
SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Shibo Jie 1 Yehui Tang 2 Kai Han 2 Zhi-Hong Deng 1 Jing Han 3

Abstract
Transformer-based large language models (LLMs)
have already achieved remarkable results on long-
text tasks, but the limited GPU memory (VRAM)
resources struggle to accommodate the linearly
growing demand for key-value (KV) cache as the
sequence length increases, which has become a
bottleneck for the application of LLMs on long
sequences. Existing KV cache compression meth-
ods, including eviction, merging, or quantization
of the KV cache to reduce its size, result in ir-
reversible information forgetting and potentially
affect the accuracy of subsequent decoding. In
this paper, we propose SPECACHE, which takes
full advantage of the large and easily expand-
able CPU memory to offload the complete KV
cache, and dynamically fetches KV pairs back
in each decoding step based on their importance
measured by low-bit KV cache copy in VRAM.
To avoid inference latency caused by CPU-GPU
communication, SPECACHE speculatively pre-
dicts the KV pairs that the next token might at-
tend to, allowing us to prefetch them before the
next decoding step which enables parallelization
of prefetching and computation. Experiments
on LongBench and Needle-in-a-Haystack bench-
marks verify that SPECACHE effectively reduces
VRAM usage while avoiding information forget-
ting for long sequences without re-training, even
with a 10× high KV cache compression ratio.

1. Introduction
The ability to handle long sequences is critical for large
language models (LLMs), as it substantially impacts their

1State Key Laboratory of General Artificial Intelligence,
School of Intelligence Science and Technology, Peking Univer-
sity 2Huawei Noah’s Ark Lab 3School of Artificial Intelligence,
Beijing University of Posts and Telecommunications. Correspon-
dence to: Zhi-Hong Deng <zhdeng@pku.edu.cn>, Jing Han
<hanj@bupt.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Full KV cache SpeCache

LLM LLM

Top-k score

CPU
RAM

16-bit cache Low-bit cache Output token Speculative token

Figure 1. SPECACHE use low-bit KV cache and speculative token
to “guess” the top-k most relevant 16-bit KV pairs for the next
token, and prefetch them before the next decoding step.

performance in tasks such as document processing, retrieval-
augmented generation, and in-context learning. The com-
monly used transformer architecture in LLMs relies on key-
value (KV) caches to avoid redundant computations during
decoding. However, the size of the KV cache grows linearly
with the sequence length, introducing significant memory
overhead. For example, in the case of LLaMA 2-7B (Tou-
vron et al., 2023) processing sequences of length 2k with a
batch size of 16, the KV cache size reaches 8.4B, which ex-
ceeds the model’s own parameter count. Since the memory
of computing units (e.g., GPU VRAM) is often limited, the
KV cache becomes a bottleneck restricting the deployment
of LLMs, especially on edge devices.

To alleviate the memory pressure caused by the KV cache,
existing solutions, include using attention layers with slower
KV cache growth (e.g., grouped query attention (Ainslie
et al., 2023)) or attention mechanisms that do not require
a KV cache (e.g., linear attention (Katharopoulos et al.,
2020)). However, these methods alter the model architec-
ture, necessitating re-pretraining of the LLMs. Another
approach is post-training KV cache compression, includ-
ing techniques like eviction (Zhang et al., 2023; Ge et al.,
2024), merging (Zhang et al., 2024), and quantization (Liu
et al., 2024b), but these methods are applied greedily during
decoding and may result in the loss of crucial information
for subsequent steps. Alternatively, KV cache can be of-
floaded to larger, more scalable memory (e.g., CPU memory
or even disk), but this introduces frequent and substantial
CPU-GPU communication, significantly increasing infer-
ence latency (Sheng et al., 2023).

1

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Existing research shows that the attention mechanism in
LLMs is quite sparse (Liu et al., 2023b;a; Zhang et al., 2023),
meaning that during decoding, we only need to ensure that
a small number of KV pairs, which are most relevant to
the current query, are fully present in VRAM. Based on
this observation, the latency caused by offloading can be
avoided via two strategies: i) Reduce the number of KV
pairs prefetched to the GPU, fetching only several most
important to the current query; ii) Perform the selection of
important KV pairs far before the attention layer, enabling
prefetching to run in parallel with GPU computation. How-
ever, achieving these two objectives without the need for
retraining remains a challenge.

In this paper, we propose SPECACHE, a training-
free method to implement the aforementioned strategies.
SPECACHE stores the full KV cache in CPU memory. Be-
fore each attention computation begins, SPECACHE strives
to ensure that the top-k most relevant KV pairs has been
already prefetched into VRAM. To achieve this, at each
step, SPECACHE decodes two tokens simultaneously —
an “output token” to compute the model’s output, with the
prefetched top-k KV pairs, and a “speculative token” to
guess the KV pairs most likely to be attended to in the
next decoding step, with a low-bit copy of the KV cache in
VRAM, as shown in Figure 1. These most relevant 16-bit
KV pairs for the next step are prefetched in parallel into
VRAM before the attention computation of the following
step.

Since the decoding process of LLMs is memory-IO bound,
GPU utilization is quiet low, meaning that decoding two
tokens in parallel introduces almost no additional latency.
Moreover, because we can prefetch the necessary KV pairs
for attention one step ahead, prefetching and computation
can occur in parallel, avoiding any increase in inference
latency. We conducted experiments on various LLMs using
the LongBench (Bai et al., 2024) and Needle-in-a-Haystack
benchmarks (Greg Kamradt, 2023). The results demon-
strate that, compared to existing KV cache compression
methods, SPECACHE achieves better performance with a
even smaller KV cache size. Moreover, the performance of
SPECACHE is nearly on par with that of the original KV
cache, even with only 10% KV cache size. Benefiting from
this, SPECACHE can increase the batch size of decoding by
up to 12×, achieving 4.6× larger throughput compared to
the original KV cache.

2. Related Work
2.1. Efficient KV Cache

Existing work on optimizing the KV cache size during the
inference process of transformer-based LLMs can be cate-
gorized into the following three directions:

KV-Efficient Architecture. The size of the KV cache is di-
rectly determined by the model architecture. By modifying
the model structure, the size of the KV cache can be reduced.
Multi-Query Attention (MQA) (Shazeer, 2019) shares the
key and value across all attention heads, while Grouped-
Query Attention (GQA) (Ainslie et al., 2023) groups atten-
tion heads and shares the key and value only within each
group. YOCO (Sun et al., 2024b) allows the latter half of
the layers in LLMs to reuse the key and value computed
by the earlier half of the layers. Multi-Head Latent Atten-
tion (MLA) (DeepSeek-AI et al., 2024) re-parameterizes
the key and value as linear projections of low-rank space
vectors. Additionally, some approaches modify the attention
mechanism to avoid the linearly growing KV cache, such as
RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), and
State Space Models (Gu & Dao, 2023). These methods alter
the model architecture and therefore must be applied before
pre-training begins, making them unsuitable for training-
free optimization during the inference stage of off-the-shelf
LLMs.

Post-Training Compression. Existing post-training
KV cache compression methods include eviction, merg-
ing, and quantization of KV pairs. StreamLLM only re-
tains the most recent KV pairs and a few initial KV pairs.
H2O (Zhang et al., 2023), Scissorhands (Liu et al., 2023a),
and RoCo (Ren & Zhu, 2024) use attention scores to mea-
sure the importance of KV pairs and greedily drops unimpor-
tant pairs. FastGen (Ge et al., 2024) introduces four policies
to determine which KV pairs to keep and selects the opti-
mal policy combination for each attention head during the
prefilling stage. CaM (Zhang et al., 2024) and D2O (Wan
et al., 2024) selectively merge the KV pairs that are about
to be evicted with those that are being retained, thereby pre-
serving partial information. MiniCache (Liu et al., 2024a)
leverages the similarity of KV caches between adjacent lay-
ers to merge them across layers. KIVI (Liu et al., 2024b) and
KVQuant (Hooper et al., 2024) apply per-channel key quan-
tization and per-token value quantization to compress the
KV cache down to 2-bit. ZipCache (He et al., 2024) intro-
duces channel-separable token-wise quantization to achieve
an even higher compression rate. These methods can re-
duce the KV cache size in a training-free manner during
the inference stage. However, since compression inherently
leads to information loss, greedy compression at the current
step may discard information that could be useful for future
steps, potentially degrading the performance of LLMs.

Offloading & Prefetching. FlexGen (Sheng et al., 2023)
offloads the KV cache to CPU memory or even disk and
searches for the optimal offloading strategy. Huggingface’s
transformers (Wolf et al., 2019) library also imple-
ments a simple offloaded KV cache. InfLLM (Xiao et al.)
segments long-range context into memory units that are of-
floaded, and during inference, it retrieves and loads only the

2

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

0% 2% 4% 6%
k% Attention

0.7

0.8

0.9

1.0
Hi

t R
at

e

Query-Dependent Top-k
Greedy Cache Eviction

2048 4096 8192
Length

0

200

400

600

800

La
te

nc
y

(m
s/

st
ep

) Fetch KV cache
Decode w/ bs = 1
Decode w/ bs = 4
Decode w/ bs = 16

105 107 109

of float16 parameters

10 4

10 3

10 2

10 1

100

La
te

nc
y

(s
)

Top-1% cache
Full cache

Non-Contiguous
Contiguous

Figure 2. Left: Hit rates of query-dependent top-k attention and greedy cache eviction. Middle: The latency of a single decoding
step on the GPU vs the latency of loading the KV cache from the CPU to the GPU. Right: CPU-GPU transfer latency of contiguous
and non-contiguous CPU memory. We highlight the full and top-1% KV cache size with context length of 32k. Measured using
Mistral-7B-Instruct-v0.2 on NVIDIA A6000 GPU.

units relevant to the current token for attention computation.
While these methods reduce VRAM usage without losing
KV cache information, the frequent CPU-GPU communica-
tion significantly increases inference latency. In response to
this, ShadowKV (Sun et al., 2024a) also tries to reduce the
amount of fetched parameters to reduce latency.

2.2. Bottleneck of LLM Inference

The inference process of LLMs can be divided into two
phases: the prefilling phase, where the model generates the
KV cache for the prompt and produces the first output to-
ken, and the decoding phase, where the output token from
the previous step serves as input to generate the next to-
ken. Generally, the bottleneck in the prefilling phase is the
computational speed of the GPU, making it computation-
bound, while the bottleneck in the decoding phase is the
speed of data transfer between High Bandwidth Memory
and Static Random Access Memory, making it memory-IO
bound. Many techniques, such as batching (Kwon et al.,
2023) and speculative decoding (Leviathan et al., 2023),
leverage this characteristic by simultaneously inputting mul-
tiple tokens during decoding, which, although increases
FLOPs, enhances GPU utilization and mitigates significant
increases in single-step latency, and ultimately enhances
overall throughput.

3. Method
3.1. Profiling the Sparsity of KV Cache

Existing work has already explored the sparsity of attention
in LLMs (Tang et al., 2024; Singhania et al., 2024). We
begin by investigating the extent of this sparsity and the
potential efficiency gains from transferring only the sparse
KV cache.

We conducted experiments on the LLaMA-3-8B model us-
ing the PG19 dataset truncated to a sequence length of 8196.
We measured the hit rate, which represents the proportion
of attention scores captured by two types of sparse attention

compared to full attention scores. The two sparse attention
mechanisms are: i) Query-dependent top-k attention, where
each query only includes the KV pairs with top-k attention
scores in its attention computation. ii) Greedy eviction, sim-
ilar to H2O, where KV pairs with low cumulative attention
scores are evicted to ensure that each query attends to only
k KV pairs.

Based on the results shown in Figure 2 (left), we can con-
clude that: i) Attention is highly sparse. Only 0.5% of the
keys can cover 90% of a query’s attention. ii) The sparsity of
attention is query-dependent. While both methods enforce
the same level of sparsity, the hit rate for greedy eviction
is much lower than that of query-dependent top-k attention.
This suggests that different queries tend to focus on distinct
sets of keys. Although greedy eviction optimizes for the
current query, it fails to preserve important KV pairs for
subsequent queries, potentially evicting KV pairs that are
crucial for future steps. Therefore, while eviction methods
can achieve sparse attention, they cannot recover evicted KV
pairs, resulting in lower hit rates. Consequently, dynamic
prefetching is crucial for maintaining attention performance.

3.2. Profiling the Efficiency of KV Cache Offloading

As shown in Figure 2 (middle), simply offloading and
prefetching the entire KV cache leads to substantial CPU-
GPU transfer overhead. The experiments above inspire us
to prefetch only a small number of the most important KV
pairs during each decoding step, thereby reducing the num-
ber of transferred data. For non-contiguous memory trans-
ferring, mainstream framework such as PyTorch introduces
additional time overhead. Therefore, we need to conduct ex-
periments to verify the efficiency advantage of transferring
sparse KV cache compared to the full KV cache.

As shown in Figure 2 (right), although sparse CPU-GPU
transfers can introduce approximately 5 times the latency,
we can enhance efficiency by reducing the amount of data
transferred, since the attention mechanism maintains a high
hit rate even at 1% sparsity. For instance, with Mistral-7B-

3

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

LLM

1

16-bit cache Low-bit cache

Output token

Speculative token

Identify the indexes
of top-k KV pairs

Prefill

CPU
RAM

LLM

Pre-Decode

CPU
RAM

2

1

LLM

Decode T=1

CPU
RAM

2 3

1 2

miss miss miss

miss hit hit LLM

Decode T=2

CPU
RAM

hit miss miss

3 4

2 3

16-bit & low-bit cache

To be prefetched

To be quantized & offloaded

To be evicted

Output

Output Output

Figure 3. Illustration of SPECACHE. In prefilling stage, the KV cache is quantized and offloaded layer by layer. In pre-decoding stage,
we use the first output token to compute the first speculative token and prefetch the 16-bit KV pairs needed by the first decoding step. In
each step of decoding stage, we simultaneously decode two tokens: the output token and the speculative token. the results of both serve as
inputs for the next step. The top-k most relevant 16-bit KV pairs for the speculative token are prefetched before the next step.

Instruct-v0.2 model and context length of 32k, transferring
only top-1% of the KV pairs would reduce transfer latency
by 95%.

3.3. SPECACHE: Speculative Key-Value Caching

Although the efficiency benefits of top-k prefetching are
significant, we still need a method to predict the attention
scores of KV pairs before loading the KV cache. To enable
parallel prefetching and computation, we need to begin
prefetching the KV pairs as early as possible. This brings
us to a key challenge: How can we determine which KV
pairs are important far before the attention operation
takes place? In fact, we don’t need to prefetch the exact
top-k KV pairs; we only need to prefetch KV pairs with a
high hit rate, ensuring that they include the vast majority
of significantly attended ones. Based on this, we propose
SPECACHE, a method that speculatively predicts which KV
pairs will be important for future queries and prefetches
them accordingly.

Speculatively predicting future attention scores requires ap-
proximate representations of both the historical key cache
and the future query to be available in VRAM. For the
former, existing training-free KV cache quantization meth-
ods can effectively address this issue; for example, we can
store a 2-bit or even 1-bit approximation of the KV cache
in VRAM. As for the latter, we propose decoding an addi-
tional “speculative token” in parallel in each decoding step
to approximate the next token.

As shown in Figure 3, The entire inference process can

be divided into three stages: prefilling, pre-decodeing, and
decoding.

Prefilling. During the prefilling stage, we adopt a layer-by-
layer offloading approach. After the computation of each
attention layer is completed, we quantize the KV cache
to low precision and offload the original 16-bit KV cache
C entirely to CPU memory, freeing up space for the next
layer’s KV cache. Once the prefilling stage is complete, we
obtain an accurate first output token T1.

Pre-decoding. Before the decoding stage begins, only the
low-bit KV cache C ′ resides in VRAM. To prefetch the
necessary 16-bit KV pairs for the first decoding step, we
introduce a single decoding step as pre-decodeing. We use
T1 as input, generating a preliminary output T ′

2, which may
not be fully accurate, as a speculative token. Simultaneously,
we record the indexes of top-k KV pairs from the attention
score calculation for T1, denoted as K1, and immediately
start prefetching those 16-bit KV pairs from CPU RAM in
parallel with the computation of subsequent layers. After the
pre-decoding step concludes, the first decoding step follows
immediately.

Decoding. Before the t-th decoding step begins, VRAM
contains the previous output token Tt, a speculative token
T ′
t+1, low-bit KV cache C ′, and the top-k 16-bit KV pairs

CKt required by Tt.

We decode Tt and T ′
t+1 in parallel,

O = Attn([Tt, T
′
t+1],C

′ ∪CKt
) (1)

in which C ′ ∪CKt denotes replace C ′
Kt

(the subset of C ′

4

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Table 1. Performance of SPECACHE across various LLMs on LongBench. “16-bit” denotes vanilla KV cache without reduction
technique, “2-bit” denotes 2-bit KIVI, and “1-bit” denotes KIVI modified for 1-bit quantization. The KV cache size is calculated based on
the models’ maximum context length.

Bit-width
of KV Cache

KV
Cache
Size Q

as
pe

r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

R
ep

or
t

M
ul

tiN
ew

s

PR
e

L
C

C

R
B

-P Average

L
L

aM
A

-2
-7

B
-C

ha
t 16-bit 1.00× 19.5 34.0 30.1 26.5 10.0 24.1 26.4 9.0 59.7 53.1 29.2

2-bit (g = 32) 0.22× 19.0 31.4 29.7 25.1 9.8 22.0 25.3 7.0 58.8 52.8 28.1
+ SPECACHE 0.22× 20.2 32.0 30.5 26.4 10.3 24.0 26.1 8.5 59.2 53.7 29.1 (↑ 1.0)
2-bit (g = 64) 0.19× 18.4 31.1 28.7 26.6 9.8 19.9 25.3 8.5 55.8 51.1 27.5
+ SPECACHE 0.19× 19.8 32.9 30.1 27.4 9.5 23.6 25.6 9.0 59.3 53.4 29.1 (↑ 1.6)

L
L

aM
A

-2
-1

3B
-C

ha
t

16-bit 1.00× 24.1 37.0 36.4 31.9 15.8 24.5 25.7 12.0 50.2 50.6 30.8
2-bit (g = 32) 0.22× 23.7 36.1 35.3 31.7 14.8 22.0 25.5 12.0 49.7 48.7 30.0
+ SPECACHE 0.22× 24.5 36.8 35.8 32.1 15.0 24.1 26.1 12.0 49.5 50.7 30.7 (↑ 0.7)
2-bit (g = 64) 0.19× 22.4 34.1 36.1 32.8 14.5 21.2 25.3 12.3 49.8 48.1 29.7
+ SPECACHE 0.19× 23.6 36.5 35.5 32.0 14.7 23.8 25.6 11.1 49.9 49.5 30.2 (↑ 0.5)

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

16-bit 1.00× 33.1 49.2 43.0 27.3 18.8 32.9 27.0 87.0 53.5 51.4 42.3
2-bit (g = 32) 0.19× 31.4 49.0 42.0 26.2 18.2 32.3 26.8 76.8 52.9 51.2 40.7
+ SPECACHE 0.19× 32.5 49.3 42.7 27.9 18.4 32.3 26.7 82.1 53.2 50.4 41.5 (↑ 0.8)
2-bit (g = 64) 0.16× 31.6 47.5 41.9 28.0 18.8 31.5 26.6 68.6 52.1 50.6 39.7
+ SPECACHE 0.16× 33.0 49.1 43.6 28.2 18.4 32.1 27.0 84.6 53.2 50.5 42.0 (↑ 2.3)
1-bit (g = 32) 0.13× 18.9 40.3 32.9 25.4 13.5 20.6 22.3 41.1 46.6 42.8 30.4
+ SPECACHE 0.13× 31.5 50.0 44.1 25.7 18.2 27.6 26.6 78.6 52.0 49.6 40.4 (↑ 10.0)
1-bit (g = 64) 0.10× 18.1 38.8 31.7 23.1 13.0 21.3 22.7 34.0 44.8 41.5 28.9
+ SPECACHE 0.10× 31.1 49.6 43.9 26.9 18.3 27.8 26.7 76.8 52.3 50.4 40.4 (↑ 11.5)

L
L

aM
A

-3
-8

B
-I

ns
tr

uc
t

16-bit 1.00× 44.3 44.4 46.6 37.0 21.5 30.0 27.7 67.0 57.1 51.4 42.7
2-bit (g = 32) 0.20× 43.2 44.5 46.9 37.6 20.7 29.6 27.3 67.5 51.1 47.0 41.5
+ SPECACHE 0.20× 44.0 44.7 46.7 36.8 21.5 29.7 27.6 67.0 56.7 50.2 42.5 (↑ 1.0)
2-bit (g = 64) 0.17× 43.4 44.2 46.0 36.5 20.6 29.4 27.2 65.0 53.0 50.9 41.6
+ SPECACHE 0.17× 43.7 45.1 46.4 37.0 21.0 29.7 27.7 67.0 57.0 50.4 42.5 (↑ 0.9)
1-bit (g = 32) 0.14× 26.0 32.4 40.9 28.9 16.9 7.8 6.1 64.0 18.6 25.3 26.7
+ SPECACHE 0.14× 41.8 44.6 46.4 37.2 21.4 27.0 26.6 63.5 57.1 52.2 41.8 (↑ 15.1)
1-bit (g = 64) 0.11× 23.9 29.6 39.8 25.5 15.7 4.9 5.5 62.3 17.8 22.0 24.7
+ SPECACHE 0.11× 43.2 45.6 46.2 36.9 20.7 27.9 27.1 65.0 55.0 51.0 41.9 (↑ 17.2)

with index Kt) with 16-bit CKt
in this computation.

During the attention computation, we also record the indexes
Kt+1 of top-k KV pairs based on the attention scores of
T ′
t+1, which are likely to be needed for decoding Tt+1 in the

next step. Once the computation concludes, we immediately
begin prefetching those 16-bit KV pairs CKt+1 , evicting
the non-top-k 16-bit KV pairs from VRAM that has been
used, and offloading the newly created KV pairs. All these
memory operations are in parallel with the computation of
subsequent layers.

After decoding, Tt and T ′
t+1 generate two tokens: Tt+1

and T ′
t+2. Since the 16-bit KV pairs needed by Tt were

prefetched before its attention computation, we can assume
that Tt+1 is accurate and use it as the model’s output. In
contrast, T ′

t+2 serves as the speculative token for the next
decoding step, since it may be less accurate for output.

The entire inference process of SPECACHE, compared to the

original inference process, adds only a single pre-decoding
step and decodes two tokens simultaneously during decod-
ing. The additional pre-decoding step is negligible in the
overall sentence generation. While the number of decoded
tokens increases, the model weights and KV cache used for
both tokens are identical. Since the decoding process of
LLMs is memory-IO bound, decoding two tokens simul-
taneously allows shared access to model weights and KV
cache, without introducing additional latency. Moreover, as
the prefetching runs in parallel with GPU operations, the
overall inference latency does not significantly increase.

3.4. Post-Training Quantization for GPU KV Cache

Since SPECACHE stores a low-bit copy of the KV cache in
the GPU, it can be combined with any KV cache quantiza-
tion method. Existing post-training KV cache quantization
methods, such as KIVI (Liu et al., 2024b), can quantize the
KV cache to 2-bit without calibration, while methods like

5

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Table 2. Comparison with other methods on LongBench. SPECACHE outperforms the other methods in terms of average performance,
even when using higher compression ratios.

Method
KV

Cache
Size Q

as
pe

r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

R
ep

or
t

M
ul

tiN
ew

s

PR
e

L
C

C

R
B

-P Average

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

Full KV cache 1.00× 33.1 49.2 43.0 27.3 18.8 32.9 27.0 87.0 53.5 51.4 42.3
InfLLM 0.25× 16.8 38.4 33.9 19.2 18.2 29.6 24.7 41.4 52.8 55.3 33.0
StreamLLM 0.25× 15.1 25.4 27.7 17.4 14.6 27.4 22.1 31.6 51.8 55.9 28.9
H2O 0.25× 24.9 44.8 35.0 19.0 17.5 28.6 24.2 82.9 53.9 52.3 38.3
SPECACHE 0.16× 33.0 49.1 43.6 28.2 18.4 32.1 27.0 84.6 53.2 50.5 42.0
InfLLM 0.13× 12.8 33.0 29.1 16.2 13.3 27.9 23.8 26.2 54.1 53.5 29.0
StreamLLM 0.13× 11.3 22.9 22.8 12.0 10.7 24.6 19.7 16.9 53.8 56.0 25.1
H2O 0.13× 21.4 41.1 32.8 16.8 15.9 26.2 23.0 79.5 52.8 51.8 36.1
SPECACHE 0.10× 31.1 49.6 43.9 26.9 18.3 27.8 26.7 76.8 52.3 50.4 40.4

L
L

aM
A

-3
-8

B
-I

ns
tr

uc
t

Full KV Cache 1.00× 44.3 44.4 46.6 37.0 21.5 30.0 27.7 67.0 57.1 51.4 42.7
InfLLM 0.25× 28.0 35.1 36.6 23.0 14.4 29.6 25.5 37.5 56.9 58.3 34.5
StreamLLM 0.25× 23.0 21.1 29.8 24.7 12.0 25.9 22.6 21.0 55.0 57.2 29.2
H2O 0.25× 41.2 41.8 46.8 36.9 21.5 25.7 23.7 66.0 55.1 51.2 41.0
SPECACHE 0.17× 43.7 45.1 46.4 37.0 21.0 29.7 27.7 67.0 57.0 50.4 42.5
InfLLM 0.13× 22.0 27.0 33.1 20.5 9.3 27.5 24.4 18.0 61.4 58.4 30.2
StreamLLM 0.13× 16.6 17.4 25.7 18.5 9.8 23.4 19.9 8.0 60.4 55.8 25.6
H2O 0.13× 37.8 42.1 46.6 36.9 21.5 23.7 21.9 65.5 54.6 50.8 40.1
SPECACHE 0.11× 43.2 45.6 46.2 36.9 20.7 27.9 27.1 65.0 55.0 51.0 41.9

KVQuant (Hooper et al., 2024) achieve 1-bit quantization
with the help of calibration. We utilize KIVI to quantize the
GPU copy due to its simplicity and the fact that it does not
require calibration. To further push the limits of KV cache
compression, we modify KIVI for 1-bit quantization.

The original KIVI quantizes KV cache as follows:

Q(X) = ⌊X − zX
sX

⌉, X ′ = Q(X) · sX + zX , (2)

where zX = minX is the zero-point, sX = (maxX −
minX)/(2B − 1) is the scaling factor, and ⌊·⌉ is the round-
ing operation.

However, in 1-bit quantization, the elements of X ′ are ei-
ther maxX or minX . This results in the quantized KV
cache having an unusually large magnitude, which makes
the model struggle to perform text generation effectively.
To address this issue, we improve KIVI in the 1-bit scenario
by assuming that the weights follow a uniform distribution
between the minimum minX and maxX , and ensuring
that the cumulative quantization error is minimized. Based
on this, the zero-point and scaling factor are modified as
follows:

zX =
3 ·minX +maxX

4
, sX =

maxX −minX

2
(3)

which ensures that all values in the range [minX, (minX+
maxX)/2) are quantized to the midpoint of this interval,

(3 ·minX +maxX)/4, and values in the range [(minX +
maxX)/2,maxX] are quantized to the midpoint of this
interval, minX + 3 ·maxX)/4.

4. Experiments
4.1. Implementation Details

Note that KIVI retains a small set of recent KV pairs as
residuals to perform channel-wise quantization of the keys
and enhance model performance. Since SPECACHE tem-
porarily loads a small number of KV pairs into the GPU,
for a fair comparison, we reduce the number of residual
KV pairs used by SPECACHE, ensuring that SPECACHE
does not increase VRAM usage on top of KIVI. Specifi-
cally, for the baseline KIVI method, we use 128 residual
KV pairs and quantization group size of 32 and 64. For
SPECACHE, we prefetch top-64 16-bit KV pairs from CPU
memory. Since these 16-bit KV pairs will be loaded into
VRAM, in order to ensure that the total size of the KV cache
remains unchanged, we use a smaller residual length of 64.

4.2. Performance on LongBench

For LongBench, we report results on 10 tasks: Qasper, Mul-
tiFieldQA, HotpotQA, 2WikiMQA, MuSiQue, GovReport,
MultiNews, PassageRetrieval, LCC, and RepoBench-P. Full
results on all the 15 tasks are provided in Appendix. The
maximum sequence length is set to 4k for LLaMA-2, 32k

6

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Table 3. Decoding throughput. Evaluated on a single NVIDIA A6000 GPU using Mistral-7B-Instruct-v0.2.

Context
Full KV cache SPECACHE (2-bit, g = 64) SPECACHE (1-bit, g = 64)

Batch Size Throughput Batch Size Throughput Speedup Batch Size Throughput Speedup

2k 44 190.3 272 418.5 2.2× 410 526.3 2.8×
8k 11 47.0 82 133.7 2.8× 134 177.7 3.8×
32k 3 10.3 22 34.6 3.4× 36 47.3 4.6×

���

	�
��
��

���
���
	�
��
�

���
���
	�
��
���

��
��
�
��
��
���

��
��

Figure 4. Performance on Needle-in-a-haystack benchmark.
We use g = 32 for quantization, resulting in the KV cache com-
pression ratio of 0.13 and 0.14 for Mistral-7B-Instruct-v0.2 and
LLaMA-3-8B-Instruct, respectively.

for Mistral, and 8k for LLaMA-3. For LLaMA-2, we only
opt for 2-bit KV cache quantization, as the model’s perfor-
mance under 1-bit KV cache quantization is significantly
poor.

According to the results are shown in Table 1, we have
several observations. As the degree of KV compression
increases (with lower bit widths or larger group sizes), the
model’s performance declines. However, when combined
with SPECACHE, the majority of the performance loss is
recovered. We find that the greater the KV compression,
the more pronounce the advantages of our method become,
which further demonstrates that top-k KV cache can recover
most of the attention information. Specifically, our method
can maintain a performance gap of only 2% and 1% com-
pared to the 16-bit baseline for Mistral-7B-Instruct-v0.2 and
LLaMA-3-8B-Instruct, respectively, while retaining only
approximately 10% of the KV cache size in the GPU.

0 16 32 64 128 256
k

30.0

32.5

35.0

37.5

40.0

Av
er

ag
e

Ac
cu

ra
cy

Mistral-7B-Instruct-v0.2

0 16 32 64 128 256
k

30

35

40

LLaMA-3-8B-Instruct

Figure 5. Ablation study on k. We use 1-bit SPECACHE with
g = 32.

In addition to KIVI, we also compare SPECACHE with other
representative KV cache compression methods, including
InfLLM (Xiao et al.), H2O (Zhang et al., 2023), and Stream-
LLM (Xiao et al., 2024). For these baselines, we follow the
settings from Yuan et al. (2024), compressing the KV cache
to 1/4 or 1/8 of its original size, and compare them with 2-bit
and 1-bit SPECACHE, respectively. The residual length and
group size for SPECACHE are set to 64. As shown in Ta-
ble 2, SPECACHE outperforms the other methods in terms of
average performance, even when using higher compression
ratios.

4.3. Performance on Needle-in-a-Haystack Benchmark

First, we evaluate the model’s long-context retrieval abil-
ity after applying KV cache compression with SPECACHE
on a synthetic task — the Needle-in-a-Haystack (NIAH)
benchmark (Greg Kamradt, 2023). We report retrieval ac-
curacy under three different settings on the Mistral-7B-
Instruct-v0.2 model with a 32k context and the LLaMA-
3-8B-Instruct model with an 8k context: 16-bit KV cache,
where no KV cache compression is applied; 1-bit KV cache,
where we use KIVI to quantizes the KV cache to 1-bit; and
1-bit KV cache + SpeCache, where SpeCache is used to
prefetch the 16-bit KV cache from CPU memory on top of
1-bit quantization.

The results are shown in Figure 4. Under 1-bit KV cache
quantization, LLMs’ long-context retrieval ability is sig-
nificantly compromised. After applying SPECACHE, the
performance of LLMs under 1-bit KV cache quantization is
comparable to that of the 16-bit.

7

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Table 4. Comparison with non-speculative fetching. We report the average decoding latency for a single step when using the maximum
batch size that 48GB VRAM of a single NVIDIA A6000 can handle with a context length of 2k.

W/ Spec.
Prefetch

Bit-width

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

R
ep

or
t

M
ul

tiN
ew

s

PR
e

L
C

C

R
B

-P Average
Latency

(ms/step)

× 2-bit 44.5 44.9 46.4 37.4 21.4 29.6 27.8 66.5 57.3 50.5 42.6 877
✓ 2-bit 43.7 45.1 46.4 37.0 21.0 29.7 27.7 67.0 57.0 50.4 42.5 643
× 1-bit 43.3 44.7 46.7 37.2 21.8 28.9 27.5 66.0 58.3 50.1 42.4 1144
✓ 1-bit 43.2 45.6 46.2 36.9 20.7 27.9 27.1 65.0 55.0 51.0 41.9 775

Table 5. Ablation study on quantization method. Tested on
LLaMA-3-8B-Instruct.

Improved
1-bit KIVI

SPECACHE Qasper 2WikiMQA RB-P

× × 3.7 4.9 20.3
× ✓ 4.1 6.5 21.6
✓ × 23.9 25.5 22.0
✓ ✓ 43.2 36.9 51.0

4.4. Efficiency

To highlight the advantages of SPECACHE in reducing KV
cache size, we test its maximum throughput during decoding.
We conduct tests in scenarios with context lengths of 2k, 8k,
and 32k, increasing the batch size to maximize GPU mem-
ory usage up to the 48GB VRAM of an NVIDIA A6000
GPU. The decoding throughput measured on Mistral-7B-
Instruct-v0.2 model with HuggingFace transformers
as framework. Note that our CPU-GPU interaction code is
implemented using pytorch’s multi-stream mechanism
and the Tensor.copy () method, so the parallelism
achieved is not theoretically optimal. By customizing lower-
level operators, the efficiency of SPECACHE can be further
improved.

As shown in the Table 3, with 2-bit and 1-bit quantization,
SPECACHE allows the batch size to increase by up to 7×
and 12×, respectively, resulting in overall throughput im-
provements of 3.4× and 4.6× compared to the original
setup. Notably, when the context length is large, the orig-
inal KV cache can only accommodate smaller batch sizes,
leading to lower parallelism. This results in more significant
acceleration with SPECACHE.

4.5. Ablation Experiments

Ablation study on k. We conduct an ablation study on the
number of prefetched KV pairs, k. As shown in the Figure 5,
even with a small k, such as k = 16, SPECACHE still
provides a significant improvement over the KIVI baseline
(i.e., k = 0). As k increases, the model’s performance
improves, but at the same time, a larger k increases the size

of transferred data. In practical applications, a trade-off for
k can be made.

Comparison with original 1-bit KIVI. To highlight the im-
portance of the new zero point and scaling factor we propose
for 1-bit KIVI, we conduct an ablation study. As shown in
Table 5, when using the original KIVI, although SPECACHE
provides some improvements, the model’s performance is
still very poor, regardless of whether SPECACHE is used.
After modifying the quantization method, the model’s per-
formance significantly improves, and the advantages of
SPECACHE become much more apparent.

Comparison with non-speculative fetching. One advan-
tage of our method is the ability to prefetch KV pairs one
step ahead, allowing prefetching and computation to run
in parallel. We compare this with another simple strategy,
where instead of using speculative tokens, we use the output
tokens from the previous step to estimate the top-k KV pairs
and fetch them, followed by recalculating attention. In this
strategy, the fetching starts after the attention computation
is completed and needs to be finished before recalculating
attention, meaning it cannot run in parallel.

As shown in Table 4, using accurate output tokens instead
of speculative tokens slightly improves the model’s perfor-
mance, but at the cost of significantly increasing the model’s
latency. As the batch size increases, the time required to
load KV pairs from the CPU increases linearly, while the
computation time increases more slowly due to the improved
parallelism. Therefore, during decoding with large batch
sizes, the latency of loading KV pairs becomes the domi-
nant factor. This highlights the importance of parallelizing
computation and prefetching.

5. Conclusion
In this paper, we propose SPECACHE, a low-latency, high-
performance, and training-free KV cache compression
method. SPECACHE stores high-precision KV cache in
CPU RAM, while low-bit (down to 1 bit) KV cache is
stored in GPU VRAM. It utilizes speculative tokens and
output tokens co-decoding to anticipate and prefetch the

8

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

top-k KV pairs for the next decoding step. This approach
effectively recovers the information lost due to the low-bit
KV cache while enabling the parallelization of prefetching
and computation.

Impact Statement
This paper is based on LLMs, which have potential societal
impacts, including concerns around bias, misinformation,
and accessibility. While these issues are well-known, we
aim to contribute to improving the efficiency of LLMs. Con-
tinued ethical oversight and interdisciplinary collaboration
are essential as the field evolves.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. GQA: training generalized
multi-query transformer models from multi-head check-
points. In Proceedings of EMNLP, 2023.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du,
Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J., and Li,
J. Longbench: A bilingual, multitask benchmark for long
context understanding. In Proceedings of ACL, 2024.

DeepSeek-AI, Liu, A., Feng, B., Wang, B., Wang, B., Liu,
B., Zhao, C., Deng, C., Ruan, C., Dai, D., Guo, D., Yang,
D., Chen, D., Ji, D., Li, E., Lin, F., Luo, F., Hao, G., Chen,
G., Li, G., Zhang, H., Xu, H., Yang, H., Zhang, H., Ding,
H., Xin, H., Gao, H., Li, H., Qu, H., Cai, J. L., Liang, J.,
Guo, J., Ni, J., Li, J., Chen, J., Yuan, J., Qiu, J., Song,
J., Dong, K., Gao, K., Guan, K., Wang, L., Zhang, L.,
Xu, L., Xia, L., Zhao, L., Zhang, L., Li, M., Wang, M.,
Zhang, M., Zhang, M., Tang, M., Li, M., Tian, N., Huang,
P., Wang, P., Zhang, P., Zhu, Q., Chen, Q., Du, Q., Chen,
R. J., Jin, R. L., Ge, R., Pan, R., Xu, R., Chen, R., Li,
S. S., Lu, S., Zhou, S., Chen, S., Wu, S., Ye, S., Ma, S.,
Wang, S., Zhou, S., Yu, S., Zhou, S., Zheng, S., Wang, T.,
Pei, T., Yuan, T., Sun, T., Xiao, W. L., Zeng, W., An, W.,
Liu, W., Liang, W., Gao, W., Zhang, W., Li, X. Q., Jin, X.,
Wang, X., Bi, X., Liu, X., Wang, X., Shen, X., Chen, X.,
Chen, X., Nie, X., and Sun, X. Deepseek-v2: A strong,
economical, and efficient mixture-of-experts language
model. ArXiv preprint, arXiv:2405.04434, 2024.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive KV cache
compression for llms. In Proceedings of ICLR, 2024.

Greg Kamradt. Needle in a haystack - pressure testing llms,
2023. URL https://https://github.com/
gkamradt/LLMTest_NeedleInAHaystack/.

Gu, A. and Dao, T. Mamba: Linear-time sequence

modeling with selective state spaces. ArXiv preprint,
arXiv:2312.00752, 2023.

He, Y., Zhang, L., Wu, W., Liu, J., Zhou, H., and Zhuang,
B. Zipcache: Accurate and efficient KV cache quanti-
zation with salient token identification. ArXiv preprint,
arXiv:2405.14256, 2024.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length LLM in-
ference with KV cache quantization. ArXiv preprint,
arXiv:2401.18079, 2024.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In Proceedings of ICML, 2020.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of SOSP, 2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and
Scarlett, J. (eds.), Proceedings of ICML, 2023.

Liu, A., Liu, J., Pan, Z., He, Y., Haffari, G., and Zhuang,
B. Minicache: KV cache compression in depth di-
mension for large language models. ArXiv preprint,
arXiv:2405.14366, 2024a.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z.,
Kyrillidis, A., and Shrivastava, A. Scissorhands: Exploit-
ing the persistence of importance hypothesis for LLM
KV cache compression at test time. In Proceedings of
NeurIPS, 2023a.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Ré, C., and Chen, B.
Deja vu: Contextual sparsity for efficient llms at inference
time. In Proceedings of ICML, 2023b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for KV cache. In Proceedings of ICML,
2024b.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Der-
czynski, L., Du, X., Grella, M., GV, K. K., He, X., Hou,
H., Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau,
H., Lin, J., Mantri, K. S. I., Mom, F., Saito, A., Song,
G., Tang, X., Wind, J. S., Wozniak, S., Zhang, Z., Zhou,
Q., Zhu, J., and Zhu, R. RWKV: reinventing rnns for the
transformer era. In Findings of EMNLP, 2023.

9

https://https://github.com/gkamradt/LLMTest_NeedleInAHaystack/
https://https://github.com/gkamradt/LLMTest_NeedleInAHaystack/

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Ren, S. and Zhu, K. Q. On the efficacy of eviction pol-
icy for key-value constrained generative language model
inference. ArXiv preprint, arXiv:2402.06262, 2024.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. ArXiv preprint, arXiv:1911.02150, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single GPU. In Proceedings of ICML,
2023.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. In
Proceedings of NeurIPS, 2024.

Sun, H., Chang, L., Bao, W., Zheng, S., Zheng, N., Liu,
X., Dong, H., Chi, Y., and Chen, B. Shadowkv: KV
cache in shadows for high-throughput long-context LLM
inference. arXiv preprint, arXiv:2410.21465, 2024a.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. ArXiv preprint,
arXiv:2307.08621, 2023.

Sun, Y., Dong, L., Zhu, Y., Huang, S., Wang, W., Ma,
S., Zhang, Q., Wang, J., and Wei, F. You only cache
once: Decoder-decoder architectures for language models.
ArXiv preprint, arXiv:2405.05254, 2024b.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han, S.
QUEST: query-aware sparsity for efficient long-context
LLM inference. In Proceedings of ICML, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., Bikel, D., Blecher, L., Canton-Ferrer, C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian,
R., Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan,
J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kam-
badur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov,
S., and Scialom, T. Llama 2: Open foundation and fine-
tuned chat models. ArXiv preprint, arXiv:2307.09288,
2023.

Wan, Z., Wu, X., Zhang, Y., Xin, Y., Tao, C., Zhu, Z.,
Wang, X., Luo, S., Xiong, J., and Zhang, M. D2O:

dynamic discriminative operations for efficient genera-
tive inference of large language models. ArXiv preprint,
arXiv:2406.13035, 2024.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., and Brew, J. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv preprint,
arXiv:1910.03771, 2019.

Xiao, C., Zhang, P., Han, X., Xiao, G., Lin, Y., Zhang, Z.,
Liu, Z., Han, S., and Sun, M. Infllm: Unveiling the in-
trinsic capacity of llms for understanding extremely long
sequences with training-free memory. ArXiv preprint,
arXiv:2402.04617.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
Proceedings of ICLR, 2024.

Yuan, J., Liu, H., Zhong, S., Chuang, Y., Li, S., Wang, G.,
Le, D., Jin, H., Chaudhary, V., Xu, Z., Liu, Z., and Hu,
X. B. KV cache compression, but what must we give
in return? A comprehensive benchmark of long context
capable approaches. In Findings of EMNLP, 2024.

Zhang, Y., Du, Y., Luo, G., Zhong, Y., Zhang, Z., Liu, S.,
and Ji, R. Cam: Cache merging for memory-efficient
llms inference. In Proceedings of ICML, 2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R.,
Song, Z., Tian, Y., Ré, C., Barrett, C. W., Wang, Z., and
Chen, B. H2O: heavy-hitter oracle for efficient generative
inference of large language models. In Proceedings of
NeurIPS, 2023.

10

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

Appendix

A. Algorithm
We provide the pseudocode for a single attention layer. For simplicity, we have omitted the residual and grouped quantization
details of KIVI.

Algorithm 1 Prefilling
Input: T ∈ RL×d

Q = TW q , K = TW k, V = TW v

K ′ = Quant(K), V ′ = Quant(V)
C = {V ,K}, C ′ = {V ′,K ′}
Offload(C)
A = MaskedSoftmax(QK⊤)
O = AV W o

Output: O ∈ RL×d

Algorithm 2 Pre-decoding
Input: T1 ∈ R1×d

Q1 = T1W q , K1 = T1W k, V1 = T1W v

K = [K ′,K1], V = [V ′, V1]
A = Softmax(Q1K

⊤)
K1 = ArgTopK(A)
Pre-fetch(CK1)
O = AV W o

Output: O ∈ R1×d

Algorithm 3 Decoding
Input: T = [T t,T

′
t+1] ∈ R2×d

Qt = TW q , Kt = TW k, V t = TW v

K ′
t = Quant(Kt), V ′

t = Quant(V t)
K = [K ′ ∪KKt

,Kt], V = [V ′ ∪ V Kt
,V t]

A = MaskedSoftmax(QtK
⊤)

Kt+1 = ArgTopK(A1,:)
Pre-fetch(CKt+1

)
Ct = {V t,Kt}, C ′

t = {V ′
t,K

′
t}

C = [C,Offload(Ct)], C ′ = [C ′,C ′
t]

O = AV W o

Output: O ∈ R2×d

B. Setting of Needle-in-a-Haystack Benchmark
We notice that the NIAH benchmark has many different versions. We follow the setting from Greg Kamradt (2023), inserting
the sentence “The best thing to do in San Francisco is eat a switch and sit in Dolores Park on a sunny day into Paul Graham’s
essays, and added the question, “What is the best thing to do in San Francisco? Here is the most relevant sentence in the
context:” After that, we use GPT-4 to score the model’s response based on the following criteria:

• Score 1: The answer is completely unrelated to the reference.

• Score 3: The answer has minor relevance but does not align with the reference.

• Score 5: The answer has moderate relevance but contains inaccuracies.

11

SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs

• Score 7: The answer aligns with the reference but has minor omissions.

• Score 10: The answer is completely accurate and aligns perfectly with the reference.

C. Full Results on LongBench
Due to space constraints, we only report the results for ten tasks from LongBench in the main text. The results for all 15
tasks are shown in the table below. Notably, both KIVI and SPECACHE use 2-bit and 1-bit quantization with g = 64.

Method
KV

Cache
Size

N
ar

ra
tiv

eQ
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s

T
R

E
C

Tr
iv

ia
Q

A

SA
M

Su
m

PR
e

L
C

C

R
B

-P Average

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

Full KV cache 1.00× 26.9 33.1 49.2 43.0 27.3 18.8 32.9 24.2 27.0 71.0 86.2 42.8 87.0 53.5 51.4 45.0
InfLLM 0.25× 20.9 16.8 38.4 33.9 19.2 18.2 29.6 22.2 24.7 60.5 88.3 41.3 41.4 52.8 55.3 37.5
StreamLLM 0.25× 19.7 15.1 25.4 27.7 17.4 14.6 27.4 20.2 22.1 61.0 83.7 39.2 31.6 51.8 55.9 34.2
H2O 0.25× 21.6 24.9 44.8 35.0 19.0 17.5 28.6 22.8 24.2 71.0 86.7 43.8 82.9 53.9 52.3 41.9
KIVI (2-bit) 0.16× 27.0 31.6 47.5 41.9 28.0 18.8 31.5 23.6 26.6 71.0 86.2 43.6 68.6 52.1 50.6 43.2
SPECACHE 0.16× 27.2 33.0 49.1 43.6 28.2 18.4 32.1 27.1 27.1 71.0 85.9 42.8 84.6 53.2 50.5 44.9
InfLLM 0.13× 20.9 12.8 33.0 29.1 16.2 13.3 27.9 21.2 23.8 60.0 86.0 40.1 26.2 54.1 53.5 34.5
StreamLLM 0.13× 16.8 11.3 22.9 22.8 12.0 10.7 24.6 19.8 19.7 56.5 79.6 38.8 16.9 53.8 56.0 30.8
H2O 0.13× 20.9 21.4 41.1 32.8 16.8 15.9 26.2 22.6 23.0 71.0 86.3 43.8 79.5 52.8 51.8 40.4
KIVI (1-bit) 0.10× 21.7 18.1 38.8 31.7 23.1 13.0 21.3 20.8 22.7 41.0 77.8 38.4 34.0 44.8 41.5 32.6
SPECACHE 0.10× 27.2 31.1 49.6 43.9 26.9 18.3 27.8 24.0 26.7 70.5 86.6 41.6 76.8 52.3 50.4 43.6

L
L

aM
A

-3
-8

B
-I

ns
tr

uc
t

Full KV Cache 1.00× 21.7 44.3 44.4 46.6 37.0 21.5 30.0 22.6 27.7 74.5 90.6 42.7 67.0 57.1 51.4 45.3
InfLLM 0.25× 18.1 28.0 35.1 36.6 23.0 14.4 29.6 19.8 25.5 61.0 88.8 42.0 37.5 56.9 58.3 38.3
StreamLLM 0.25× 17.4 23.0 21.1 29.8 24.7 12.0 25.9 19.5 22.6 60.5 85.7 40.5 21.0 55.0 57.2 34.4
H2O 0.25× 21.8 41.2 41.8 46.8 36.9 21.5 25.7 21.4 23.7 74.0 90.6 42.4 66.0 55.1 51.2 44.0
KIVI (2-bit) 0.17× 21.0 43.4 44.2 46.0 36.5 20.6 29.4 21.9 27.2 74.0 90.1 42.9 65.0 53.0 50.9 44.4
SPECACHE 0.17× 20.9 43.7 45.1 46.4 37.0 21.0 29.7 22.7 27.7 74.5 90.1 41.9 67.0 57.0 50.4 45.0
InfLLM 0.13× 14.2 22.0 27.0 33.1 20.5 9.3 27.5 19.1 24.4 58.0 82.0 40.9 18.0 61.4 58.4 34.4
StreamLLM 0.13× 13.1 16.6 17.4 25.7 18.5 9.8 23.4 18.2 19.9 55.5 72.3 39.9 8.0 60.4 55.8 30.3
H2O 0.13× 21.3 37.8 42.1 46.6 36.9 21.5 23.7 21.1 21.9 74.0 90.5 42.9 65.5 54.6 50.8 43.4
KIVI (1-bit) 0.11× 18.6 23.9 29.6 39.8 25.5 15.7 4.9 17.5 5.5 66.0 67.1 34.8 62.3 17.8 22.0 30.1
SPECACHE 0.11× 21.0 43.2 45.6 46.2 36.9 20.7 27.9 21.3 27.1 74.0 90.4 40.1 65.0 55.0 51.0 44.4

12

