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The long-term goal of my research is to develop generalist
robots that can learn and perform a wide variety of tasks in
unstructured environments. This level of robot versatility and
generality could provide huge value through applications such
as home assistants for the elderly or better automation for
manufacturing. The sheer diversity of real-world robotic tasks,
however, makes it impractical to hand-design or learn a new
controller for every robot task. Instead, we must seek to develop
robotic foundation models capable of solving a variety of tasks
without explicit task-specific supervision [1, 3, 5]. Foundation
models, such as GPT-4 [26], have shown that models trained
on vast quantities of data can exhibit generalist capabilities.
However, these existing foundation models are largely trained
using internet-scale datasets, a luxury unlikely to be parallelled
in the near future for robotics. This unique challenge means
that we must rethink the recipe for training foundation models
that can enable general robot autonomy, prompting the central
question of my research: what are the key ingredients of
robotic foundation models and how should we train them?

I posit that foundation models for embodied intelligence
must be capable of learning from offline non-robot data and
provide actionable information for robots to learn and adapt
skills in new environments. These desiderata can address the
lack of internet-scale robot data as the robot can acquire useful
knowledge elsewhere that will guide them to autonomously
solve new tasks. My research to-date focuses on learning
and deploying actionable foundation models for robotics,
centered around the theme of learning foundation reward
models for robot skill acquisition; (shaped) reward functions
simultaneously specify the task objective (the what) and provide
detailed feedback (the how) for skill learning. Effective large-
scale reward learning algorithms can therefore bootstrap skill
acquisition across tasks, embodiments, and observation inputs.
I have worked on three complementary thrusts of foundation
reward learning by leveraging data sources and models designed
primarily for non-robot applications: (1) designing reward
functions with large language models [21], (2) pre-training
universal value functions from human videos [20], and (3) multi-
modal value pre-training from multi-modal video data [19].
Collectively, my existing research presents a versatile toolkit
of large-scale, foundational reward learning algorithms: they
can learn entirely from non-robot data, handle tasks specified
in image and language, express reward as black-box neural
network as well as interpretable code, and support learning in
the real world and simulation.

Reward Design via Large Language Models. Sim-to-real
reinforcement learning is a promising paradigm for learning

Fig. 1: Eureka can generate reward functions comparable to human-
designed ones on a majority of tasks in a diverse suite of 10 robots
and 30 tasks, including the novel dexterous pen spinning task.

complex robot skills [23, 27, 33]. However, designing an
effectively reward function for the simulation environment is
notoriously difficult, time consuming, and prone to error [4, 14].
Given that reward design is a non-differentiable optimization
problem in the space of programs, prior approaches have largely
resorted to zeroth-order black-box optimization method such
as evolutionary search [9, 25] or prompting large language
models [37]. However, these prior approaches require extensive
task-specific algorithmic design, struggling to scale to more
difficult tasks. Leveraging the remarkable code generation
capability of state-of-the-art large language models [26], I
developed Eureka [21], the first fully-automated reward
design algorithm that can generate reward functions comparable
to human designed ones. The key idea of Eureka is to
implement an evolutionary algorithm within the context of
a LLM, progressively discovering more effective reward
functions. Importantly, Eureka is free of any robot- or task-
specific prompt or template engineering and can generate
effective reward functions across a diverse set of 10 robot
embodiments and 30 distinct tasks (Figure 1 Right). This
streamlined design primes Eureka as a versatile reward
design tool for new robot task in simulation, jumpstarting
the sim-to-real design process. Recently, we have extended the
Eureka framework to perform environment design [16] in
Eurekaverse and to automate the whole design process of
sim-to-real transfer [22] in DrEureka, enabling learning of
novel skills such as a quadruped robot balancing on a yoga
ball.

Universal Value Pre-Training from Human Videos. Videos
of humans accomplishing daily tasks are abundant on the inter-
net. But how can these freely available, “in-the-wild” videos
help robotics? Observing that human videos inherently exhibit
goal-directed behavior, in my research, I proposed using them
as transition data for offline goal-conditioned reinforcement



Fig. 2: VIP can zero-shot generate dense and smooth rewards for unseen robot tasks.

Fig. 3: LIV can zero-shot predict values with respect to either image
or language goal.

learning (GCRL) to learn universal value functions [29] that can
predict values and thereby rewards for any task. Drawing from
my earlier research on dual optimization methods for offline
reinforcement learning [17, 18], I delopved value-implicit
pre-training (VIP [20]), which learns a visual representation
wherein the embedding distance captures the optimal goal-
conditioned value function. Pre-trained on a large number of
in-the-wild egocentric human videos from Ego4d [12], VIP
can produce zero-shot dense reward signals for a variety of
unseen robot tasks specified via image goals (Figure 2). In
both simulated and real-world robot experiments, VIP rewards
empower robots to learn new skills without the need for
manual human reward labeling. Notably, VIP demonstrates
the first few-shot offline reinforcement learning pipeline for
real-world manipulation, using just 20 sub-optimal trajectories
to solve diverse tasks involving manipulating articulated, soft,
transparent, and deformable objects.

Multi-Modal Value Pre-Training. While VIP can act as
zero-shot visual reward functions, its dependence on image-
based goals can pose challenges. This mode of specification,
while efficient, might be counterintuitive for the average user
and can inadvertently incorporate irrelevant aspects of a scene
into the task specification. Language, on the other hand, offers
a more intuitive and user-friendly goal interface. This raises the
question: how can we gauge visual task progression aligned
with language-specified objectives? In LIV [19], we make
the surprising theoretical finding that VIP’s goal-conditioned
RL objective is a natural generalization to language-image
contrastive learning (e.g., CLIP [28]) when the goal is specified
via language. This discovery paves the way for Language-Image
Value (LIV), a theoretically grounded extension of VIP that
enables multi-modal goal specification. Pre-trained on text-
annotated human video datasets such as EpicKitchen [7], the
resulting LIV model is capable of assigning dense rewards

to individual frames of unseen robot videos when the goal is
specified with either image or language; see Figure 3 for an
example. The generality of the LIV objective can be adapted
to modalities beyond image and text and presents a versatile
algorithmic blueprint for not only how to specify tasks in any
modality but also how to achieve them.

FUTURE WORK

In my future work, I strive to continue developing algorithms
for robot foundation reward models, with emphasis on real-
robot training and deployment.

LLM Guided Real-To-Sim-To-Real Transfer. The
DrEureka and Eurekaverse results suggest that LLMs
combined with search can be an effective approach for
automated sim-to-real transfer. However, my work has not
addressed how to use foundation models to guide the transfer
of vision-based manipulation tasks from simulation. In my
future work, I intend to explore how we can use a few real-
world demonstrations to enable foundation models to effectively
construct simulation environments for manipulation tasks to
enable effective transfer of generalizable policies trained in
simulation.

Structured Value Pre-Training. Both VIP and LIV learn
their implicit-value representations on top of RGB image inputs.
Many real-world tasks, on the other hand, would benefit from
additional sensing modalities, such as touch [6, 35, 36] and
sound [8, 10, 11]. In a recent work [32], we have already found
LIV to remain effective even when the input images consist of
segmentation masks. I plan to investigate scaling up my value
pre-training algorithms to directly learn latent representations
on top of structured sensing inputs to better solve fine-grained
real-world manipulation tasks.

Real-World Reinforcement Learning with Pre-Trained
Values While I have demonstrated that VIP can accelerate
online RL in simulation by supplying rewards and frozen visual
representations for policies, delivering the same result in the
real world must address additional challenges, such as sample
inefficiency of real-world RL [39], the need for environment
reset [13, 31], and incorporate additional priors, such as human
demonstrations [30, 34] and offline data [2, 15, 24]. In a recent
work [38], we have found VIP’s value predictions to be capable
of automatically discovering subgoals in demonstrations of
long-horizon, multi-stage tasks. Extending this technique to
segment third-person human offline data to provide intermediate
subgoals and goal-conditioned rewards is a promising approach
to bootstrap real-world RL.
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