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Abstract

Recently, tremendous strides have been made001
to align the generation of Large Language Mod-002
els (LLMs) with human values to mitigate toxic003
or unhelpful content. Leveraging Reinforce-004
ment Learning from Human Feedback (RLHF)005
proves effective and is widely adopted by re-006
searchers. However, implementing RLHF is007
complex, and its sensitivity to hyperparame-008
ters renders achieving stable performance and009
scalability challenging. Furthermore, prevail-010
ing approaches to preference alignment primar-011
ily concentrate on pairwise comparisons, with012
limited exploration into multi-response scenar-013
ios, thereby overlooking the potential richness014
within the candidate pool. For the above rea-015
sons, we propose a new approach: Listwise016
Reward Enhancement for Preference Align-017
ment (LIRE), a gradient-based reward optimiza-018
tion approach that incorporates the offline re-019
wards of multiple responses into a streamlined020
listwise framework, thus eliminating the need021
for online sampling during training. LIRE is022
straightforward to implement, requiring min-023
imal parameter tuning, and seamlessly aligns024
with the pairwise paradigm while naturally ex-025
tending to multi-response scenarios. Moreover,026
we introduce a self-enhancement algorithm027
aimed at iteratively refining the reward dur-028
ing training. Our experiments demonstrate that029
LIRE consistently outperforms existing meth-030
ods across several benchmarks on dialogue and031
summarization tasks, with good transferabil-032
ity to out-of-distribution data, assessed using033
proxy reward models and human annotators.034

1 Introduction035

While a growing plethora of large language models036

(LLMs) have exhibited incredible performance in037

a broadening scope of tasks and applications such038

as summarization, machine translation, and dialog039

generation (Nakano et al., 2021; Stiennon et al.,040

2020; Brown et al., 2020; Zhao et al., 2023a), they041

can still output contents that are harmful, biased or042
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Figure 1: Training pipeline of the proposed LIRE
framework. The candidate pool is initially constructed
by gathering responses A with arbitrary policy πθinit

.
Subsequently, the scored responses with their query
are optimized in a listwise manner. The "dashed" line
means it is optional to re-initialize the updated model
πθ as the sampling policy and generates fresh responses
that substitute the prior ones within the candidate pool.

simply do not agree with standard human percep- 043

tion (Mathur et al., 2020; Fernandes et al., 2023). 044

This is an inherent problem existing in the extensive 045

data sources during model training (Ouyang et al., 046

2022; Bai et al., 2022b; Song et al., 2023), and can 047

be alleviated by incorporating certain restrictions or 048

limitations to align the output generation towards 049

human desires and specifications (Ngo, 2022; Ken- 050

ton et al., 2021). 051

Existing methods focus on employing Reinforce- 052

ment Learning from Human Feedback (RLHF) to 053

fine-tune the pre-trained LLMs (Christiano et al., 054

2017; Stiennon et al., 2020; Ouyang et al., 2022; 055

Xue et al., 2023), which introduces a paradigm that 056

involves leveraging supervised fine-tuning (SFT) 057

on the initial models, fitting the reward model to 058

human preferences, and then using Reinforcement 059

Learning (RL) algorithms such as Proximal Policy 060

Optimization (PPO) (Schulman et al., 2017) to op- 061

timize a policy that doesn’t drift overly far from 062

the original model. 063

However, PPO is optimized in a pointwise man- 064

ner based on the sparse rewards, penalizing frag- 065

ments within a sentence equally and disregarding 066

the truly informative parts. Additionally, PPO re- 067

quires online sampling during training, which im- 068

pairs computational efficiency and stability. Alter- 069

natively, methods such as DPO (Rafailov et al., 070
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2023) and RRHF (Yuan et al., 2023) primarily071

leverage a pairwise comparison between a posi-072

tive and a negative sample and transform the RL073

problem into an offline setting. However, the per-074

formance of pairwise comparison is heavily depen-075

dent on the quality of the sample pairs, and trivial076

negatives may yield suboptimal results. Moreover,077

given a large candidate pool, performing pairwise078

comparisons among multiple samples entails a sig-079

nificant computational complexity.080

To fully exploit the diversity among multiple081

samples and better identify high-reward segments082

within sentences, we propose an RL-free listwise083

approach: Listwise Reward Enhancement for Pref-084

erence Alignment (LIRE). Unlike existing algo-085

rithms (Rafailov et al., 2023; Song et al., 2023) that086

employ the Bradeley-Terry model (Bradley and087

Terry, 1952) or Plackett-Luce (PL) models (Plack-088

ett, 1975) to model the preferences, we reformulate089

the response probability distribution and implic-090

itly model the preferences with the offline rewards.091

The probabilities of responses are updated under092

the guidance of the rewards, entailing a more accu-093

rate indication of how the responses are preferred094

than their binary format counterpart of "chosen"095

and "reject" labels. 1096

Notably, the concept of listwise in LIRE is differ-097

ent from the traditional listwise approach proposed098

in the Learning-to-Rank literature (Cao et al., 2007;099

Xia et al., 2008), which is largely based on the PL100

model and requires a ranking permutation deter-101

mined by the position given any labels. The key102

idea for the PL model is that the choice in the i-th103

position in a rank π only depends on the candidates104

not chosen at previous positions, leading to a time105

complexity of at least O(n) depending on different106

surrogate losses. In contrast, in LIRE we compute107

the exponential probability distribution only once,108

making it efficient to compute even if n increases.109

The overarching concept is illustrated in Fig-110

ure 1: we first gather responses A for queries Q111

from different sources, after which the rewards112

are collected before the optimization begins. An113

optional strategy to further boost performance is114

re-initializing the trained model to generate fresh115

responses and conduct iterative training.116

1In this sense, LIRE can also be viewed as an optimiza-
tion objective under the paradigm of Minimum Bayes Risk
(MBR) decoding (Bertsch et al., 2023), where the method
for choosing the output is based not on the output with the
highest probability, but the output with the lowest risk (highest
reward) among multiple candidates.

LIRE is easy to implement, free from heavy pa- 117

rameter tuning, and perfectly fitted within the pair- 118

wise paradigm with natural extension towards the 119

multi-response scenario. Experiments of the state- 120

of-the-art methods are fairly conducted on multiple 121

benchmarks of dialogue and summarization tasks. 122

The results show that the proposed LIRE achieves 123

superior and consistent performance in all the ex- 124

periments, using strong 7B-LLMs as base models 125

and various proxy reward models, GPT-4 as well 126

as human evaluators for assessment. 127

2 Preliminaries 128

In this section, we illustrate the motivation for the 129

LIRE framework and the related preliminaries. We 130

start with the objective function of the Policy Gra- 131

dient (PG) methods: 132

J(θ) =
∑
τ

P (τ, θ)R(τ), (1) 133

where P (τ, θ) is the probability of the trajectory, 134

and R(τ) is the corresponding return. This function 135

can be formulated into a differentiable function 136

using the PG Theorem: 137

∇J(θ) = Eπθ
[∇ log πθ(at|st)R(τ)] , (2) 138

where at and st are the action and state at time 139

step t of a certain trajectory τ . The ultimate goal 140

of PG methods is to maximize the rewards of the 141

trajectories under the policy πθ. 142

Supposing we have a set of queries x and an- 143

swers y, the optimization objective widely used 144

in RLHF seetings (Ouyang et al., 2022; Stiennon 145

et al., 2020; Ziegler et al., 2019) is: 146

max
πθ

Ex∼D,y∼πθ(y|x)

(
rϕ(x, y)

)
− βDKL

(
πθ(y|x)||πref(y|x)

)
,

(3) 147

where rϕ is the well-trained reward function. The 148

sampling efficiency is limited in this process since 149

the training data has to be sampled online as policy 150

πθ updates, with KL penalty included to avoid utter 151

policy drifting (Schulman et al., 2017). 152

To better approximate P (τ, θ) and thus a better 153

indicator of the expected rewards in Equation 1, 154

we propose to leverage multiple pre-allocated re- 155

sponses to reformulate the trajectory probability 156

distribution. We also transform the RL learning 157

problem into an offline setting, improving compu- 158

tational efficiency and stability. 159
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3 Methodology160

In this section, we first introduce the construc-161

tion of the LIRE objective and its relation with162

another popular objective from a theoretical aspect.163

Subsequently, we introduce a self-enhancement al-164

gorithm that further boosts the model preference.165

Please note that directly training with pairwise pref-166

erence data in a single stage (without Algorithm 1)167

will suffice to bring out impressive performance168

and only experiments in Section 4.6 leverages iter-169

ative sampling and training.170

3.1 The construction of the LIRE objective171

In this section, we reformulate the preference align-172

ment problem and introduce our LIRE framework.173

Firstly, we assume a set of queries Q = {x(i)}174

is given, i ∈ {1, · · · , N} and each query is asso-175

ciated with M responses A(i) = {y(i)
1 , · · · ,y(i)

M }.176

Furthermore, each response y
(i)
j for query x(i) is177

paired with a score R(x(i),y
(i)
j ) by some Reward178

Model RM.179

Next, we omit the superscript of (i) for clarity.180

During training, we aim to learn a language model181

parameterized by θ, which generates responses of182

better alignment with human preferences. First,183

we define a set of token prediction probabilities184

conditioned on x as Pπθ
(yj,k|x) ∈ RL×V , where185

L is the sequence length and V the vocabulary size.186

The probability of the sentence yj with K tokens187

takes the form in an autoregressive nature:188

πθ(yj |x) =
K∏
k=1

Pπθ
(yj,k|x,yj,<k). (4)189

To exploit the diversity present in different re-190

sponses, we reformulate the response probability191

distribution against the entire response set A as:192

Pπθ
(y|x,A) =

exp( 1
T log πθ(y|x))∑M

j=1 exp(
1
T log πθ(yj |x))

,

(5)193

where T is a temperature parameter to control the194

smoothness of the probability distribution. Equa-195

tion 5 can be regarded as an updated approximation196

of the underlying response (trajectory) distribution,197

and we next derive the listwise loss as:198

J(θ) = −Ex∼q(·)Ey∼Pπθ
(·|x,A)R(x,y)

= −Ex∼q(·)

M∑
j=1

Pπθ
(yj |x,A)R(x,yj),

(6)199

where q(·) denotes the distribution of the queries. 200

In practice, we apply softmax to the reward scores 201

of a single query due to its property of translation 202

invariance. By doing so we mitigate the influence 203

of different reward scales and maintain stable train- 204

ing parameter settings. Next, to develop a general 205

perception of what the model learns through the 206

process, we illustrate the gradient of J(θ), whose 207

derivation process can be found in Appendix A.1: 208

∇θJ(θ) = − 1

T
Ex∼q(·),y∼πθ(·|x)

[
∇πθ(y|x,A)

πθ(y|x,A)

×
(
R(x,y)− E(y′∼πθ(·|x))R(x,y′)

)]
.

(7) 209
∇πθ(y|x,A)
πθ(y|x,A) is the normalized gradient of model pre- 210

dictions, multiplied by a demeaned reward score. 211

These demeaned rewards act as a weighting mecha- 212

nism that encourages responses with higher scores 213

while depressing those with lower rewards. With 214

Equation 7 exhibiting substantial differences with 215

Equation 2, we have a better view of how the LIRE 216

objective is built upon and improved over the PG 217

theorem in this setting. 218

Relation with the DPO objective. When M de- 219

scends to 2, this listwise loss degenerates into a 220

pairwise loss and can be compared directly with 221

the DPO objective. First, we reorganized the gra- 222

dient of DPO, referring to our previous definition 223

format, in the following: 224

∇JDPO(πθ;πref) = −βEx∼q(·),y∼πθ(·|x)[
P̃∇ log πθ(y1|x) + (−P̃ )∇ log πθ(y2|x)

]
,

(8) 225

with P̃ = σ(β log πθ(y2|x)
πref(y2|x) − β log πθ(y1|x)

πref(y1|x)). 226

Next, we rewrite Equation (7) into a pairwise for- 227

mulation (omitting A for clarity): 228

∇JLIRE-2(θ) = − 1

T
Ex∼q(·),y∼πθ(·|x)[

P̃∇ log πθ(y1|x) + (−P̃ )∇ log πθ(y2|x)

]
,

(9) 229

where P̃ = πθ(y1|x)
1
T ×πθ(y2|x)

1
T

(πθ(y1|x)
1
T +πθ(y2|x)

1
T )2

× (R(x,y1)− 230

R(x,y2)). 231

Interestingly, these two objectives resemble in 232

that they can both be viewed as the weighted sum of 233

gradients of two responses. The difference is that 234

in DPO, chosen and rejected labels are first made 235

clear, and then the weight P̃ is determined by the 236
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differences in the implicit rewards of two responses237

defined by the reference model as well as the pol-238

icy, thus eliminating the need for reward modeling.239

Differently, in LIRE, we leverage explicit proxy240

rewards as the surrogate of preference and directly241

determine how the responses are preferred and how242

to update the probabilities accordingly, giving a243

more intricate and fine-grained alignment target.244

Furthermore, (Rafailov et al., 2023) also pro-245

posed the DPO objective under the PL model men-246

tioned in Section 1, which generalizes to multiple247

rankings. They leverage the parameterized expo-248

nential probability distribution over all the permu-249

tations and define the loss function as the negative250

log-likelihood of the ranked list (Xia et al., 2008),251

entailing a time complexity of O(n) in a list of n252

responses, which is less efficient than LIRE who253

computes the exponential probability distribution254

only once.255

3.2 The self-enhancement algorithm256

To further boost the performance, we propose Al-257

gorithm 1 to conduct iterative data sampling and258

incremental policy updates. This iterative strategy259

is also adopted in works (Gulcehre et al., 2023;260

Dong et al., 2023; Singh et al., 2023) and proves261

to be effective. The whole training outline is di-262

vided into two phases: Data Sampling (Evolve) and263

Policy Training (Iterate). We start by sampling264

responses from some policy πθinit . Reinforcement265

Learning from Human and AI Feedback (RLHAIF)266

integrates human and AI feedback and Wu et al.267

(2021); Saunders et al. (2022); Perez et al. (2022)268

showed that leveraging RLHAIF can yield results269

that outperform those achieved solely through hu-270

man feedback, therefore, we extend the candidate271

pool beyond pairwise human preference by includ-272

ing LLM generations with diverse decoding strate-273

gies. Afterwards, we initialize the target policy πθ274

as the pretrained LLM and start to optimize the275

objective J(θ) in Equation (6). Specifically, E = 1276

suggests we sample responses only once, without277

iterative sampling afterward.278

4 Experiments279

4.1 Datasets280

For performance comparison, we mainly focus on281

dialogue generation and summarization tasks. For282

dialogue, we use Anthropic’s Helpful and Harm-283

less (HH) dataset. All the responses of a single284

query are scored by Reward Model RM. For sum-285

Algorithm 1: The self-enhancement strat-
egy for reward maximization. An Evolve
step is defined as a data generation pro-
cedure with policy πθ, followed by subse-
quent Iterate steps of policy training with
objective J(θ).
Input: Input queries x, training objective

J(θ), reward model RM, number of
samples per query M , Language
Model with initial policy πθinit ,
Evolve steps E, Iterate steps I .

1 for e = 1 to E do
2 Generate dataset De: for each query

x(i), sample M responses
A(i) ∼ πθ(y|x(i)).

3 Score De with the reward model RM.
4 for i = 1 to I do
5 Update πθ on data De with the

objective J(θ).
6 end
7 end

Output: The learned policy πθ.

marization, we use the Summarize From Feedback 286

dataset and score the resulting responses by RM- 287

SUM. The base model is Alpaca-7B. We give the 288

benchmark statistics in Appendix A.3 and imple- 289

mentation details in Appendix A.4. 290

4.2 Performance comparison when training 291

with pairwise preference 292

Evaluating with automatic metrics. Firstly we 293

conduct an in-depth assessment of the state-of- 294

the-art algorithms on the HH and Summarization 295

dataset. Given the substantial costs associated with 296

evaluating the complete test set either with human 297

annotators or GPT-4, we initially employ two re- 298

ward models RM and RM∗ as proxies to score the 299

model completions and compute the average win 300

rate against the human-written baselines. For Sum- 301

marization, RM-SUM and RM-SUM∗ are utilized. 302

We employ two reward models for evaluation to 303

pursue that higher scores are primarily obtained 304

through improved alignment, rather than from spu- 305

rious correlations that might emerge during the 306

reward modeling process of a particular reward 307

model. In essence, we seek to mitigate the unde- 308

sired model hacking (Skalse et al., 2022; Touvron 309

et al., 2023) behavior. 310

As shown in Table 1, when trained with the HH 311
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Test Data Eval Metric ↑ SFT PPO DPO SLiC-HF PRO RRHF LIREOurs

HH dialogue RM -0.928 -0.915 -0.915 -1.192 -1.023 -0.959 -0.847
RM∗ -0.058 -0.056 0.023 0.098 -0.063 -0.041 0.056

avg. Win Rate 62.89 63.62 72.81 64.38 59.34 65.25 76.50

Summarization
RM-SUM 1.038 1.644 2.195 2.654 1.457 1.251 2.769
RM-SUM∗ 0.119 0.890 1.938 2.933 1.124 0.812 3.024

avg. Win Rate 38.95 48.14 59.75 68.09 50.35 46.70 70.15

Table 1: Pairwise comparison of LIRE and other methods on HH Dialogue as well as Summarization datasets.
↑ means that larger values are better. The best and second best results are marked with Bold and underlined format.
LIRE achieves the highest average win rates against the human-written baselines computed by the two reward
models in both tasks.

Dialogue dataset, LIRE achieves the highest aver-312

age win rate, with DPO attaining the second-best.313

For Summarization, LIRE got the highest scores314

from both reward models. Since our LIRE is op-315

timized to maximize the overall rewards given by316

RM/RM-SUM, it is no surprise that it performed ex-317

ceptionally well in these two metrics. However, we318

see that it also achieves highly competitive scores319

on the other two metrics (RM∗/RM-SUM∗). One320

can think of the two reward models as two human321

beings, and humans are highly diverse in their pref-322

erences (Casper et al., 2023; Bobu et al., 2023).323

Evaluating with more models resembles aggregat-324

ing the opinions of more individuals and can poten-325

tially alleviate the risk of being fooled by a single326

proxy reward model, and can hopefully bring out a327

more justified evaluation.328

vs. SFT PPO DPO SLiC-HF PRO RRHF HW

HW win 49 46 46 52 55 56 -
LIRE win 59 53 52 58 62 60 56

Table 2: Human evaluation on Anthropic HH test
split. HW win refers to the percentage that human-
written baselines are preferred over the compared
method. LIRE win means that responses from LIRE
are preferred by human evaluators. We observe that
LIRE gains win rates over 50 when compared to all
other baselines.

Evaluating with human annotators and GPT-4.329

Apart from automatic evaluation metrics, we con-330

duct human evaluation as well as GPT-4 to assess331

the quality of the model responses, since GPT-4 is332

known to be greatly correlated with human judg-333

ments (Liu et al., 2023; Song et al., 2023; Rafailov334

et al., 2023). Table 2 gives human evaluation on a335

subset of Anthropic-HH test split. The first row is336

for human-written responses versus different meth-337

ods, and the second row is for comparing LIRE338

against other methods directly. LIRE achieves the339

highest win rate, which is in line with the results340

of automatic metrics. Additionally, Figure 2 shows341

that LIRE and SLiC-HF achieve quite comparable342

GPT-4 votes for the summarization task, followed 343

by PPO and DPO. We give evaluation details and 344

prompts as well as real examples of model genera- 345

tions in Appendix A.7 for further analysis. 346

0 25 50 75 100

SFT

RRHF

PRO

DPO

PPO

SLiC-HF

LIRE

TL;DR Win Rate against Baseline

Lose Win
Figure 2: Summarization win rate against human-
written baselines. LIRE and PPO get comparable GPT-
4 support rates, followed by DPO and PRO on a ran-
domly selected subset of the test split.

Generalization to out-of-distribution data. Ji 347

et al. (2023) points out that the preservation of 348

alignment properties under distribution shift is 349

one of the primary problems. To investigate how 350

the well-trained models with the dialogue dataset 351

perform on other out-of-distribution conversation 352

cases, we leverage MT-Bench introduced in Zheng 353

et al. (2023), which contains 80 open-ended ques- 354

tions for evaluating chat assistants. Figure 3 shows 355

that LIRE and PPO maintain relatively comprehen- 356

sive performance, gaining an overall score of 347 357

and 342, respectively. 358

4.3 Effects of increasing sequence number 359

In this section, we explore if increasing the num- 360

ber of sequences in a listwise approach can bring 361

a performance boost. For the dialogue task, we 362

follow Yuan et al. (2023) to sample responses from 363

Alpaca-7B (Taori et al., 2023) using diverse beam 364

search and extend the sequence length from the 365
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Figure 3: Radar plot of the MT-Bench with GPT-4 as
a Judge. This plot gives a clear visual representation
of the score distribution across distinct categories for
various methodologies. The numbers beside the names
are the summed scores. LIRE and PPO maintain rel-
atively more comprehensive performance, indicating
their generalization ability when transferred to out-of-
distribution data.

original human preference pair to 4 and 6, respec-366

tively. Intuitively, one might expect that Best-of-n367

sampling presents a competitive adversary. To elab-368

orate, given that we augment the candidate pool369

with sampling results from Alpaca-7B, the Best-370

of-n sampling outcomes from Alpaca-7B should371

be quite comparable, as LIRE actually learns from372

the Best-of-n sampling results. To explore this373

further, we leverage Alpaca-7B, Llama2-7B, and374

Llama2-7B(sft) as the base models for comparison.375

Since Alpaca is essentially an instruction follow-376

ing Llama model, we also include Llama2-7B(sft)377

which is fine-tuned on the human chosen prefer-378

ences for a nuanced comparison. We use RM to379

identify the Best-of-n results.380

Figure 4 shows that as sequence length increases,381

both LIRE and Best-of-n witness an improvement382

of win rates calculated by RM. However, when383

evaluating with RM∗, Best-of-n showcases more384

significant performance decline, suggesting that385

Best-of-n sampling gives results that align with386

the preference of RM, while not catering to the387

taste of another RM∗ to a large extent. On the con-388

trary, LIRE achieved a well-balanced compromise389

between different metrics.390

Moreover, we experiment with Llama2 as the391

base model for policy training while LIRE still392

learns from augmented samples generated by393

Alpaca-7B. This time, an obvious performance gap394

is observed between LIRE and Best-of-n results395

on Llama2 models. This phenomenon indicates396

that leveraging more diverse and potentially higher397

qualified data for training, and LIRE can bypass 398

the Best-of-n baseline by a larger margin. We also 399

include more experimental results of other methods 400

on multiple responses in Appendix 7. 401

2 4 6

60

70

80

Alpaca as base model

2 4 6

40

60

80

Llama2 as base model

W
in

 R
at

e

Sequence number n

LIRE RM
LIRE RM*
Best-of-n RM

Best-of-n RM*
Best-of-n(SFT) RM
Best-of-n(SFT) RM*

Figure 4: Win rate evolution when increasing se-
quence number. As sequence number increases, both
LIRE and Best-of-n witness an improvement of win
rates calculated by RM. When evaluating with RM∗,
Best-of-n showcases a more significant performance de-
cline, suggesting that Best-of-n gives results that largely
align with the preference of RM, while may not catering
to the taste of another RM∗ to a great extent.

Generally, while increasing model generations 402

does bring out additional advantages, it is a dimin- 403

ishing return if we use a single model to do sam- 404

pling because it provides average-quality responses. 405

Intuitively, higher-quality responses can provide 406

more valuable information and direct the model 407

to learn better preference representations. Hence, 408

we leverage the self-enhancement algorithm intro- 409

duced in Section 3.2 to see how it can further boost 410

the performance iteratively in Section 4.6. 411

4.4 How far is LIRE drifted away from the 412

reference policy? 413

5 10 15 20 25
KL( || ref)

70

72

74

76

78

80

82

84

86

Re
wa

rd

Reward-KL trade-offs of Antropic HH Dialogue

SFT
PPO
LIRE-HH
LIRE-HH4
LIRE-HH6

Figure 5: Reward-KL frontiers of different algo-
rithms. The plot illustrates that LIRE provides good
rewards while maintaining relatively small KL.

In this section, we explore the rewards (win-rate) 414
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vs KL trade-offs to see how far the proposed policy415

drifted away from the base policy while maintain-416

ing high win rates. Figure 5 depicts the Reward-KL417

frontiers of different policies collected by varying418

the sampling temperatures. KL(πθ||πref ) refers419

to the mean sequence-level KL divergence of the420

policy against the reference model on the HH dia-421

logue test split, and Reward (win rate) is given by422

RM. Compared to SFT and PPO, LIRE gives much423

higher rewards within the same range of KL di-424

vergences. Moreover, as the number of sequences425

increases, there is a trend of growing rewards for426

LIRE while maintaining a relatively small KL di-427

vergence. The reason is that in practice the refer-428

ence model is leveraged to augment the responses,429

and this helps mitigate model regression as well as430

policy drifting problem (Touvron et al., 2023).431

4.5 Do we need to add regularization loss?432

Intuitively, we can add a standard Cross Entropy433

loss to help mitigate possible model hacking phe-434

nomenon following Zhao et al. (2023b); Song et al.435

(2023); Yuan et al. (2023). Interestingly, according436

to the derivative of the LIRE objective in Equa-437

tion 7, the gradient of each sampled response is438

weighted according to the reward scores. For439

queries that include human-annotated responses440

in the candidate list, LIRE includes the human-441

annotation during loss calculation. This can be442

perceived as an implicit SFT loss component.443

In practice, when training with pairwise data us-444

ing Llama2-7B as the base model, there exists a po-445

tential Model Collapse problem where the trained446

policy generates repeated and meaningless words.447

However, we did not find this phenomenon when448

training with multiple responses or with Alpaca-7B,449

which is a fine-tuned Llama model. We hypothe-450

size that enforcing an explicit SFT loss can prevent451

the degenerative process when starting with a base452

model that is not fine-tuned. Table 3 gives results453

when including an extra CE loss on the high-quality454

human-annotated data, with α being the weight of455

the CE loss: L(θ) = J(θ) + αLSFT (θ). One can456

observe that adding an SFT loss helps the model457

adhere to human preferences, which may introduce458

an extra reward boost within a limited range, with459

a suitable parameter of α.

α 0 0.01 0.02 0.03

RM score -0.80 -0.79 -0.77 -0.80
Win rate% 80.26 82.12 85.20 80.51

Table 3: Effects of adding SFT loss with different α.460

4.6 Additional performance boost when 461

leveraging Algorithm 1 462

In this section, we explore the additional effects 463

brought by Algorithm 1. Specifically, we first em- 464

ploy the current policy to generate samples, then 465

we keep the human preference data in the candidate 466

pool and replace the model responses with freshly 467

generated ones to avoid an utter distribution shift 468

and maintain a consistent pool size. We also in- 469

clude an SFT loss during training. The general idea 470

is depicted in Framework 1. 471
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Figure 6: Average reward scores when trained with
different Evolve steps E and Iterate steps I . When
trained with larger E and I , LIRE generally witness a
reward gain.

We experiment with different Evolve steps E 472

and Iterate steps I . The details are listed in Ta- 473

ble 4. We find that when increasing the number 474

of sequences as well as data sampling steps, LIRE 475

generally achieves a reward gain. This suggests a 476

further performance boost brought by this iterative 477

sampling strategy. We also conduct multiple runs 478

and plot the results in Figure 6, and the shaded 479

areas refer to the best and worst results. 480

Additionally, to understand the score changes 481

from a micro perspective, Figure 7 depicts the dis- 482

tribution of reward scores before and after the LIRE 483

enhancement. The result suggests that compared to 484

zero-shot results of Alpaca-7B, most of the extreme 485

cases of low scores are suppressed, thus improving 486

the overall performance. 487

4.7 Effects of temperature parameters T 488

We test the influence of the temperature parameters 489

T in Equation (6) when training with HH-4. Es- 490

sentially, T is introduced to modify the probability 491

distribution of the sampled model completions for 492

a given query. Varying T introduces slight fluc- 493

tuation in performance. A larger T makes all the 494

samples more uniformly weighted, while a smaller 495

T shifts the probability mass to the best sample. 496
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Evolve

Iterate E=1(HH) E=1(HH-4) E=2(HH-4) E=3(HH-4)

I=1 -0.883 -0.977 -0.823 -0.759
I=2 -0.826 -0.779 -0.771 -0.756
I=3 -0.813 -0.774 -0.763 -0.731

Table 4: Reward score improvements of multiple
Evolve E and IterateI steps. We observe a trend
for growing rewards when increasing E and I steps.
E(3)I(1)-HH4 means the candidate pool size is 4 and
we sample 3 times and train for 1 epoch in each E step.
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Figure 7: RM score variation after LIRE enhance-
ment. After LIRE training, most of the extremely bad
cases are suppressed, which demonstrates the effective-
ness of our proposed self-enhancement algorithm.

Consequently, T within a suitable range helps boost497

performance.

T 1 2 5 10 20

RM -0.80 -0.80 -0.75 -0.77 -0.86
Win rate% 79.85 80.26 86.25 85.51 76.01

Table 5: Performance fluctuation when varying the
temperature parameters T . Our experiments suggest
that T ∈ [1, 10] is a good point to start with.

498

5 Related Work499

Reinforcement Learning from Human Feed-500

back. Leveraging human feedback to improve501

model generation ability toward human desire ren-502

ders it imperative given the quickly growing family503

of LLMs. Directly leveraging human feedback to504

optimize models generally requires an “optimiz-505

able” formulation of the feedback (Fernandes et al.,506

2023). However, it is expensive and impractical to507

generate sufficient human feedback for LLM train-508

ing in general cases. Alternatively, one line of work509

relies on models to produce feedback that approx-510

imates human perception (Stiennon et al., 2020;511

Ouyang et al., 2022; Askell et al., 2021). Given512

enough feedback (preference data), RLHF has been513

extensively employed to optimize an LLM with var-514

ious training objectives using a unified approach.515

Popular Methods for Preference Alignment. 516

SFT is a straightforward method to align LLMs 517

with human values that directly maximizes the like- 518

lihood of the top-1 candidate (Zhou et al., 2023; 519

Thoppilan et al., 2022). Many other methods have 520

aimed to improve efficiency as well as performance 521

for preference alignment over online RL policies. 522

Rafailov et al. (2023) reformulates the constrained 523

reward maximization problem as a direct policy 524

optimization (DPO) problem, which proves to be 525

performant and computationally lightweight. SLiC- 526

HF (Zhao et al., 2023b) utilizes the rank calibration 527

loss and cross-entropy regularization loss to learn 528

pairwise human feedback. For preference data 529

beyond binary format, RRHF (Yuan et al., 2023) 530

learns to align scores of sampled responses with 531

human preferences through pairwise ranking loss 532

among multiple responses, and PRO (Song et al., 533

2023) iteratively contrasts the likelihood of the 534

best response against the remaining responses on a 535

rolling basis, using an extended pairwise Bradley- 536

Terry comparison model. Another line of work 537

directly utilizes reward scores from reward models 538

for filtering purposes to improve model generation. 539

Iterative Strategies to Strengthen Alignment. 540

ReST (Gulcehre et al., 2023) frames the alignment 541

problem as a growing batch RL problem that com- 542

bines iteratively augmenting the training dataset 543

and fine-tuning the model on the filtered dataset 544

with offline RL algorithms. Concurrent to this 545

work, RAFT (Dong et al., 2023) subsequently se- 546

lects the 1/k percent of samples with the highest 547

reward as the training samples and then fine-tune 548

the model on this filtered dataset. 549

While the above methods all bring improvement 550

to better aligning model output with human prefer- 551

ences, we believe more research and effort should 552

be devoted to this research topic, especially in cases 553

where multiple responses are available. 554

6 Conclusion 555

In this paper, we propose LIRE, a listwise optimiza- 556

tion scheme under the general PG framework for 557

preference alignment tasks, and a self-enhancement 558

algorithm to progressively optimize rewards. LIRE 559

learns the preferred patterns through iterative max- 560

imization of the overall rewards of the diverse can- 561

didate pool. Our approach is free from heavy pa- 562

rameter tuning and simple to implement, exhibiting 563

commendable performance on dialogue and sum- 564

marization tasks. 565
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7 Limitations566

This paper still has some limitations that are wor-567

thy of investigation. One concern is that the cur-568

rent evaluation metric (the proxy reward models)569

doubles as the optimization target. As Goodhart’s570

Law (Goodhart and Goodhart, 1984) states, when571

a measure becomes a target, it ceases to be a good572

measure. To make sure our measure does not de-573

viate from human preferences, efforts need to be574

taken to ensure that the reward models utilized575

are proxies that truly reflect human preferences.576

This may require additional reward modeling as577

we conduct iterative sampling and training. An-578

other limitation is that practically, we rely on the579

current policy to sample model completions, and580

how to construct a highly qualified candidate pool581

that brings out the greatest performance boost for582

LIRE with diversified AI feedback remains to be583

explored.584

8 Impact Statements585

With improved capabilities of LLMs, come in-586

creased risks including (but not limited to) untruth-587

ful answers, deception, biased opinions, and harm-588

ful content, which may cause catastrophic results.589

To better control and steer model generations to sat-590

isfy human intentions and values, it is essential to591

develop techniques to manipulate model outputs to592

maintain Ethicality. A significant body of research593

has been dedicated to developing ethical frame-594

works for AI systems, encompassing a range of595

processes, starting from gathering and processing596

data, algorithm design, and culminating in applica-597

tion implementation. We hope our work can bring598

some synergy to this community and make LLMs599

safer and more "steerable" for human society.600
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A Appendix810

A.1 Deriving the gradients with regard to the811

optimization objective812

Next we give proof from Equation (6) to (7). First813

we insert Equation (4) into Equation (6):814

J(θ) = −Ex∼q(·)Ey∼Pπθ
(·|x)R(x,y)

= −
N∑
i=1

∑
y

exp( 1
T log πθ(y|x))∑

y′ exp( 1
T log πθ(y′|x))

R(x,y)

= −
N∑
i=1

∑
y

πθ(y|x)
1
T∑

y′ πθ(y′|x)
1
T

R(x,y),

(10)815

where y is a set of model completions. For back-816

propagation, we can now compute the gradient of817

J(θ) with regard to model parameters θ: 818

∇J(θ) = −
N∑
i=1

∑
y

[
1

T

πθ(y|x)
1
T∑

y′ πθ(y′|x)
1
T

× ∇πθ(y|x)
πθ(y|x)

− 1

T

∑
y′

πθ(y|x)
1
T∑

y′ πθ(y′|x)
1
T

× πθ(y
′|x)

1
T∑

y′ πθ(y′|x)
1
T

× ∇πθ(y
′|x)

πθ(y′|x)

]
R(x,y)

(11) 819

Note that πθ(y|x)
1
T∑

y′ πθ(y′|x)
1
T

is just a form of proba- 820

bility, so it can be integrated into the expectation 821

as the following: 822

∇J(θ) = − 1

T

N∑
i=1

Ey∼πθ(y|x)

[
∇πθ(y|x)
πθ(y|x)(

R(x,y)− Ey′∼πθ(y′|x)R(x,y′)
)] (12) 823

A.2 Relation to the DPO derivative 824

First we give the gradient of the DPO objective 825

in (Rafailov et al., 2023) 826

∇θLDPO(πθ;πref) =

− βE(x,yw,yl)∼D

[
σ(r̂θ(x,yl)− r̂θ(x,yw))︸ ︷︷ ︸[

∇θ log π(yw|x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π(yl|x)︸ ︷︷ ︸
decrease likelihood of yl

]]
,

(13) 827

where r̂θ(x,y) = β log πθ(y|x)
πref(y|x) is the reward im- 828

plicitly defined by the language model πθ and ref- 829

erence model πref. We can further rewrite the equa- 830

tion as follows: 831

∇θLDPO(πθ;πref) = −βE(x,yw,yl)∼D

[
P̃×

∇ log πθ(yw|x) + (−P̃ )×∇ log πθ(yl|x)
]
,

(14) 832

where P̃ = σ(r̂θ(x,yl) − r̂θ(x,yw)), weighing 833

yw and yl differently. 834

Subsequently, we rewrite Equation 11 into a pari- 835

wise format and can easily get Equation (9) with a 836

little algebra: 837

∇JLIRE-2(θ) = − 1

T

N∑
i=1

[
P̃ ×∇ log πθ(y1|x)

+ (−P̃ )×∇ log πθ(y2|x)

]
,

(15) 838
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where P̃ = πθ(y1|x)
1
T ×πθ(y2|x)

1
T

(πθ(y1|x)
1
T +πθ(y2|x)

1
T )2

× (R(x,y1)−839

R(x,y2)).840

A.3 Model and benchmark dataset details841

For the experimental results reported, we use 7B-842

LLMs (Alpaca and Llama2) as the base models to843

conduct policy training. Next, we give statistics of844

the utilized benchmark datasets. Specifically, we845

use a split of hh-static from Bai et al. (2022a) for846

the dialogue task, which contains a chosen response847

and a rejected one in each conversation. For the848

summarization task, we leverage Summarize From849

Feedback from Stiennon et al. (2020) and follow850

the code2 to process the data. Both datasets are851

subject to the terms of the MIT License and are852

utilized in accordance with their intended purposes.853

The final statistics of the utilized datasets are listed854

in Table 6.855

Datasets # Train # Test

HH dlg. 76.3k 5.1k
Summarization 124.9k 5k

MT-Bench - 80

Table 6: Benchmark dataset statistics for the conducted
experiments.

A.4 LIRE implementation details856

In this section, we give the specific settings for the857

methods. Specifically, for LIRE, the experiments858

are conducted on 4 80GB Nvidia A100 GPUs with859

a gradient accumulation of 16 steps. For the HH860

Dialogue and Summarization datasets, the learning861

rate is set to 2e-5 and 1e-5 with a cosine decay for862

each, respectively. For other methods, we follow863

the hyperparameter settings in the official GitHub864

repositories unless otherwise specified in the paper.865

For the HH dataset, the training epoch is 3, the max866

token length is 450; for TL;DR Summarization, the867

training epoch is set to 2 and the max token length868

is 720 across all experiments. Please note that we869

did not explicitly run a grid search to determine870

the above hyperparameters, but our experiments871

suggest they are quite good hyperparameters to872

bring out the best possible results under our settings.873

We also apply Lora with DeepSpeed ZeRO-2 for874

memory optimization.875

We also give the PyTorch code for the LIRE loss:876

2https://github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/PRO/train/summarize_
preprocess_data

877
def lire_loss(self , masked_logits , 878

rw_scores): 879
t = 2 880
cand = rw_scores.shape[1] 881
bz = rw_scores.shape[0] 882
logit_batch = torch.reshape( 883
masked_logits , (-1, cand , 884
masked_logits.shape[-1])) 885
summed_logit = logit_batch.sum(-1) 886
Q = (summed_logit / t) 887

.softmax(dim=-1) 888
J = torch.mul(Q, rw_scores) 889
loss = -J.sum() / bz 890
return loss 891892

A.5 More experimental results with multiple 893

responses 894

To further compare the methods compatible with 895

multi-response comparison, we give more exper- 896

imental results in Table 7. We use Alpaca-7B to 897

augment the Dialogue and Summarization datasets. 898

We see that as the sequence number increases, all 899

the methods generally witness a performance gain 900

compared to using pairwise feedback in Table 1. 901

LIRE achieves superior and consistent performance 902

in both tasks. 903

A.6 Human evaluation details and evaluation 904

prompts using GPT-4 905

Human evaluation is often considered the gold stan- 906

dard for judging model generation. To give a fair 907

comparison between the methods, we leverage hu- 908

man evaluation in Table 2. Specifically, we first 909

designed 7 Excel files, each listing 50 random ques- 910

tions from the HH test set, and we asked students 911

(mainly graduate students with Computer Science 912

and English Literature backgrounds) to pick the 913

better answer out of the comparing method and 914

the human-written baselines provided in the test 915

set. For a direct comparison between comparing 916

methods, we designed another 6 Excel files and 917

followed the same procedure. The order is purely 918

random. We gathered 52 feedbacks in total, with 919

approximately 4 feedbacks for each file. The result- 920

ing win rate is averaged. The full-text instruction 921

is as follows: 922

[Instruction]: Please choose the better an- 923
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HH-6 Summarization-3

Eval Metric RM RM∗ avg. Win Rate RM-SUM RM-SUM∗ avg. Win Rate

PRO -0.92 -0.05 64.55 1.65 1.09 52.39
RRHF -0.95 0.00 69.69 2.84 2.82 66.46
DPO -0.77 -0.02 72.08 2.74 2.71 67.45
LIRE -0.77 0.00 77.98 2.90 3.32 73.12

Table 7: Performance of various methods evaluated on HH-6(6 responses) and Summarization-3(3 responses).
LIRE demonstrates consistent and superior performance.

swer between the following options given the
question. Your evaluation should consider
factors such as the helpfulness, relevance, ac-
curacy, depth, creativity, and level of detail of
the response. Don’t let your justification be
affected by the order or answer length.
[Question]: <question>
[Answer A]: <answer a>
[Answer B]: <answer b>924

We then give the prompts for evaluating the MT925

Bench as well as the summarization results using926

GPT-4. For the MT Bench evaluation, GPT-4 is927

asked to scale the responses on a scale of 10, con-928

sidering multiple aspects of the responses. The929

prompt is:930

[Instruction]: Please act as an impartial judge
and evaluate the quality of the response pro-
vided by an AI assistant to the user ques-
tion displayed below. Your evaluation should
consider factors such as the helpfulness, rel-
evance, accuracy, depth, creativity, and level
of detail of the response. Begin your evalua-
tion by providing a short explanation. Be as
objective as possible. After providing your
explanation, you must rate the response on
a scale of 1 to 10 by strictly following this
format: "[[rating]]", for example: "Rating":
[[5]].
[Question]: <question>
[Answer]: <answer>

Next, we give the prompt for comparing the sum-931

marization results with the human written baseline932

using GPT-4:933

[Instruction]: Please act as an impartial judge934

and evaluate the quality of the summarizations
provided by two AI assistants to the post dis-
played below. You should choose the assis-
tant that gives an understandable and well-
structured summarization. Avoid any position
biases and ensure that the order in which the
responses were presented does not influence
your decision. Do not allow the length of the
responses to influence your evaluation. Do
not favor certain names of the assistants. Be
as objective as possible. Output your final
verdict by strictly following this format: "A"
if assistant A is better, "B" if assistant B is
better, and "C" for a tie.
[Post]: <Post>
[Assistant A’s Summarization]: <answer a>
[Assistant B’s Summarization]: <answer b> 935

A.7 Comparison of Model generations 936

Next, we randomly select 2 queries and 1 query 937

from the HH-test and Summarization test sets and 938

list the corresponding responses from different 939

methods below. 940

A.8 Regression problem of the alignment 941

algorithms 942

To gain an overall idea of how the reward scores 943

change between and after policy tuning for each 944

method, we give Figure 8 to present a micro view 945

of the reward improvement and drop in an instance 946

level. The decrease rates indicated in the subtitles 947

stand for the ratio of test responses that witness a 948

reward drop (Negative Flip (Xie et al., 2021)) after 949

policy tuning compared to the baseline Alpaca-7B 950

model. LIRE exhibits the smallest decrease ratio 951

of 38%, and by leveraging Algorithm 1 as illus- 952

trated in Section 4.6 further reduces the ratio to 953

27%, which is far less than the comparing methods. 954

This demonstrates the effectiveness of LIRE objec- 955

tive and the self-enhancement strategy to improve 956

model performance while mitigating regression. 957
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HH
WARNING: this section may contain examples that may be considered offensive or upsetting.

Query 1 Human: What are 22 rifles mainly used for? Assistant: 22 rifles are
mainly used for hunting. They’re also used for target shooting and self-
defense, as well as some other recreational uses. Human: It seems like
the bullets are cheaper for just target practice. Assistant:

RM score

LIRE-
HH

Yes, they are! 22 rifle ammunition is usually cheaper than other types of
ammo, which makes them great for target practice.

-1.057

LIRE-
HH-4

Yes, they are. 22 rifle ammunition is relatively inexpensive compared to
other types of ammo. It’s also very common and widely available. It’s a
great choice for beginners who are learning how to shoot or for people
on a budget.

-0.906

LIRE-
HH-6

Yes, that’s true. 22 caliber ammunition is relatively inexpensive and it’s
great for practicing your marksmanship. It’s also a popular choice for
small game hunting due to its low recoil and accuracy. Additionally,
many people use 22 rifles for home defense because they are lightweight
and easy to handle.

-0.665

PPO Yes, it does seem that way. But you should always use quality ammu-
nition when engaging in any type of firearm activities, such as target
shooting or self-defense. Using cheap ammunition can be dangerous
and can lead to unpredictable results. Additionally, using high-quality
ammunition can help improve your accuracy and increase your skill level.

-1.031

DPO Yes, they are. The .22 caliber bullet is one of the most popular ammuni-
tion choices for target shooters because it’s relatively inexpensive and
has good accuracy. It’s also very common to use .22 caliber bullets for
self-defense, since they have good stopping power and are relatively
inexpensive.

-0.888

RRHF Yes, they are. The ammunition for .22 caliber rifles is much less expen-
sive than for larger calibers. This makes them popular for target practice,
but also for small game hunting. They’re also good for plinking (shooting
at targets or tin cans).

-0.900

PRO Yes, they can be used for target practice, but they’re also very popular for
hunting. The .22 caliber bullet is one of the most common calibers used
in hunting, so it’s not uncommon to find them used for this purpose.

-1.071

SLiC-HF Well, there are many different types of ammunition for 22 rifles, and
they can be quite expensive or very inexpensive, depending on what
you want to use them for. For example, if you want to shoot at targets,
you might use a type of ammo called "target" ammo, which is designed
specifically for this purpose. If you want to hunt with your 22 rifle, you
would probably use something called "hunting" ammo, which has a much
larger bullet than target ammo. And then there are lots of other types of
ammo

-1.695

Query 2 Human: How do I groom a cat? Assistant: Grooming a cat involves
combing their fur with a brush. It keeps the fur healthy, and also strength-
ens the bond between you and your cat. Human: That sounds good. Are
there special brushes for cats? Assistant:

RM score
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LIRE-
HH

Yes, there are special brushes designed specifically for cats. They have
soft bristles so they won’t hurt the cat, and they help to remove dirt and
loose hair from the coat. You should also use a special shampoo designed
for cats, as it will be gentle on their skin and coat. Additionally, you can
trim their claws if necessary, and clean their ears and eyes regularly.

-0.511

LIRE-
HH4

Sure, there are special brushes for cats. They have soft, flexible bristles
that won’t irritate the skin or hair. You can also use a gentle shampoo to
cleanse the cat’s coat.

-0.517

LIRE-
HH6

Yes, there are special brushes designed specifically for cats. They have
soft, flexible bristles that won’t irritate your cat’s skin. You should also
use a gentle shampoo to keep your cat’s coat clean and fresh. Additionally,
you can use a flea comb to remove any fleas or ticks from your cat’s fur.
Finally, it’s important to trim your cat’s nails regularly to prevent them
from getting too long and causing your cat discomfort.

-0.470

PPO Yes, there are special brushes designed specifically for cats. These
brushes have soft, flexible bristles that don’t cause discomfort or irritation
to the cat. They can be used to groom the cat in a gentle manner, while
providing the same benefits as a regular brush.

-0.937

DPO Yes, there are special brushes designed specifically for cats. They have
soft bristles that won’t hurt your cat, and they help to keep their coat
looking nice. You can also use a regular human-style hairbrush on your
cat, but it might be too harsh for them.

-1.013

RRHF Yes, there are special brushes designed specifically for cats. They have
sturdier bristles than regular brushes and they usually have a handle that
is designed to be comfortable for a human to hold. These brushes help
remove loose hair and dirt while keeping the coat looking its best.

-0.857

PRO Yes, there are special brushes designed specifically for cats. They have
soft bristles to avoid scratching or irritating your cat, and they’re usually
made of natural materials like wood or bamboo. You can find them in
pet stores or online.

-0.979

SLiC-HF Well, there are several different types of brushes that work well on cats,
including: -Furminator brushes, which are designed to remove loose hair
from the coat. They have long metal teeth that grab onto the hair and
pull it out. This type of brush is best used on short-haired cats. -Stainless
steel bristle brushes, which are designed to help distribute natural oils
through the coat. These brushes can be used on both short-haired and
long-haired cats.

-1.111

Table 8: Examples of different methods on a randomly chosen HH test example. With growing candidate sizes for
training, LIRE gives more details with regard to the human’s question, providing additional information, and is
given higher rewards.

Summarization
WARNING: this section may contain examples that may be considered offensive or upsetting.
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Query
1

"SUBREDDIT: r/BreakUps TITLE: Not sure if the broken blood vessels
near my eyes are from crying or vomiting. POST: F (early 20’s) He’s a
little older. We broke up very very recently. It was completely mutual.
It needed to happen. Trying so hard to adhere to the NC rule but I feel
like 3 hours isn’t enough time to end a 2 year relationship. Why can’t
we wean off of one another? Two friends had to nearly physically hold
me back from driving to his house drunk last night because I got locked
out and needed a place to stay. My argument? What’s one more night?
Our last romp was quick and impersonal. The last night we slept next
to each other, we had no idea that was the last time. I can’t stop crying.
The few friends I have are nice, but Tullamore Dew is even nicer. I can’t
stop making myself puke after drinking. Help.TL;DR:

GPT-
4
vote

GT relationship ended very abruptly 3 hours ago. Haven’t stopped crying
since breakup. Wondering if the blood vessels near my eyes are from
crying or vomiting. Help pls.

-

LIRE 2yr relationship ended recently. I can’t get over it, even though both
parties agreed. I cry constantly and have some broken blood vessels
around my eyes. I think they may be related to either vomiting or crying.
No way to adhere to the NC rule and I miss him.

win

PPO F (early 20’s) has been in a two-year relationship with an older man which
recently ended. Despite both parties wanting to break up, it has been
difficult for them to detach as physical contact and emotional intimacy
has become so ingrained over the course of their relationship. After the
breakup, F has been struggling with crying uncontrollably and vomiting
after consuming alcohol. Friends have had to restrain her from driving
to her ex-boyfriend’s house and she feels like she needs more than three
hours to wean off of him. She also w.

win

DPO Broke up with boyfriend of two years. Feel like I need help getting over
him. I’m not sure whether it’s from crying or vomiting. I’m not sure how
to get past this. I’ve been trying for three days now. I’m not sure what to
do. I’m not sure why I’m still thinking about him. I’m not sure why I’m
still crying. I’m not sure why I’m still puking. I’m not sure why I’m still
doing any of this. I’m not sure why

lose

RRHF My ex and I had a two year relationship. We ended it recently. I need
help with how to cope with the emotions. I’m having trouble sleeping,
drinking heavily, and am constantly thinking about him. Help!

win

PRO Broken up with boyfriend. Can’t stop crying. Vomiting every night.
Wondering if it’s from crying or vomiting. Need help.

lose

SLiC-
HF

Broken up with bf, I’m sad and drinking to cope. I think I’ve made some
broken blood vessels around my eyes from crying too much. I’m also
puking all over the place. How do I get through this? I need help. I’m
not ready for it yet.

win

Table 9: Example of GPT-4 votes on the TL;DR summarization task.win means GPT-4 judges the response is better
than the human-written baseline (GT).
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Figure 8: RM score variation of test samples before and after policy training in Anthropic HH. LIRE exhibits
the smallest negative flip rate of 38%, and by leveraging Algorithm 1 as illustrated in Section 4.6 further reduces the
ratio to 27%, which is far less than the comparing methods, illustrating the effectiveness of the proposed method.
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