xs+1)

Clearly there is a path from n0 to nr3 with eq-reduced type r3. In particular, there is a path from n0

to nr3 with eq-reduced type r3; rj1 ; ...rjt . By induction, we thus have:

P |= r3(X0, X1) ∧ rj1(X1, X2) ∧ ...

∧ rjt(Xt, Xt1) → r(X0, Xt+1)

Together we find that the stated result is satisfied.

Finally, we need to show that the result remains satisfied after step 4. This is clearly the case, as this
step replaces edges of type r with paths of type r; eq; ...; eq. The eq-reduced types of the paths from
n0 to nr thus remain unchanged after this step.

Proposition 10. Let P be a left-regular set of closed path rules and let H be the graph obtained
using the proposed construction method. It holds that H satisfies (R1)–(R4).

Proof. The fact that (R1), (R3) and (R4) are satisfied follows immediately from Lemmas 6, 8 and 9.
The fact that (R2) is satisfied follows trivially from the construction.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.4 BOUNDED INFERENCE

B.4.1 PROOF OF PROPOSITION 6

Let pathsmG (b) be the set of all paths in G of length at most m which are ending in b.

Lemma 10. For any entity e ∈ E it holds that

e(m) ⪯ max
(
e(0), max

π∈pathsmG (e)
µrels(π)

(
emb0(head(π))

))
Proof. This follows immediately from the construction of the GNN.

Lemma 11. Let ℓ be the number of nodes in the given m-bounded rule graph. Suppose P ∪ G ̸|=m

(a, r, b). Then there is some i ∈ {1, ..., ℓ} such that:

• Zi ⊆ Ir; and

• whenever π ∈ pathsm+1
G (b) with head(π) = a, it holds that Irels(π) ∩ Zi = ∅.

Proof. This lemma is shown in exactly the same way as Lemma 5, simply replacing pathsG(b) by
pathsm+1

G (b) and replacing Condition (R4) by Condition (R4m).

Proposition 11. Let P be a rule base and G a knowledge graph. Let H be an m-bounded rule graph
for P and let Z(l)

e be the entity representations that are learned by the corresponding GNN. For any
ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for any i ≤ m+1 and (a, r, b) ∈ E×R×E
such that P ∪ G ̸|=m (a, r, b), we have

Pr[BrZ
(i)
a ⪯ Z

(i)
b] ≤ ε

Proof. This result is shown in the same way as Proposition 2, by relying on Lemma 11 instead of
Lemma 5.

B.4.2 PROOF OF PROPOSITION 7

Given a set of closed path rules P we can construct an m-bounded rule graph as follows.

1. We add the node n0.

2. For each relation r ∈ R, we add a node nr, and we connect n0 to nr with an r-edge.

3. We repeat the following until convergence. Let r ∈ R and assume there is an r-edge from
n to n′. Let r1(X,Y)∧ r2(Y, Z) → r(X,Z) be a rule from P and suppose that there is no
r1; r2 path connecting n and n′. Suppose furthermore that the edge (n, n′) is on some path
from n0 to a node nr′ , with r′ ∈ R whose length is at most m. We add a fresh node n′′ to
the rule graph, an r1-edge from n to n′′, and an r2-edge from n′′ to n′.

4. For each r ∈ R and r-edge (n, n′) such that for some rule r1(X,Y)∧r2(Y, Z) → r(X,Z)
from P there is no r1; r2 path connecting n and n′, we do the following:

(a) We add a fresh node n′′, an r1-edge from n to n′′ and an r2-edge from n′′ to n′.
(b) We repeat the following until convergence. For each r′-edge from n to n′′ and each

rule r′1(X,Y) ∧ r′2(Y, Z) → r′(X,Z) from P , we add an r′1 edge from n to n′′ and
an r′2-loop to n′′ (if no such edges/loops exist yet).

(c) We repeat the following until convergence. For each r′-edge from n′′ to n′ and each
rule r′1(X,Y)∧r′2(Y,Z) → r′(X,Z) from P , we add an r′1-loop to n′′ and an r′2-edge
from n′′ to n′ (if no such edges/loops exist yet).

(d) We repeat the following until convergence. For each r′-loop at n′′, and each rule
r′1(X,Y)∧ r′2(Y,Z) → r′(X,Z) from P , we add an r′1-loop and an r′2-loop to n′′ (if
no such loops exist yet).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

n0

nr1 neq

n1

n2

nr3

n3

n4

nr2

r1 eq

r1

r1, r3

r2r1 r3 r2

r1
r3

r2, r1

r1

r1, r2, r3

r1, r2, r3

Figure 4: Rule graph for Example 7.

n0

n1

n2

n3

nr3

n4

nr2nr1

n5

nr4

nr5

eq

r4

r5
eq r4

r5

r1

r4

r5r2
r3

r4
r5

r2r1
r4

r5

Figure 5: Rule graph for Example 8.

5. For each node n with multiple incoming r-edges for one or more relations from R, we do
the following. Let ♯r be the number of incoming r-edges for node n. Let p = maxr∈R ♯r.
We create fresh nodes n1, ..., np−1 and add eq-edges from ni to ni−1 (i ∈ {1, ..., p − 1}),
where we define n0 = n. Let r ∈ R be such that ♯r > 1. Let n′

0, ..., n
′
q be the nodes with

an r-link to n; then we have q ≤ p − 1. For each i ∈ {1, ..., q} we replace the edge from
n′
i to n by an edge from n′

i to ni.

We illustrate the construction process with two examples.
Example 7. Let us consider the following set of rules:

r1(X,Y) ∧ r2(Y, Z) → r3(X,Z)

r3(X,Y) ∧ r1(Y, Z) → r2(X,Z)

The corresponding 1-bounded rule graph is shown in Fig. 4.
Example 8. Let us consider the following set of rules:

r1(X,Y) ∧ r2(Y, Z) → r3(X,Z)

r4(X,Y) ∧ r5(Y, Z) → r1(X,Z)

r4(X,Y) ∧ r5(Y, Z) → r2(X,Z)

The corresponding 2-bounded rule graph is shown in Fig. 5. Note how this graph is in fact also a
rule graph: due to the fact that there are no cyclic dependencies in the rule base P ∪ G |=2 (e, r, g)
is equivalent with P ∪ G |= (e, r, g).

The construction process clearly terminates after a finite number of steps. Indeed, only edges that
are on a path of length m are expanded in step 3, and given that there are only finitely many such
paths, step 3 must terminate. It is also straightforward to see that the other steps must terminate. We
now show that the construction process yields a valid m-bounded rule graph.

Conditions (R1) and (R2) are clearly satisfied. Next, we show that condition (R3) is satisfied.
Lemma 12. Let P be a set of closed path rules and let H be the resulting m-bounded rule graph,
constructed using the proposed process. Suppose nodes n and n′ are connected with an edge of type
r and suppose P |= ri1(X1, X2)∧ ri2(X2, X3)∧ ...∧ rip(Xp, Xp+1) → r(X1, Xp+1). Then there
is a path connecting n to n′, whose eq-reduced type is ri1 ; ...; rip .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. First, we show that at the end of step 4, there must be a path of type ri1 ; ...; rip connecting n
and n′. By construction, we immediately have that whenever two nodes (n, n′) are connected with
an ri-edge and P contains the rule rj(X,Y) ∧ rl(Y,Z) → ri(X,Z) it holds that there exists some
node n′′ such that there is an rj-edge from n to n′′ and an rl edge from n′′ to n′. The existence of
a path of type ri1 ; ...; rip then follows in the same way as in the proof of Lemma 8. It remains to
be shown that the proposition remains valid after step 5. However, the paths in the final graph are
those that can be found in the graph after step 4, with the possible addition of some eq-edges. This
means in particular that after step 5, there must still be a path from n to n′ whose eq-reduced type is
ri1 ; ...; rip .

Finally, the fact that (R4m) is satisfied follows from the following lemma.
Lemma 13. Let P be a set of closed path rules, and let H be the resulting m-bounded rule graph,
constructed using the process outlined above. Suppose there is a path from n0 to nr whose eq-
reduced type if r1; ...; rp, with p ≤ m+1. Then it holds that P |= r1(X1, X2)∧ ...∧rp(Xp, Xp1

) →
r(X1, Xp+1).

Proof. We clearly have that the proposition holds after step 3 of the construction method. After step
3, if there is an r-link between nodes n and n′ and a rule r1(X,Y)∧ r2(Y, Z) → r(X,Z) such that
n and n′ are not connected by an r1; r2 path, it must be the case that any path from n0 to some node
nr which contains the edge (n, n′) must have a length of at least m + 1. It follows that any path
from n0 to some node nr which contains an edge that was added during step 4 must have length at
least m+ 2. We thus have in particular that the proposition still holds after step 4. The paths in the
final graph are those that can be found in the graph after step 4, with the possible addition of some
eq-edges. Since the proposition only depends on the eq-reduced types of the paths, the result still
holds after step 5.

Together, we have shown the following result.
Proposition 12. Let P be a set of closed path rules and let H be the graph obtained using the
proposed construction method for m-bounded rule graphs. It holds that H satisfies (R1)–(R3) and
(R4m).

C EXPERIMENTAL DETAILS

This section lists additional details about our experiment’s setup, benchmark datasets, and evaluation
protocol. Section C.1 discusses further details of RESHUFFLE, while Section C.2 some additional
implementation details. The origins and licenses of the standard benchmarks for inductive KGC are
discussed in Section C.3. Details on RESHUFFLE’s hyper-parameter optimisation are discussed in
Section C.4. Finally, details about the evaluation protocol, together with the complete evaluation
results, are provided in Section C.5.

C.1 MODEL DETAILS

To initialise the entity embeddings, we set each coordinate to 0 or 1, with 50% probability. To train
the model, we use the following scoring function for a given triple (e, r, f):

s(e, r, f) = −∥ReLU(Br Z
(m)
e − Z

(m)
f)∥2

where m denotes the number of GNN layers. Note that s(e, r, f) = 0 reaches its maximal value
of 0 iff BrZ

(m)
e ⪯ Z

(m)
f . For each (e, r, f) ∈ G we add an inverse triple (f, rinv, e) to G. For

each entity e, we also add the triple (e, eq, e) to G. Following the literature (Teru et al., 2020; Zhu
et al., 2021), RESHUFFLE’s training process uses negative sampling under the partial completeness
assumption (PCA) (Galárraga et al., 2013), i.e., for each training triple (e, r, f) ∈ G, N triples
(negative samples) are created by replacing e or f in (e, r, f) by randomly sampled entities e′, f ′ ∈
E . To train RESHUFFLE, we minimise the margin ranking loss, defined as follows:

L(e, r, f) =

N∑
i=1

max(0, s(e′i, r, f
′
i)− s(e, r, f) + λ) (11)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 3: Number of relation, entities, and triples of the train, validation, and test split of the training
and testing graph of the inductive benchmarks, split by corresponding benchmark versions v1-4.

RTrain ETrain GTrain RTest ETest GTest

FB
15

k-
23

7 v1 180 1594 5226 142 1093 2404
v2 200 2608 12085 172 1660 5092
v3 215 3668 22394 183 2501 9137
v4 219 4707 33916 200 3051 14554

W
N

18
R

R v1 9 2746 6678 8 922 1991
v2 10 6954 18968 10 2757 4863
v3 11 12078 32150 11 5084 7470
v4 9 3861 9842 9 7084 15157

N
E

L
L

-9
95 v1 14 3103 5540 14 225 1034

v2 88 2564 10109 79 2086 5521
v3 142 4647 20117 122 3566 9668
v4 76 2092 9289 61 2795 8520

where (e′i, r, f
′
i) is the ith negative sample and λ > 0 is a hyper-parameter, called the margin. At an

intuitive level, the margin ranking loss pushes scores of true triples (i.e., those within the training
graph) to be larger by at least λ than the scores of triples that are likely false (i.e., negative samples).

C.2 IMPLEMENTATION DETAILS

RESHUFFLE is trained on an NVIDIA Tesla V100 PCIe 32 GB GPU. We train RESHUFFLE for up
to 1000 epochs, minimizing the margin ranking loss (see Equation 11) with the Adam optimiser
(Kingma & Ba, 2015). If the Hits@10 score on the validation split of GTrain does not increase by at
least 1% within 100 epochs, we stop the training early.

RESHUFFLE was implemented using the Python library PyKEEN 1.10.1 (Ali et al., 2021). PyKEEN
employs the MIT license and offers numerous benchmarks for KGC, facilitating the comfortable
reuse of RESHUFFLE’s code for upcoming applications and comparisons. Upon acceptance of our
paper, we will provide RESHUFFLE’s source code in a public GitHub repository to further facilitate
the reuse of RESHUFFLE by our community.

C.3 BENCHMARKS

Table 3 states the entity, relation, and triple counts of the training and test graphs, for each of the
considered benchmarks.

We did not find a license for any of the three inductive benchmarks nor their corresponding trans-
ductive supersets. Furthermore, WN18RR is a subset of the WordNet database (Miller, 1995), which
states lexical relations of English words. We also did not find a license for this dataset. FB15k-237
is a subset of FB15k (Bordes et al., 2013), which is a subset of Freebase (Toutanova & Chen, 2015),
a collaborative database that contains general knowledge, such as about celebrities and awards, in
English. We did not find a license for FB15k-237 but found that FB15k (Bordes et al., 2013) uses
the CC BY 2.5 license. Finally, NELL-995 (Xiong et al., 2017) is a subset of NELL (Carlson et al.,
2010), a dataset that was extracted from semi-structured and natural-language data on the web and
that includes information about e.g., cities, companies, and sports teams. Also for NELL, we did
not find any license information.

C.4 HYPER-PARAMETER OPTIMISATION

Following Teru et al. (2020), we manually tune RESHUFFLE’s hyper-parameters on the validation
split of GTrain. We use the following ranges for the hyperparameters: the number of RESHUFFLE’s
layers #Layers ∈ {3, 4, 5}, the embedding dimensionality parameters l ∈ {20, 25, 30} and k ∈
{40, 60, 80}, the loss margin λ ∈ {0.5, 1.0, 2.0}, and finally the learning rate lr ∈ {0.005, 0.01}.
We use the same batch and negative sampling size for all runs. In particular, we set the batch size to
1024 and the negative sampling size to 100. We report the best hyper-parameters for RESHUFFLE

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 4: RESHUFFLE’s best-performing hyper-parameters on FB15k-237 v1-4, WN18RR v1-4, and
NELL-995 v1-4.

#Layers l k λ lr

FB
15

k-
23

7 v1 4 25 80 2.0 0.005
v2 3 30 60 1.0 0.005
v3 5 25 40 0.5 0.005
v4 3 30 80 1.0 0.01

W
N

18
R

R v1 3 20 40 1.0 0.01
v2 3 20 60 0.5 0.01
v3 3 20 40 1.0 0.01
v4 3 30 80 1.0 0.01

N
E

L
L

-9
95 v1 3 20 80 2.0 0.005

v2 4 30 60 2.0 0.01
v3 4 25 40 0.5 0.01
v4 4 30 60 1.0 0.01

Table 5: RESHUFFLE’s benchmark Hits@10 scores on all seeds together with the mean (mean) and
standard deviation (stdv) of Hits@10.

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4
Seed 1 0.751 0.879 0.905 0.918 0.713 0.727 0.614 0.693 0.630 0.874 0.871 0.816
Seed 2 0.744 0.892 0.908 0.916 0.707 0.726 0.574 0.690 0.650 0.860 0.893 0.808
Seed 3 0.746 0.883 0.897 0.918 0.710 0.736 0.617 0.698 0.635 0.848 0.881 0.812

mean 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812
stdv 0.004 0.007 0.005 0.001 0.003 0.006 0.024 0.004 0.010 0.013 0.011 0.004

split by each inductive benchmark in Table 4. Finally, we reuse the same hyper-parameters for each
of RESHUFFLE’s ablations, namely, RESHUFFLEnL and RESHUFFLE2.

C.5 EVALUATION PROTOCOL AND COMPLETE RESULTS

Following the standard evaluation protocol for inductive KGC, introduced by Teru et al. (2020),
we evaluate RESHUFFLE’s final performance on the test split of the testing graph by measuring the
ranking quality of any test triple r(e, f) over 50 randomly sampled entities e′i ∈ E and f ′

i ∈ E :
r(e′i, f) and r(e, f ′

i) for all 1 ≤ i ≤ 50. Following Teru et al. (2020), we report the Hits@10 metric,
i.e., the proportion of true triples (those within the test split of the testing graph) among the predicted
triples whose rank is at most 10.

Table 5 states RESHUFFLE’s benchmark results over all inductive datasets, as well as their means
and standard deviations.

25

	Introduction
	Related work
	Problem setting
	Modeling relations using ordering constraints
	Constructing GNNs from rule graphs
	Constructing rule graphs
	Left-regular rule bases
	Bounded inference

	Experimental results
	Conclusions
	Constructing GNNs from rule graphs
	Constructing rule graphs
	Proof of Proposition 3
	Proof of Proposition 4
	Left regular rule bases
	Bounded inference
	Proof of Proposition 6
	Proof of Proposition 7

	Experimental details
	Model details
	Implementation details
	Benchmarks
	Hyper-parameter optimisation
	Evaluation protocol and complete results

