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ABSTRACT
Memory replay based techniques have shown great success for continual learn-
ing with incrementally accumulated Euclidean data. Directly applying them to
continually expanding graphs, however, leads to the potential memory explosion
problem due to the need to buffer representative nodes and their associated topo-
logical neighborhood structures. To this end, we systematically analyze the key
challenges in the memory explosion problem, and present a general framework, i.e.,
Parameter Decoupled Graph Neural Networks (PDGNNs) with Topology-aware
Embedding Memory (TEM), to tackle this issue. The proposed framework not
only reduces the memory space complexity from O(ndL) to O(n) 1, but also fully
utilizes the topological information for memory replay. Specifically, PDGNNs
decouple trainable parameters from the computation ego-subgraph via Topology-
aware Embeddings (TEs), which compress ego-subgraphs into compact vectors
(i.e., TEs) to reduce the memory consumption. Based on this framework, we
discover a unique pseudo-training effect in continual learning on expanding graphs
and this effect motivates us to develop a novel coverage maximization sampling
strategy that can enhance the performance with a tight memory budget. Thorough
empirical studies demonstrate that, by tackling the memory explosion problem and
incorporating topological information into memory replay, PDGNNs with TEM
significantly outperform state-of-the-art techniques, especially in the challenging
class-incremental setting.

1 INTRODUCTION

Traditional graph learning works typically assume the graph to be static. However, real-world graphs
often expand constantly with emerging new types of nodes and their associated edges. Accordingly,
models trained incrementally on the new node types may experience catastrophic forgetting (severe
performance degradation) on the old ones. Targeting this challenge, continual learning on expanding
graphs (Liu et al., 2021; Zhou & Cao, 2021; Zhang et al., 2022c) attracts increasingly more attention
recently. It exhibits enormous value in various practical applications, especially in the case where
graphs are relatively large, and retraining a new model over the entire graph is computationally
infeasible. For instance, in a social network, a community detection model has to keep adapting its
parameters based on nodes from newly emerged communities; in a citation network, a document
classifier needs to continuously update its parameters to distinguish the documents of newly emerged
research fields.

Memory replay (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019; Shin et al.,
2017), which stores representative samples in a buffer to retrain the model and maintain its perfor-
mance over existing tasks, exhibits great success in preventing catastrophic forgetting for various
continual learning tasks, e.g., computer vision and reinforcement learning (Kirkpatrick et al., 2017;
Li & Hoiem, 2017; Aljundi et al., 2018; Rusu et al., 2016). Directly applying memory replay to
graph data with the popular message passing neural networks (MPNNs, the general framework for
most GNNs) (Gilmer et al., 2017; Kipf & Welling, 2017; Veličković et al., 2017), however, could
give rise to the memory explosion problem because the necessity to consider the explicit topological
information of target nodes. Specifically, due to the message passing over the topological connections
in graphs, retraining an L-layer GNN (Figure 1, left) with n buffered nodes would require storing
O(ndL) nodes (Chiang et al., 2019; Chen et al., 2017) (the number of edges is not counted yet)
in the buffer, where d is the average node degree. Take the Reddit dataset (Hamilton et al., 2017)
as an example, its average node degree is 492, and the buffer size will easily be intractable even
with a 2-layer GNN. To resolve this issue, Experience Replay based GNN (ER-GNN) (Zhou & Cao,
2021) stores representative input nodes (i.e., node attributes) in the buffer but completely ignores the

1n: memory budget, d: average node degree, L: the radius of the GNN receptive field
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Figure 1: (a) ER-GNN (Zhou & Cao, 2021) that stores the input attributes of individual nodes. (b) Sparsified
Subgraph Memory (SSM) (Zhang et al., 2022d) that stores sparsified computation ego-subgraphs. (c) Our
PDGNNs with TEM. The incoming computation ego-subgraphs are embedded as TEs and then fed into the
trainable function. The stored TEs are sampled based on their coverage ratio (Section 3.6).

topological information (Figure 1 a). Feature graph network (FGN) (Wang et al., 2020a) implicitly
encodes node proximity with the inner products between the features of the target node and its
neighbors. However, the explicit topological connections are abandoned and message passing is no
longer feasible on the graph. Sparsified Subgraph Memory (SSM) (Zhang et al., 2022d) sparsifies
the computation ego-subgraphs for tractable memory consumption, which still partially sacrifices
topological information, especially when the computation ego-subgraphs are large and a majority of
nodes/edges is removed after sparsification (Figure 1 b).

To this end, we present a general framework of Parameter Decoupled Graph Neural Networks
(PDGNNs) with Topology-aware Embedding Memory (TEM) to perform continual learning on
expanding graphs (Figure 1 c). First, with systematic analysis, we demonstrate that the necessity to
store the complete computation ego-subgraphs for retraining MPNNs arises from the entanglement
between the trainable parameters and the individual nodes/edges (Section 3.2). Targeting this problem,
we design the Parameter Decoupled Graph Neural Networks (PDGNNs) framework, which decouples
the trainable parameters from individual nodes/edges. The PDGNNs framework enables us to develop
a novel concept, Topology-aware Embedding (TE), which is a vector with a fixed size but contains
all necessary information for retraining the trainable parameters of PDGNNs. Such TEs are desired
surrogates of computation ego-subgraphs to facilitate memory replay. After learning each task, a
subset of TEs is selected with a certain sampling strategy and stored in the Topology-aware Embedding
Memory (TEM). Because the size of a TE is fixed, the memory space complexity of a buffer (with
size n) can be dramatically reduced from O(ndL) to O(n). Moreover, different from traditional
continual learning on Euclidean data without explicit topological connections (e.g., images), we
theoretically discover that replaying the TE of one single node incurs a pseudo-training effect on the
neighboring nodes, which could also alleviate the forgetting problem for the other nodes within the
same computation ego-subgraph. This unique phenomenon in continual learning on expanding graphs
takes place due to the neighborhood aggregation in GNNs. The pseudo-training effect suggests that
TEs corresponding to larger computation ego-subgraphs (quantitatively measured by coverage ratio)
are more beneficial to continual learning performance. Based on the theoretical finding, we develop a
novel coverage maximization sampling strategy, which enlarges the coverage ratio of the selected
TEs and empirically enhances the performance for a tight memory budget. In our experiments, we
adopt both the class-incremental (class-IL) continual learning scenario (Rebuffi et al., 2017; Zhang
et al., 2022d;b) and the task-incremental (task-IL) scenario (Liu et al., 2021; Zhou & Cao, 2021), to
evaluate the effectiveness of PDGNNs-TEM. Thorough empirical studies demonstrate that PDGNNs
with TEM outperform the state-of-the-art techniques in both class-IL and task-IL scenarios.

2 RELATED WORKS
2.1 CONTINUAL LEARNING & CONTINUAL LEARNING ON EXPANDING GRAPHS

To alleviate the catastrophic forgetting problem, existing approaches can be categorized into regu-
larization, memory replay, and parameter isolation based methods. Regularization based methods
aim to prevent drastic modification to parameters that are important for previous tasks (Farajtabar
et al., 2020; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Aljundi et al., 2018; Hayes & Kanan, 2020;
Rakaraddi et al., 2022; Sun et al., 2022; Qi et al.). Parameter isolation methods adaptively allocate
new parameters for the new tasks to protect the ones for the previous tasks (Wortsman et al., 2020;
Wu et al., 2019b; Yoon et al., 2020; 2017; Rusu et al., 2016). Memory replay based methods store and

2



Under review as a conference paper at ICLR 2024

replay representative data from previous tasks when learning new tasks (Caccia et al., 2020; Chrysakis
& Moens, 2020; Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019; Shin et al.,
2017). Recently, continual learning on expanding graphs attracts increasingly more attention due to its
practical importance (Das & Isufi, 2022a;c;b; Zhou & Cao, 2021; Liu et al., 2021; Wang et al., 2020b;
Xu et al., 2020; Daruna et al., 2021; Carta et al., 2021; Zhang et al., 2022d;c;b; Febrinanto et al.,
2023; Yuan et al., 2023; Cai et al., 2022; Wei et al., 2022; Wang et al., 2022; Ahrabian et al., 2021; Su
& Wu, 2023; Kim et al., 2022; Daruna et al., 2021; Hoffmann et al., 2023; Galke et al., 2023; Li et al.,
2023; Cui et al., 2023). Existing methods include regularization ones like topology-aware weight
preserving (TWP) (Liu et al., 2021) that preserves crucial topologies, parameter isolation methods
like HPNs (Zhang et al., 2022c) that select different parameters for different tasks, and memory replay
methods like ER-GNN (Zhou & Cao, 2021) and Sparsified Subgraph Memory (SSM) (Zhang et al.,
2022d) that store representative nodes or sparsified computation ego-subgraphs. Our work is also
memory based and its key advantage is the capability to preserve complete topological information
with reduced space complexity, which shows significant superiority in class-IL setting (Section 4.4).
Finally, it is worth highlighting the difference between continual learning on expanding graphs and
some relevant research areas. First, dynamic graph learning (Galke et al., 2021; Wang et al., 2020c;
Han et al., 2020; Yu et al., 2018; Nguyen et al., 2018; Zhou et al., 2018; Ma et al., 2020; Feng
et al., 2020) focuses on the temporal dynamics with all previous data being accessible. In contrast,
continual learning on expanding graphs aims to alleviate forgetting, therefore the previous data is
inaccessible. Second, few-shot graph learning (Zhou et al., 2019; Guo et al., 2021; Yao et al., 2020;
Tan et al., 2022) targets fast adaptation to new tasks. In training, few-shot learning models can access
all previous tasks (unavailable in continual learning). In testing, few-shot learning models need to be
fine-tuned on the test classes, while the continual learning models are tested on existing tasks without
fine-tuning.
2.2 GRAPH NEURAL NETWORKS & RESERVOIR COMPUTING

Graph Neural Networks (GNNs) are deep learning models designed to generate representations for
graph data, which typically interleave the neighborhood aggregation and node feature transformation
to extract the topological features (Kipf & Welling, 2017; Gilmer et al., 2017; Veličković et al.,
2017; Xu et al., 2018; Chen et al., 2018; Hamilton et al., 2017; Yan et al., 2022; Yang et al.,
2023; Zhang et al., 2022a). GNNs without interleaving the neighborhood aggregation and node
feature transformation have been developed to reduce the computation complexity and increase the
scalability (Zeng et al., 2021; Chen et al., 2020; 2019; Nt & Maehara, 2019; Frasca et al., 2020; Fey
et al., 2021; Cong et al., 2020; Dong et al., 2021). For example, Simple Graph Convolution (SGC)
(Wu et al., 2019a) removes the non-linear activation from GCN (Kipf & Welling, 2017) and only
keeps one neighborhood aggregation and one node transformation layer. Approximate Personalized
Propagation of Neural Predictions (APPNP) (Klicpera et al., 2018) first performs node transformation
and then conducts multiple neighborhood aggregations in one layer. Motivated by these works, the
PDGNNs framework in this paper is specially designed to decouple the neighborhood aggregation
with trainable parameters, and derive the topology-aware embeddings (TEs) to reduce the memory
space complexity and facilitate continual learning on expanding graphs. Besides, PDGNNs are also
related to reservoir computing (Gallicchio & Micheli, 2020; 2010), which can embed the input data
(e.g. graphs) via a fixed non-linear system. The reservoir computing modules can be adopted in
PDGNNs as the TE generation function (Equation 4), and the corresponding experiments are included
in Appendix B.2.

3 PARAMETER DECOUPLED GNNS WITH TOPOLOGY-AWARE EMBEDDING
MEMORY

In this section, we first introduce the notations, and then explain the technical challenge of applying
memory replay techniques to GNNs. Targeting the challenge, we introduce PDGNNs with Topology-
aware Embedding Memory (TEM). Finally, inspired by theoretical findings of the pseduo-training
effect, we develop the coverage maximization sampling to enhance the performance when the memory
budget is tight, which has shown its effectiveness in our empirical study. All detailed proofs are
provided in Appendix A.

3.1 PRELIMINARIES

Continual learning on expanding graphs is formulated as learning node representations on a sequence
of subgraphs (tasks): S = {G1,G2, ...,GT }. Each Gτ (i.e., τ -th task) contains several new categories
of nodes in the overall graph, and is associated with a node set Vτ and an edge set Eτ , which
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is represented as the adjacency matrix Aτ ∈ R|Vτ |×|Vτ |. The degree of a node d refers to the
number of edges connected to it. In practice, Aτ is often normalized as Âτ = D

− 1
2

τ AτD
− 1

2
τ ,

where Dτ ∈ R|Vτ |×|Vτ | is the degree matrix. Each node v ∈ Vτ has a feature vector xv ∈ Rb. In
classification tasks, each node v has a label yv ∈ {0, 1}C , where C is the total number of classes.
When generating the representation for a target node v, a L-layer GNN typically takes a computation
ego-subgraph Gsub

τ,v , containing the L-hop neighbors of v (i.e. NL(v)), as the input. For simplicity,
Gsub
v is used in the following, without the graph index.

3.2 MEMORY REPLAY MEETS GNNS

In traditional continual learning, a model f(·;θ) parameterized by θ is sequentially trained on T
tasks. Each task τ (τ ∈ {1, ..., T}) corresponds to a dataset Dτ = {(xi,yi)

nτ
i=1}. To avoid forgetting,

memory replay based methods store representative data from the old tasks in a buffer B. When
learning new tasks. A common approach to utilize B is through an auxiliary loss:

L =
∑

xi∈Dτ

l(f(xi;θ),yi)︸ ︷︷ ︸
Lτ : loss of the current task

+λ
∑
xj∈B

l(f(xj ;θ),yj)︸ ︷︷ ︸
Laux: auxiliary loss

, (1)

where l(·, ·) denotes the loss function, and λ ≥ 0 balances the contribution of the old data. Instead of
directly minimizing Laux, the buffer B may also be used in other ways to prevent forgetting (Lopez-
Paz & Ranzato, 2017; Rebuffi et al., 2017). In these applications, the space complexity of a buffer
containing n examples is O(n).
However, to capture the topological information, GNNs obtain the representation of a node v based
on a computation ego-subgraph surrounding v. We exemplify it with the popular MPNN framework
(Gilmer et al., 2017), which updates the hidden node representations at the l + 1-th layer as:

ml+1
v =

∑
w∈N 1(v)

Ml(h
l
v,h

l
w,x

e
v,w;θ

M
l ), hl+1

v = Ul(h
l
v,m

l+1
v ;θU

l ), (2)

where hl
v, hl

w are hidden representations of nodes at layer l, xe
v,w is the edge feature, Ml(·, ·, ·;θM

l )

is the message function to integrate neighborhood information, and Ul(·, ·;θU
l ) updates ml+1

v into
hl
v (h0

v is the input features). In a L-layer MPNN, the representation of a node v can be simplified as,

hL
v = MPNN(xv,Gsub

v ;Θ), (3)

where Gsub
v contains the L-hop neighbors (NL(v)), MPNN(·, ·;Θ) is the composition of all

Ml(·, ·, ·;θM
l ) and Ul(·, ·;θU

l ) at different layers. Since NL(v) typically contains O(dL) nodes,
replaying n nodes requires storing O(ndL) nodes (the edges are not counted yet), where d is the
average degree. Therefore, the buffer size will be easily intractable in practice (e.g. the example
of Reddit dataset in Introduction), and directly storing the computation ego-subgraphs for memory
replay is infeasible for GNNs.

3.3 PARAMETER DECOUPLED GNNS WITH TEM
As we discussed earlier, the key challenge of applying memory replay to graph data is to preserve
the rich topological information of the computation ego-subgraphs with potentially unbounded sizes.
Therefore, a natural resolution is to preserve the crucial topological information with a compact
vector such that the memory consumption is tractable. Formally, the desired subgraph representation
can be defined as Topology-aware Embedding (TE).
Definition 1 (Topology-aware embedding). Given a specific GNN parameterized with θ and an input
Gsub
v , an embedding vector ev is a topology-aware embedding for Gsub

v with respect to this GNN,
if optimizing θ with Gsub

v or ev for this specific GNN are equivalent, i.e. ev contains all necessary
topological information of Gsub

v for training this GNN.

However, TEs cannot be directly derived from the MPNNs due to their interleaved neighborhood
aggregation and feature transformations. According to Section 3.2, whenever the trainable parameters
get updated, recalculating the representation of a node v requires all nodes and edges in Gsub

v .
To resolve this issue, we formulate the Parameter Decoupled Graph Neural Networks (PDGNNs)
framework, which decouples the trainable parameters from the individual nodes/edges. PDGNNs may
not be the only feasible framework to derive TEs, but is the first attempt and is empirically effective.
Given Gsub

v , the prediction of node v with PDGNNs consists of two steps. First, the topological
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information of Gsub
v is encoded into an embedding ev via the function ftopo(·) without trainable

parameters (instantiations of ftopo(·) are detailed in Section 3.4).
ev = ftopo(Gsub

v ). (4)

Next, ev is further passed into a trainable function fout(·;θ) parameterized by θ (instantiations of
fout(·;θ) are detailed in Section 3.4) to get the output prediction ŷv ,

ŷv = fout(ev;θ). (5)

With the formulations above, ev derived in Eq. (4) clearly satisfies the requirements of TE (Defini-
tion 1). Specifically, since the trainable parameters acts on ev instead of any individual node/edge,
optimizing the model parameters θ with either ev or Gsub

v are equivalent. Therefore, to retrain the
model, the memory buffer only needs to store TEs instead of the original computation ego-subgraphs,
which reduces the space complexity from O(ndL) to O(n). We name the buffer to store the TEs as
Topology-aware Embedding Memory (T EM). Given a new task τ , the update of T EM is:

T EM = T EM
⋃

sampler({ev | v ∈ Vτ}, n), (6)

where sampler(·, ·) is the adopted sampling strategy to populate the buffer,
⋃

denotes the set union,
and n is the budget. According to the experimental results (Section 4.3), as long as T EM is
maintained, PDGNNs-TEM can perform reasonably well with different choices of sampler(·, ·),
including the random sampling. Nevertheless, in Section 3.6, based on the theoretical insights in
Section 3.5, we propose a novel sampling strategy to better populate T EM when the memory budget
is tight, which is empirically verified to be effective in Section 4.3. Besides, Equation (6) assumes
that all data of the current task are presented concurrently. In practice, the data of a task may come
in multiple batches (e.g., nodes come in batches on large graphs), and the buffer update have to be
slightly modified, as detailed in Appendix C.1. For task τ with graph Gτ , the loss with T EM then
becomes:

L =
∑
v∈Vτ

l(fout(ev;θ),yv)︸ ︷︷ ︸
Lτ : loss of the current task τ

+λ
∑

ew∈T EM
l(fout(ew;θ),yw)︸ ︷︷ ︸

Laux: auxiliary loss

. (7)

λ balances the contribution of the data from the current task and the memory, and is typically
manually chosen in traditional continual learning works. However, on graph data, we adopt a different
strategy to re-scale the losses according to the class sizes to counter the bias from the severe class
imbalance, which cannot be handled on graphs by directly balancing the datasets (details are provided
in Appendix B.7).

3.4 INSTANTIATIONS OF PDGNNS

Although without trainable parameters, the function ftopo(·) for generating TEs can be highly expres-
sive with various formulations including linear and non-linear ones, both of which are studied in this
work. First, the linear instantiations of ftopo(·) can be generally formulated as,

ev = ftopo(Gsub
v ) =

∑
w∈V

xw · π(v, w; Â), (8)

where π(·, ·; Â) denotes the strategy for computation ego-subgraph construction and determines how
would the model capture the topological information. Equation 8 describes the operation on each
node. In practice, Equation 8 could be implemented as matrix multiplication to generate TEs of a
set of nodes V in parallel, i.e. EV = ΠXV, where each entry Πv,w = π(v, w; Â). EV ∈ R|V|×b is
the concatenation of all TEs (ev ∈ Rb), and XV ∈ R|V|×b is the concatenation of all node feature
vectors xv ∈ Rb. In our experiments, we adopt three representative strategies. The first strategy
(S1) (Wu et al., 2019a) is a basic version of message passing and can be formulated as Π = ÂL. The
second strategy (S2) (Zhu & Koniusz, 2020) considers balancing the contribution of neighborhood
information from different hops via a hyperparameter α, i.e. Π = 1

L

∑L
l=1

(
(1−α)Âl+αI

)
. Finally,

we also adopt a strategy (S3) (Klicpera et al., 2018) that adjusts the contribution of the neighbors
based on PageRank (Page et al., 1999), i.e. Π =

(
(1− α)Â+ αI

)L
, in which α also balances the

contribution of the neighborhood information.
The linear formulation of ftopo(·) (Equation (8)) yields both promising experimental results (Section
B) and instructive theoretical results (Section 3.5, and 3.6). Equation (8) is also highly efficient
especially for large graphs due to the absence of iterative neighborhood aggregations. But ftopo(·)
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can also take non-linear forms with more complex mappings, e.g., the reservoir computing modules
(Gallicchio & Micheli, 2020). The corresponding experimental and theoretical effects are introduced
in Appendix B.2 and A.3.
Since fout(·;θ) simply deals with individual vectors (TEs), it is instantiated as MLP in this work.
The specific configurations of fout(·;θ) is described in the experimental part (Section 4.2).

3.5 PSEUDO-TRAINING EFFECTS OF TES

Figure 2: Illustration of the coverage ratio. Supposing
the graph has N nodes, Rc({u}) = 13

N
, Rc({v}) = 15

N
,

Rc({u}) = 14
N

, and Rc({u, v, w}) = 42
N

In traditional continual learning on Euclidean
data without explicit topological connections,
replaying an example xi (e.g., an image) only
reinforces the prediction of xi itself. In this sub-
section, we introduce the pseudo-training effect,
which implies that training PDGNNs with ev
of node v also influences the predictions of the
other nodes in Gsub

v , based on which we develop
a novel sampling strategy to further boost the
performance with a tight memory budget.

Theorem 1 (Pseudo-training). Given a node v, its computation ego-subgraph Gsub
v , the TE ev , and

label yv (suppose v belongs to class k, i.e. yv,k = 1), then training PDGNNs with ev has the
following two properties:

1. It is equivalent to training PDGNNs with each node w in Gsub
v with Gsub

v being a pseudo
computation ego-subgraph and yv being a pseudo label, where the contribution of xw (via Equation 8)
is re-scaled by π(v,w;Â)

π(w,w;Â)
. We term this property as the pseudo-training effect on neighboring nodes,

because it is equivalent to that the training is conducted on each neighboring node (in Gsub
v ) through

the pseudo labels and the pseudo computation ego-subgraphs.

2. When fout(·;θ) is linear, training PDGNNs on ev is also equivalent to training fout(·;θ) on pseudo-
labeled nodes (xw, yv) for each w in Gsub

v , where the contribution of w in the loss is adaptively

re-scaled with a weight fout(xw;θ)k·π(v,w;Â)∑
w∈Vsub

v
fout

(
xw·π(v,w;Â);θ

)
k

.

The pseudo-training effect essentially arises from the neighborhood aggregation operation of GNNs,
of which the rationale is to iteratively refine the node embeddings with similar neighbors. Pseudo-
training effect implies that replaying the TE of one node can also strengthen the prediction for its
neighbors within the same computation ego-subgraph and alleviate the forgetting problem on them.
More detailed discusion on pseudo-training effect is provided in Appendix A.3 and Appendix A.4.
The above analysis suggests that TEs with larger computation ego-subgraphs covering more nodes
may be more effective, motivating our coverage maximization sampling strategy in the next subsection,
which is also empirically justified in Section 4.3.

3.6 COVERAGE MAXIMIZATION SAMPLING
Algorithm 1 Coverage maximization sampling

Input: Gτ , Vτ , Âτ , π(·, ·; ·), sample size n.
Output: Selected nodes S

1: Initialize S = {}.
2: for each v ∈ Vτ do
3: Rc({v}) =

|{w|w∈Gsub
τ,v }|

|Vτ |
4: end for each
5: for each v ∈ Vτ do
6: pv = Rc({v})∑

w∈Vτ Rc({w})
7: end for each
8: while n > 0 do
9: Sample one node v from Vτ according to
{pw | w ∈ Vτ}.

10: S = S ∪ {v}
11: Vτ = Vτ\{v} ▷ Sampling without

replacement
12: n← n− 1
13: end while

Following the above subsection, TEs with larger com-
putation ego-subgraphs are preferred to be stored. To
quantify the size of the computation ego-subgraphs,
we formally define the coverage ratio of the selected
TEs as the nodes covered by their computation ego-
subgraphs versus the total nodes in the graph (Fig-
ure 2). Since a TE uniquely corresponds to a node,
we may use ‘node’ and ‘TE’ interchangeably.
Definition 2. Given a graph G, node set V, and func-
tion π(·, ·; Â), the coverage ratio of a set of nodes
Vs is:

Rc(Vs) =
| ∪v∈Vs

{w|w ∈ Gsub
v }|

|V|
, (9)

i.e., the ratio of nodes of the entire (training) graph
covered by the computation ego-subgraphs of the
selected nodes (TEs).
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Table 1: Performance & coverage ratios of different sampling strategies and buffer sizes on OGB-Arxiv dataset
(↑ higher means better).

Ratio of dataset /% 0.02 0.1 1.0 5.0 40.0

AA/%
Uniform samp. 12.0±1.1 24.1±1.7 42.2±0.3 50.4±0.4 53.3±0.4
Mean of feat. 12.6±0.1 25.3±0.3 42.8±0.3 50.4±0.7 53.3±0.2

Cov. Max. 14.9±0.8 26.8±1.8 43.7±0.5 50.5±0.4 53.4±0.1

Cov.
ratio/%

Uniform samp. 0.1±0.1 0.3±0.0 3.5±0.9 15.9±1.1 84.8±1.5
Mean of feat. 0.2±0.4 0.6±0.3 7.1±0.6 29.6±1.7 91.1±0.1

Cov. Max. 0.5±1.1 2.9±1.8 22.5±1.6 46.3±0.6 92.8±0.0

Table 2: Performance comparisons under class-IL on different datasets (↑ higher means better).

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 3.5±0.2 -95.2±0.3 4.9±0.0 -89.7±0.4 5.9±0.9 -97.9±1.8 7.6±0.6 -88.7±0.5
EWC 2017 52.6±5.0 -38.5±7.3 8.5±0.6 -69.5±4.7 10.3±6.3 -33.2±14.6 23.8±2.2 -21.7±3.9
MAS 2018 6.5±1.0 -92.3±1.0 4.8±0.2 -72.2±2.6 9.2±7.6 -23.1±14.6 16.7±2.6 -57.0±24.8
GEM 2017 7.4±0.1 -91.0±0.1 4.9±0.0 -89.8±0.2 5.0±0.0 -99.4±0.0 4.5±0.8 -94.7±0.2
TWP 2021 62.6±1.7 -30.6±2.8 6.7±1.2 -50.6±6.9 8.0±2.9 -18.8±5.1 14.1±2.1 -11.4±1.3
LwF 2017 33.4±0.9 -59.6±1.2 9.9±6.7 -43.6±7.5 86.6±0.8 -9.2±0.9 48.2±0.8 -18.6±0.9

ER-GNN 2021 2.9±0.0 -94.6±0.1 12.3±3.1 -79.9±3.3 20.4±2.6 -82.7±2.9 56.7±0.3 -33.3±0.5
SSM 2022d 75.4±0.1 -9.7±0.0 48.3±0.5 -10.7±0.3 94.4±0.0 -1.3±0.0 63.3±0.1 -9.6±0.3

Joint 80.8±0.1 -3.1±0.2 56.8±0.0 -8.6±0.0 97.1±0.1 -0.7±0.1 71.5±0.1 -5.8±0.2

PDGNNs 81.9±0.1 -3.9±0.1 53.2±0.2 -14.7±0.2 96.6±0.0 -2.6±0.1 73.9±0.1 -10.9±0.2

To maximize Rc(T EM), a naive approach is to start from selecting the TE with the largest coverage
ratio, and then iteratively incorporate TE that increases Rc(T EM) the most. However, this requires
computing Rc(T EM) for all candidate TEs at each iteration, which is time consuming especially
on large graphs. Besides, certain randomness is also desired for the diversity of T EM. Therefore,
we propose to sample TEs based on their coverage ratio. Specifically, in task τ , the probability of
sampling node v ∈ Vτ is pv = Rc({v})∑

w∈Vτ Rc({w}) . Then the nodes in Vτ are sampled according to

{pv | v ∈ Vτ} without replacement, as shown in Algorithm 1. In experiments, we demonstrate the
correlation between the coverage ratio and the performance, which verifies the benefits revealed in
Section 3.5

4 EXPERIMENTS

In this section, we aim to answer the following research questions: RQ1: Whether PDGNNs-TEM
works well with a reasonable buffer size? RQ2: Does coverage maximization sampling ensure a
higher coverage ratio and better performance when the memory budget is tight? RQ3: Whether our
theoretical results can be reflected in experiments? RQ4: Whether PDGNNs-TEM can outperform
the state-of-the-art methods in both class-IL and task-IL scenarios? Due to the space limitations,
only the most prominent results are presented in the main content, and more details are available in
Appendix B. For simplicity, PDGNNs-TEM will be denoted as PDGNNs in this section.

4.1 DATASETS

Following the public benchmark CGLB (Zhang et al., 2022b), we adopted four datasets, CoraFull,
OGB-Arxiv, Reddit, and OGB-Products, with up to millions of nodes and 70 classes. Dataset
statistics and task splittings are summarized in Table 8. In the paper, we show the results under the
splittings with the largest number of tasks. More details of the datasets and results with additional
configurations are provided in the Appendix B.6 and B.3, respectively.

4.2 EXPERIMENTAL SETUP AND MODEL EVALUATION

Continual learning setting and model evaluation. During training, a model is trained on a task
sequence. During testing, the model is tested on all learned tasks. Class-IL scenario requires a model
to classify a given node by picking a class from all learned classes (more challenging), while task-IL
scenario only requires the model to distinguish the classes within each task. For model evaluation, the
most thorough metric is the accuracy matrix Macc ∈ RT×T , where Macc

i,j denotes the accuracy on task
j after learning task i. The learning dynamics can be reflected with average accuracy (AA) over all

learnt tasks after learning each new task, i.e.,
{∑i

j=1 Macc
i,j

i |i = 1, ..., T
}

, which can be visualized as a
curve. Similarly, the average forgetting (AF) after learning each task can reflect the learning dynamics
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Figure 3: Dynamics of average accuracy in the class-IL scenario.(a) CoraFull, 2 classes per task. (b) OGB-Arxiv,
2 classes per task. (c) Reddit, 2 classes per task. (d) OGB-Products, 2 classes per task.

Figure 4: From left to right: accuracy matrix of PDGNNs, ER-GNN, LwF, and Fine-tune on OGB-Arxiv dataset.

from the perspective of forgetting,
{∑i−1

j=1 Macc
i,j −Macc

j,j

i−1 |i = 2, ..., T
}

. To use a single numeric value
for evaluation, the AA and AF after learning all T tasks will be used. These two metrics are widely
adopted in continual learning works (Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Liu et al.,
2021; Zhang et al., 2022c; Zhou & Cao, 2021), although the names are different in different works.
We repeat all experiments 5 times on one Nvidia Titan Xp GPU. All results are reported with average
performance and standard deviations.
Baselines and model settings. Our baselines for continual learning on expanding graphs include
Experience Replay based GNN (ER-GNN) (Zhou & Cao, 2021), Topology-aware Weight Preserv-
ing (TWP) (Liu et al., 2021) and Sparsified Subgraph Memory (SSM) (Zhang et al., 2022d). Milestone
works for Euclidean data but also applicable to GNNs include Elastic Weight Consolidation (EWC)
(Kirkpatrick et al., 2017), Learning without Forgetting (LwF) (Li & Hoiem, 2017), Gradient Episodic
Memory (GEM) (Lopez-Paz & Ranzato, 2017), and Memory Aware Synapses (MAS) (Aljundi et al.,
2018)), are also adopted. HPNs (Zhang et al., 2022c) is designed to work under a stricter task-IL
setting, and cannot be properly incorporated for comparison. These baselines are implemented based
on three popular backbone GNNs, i.e., Graph Convolutional Network (GCN) (Kipf & Welling, 2017),
Graph Attentional Network (GAT) (Veličković et al., 2017), and Graph Isomorphism Network (GIN)
(Xu et al., 2018). Besides, joint training (without forgetting problem) and fine-tune (without continual
learning technique) are adopted as the upper and lower bound on the performance. We instantiate
fout(·;θ) as a multi-layer perceptron (MLP). For a fair comparison, all methods including fout(·;θ)
of PDGNNs are set as 2-layer with 256 hidden dimensions, and L in Section 3.3 is set as 2 for
consistency. Additional discussion on the model depth is provided in Appendix B.5. As detailed in
Section 4.3, ftopo(·) is chosen as strategy S1 (Section 3.4), while the comparison among different
choices are introduced in Appendix B.2.

4.3 STUDIES ON THE BUFFER SIZE & PERFORMANCE VS. COVERAGE RATIO (RQ1, 2, AND 3)

In Table 1, based on PDGNNs, we compare the proposed coverage maximization sampling with
uniform sampling and mean of feature (MoF) sampling in terms of coverage ratios and performance
when the buffer size (ratio of the dataset) varies from 0.0002 to 0.4 on the OGB-Arxiv dataset. Our
proposed coverage maximization sampling achieves a superior coverage ratio, which indeed enhances
the performance when the memory budget is tight. In real-world applications, a tight memory budget
is a very common situation, making the coverage maximization sampling a favorable choice. We
also notice that the average accuracy for coverage maximization sampling is positively related to the
coverage ratio in general, which is consistent with the Theorem 2. Table 1 also demonstrates the high
memory efficiency of TEM. No matter which sampling strategy is used, the performance can reach
≈50% average accuracy (AA) with only 5% data buffered. In Appendix B.2, we further evaluate
how the performance changes when the buffer size varies with different variants of PDGNNs. (i.e.,
the TE generation strategies adopted from SGC, S2GC, APPNP, and reservoir computing described
in Section 3.3). In Appendix B.4, we provide the comparison of the space consumption of different
memory based strategies to demonstrate the efficiency of PDGNNs-TEM. In Appendix C.2, we added
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Table 3: Performance comparisons under task-IL on different datasets (↑ higher means better).

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 56.0±2.4 -41.0±2.5 56.2±1.7 -36.2±1.7 79.5±13.0 -11.7±2.9 64.4±2.3 -31.1±2.6
EWC 2017 89.8±0.7 -5.1±0.3 71.5±0.4 -0.9±0.4 83.9±11.9 -2.0±1.0 87.0±0.9 -1.7±0.9
MAS 2018 92.2±0.6 -3.7±0.8 72.7±1.6 -18.5±1.6 61.1±4.3 -0.5±0.7 80.6±2.4 -13.7±2.4
GEM 2017 92.0±0.4 0.3±0.8 80.8±0.8 -5.3±0.9 98.9±0.0 -0.5±0.1 87.7±1.1 -7.0±1.2
TWP 2021 94.3±0.5 -1.6±0.3 80.9±1.0 -1.3±0.8 78.0±13.4 -0.2±0.3 81.8±2.2 -0.3±0.5
LwF 2017 93.8±0.1 -0.4±0.1 71.1±1.7 -1.5±0.5 98.6±0.1 -0.0±0.0 86.3±0.1 -0.5±0.1

ER-GNN 2021 62.4±1.5 -34.5±1.5 86.4±0.2 0.5±0.3 97.5±1.5 2.6±3.7 86.4±0.0 11.7±0.0
SSM 2022d 94.1±0.4 0.5±0.3 87.1±0.5 -1.4±0.2 98.8±0.1 -0.2±0.3 88.8±0.6 -1.3±0.3

Joint 96.0±0.1 0.0±0.1 90.3±0.2 0.5±0.2 99.5±0.0 0.0±0.0 95.3±0.4 -0.3±0.3

PDGNNs 94.6±0.1 0.6±1.0 89.8±0.4 -0.0±0.5 98.9±0.0 -0.5±0.0 93.5±0.5 -2.1±0.1

discussions to differentiate the coverage maximization with several essentially different works with
similar names (Chen et al., 2009; Wang et al., 2016; Zhou & Cao, 2021).

4.4 RESULTS FOR CLASS-IL SCENARIO AND TASK-IL SCENARIO (RQ4)
Class-IL Scenario. As shown in Table 2, under the class-IL scenario, PDGNNs significantly
outperform the baselines and are even comparable to joint training (the performance upper bound) on
all 4 public datasets. The learning dynamics are shown in Figure 3. Since the curve of PDGNNs is
very close to the curve of joint training, we conclude that the forgetting problem is nearly eliminated
by PDGNNs. In Table 2 and Figure 3, PDGNNs sometimes outperform joint training. The reasons
are two-fold. First, PDGNNs learn the tasks sequentially while joint training optimizes the model for
all tasks simultaneously, resulting in different optimization difficulties (Bhat et al., 2021). Second,
when learning new tasks, joint training accesses all previous data that may be noisy, while replaying
the representative TEs may help filter out noise. More discussions are provided in Appendix B.3.

To thoroughly understand different methods, we visualize the accuracy matrices of four representative
methods, including our PDGNNs (memory replay with topological information), ER-GNN (memory
replay without topological information), LwF (relatively satisfying performance without memory
buffer), and Fine-tune (without continual learning technique), in Figure 4. Each row of the matrix
denotes the performance on each learnt task after learning a new task, and each column denotes
the performance change of a specific task. Compared to the baselines, PDGNNs maintain stable
performance on each task even though new tasks are continuously learned. Besides, we also visualized
the learnt node representations at different learning stages in Appendix B.1.

Task-IL Scenario. The comparison results under the task-IL scenario are shown in Table 3. We can
observe that PDGNNs still consistently outperform baselines on all different datasets, even though
task-IL is less challenging than the class-IL as we discussed in Section 4.2.

4.5 MEMORY CONSUMPTION OF DIFFERENT METHODS

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products

Full Subgraph 7,264M 35M 2,184,957M 5,341M
GEM 2017 7,840M 86M 329M 82M

ER-GNN 2021 61M 2M 12M 3M
SSM 2022d 732M 41M 193M 37M

PDGNNs-TEM 37M 2M 9M 2M

Table 4: Memory space consumption of different methods.

In this subsection, we compare the
memory space consumption of differ-
ent memory based methods to con-
cretely demonstrate the memory ef-
ficiency of PDGNNs-TEM. The final
memory consumption (measured by
the number of float32 values) after
learning each entire dataset are shown
in Table 4. As a reference, the memory consumption of storing full computation ego-subgraph is also
calculated.

5 CONCLUSION
In this work, we propose the PDGNNs with TEM framework for continual learning on expanding
graphs. Based on TEs, we reduce the memory space complexity from O(ndL) to O(n), which
enables PDGNNs to fully utilize the explicit topological information sampled from the previous tasks.
We also discover and theoretically analyze the pseudo-training effect of TEs. This inspires us to
develop the coverage maximization sampling which has been demonstrated to be highly efficient
when the memory budget is tight. Finally, thorough empirical studies on both class-IL and task-IL
continual learning scenarios demonstrate the effectiveness of PDGNNs-TEM.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Chen Wang, Yuheng Qiu, and Sebastian Scherer. Bridging graph network to lifelong learning with
feature interaction. 2020a.

Chen Wang, Yuheng Qiu, and Sebastian Scherer. Lifelong graph learning. arXiv preprint
arXiv:2009.00647, 2020b.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5265–5274, 2018.

Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via continual
learning. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1515–1524, 2020c.

Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. Streaming graph neural networks with
generative replay. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1878–1888, 2022.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396–413, 2020d.

13



Under review as a conference paper at ICLR 2024

Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Chen Chen. Bring order into the
samples: A novel scalable method for influence maximization. IEEE Transactions on Knowledge
and Data Engineering, 29(2):243–256, 2016.

Di Wei, Yu Gu, Yumeng Song, Zhen Song, Fangfang Li, and Ge Yu. Incregnn: Incremental
graph neural network learning by considering node and parameter importance. In International
Conference on Database Systems for Advanced Applications, pp. 739–746. Springer, 2022.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. arXiv preprint arXiv:2006.14769,
2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871. PMLR, 2019a.

Guile Wu, Shaogang Gong, and Pan Li. Striking a balance between stability and plasticity for class-
incremental learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1124–1133, 2021.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 374–382, 2019b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark Coates. Graphsail:
Graph structure aware incremental learning for recommender systems. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 2861–2868, 2020.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. Simple and efficient het-
erogeneous graph neural network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10816–10824, 2023.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla,
and Zhenhui Li. Graph few-shot learning via knowledge transfer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 6656–6663, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust contin-
ual learning with additive parameter decomposition. In International Conference on Learning
Representation, 2020.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2672–2681, 2018.

Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong, and Victor Chang.
Continual graph learning: A survey. arXiv preprint arXiv:2301.12230, 2023.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34, 2021.

14



Under review as a conference paper at ICLR 2024

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang,
and Bin Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4560–4570, 2022a.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Cglb: Benchmark tasks for continual graph learning.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022b.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Hierarchical prototype networks for continual graph
representation learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022c.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Sparsified subgraph memory for continual graph
representation learninggated information bottleneck for generalization in sequential environments.
In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 2022d.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks for
graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 4714–4722, 2021.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn: On
few-shot node classification in graph meta-learning. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 2357–2360, 2019.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding by
modeling triadic closure process. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33:7793–7804, 2020.

15



Under review as a conference paper at ICLR 2024

A THEORETICAL ANALYSIS

In this section, we give proofs and detailed analysis of the theoretical results in the paper.

A.1 PARAMETER DECOUPLED GNNS WITH TEM

In Section 3.3 of the paper, we mentioned that the embedding ev derived in PDGNNs is a topology-
aware embedding of Gsub

v with respect to the optimization of θ. Although this is intuitive, we still
provide a formal proof for it.

Proof. According to Definition 1 in the paper, a sufficient condition for a vector ev to be a topology-
aware embedding of Gsub

v is that ev provides same information as Gsub
v for optimizing the parameter

θ of a model fout(·;θ). Therefore, the proof can be done by showing ∇θL(ev,θ) = ∇θL(Gsub
v ,θ),

where L is the adopted loss function. This becomes straightforward under the PDGNNs framework
since Gsub

v is first embedded in ev and then participate in the computation with the trainable parameter
θ. Specifically, given an input computation ego-subgraph Gsub

v with the label yv , the corresponding
prediction of PDGNNs is:

ŷv = fout

( ∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
, (10)

and the loss is:

Lv = l

(
fout

( ∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
,yv

)
, (11)

the gradient of loss Lv is:

∇θLv = ∇θl

(
fout

( ∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
,yv

)
. (12)

When the input Gsub
v is replaced with ev , the prediction becomes:

ŷv = fout(ev;θ), (13)

and the corresponding loss becomes:

L′
v = l

(
fout(ev;θ),yv

)
, (14)

the gradient of loss Lv becomes:

∇θL′
v = ∇θl

(
fout(ev;θ),yv

)
. (15)

Since in the PDGNNs, ev is calculated as:

ev =
∑

w∈Vsub
v

xw · π(v, w; Â), (16)

then we have:

∇θLv = ∇θL′
v, (17)

i.e., optimizing the trainable parameters with ev is equal to optimizing the trainable parameters with
Gsub
v .

A.2 PSEUDO-TRAINING EFFECTS OF TES

Theorem 2 (Pseudo-training). Given a node v, its computation ego-subgraph Gsub
v , the TE ev , and

label yv (suppose v belongs to class k, i.e. yv,k = 1), then training PDGNNs with ev has the
following two properties:

1. It is equivalent to training PDGNNs with each node w in Gsub
v with Gsub

v being a pseudo
computation ego-subgraph and yv being a pseudo label, where the contribution of xw (via Equation
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4 in the paper) is re-scaled by π(v,w;Â)

π(w,w;Â)
. We term this property as the pseudo-training effect on

neighboring nodes.

2. When fout(·;θ) is linear, training PDGNNs on ev is also equivalent to training fout(·;θ) on pseudo-
labeled nodes (xw, yv) for each w in Gsub

v , where the contribution of w in the loss is adaptively

re-scaled with a weight fout(xw;θ)k·π(v,w;Â)∑
w∈Vsub

v
fout

(
xw·π(v,w;Â);θ

)
k

.

Proof of Theorem 2.1. Given a node v, the prediction is:

ŷv = fout(ev;θ) (18)

∵ ev =
∑

w∈Vsub
v

xw ·π(v, w; Â), where Vsub
v denotes the node set of the computation ego-subgraph

Gsub
v , and Â is the adjacency matrix of Gsub

v .

∴

ŷv = fout

( ∑
w∈Vsub

v

xw · π(v, w; Â);θ
)

(19)

Given the target (ground truth label) of node v as yv, the objective function of training the model
with node v is formulated as:

Lv = l

(
fout

( ∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
,yv

)
, (20)

where l could be any loss function to measure the distance between the prediction and the target.

Since Vsub
v contains both the features of node v and its neighbors, Equation 20 can be further

expanded to separate the contribution of node v and its neighbors:

Lv = l

(
fout

(
xv · π(v, v; Â)︸ ︷︷ ︸

information from node v

+
∑

w∈Vsub
v \{v}

xw · π(v, w; Â)

︸ ︷︷ ︸
neighborhood information

;θ
)
,yv

)
, (21)

Given an arbitrary node q ∈ Vsub
v but q ̸= v ∈ Vsub

v (the adjacency matrix Â stays the same), we can
similarly obtain the loss of training the model with node q:

Lq = l

(
fout

(
xq · π(q, q; Â)︸ ︷︷ ︸

information from node q

+
∑

w∈Vsub
q \{q}

xw · π(q, w; Â)

︸ ︷︷ ︸
neighborhood information

;θ
)
,yq

)
. (22)

Since q ∈ Vsub
v \{v}, we rewrite Equation 21 as:

Lv = l

(
fout

(
xq · π(v, q; Â)︸ ︷︷ ︸

information from node q

+
∑

w∈Vsub
v \{q}

xw · π(v, w; Â)

︸ ︷︷ ︸
neighborhood information

;θ
)
, yv

)
, (23)

By comparing Equation 23 and 22, we could observe the similarity in the loss of node v and q, and
the difference lies in the contribution (weight π(·, ·; Â)) of each node and the neighboring nodes
(Vsub

q and Vsub
v ).

Proof of Theorem 2.2. In this part, we choose the loss function l as cross entropy CE(·, ·), which is
the common choice for classification problems. In the following, we will first derive the gradient of
training the PDGNNs with (ev , yv). For cross entropy, we denote the one-hot vector form label as yv ,
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of which the yv-th element is one and other entries are zero. Given the loss of a node v as shown in
the Equation 20, the gradient is derived as:

∇θLv = ∇θCE

( ∑
w∈Vsub

v

fout

(
xw · π(v, w; Â);θ

)
,yv

)
(24)

= ∇θ

(
yv,k · log

∑
w∈Vsub

v

fout

(
xw · π(v, w; Â);θ

)
k

)
(25)

= yv,k ·
∇θ

(∑
w∈Vsub

v
fout
(
xw · π(v, w; Â);θ

)
k

)
∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

)
k

(26)

= yv,k ·

∑
w∈Vsub

v
∇θfout

(
xw · π(v, w; Â);θ

)
k∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

)
k

(27)

= yv,k ·
∑

w∈Vsub
v

∇θfout(xw;θ)k · π(v, w; Â)∑
w∈Vsub

v
fout

(
xw · π(v, w; Â);θ

)
k

(28)

=

∑
w∈Vsub

v
yv,k · ∇θfout(xw;θ)k

fout(xw;θ)k
· fout(xw;θ)k · π(v, w; Â)∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

)
k

(29)

=

∑
w∈Vsub

v
∇θCE

(
fout(xw;θ),yv,k

)
· fout(xw;θ) · π(v, w; Â)∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

) (30)

=
∑

w∈Vsub
v

fout(xw;θ) · π(v, w; Â)∑
w∈Vsub

v
fout

(
xw · π(v, w; Â);θ

) · ∇θCE
(
fout(xw;θ),yv

)
. (31)

The loss of training fout(xw;θ) with pairs of feature and pseudo-label (xw, yv) of all nodes of Gsub
v

is:

LGsub
v

=
∑

w∈Vsub
v

CE
(
fout(xw;θ),yv

)
(32)

(33)

Then, the corresponding gradient of LGsub
v

is :

∇θLGsub
v

=
∑

w∈Vsub
v

∇θCE
(
fout(xw;θ),yv

)
. (34)

By comparing Equation 31 and 34, we can see that training PDGNNs with a topology-aware
embedding ev equals to training the function fout(·;θ) on all nodes of the computation ego-subgraph
Gsub
v with a weight fout(xw;θ)·π(v,w;Â)∑

w∈Vsub
v

fout

(
xw·π(v,w;Â);θ

) on each node to rescale the contribution dynamically.

A.3 FURTHER DISCUSSION ON PSEUDO-TRAINING EFFECTS OF GENERALIZED TE
GENERATION FUNCTION

In this subsection, we give further analysis on the pseudo training effect when the TE generation
follows the following formulation:

ev = g({xw | w ∈ V}, Â). (35)

In this scenario, the pseudo training effect will depend on the specific form of g(·, ·). Despite this,
we can still analyze the strength of pseudo training effect with respect to the smoothness of the
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function and the dataset properties. First of all, the pseudo training effect exists because the GNN
models generate the prediction based on a local neighborhood. Therefore, the nodes with overlapping
neighborhood (similar inputs to the model) share similar prediction results. If their labels are shared,
then training these nodes could mutually reinforce each other. Accordingly, given an arbitrary
function g(·, ·), we can gain an insight into the strength of pseudo training effect by analyzing the
similarity of the inputs when generating representations of different nodes. Without loss of generality,
we assume g(·, ·) be a continuous function (since g(·, ·) does not require training, it does not have
to be differentiable). Then, given two nodes v and w, we denote their corresponding inputs to the
model as two vectors Iv and Iw. Iv and Iw may contain different neighborhood information based
on the specific form of g(·, ·). Now, it is obvious that the closer Iv and Iw are, the closer g(Iv, Â)

and g(Iw, Â) are (due to the continuity of g(·, ·)). In other words, stronger homophily will lead to
stronger pseudo training effect as we analyzed in Theorem 1 in the paper. Besides, the frequency
components (in terms of the spectrum of the function, e.g., with Fourier analysis) of g(·, ·) also
matters. If g(·, ·) is mainly composed of low frequencies, i.e., the change of g(·, ·) is slow with
respect to the change of the input, then the pseudo training effect is stronger because more nodes are
getting similar representations. But if the function g(·, ·) contains strong high frequency components,
i.e. g(·, ·) changes significantly with the change of input, then the pseudo training effect is weaker
since only very similar inputs of the nodes get similar outputs.

In experiments, we also instantiated g(·, ·) with the reservoir computing module (Gallicchio &
Micheli, 2020), which yields comparable performance with other instantiations (Section B.2).

A.4 PSEUDO-TRAINING EFFECT AND GRAPH HOMOPHILY

First of all, we give the formal definition of the graph homophily ratio. Given a graph G, the
homophily ratio is defined as the ratio of the number of edges connecting nodes with a same label
and the total number of edges, i.e.

h(G) = 1

|E|
∑

(j,k)∈E

1(yj = yk), (36)

where E is the edge set containing all edges, yj is the label of node j, and 1(·) is the indicator function
(Ma et al., 2021). For any graph, the homophily ratio is between 0 and 1. For each computation
ego-subgraph, when the homophily ratio is high, the neighboring nodes tend to share labels with
the center node, and the pseudo training would be beneficial for the performance. Many real-world
graphs like the social network and citation networks tend to have high homophily ratios, and pseudo
training will bring much benefit, which is shown in Section 4.3 of the paper.

In our work, homophily ratio of the 4 graph datasets are: CoraFull-CL (0.567), Arxiv-CL (0.655),
OGB-Products (0.807), Reddit-CL (0.755). These datasets cover the ones with high homophily
(OGB-Products and Reddit), as well as the ones with lower homophily. The strong experiment results
demonstrate that our proposed method performs well in all these scenarios.

Learning on more heterophilous graphs (homophily ratio close to 0) is also a promising direction,
which requires ftopo(·) to be properly constructed, and is targeted by our future work.

Heterophilous graph learning is largely different from homophilous graph learning, and requires
different GNN designs (Zheng et al., 2022). Therefore, for learning on heterophilous graphs, the
function ftopo(·) of PDGNNs should also be instantiated to be suitable for heterophilous graphs.
The rationale here is same as that the classic GNNs (MPNNs) for homophilous graphs perform
badly on heterophilous graphs. And the heterophilous GNNs require essentially different model
structures (Zheng et al., 2022; Abu-El-Haija et al., 2019; Zhu et al., 2020).

In the following, we will first explain how to configure ftopo(·) for heterophilous graphs, and then
explain why it ensures that pseudo-training will not damage the performance.

The key difference of heterophilous graph learning is that the nodes belonging to the same classes
are not likely to be connected, and GNNs should be designed to separately process the proximal
neighbors with similar information and distal neighbors with irrelevant information, or only aggregate
information from the proximal neighbors (Zheng et al., 2022; Abu-El-Haija et al., 2019; Zhu et al.,
2020).
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Accordingly, the first strategy to construct ftopo(·) is to follow the MixHop (Abu-El-Haija et al.,
2019) and let ftopo(·) encodes neighbors from different hops separately. Specifically, a given
computation ego-subgraph (the input to ftopo(·)) will be divided into different hops. For each hop,
ftopo(·) generates a separate embedding. Finally, the embeddings of different hops are concatenated
(summation should not be used to ensure different hops are separately processed) as the final TE
(Equation 4 in the paper).

The second strategy follows H2GCN (Zhu et al., 2020) to only aggregate higher-order neighbors,
because H2GCN (Zhu et al., 2020) theoretically justifies that two-hop neighbors tend to be proximal
to the center node, if the the one-hop neighbors have labels that are conditionally independent of
the center node’s label. In other words, for designing ftopo(·), the one-hop neighbors can be simply
ignored when doing neighborhood aggregation.

In other words, via constructing ftopo(·) to be suitable for heterophilous graphs, the neighborhood
aggregation is still conducted on the proximal nodes, and so is the pseudo-training. In this way, the
pseudo-training will not damage but still benefit the performance.

Incorporating heterophilous graphs into continual learning on expanding graphs is promising and
interesting. In our future works, we will construct continual learning tasks on heterophilous graphs
and implement suitable models as introduced above.

B ADDITIONAL EXPERIMENTAL RESULTS & SETUPS

In this section, we provide additional information on the datasets, experimental settings, and experi-
mental results.

B.1 VISUALIZATION OF NODE EMBEDDINGS WITH A TASK SEQUENCE

To interpret the learning process of PDGNNs-TEM, we visualize the node embeddings of different
classes with t-SNE (Van der Maaten & Hinton, 2008) while learning on a task sequence of 20 tasks
over the Reddit dataset. In Figure 5, besides PDGNNs-TEM that replay data with topological infor-
mation, we also show two other representative baselines, including ER-GNN for demonstrating how
would the lack of topological information influence the performance, and Fine-tune for demonstrating
the results without any continual learning technique. As shown in Figure 5, PDGNNs-TEM can
ensure that the nodes from different classes are well separated while continuously learning new
tasks sequentially (each color corresponds to a class). In contrast, for ER-GNN and Fine-tune, the
boundaries of different classes are less clear, especially when more tasks are learnt.

B.2 ADDITIONAL RESULTS OF STUDIES ON THE BUFFER SIZE

In this subsection, we show the performance of PDGNNs-TEM with different buffer sizes on the
other 3 datasets in Figure 9 and 10. We observe similar patterns in these results, i.e., the performance
(both average accuracy and average forgetting) increases when the buffer size (in terms of the ratio of
data) increases. Specifically, on OGB-Products dataset, which is the largest dataset with millions of
nodes, the PDGNNs-TEM can achieve reasonably well performance with a buffer size of only 0.01 to
the size of the dataset, which further demonstrates the effectiveness and efficiency of PDGNNs-TEM.

In Table 2 of the paper, we have the following findings: (1) our coverage maximization sampling does
guarantee a superior coverage ratio compared to the other sampling strategies, especially when the
buffer size is relatively small; (2) the performance does exhibit strong correlation with the coverage
ratio, especially when the buffer size is small. For different buffer sizes, a higher coverage ratio can
yield better performance. The performance gap between different sampling strategies is larger with
smaller buffer sizes, which is also the situation when the coverage ratio gap is larger. In this case
(buffer size smaller than 1.0%), the number of stored TEs is relatively small compared to the size of
the dataset, therefore the effectiveness of pseudo training on more nodes is more prominent. With
larger buffer sizes, all sampling strategies can cover a large ratio of nodes and the performance gaps
close up. In real world applications, a smaller buffer size is typically adopted, therefore the high
memory efficiency of coverage maximization sampling would be preferred.
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Figure 5: Visualization of node embeddings of different classes on Reddit dataset. The node
representations are taken after learning 1, 10, and 20 tasks. From the top to the bottom, we show the
results of Fine-tune, ER-GNN, and PDGNNs-TEM. Each color corresponds to a class.

Table 5: Performance comparisons under class-IL on OGB-Arxiv dataset with different task splittings
(↑ higher means better).

C.L.T. 20 tasks 8 tasks 4 tasks 2 tasks
AA/% ↑ FM/%↑ AM/% ↑ FM /% ↑ AM/% ↑ FM /% ↑ AM/% ↑ FM /% ↑

Fine-tune 4.9±0.0 -89.7±0.4 10.5±0.1 -77.5±0.5 16.4±0.2 -63.9±0.6 26.4±0.3 -47.3±0.9
EWC 2017 8.5±1.0 -69.5±8.0 9.4±0.1 -73.7±1.1 15.7±0.3 -62.8±0.7 24.8±0.3 -47.5±0.6
MAS 2018 4.8±0.4 -72.2±4.1 10.3±0.2 -77.5±0.6 16.5±0.3 -64.0±0.5 26.3±0.6 -47.5±0.7
GEM 2017 4.9±0.0 -89.8±0.3 10.7±0.1 -81.5±0.3 18.2±0.2 -70.6±0.5 31.3±0.1 -58.5±0.2
TWP 2021 6.7±1.5 -50.6±13.2 8.3±0.4 -66.1±1.3 14.0±0.4 -57.6±1.5 22.0±0.4 -47.6±0.5
LwF 2017 9.9±12.1 -43.6±11.9 24.2±0.4 -31.9±1.0 19.6±1.1 -41.8±1.7 19.6±0.7 -51.1±0.1

ER-GNN 2021 12.3±3.9 -79.9±4.1 10.9±0.2 -77.5±0.5 19.8±1.2 -59.9±1.3 31.6±0.6 -34.8±1.3

Joint 56.8±0.0 -8.6±0.0 55.3±0.0 -10.1±0.0 53.9±0.0 -9.1±0.1 51.6±0.1 -8.2±0.2

PDGNNs* 26.8±1.8 -61.6±2.0 27.9±1.8 -58.2±2.7 30.9±1.1 -51.2±1.6 35.9±1.4 -46.4±3.2
PDGNNs 53.2±0.4 -14.7±0.4 51.6±0.4 -15.0±0.7 50.6±0.4 -12.8±0.5 49.7±0.3 -11.4±0.5

The above analysis verifies our Theorem 2 and indicates higher coverage ratio would be beneficial to
the performance.

Besides, in Figure 6, based on the class-IL scenario, we study the performance of PDGNNs-TEM
on the OBG-Arxiv dataset when the buffer size (i.e., the ratio of dataset) varies from 0.0002 to 0.6.
Figure 6 exhibits the similar performance of different TE generation modules. Besides, when the
buffer size grows from 0.0002 to 0.01, both the average accuracy and average forgetting of PDGNNs
increase. When the buffer size reaches 0.1, the performance of PDGNNs is comparable to the setting
which stores the entire training set (when the ratio of dataset is 0.6). These results demonstrate the
efficiency of TEM. Moreover, the results in Figure 6 also show that the performance difference among
different TE generation strategies is not significant.
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Figure 6: Average accuracy (left) and average forgetting (right) vs. buffer size on OGB-Arxiv.
PDGNN1 to PDGNN3 instantiated π(v, w; Â) as the forms introduced in Section 3.4 of the paper.
PDGNN4 adopts the reservoir computing module proposed in (Gallicchio & Micheli, 2020)

Figure 7: Dynamics of average accuracy on CoraFull dataset with task sequence of length of 14
(left), and 5 (middle) in class-IL scenario. Dynamics of average accuracy on Reddit dataset with task
sequence of length of 8 (right) in class-IL scenario

Figure 8: Dynamics of average accuracy on OGB-Arxiv dataset with task sequence of length of 8
(left), 4 (middle), and 2 (right) in class-IL scenario.

22



Under review as a conference paper at ICLR 2024

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products

Full Subgraph 7,264M 35M 2,184,957M 5,341M
GEM 7,840M 86M 329M 82M

ER-GNN 61M 2M 12M 3M
SSM 732M 41M 193M 37M

PDGNNs-TEM 37M 2M 9M 2M

Table 6: Memory space consumption of different methods.

B.3 ADDITIONAL RESULTS OF COMPARISONS WITH THE STATE-OF-THE-ARTS

In this subsection, we provide additional results to compare PDGNNs-TEM with the baselines. In
Table 5, we provide numerical results to compare different models and complement the curves of
average accuracy provided in the paper. We list both the final average accuracy and average forgetting
of all models on the OGB-Arxiv dataset with different task splittings in class-IL scenario. Besides,
we also show the results of PDGNNs-TEM with an extremely small buffer size (i.e., 0.001 of the
size of the dataset), which is denoted with PDGNNs*. 0.001 of the size of OGB-Arxiv corresponds
to storing only 4 examples per class and a total of 160 for 40 different classes, which is orders
of magnitudes smaller than the buffer size of the memory based baselines with budgets of several
hundred per class. From Table 5, we can observe that both PDGNNs and PDGNNs* significantly
outperform the baselines. Even the PDGNNs* can outperform baselines by a large margin, which
demonstrates the high efficiency of TEM. Considering that OGB-Arxiv contains 169,343 nodes, the
performance of PDGNNs* is indeed impressive.

For clarification, we also provide analysis on why the joint training, the performance upper bound,
could be outperformed by PDGNNs-TEM. First, the reason Joint (joint training) is regarded as the
upper bound is because it learns all tasks simultaneously without the forgetting problem. However,
the forgetting problem is not the only factor determining the performance. Therefore, when the
forgetting problem is well addressed (like our proposed PDGNNs-TEM), the influence of other
factors would emerge. Specifically,

1. PDGNNs-TEM learn tasks sequentially, the learning starts from few classes and gradually learn
more new classes in the new tasks. In contrast, Joint learns all classes (tasks) simultaneously. These
two learning manners result in different optimization difficulties. For datasets whose task sequence
happen to contain easy-to-hard sub-sequences, learning the tasks sequentially is easier than learning
jointly. This phenomenon is also studied in existing works (Bhat et al., 2021). Therefore, when the
forgetting problem is well addressed and is not the dominating factor, PDGNNs may outperform joint
training when sequential learning is more suitable for the given dataset.

2. When learning a task in the task sequence, information of the previous tasks is provided to
PDGNNs through the stored TEs, which are representative data selected from the original data. While
for Joint, all of the original data are used, which may contain noisy data that are detrimental to the
performance in sometime. In other words, noise may be reduced by our proposed coverage max
sampling, and replaying the selected TEs is better than training with the complete original data.

Besides the results obtained on the longest task sequences shown in the paper, in this section, we also
show the results with different task splittings (with class-IL scenario) in Figure 7 and 8. Note that the
task sequence of length is equivalent to the number of tasks to learn (as shown in Table 8) for each
dataset.

B.4 COMPARISON ON THE SPACE COMPLEXITY

To concretely demonstrate the memory efficiency of the proposed PDGNNs-TEM, we a comparison
on the space usage of different memory based methods. The final memory consumption (measured
with number of float32 parameters) after learning each entire dataset are shown below. As a reference,
the memory of storing full computation ego-subgraph is also calculated.

From the table above, it is obvious that our proposed PDGNNs-TEM is indeed highly efficient in
terms of the memory space usage.
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#layers Fine-tune PDGNNs-TEM Joint

1 AA/% ↑ 4.9 ± 0.0 49.9 ± 0.0 48.2 ± 0.3
AF/% ↑ -89.9 ± 0.2 0.7 ± 0.5 -15.9 ± 0.5

2 AA/% ↑ 4.9 ± 0.0 53.2 ± 0.2 56.8 ± 0.0
AF/% ↑ -89.7 ± 0.4 -14.7 ±0.2 -8.6 ± 0.4

3 AA/% ↑ 4.8 ± 0.0 48.5 ± 0.6 31.1 ± 0.7
AF/% ↑ -75.3 ± 7.1 7.1 ± 0.2 -38.8± 7.9

4 AA/% ↑ 3.5 ± 0.9 38.7 ± 1.2 9.8 ± 1.2
AF/% ↑ -68.7 ± 4.7 -13.1 ± 0.9 -39.7 ± 0.4

5 AA/% ↑ 2.5 ± 0.0 2.5 ± 0.0 6.3 ± 0.7
AF/% ↑ -29.9 ±11.2 -29.1 ± 0.5 -29.1 ± 0.8

Table 7: Caption

Table 8: The detailed statistics of datasets and task splittings

Dataset CoraFull 2000 OGB-Arxiv 20202 Reddit 2017 OGB-Products 20203

# nodes 19,793 169,343 232,965 2,449,029

# edges 130,622 1,166,243 114,615,892 61,859,140

# classes 70 40 40 47

# tasks 35 / 14 / 5 / 2 20 / 8 / 5 / 2 20 / 8 / 5 / 2 23 / 10 / 5 / 3

Note: The memory space efficiency comparison can only be made among the memory-replay based
methods, since the other methods do not store observed data. But this is not a disadvantage of memory
replay based methods. Instead, thanks to the memory buffer, memory based methods are currently
the most effective continual learning techniques, which significantly outperform the other methods
without memory, as shown in Table 3 of the paper.

B.5 INVESTIGATION ON THE MODEL DEPTH

In this subsection, we demonstrate how the model performance changes with the model depth. The
experiments are conducted on OGB-Arxiv, and the model depth varies from 1 layer to 5 layers.

As shown in Table 7, the performance is good when the model is not very deep. When the depth
increases to 3-layer, all methods, exhibit performance decrease. In this stage, PDGNNs-TEM show
significant superiority over Joint. The potential reason is that Joint uses full historical data, and is more
prone to over-fitting. In contrast, PDGNNs-TEM selectively stores only selecting a subset of historical
data, therefore could alleviate over-fitting. When the depth further increases, the performance of all
methods keeps going down.

The influence of the model depth on the performance is actually determined by the design of the
backbone GNNs, which is off the scope of our work. In our experiments, we adopt the best performing
configuration with 2 layers.

B.6 DATASET DESCRIPTIONS

The statistics of the datasets are summarized in Table 8. Among these datasets, CoraFull and OGB-
Arxiv are two citation graphs, Reddit is a graph constructed from Reddit posts, and OGB-Products
is an Amazon product co-purchasing network. The usage of the datasets is granted for academic
purposes, and full details on the licenses can be obtained from the official websites. The datasets
contain no personally identifiable information or offensive content.

2
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

3
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
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B.6.1 CITATION NETWORKS

CoraFull (McCallum et al., 2000) is a citation network labeled based on the paper topics. In total,
it contains 19,793 nodes and 126,842 edges. The original dataset has 65,311 edges. We directly
adopted the version in DGL with reverse edges added and duplicates removed. It contains 70 classes,
and each node has a 8,710 dimensional feature vector.

The OGB-Arxiv dataset is collected in the Open Graph Benchmark (Hu et al., 2020) OGB. It is a
directed citation network between all Computer Science (CS) arXiv papers indexed by MAG (Wang
et al., 2020d). Totally it contains 169,343 nodes and 1,166,243 edges. The dataset contains 40 classes.

B.6.2 SOCIAL NETWORK

Reddit (Hamilton et al., 2017) is a graph dataset from Reddit posts made in the month of September,
2014. The node labels are the community, or “subreddit”, that the posts belong to. The authors
sampled 50 large communities and built a post-to-post graph, connecting posts if the same user
comments on both. In total this dataset contains 232,965 nodes with an average degree of 492,
114,615,892 edges, and a 602 dimensional feature vector for each node. We directly used the version
integrated in DGL library.

B.6.3 PRODUCT CO-PURCHASING NETWORK

OGB-Products is collected in the Open Graph Benchmark (Hu et al., 2020) 4, representing an Amazon
product co-purchasing network 5. It contains 2,449,029 nodes and 61,859,140 edges. Nodes represent
products sold on Amazon, and edges indicate that the connected products are purchased together. In
our experiments, we select 46 classes and omit the last class containing only 1 example.

B.7 ADDITIONAL DETAILS ON EXPERIMENT SETUP AND MODEL EVALUATION

Continual learning setting. In this part, we give concrete examples to further explain the difference
between class-IL and task-IL scenarios. In class-IL scenario, a model has to classify the given data by
picking a class from all previously learnt classes, while the task-IL scenario only require the model to
distinguish the classes within each task. Concretely, suppose the model learns on a citation network
with a two-class task sequence {(physics, chemistry), (biology, math)}. In class-IL scenario, after
training, the model is required to classify a given document into one of the four classes. In task-IL
scenario, the model is only required to classify a given document into to (physics, chemistry) or
(biology, math), while cannot distinguish between physics and biology or between chemistry and
math.

For each dataset, the splitting of different tasks is conducted by dividing the classes into groups
in the default order. Different group sizes are shown in Table 1 of the paper. For each task, the
ratio for training, validation, and testing is 60%, 20%, 20%. The validation set was only used in
baseline model selection, since the hyperparameters of our method are simply set to be consistent
with baselines (Section 4.2 in the paper). For all baselines and our method, the number of training
epochs is 200. The two large datasets Reddit and OGB-Products requrie mini-batch training, and the
batch size is chosen as 2,000.

Baselines and model settings. In this part, we give more details on the model configurations. The
following setting applies to all datasets. All the backbone GNNs of baselines are configured as 2-layer
with 256 hidden dimensions, which exhibit better performance than other configurations. To ensure a
fair comparison, we also set the MLP part of PDGNNs as 2-layer with 256 hidden dimensions (the
TE generation part does not contain trainable parameters) as shown in Table 9. The memory budget
(number of nodes per class selected to store) is set as 400 for PDGNNs-TEM for all datasets. For
the memory based baselines, the budget was chosen with two criteria: 1. The buffer size should be
large than the size for PDGNNs-TEM to ensure PDGNNs-TEM does not succeed by storing more
examples. 2. The budget should be large enough for the baseline methods to gain a reasonable

4https://ogb.stanford.edu/docs/nodeprop/ogbn-products
5http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 9: The configuration of the MLP part of PDGNNs.

No. layer Input dimensions Output dimensions Activation

1 # data dimensions 256 ReLU
2 256 # classes SoftMax

Table 10: Memory budget of different methods on different datasets.

CoraFull OGB-Arxiv Reddit OGB-Products

PDGNNs-TEM (allocated) 400 400 400 400
PDGNNs-TEM (actual consumption per class) 165 361 395 315

Baselines (allocated) 500 500 600 700
Baselines (actual consumption per class) 169 431 590 507

performance. The allocated budgets and the actual memory consumption 6 on different datasets are
listed in Table 10, which demonstrates that PDGNNs-TEM is actually highly efficient in using the
buffered data and outperforms the memory based baselines with less memory usage. The reason
that the allocated budgets are different from the actual memory consumption is that some classes are
smaller than the allocated budget. A brief introduction of the baseline continual learning techniques
are given below:

1. Fine-tune directly trains a given backbone GNN on the task sequence without any technique
to avoid forgetting, therefore can be viewed as a lower bound on the continual learning
performance.

2. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) adds a quadratic penalty
to prevent the model weights, which are important to prevent model parameters related to
previous tasks from shifting too much.

3. Memory Aware Synapses (MAS) (Aljundi et al., 2018) measures the importance of the
parameters according to the sensitivity of the predictions on the parameters and slows down
the update of the important parameters.

4. Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) stores representative
data in episodic memory and adds a constraint to prevent the loss of the episodic memory
from increasing and only allow it to decrease.

5. Topology-aware Weight Preserving (TWP) (Liu et al., 2021) adds a penalty on the model
weights to preserve the topological information of previous graphs.

6. Learning without Forgetting (LwF) (Li & Hoiem, 2017) uses knowledge distillation to
constrain the shift of parameters for old tasks.

7. Experience Replay GNN (ER-GNN) (Zhou & Cao, 2021) integrates memory-replay to
GNNs by storing experience nodes from previous tasks.

8. Sparsified Subgraph Memory (SSM) (Zhang et al., 2022d) stores the sparsified version of
the representative computation ego-subgraphs for memory replay.

9. Joint Training does not follow the continual learning setting and trains the model on all
tasks simultaneously. Therefore, Joint Training does not suffer from forgetting problems
and its performance can be viewed as the upper bound for continual learning.

A widely adopted performance upper bound on the continual learning models is joint training.
Different from being trained sequentially on a task sequence, a jointly trained model does follow the
continual learning setting but is simultaneously trained on all tasks. Therefore, jointly trained models
do not suffer from the forgetting problem and could be viewed as an upper bound on the continual
learning performance. Note that under the class-IL setting, the average accuracy of the jointly trained

6Since the sizes of different classes differ significantly, classes whose sizes are smaller than the budget do
not consume memory to the allocated budget.
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model will still decrease as the number of classes increases. The reason is that the classification
difficulty increases when the number of classes vary from small to large.

Model Evaluation.

Evaluating a model under continual learning setting is more complex than that under the standard
setting, which only requires a single numerical value (accuracy, F1 score, etc.). Specifically, after
learning each new task, the performance of a model on all previous tasks would change. Therefore,
the most thorough evaluation would be showing the performance on all previous tasks after learning
each new task. To this end, we denote the performance of a model trained consecutively on T tasks
with an accuracy matrix A ∈ RT×T , in which each entry Ai,j denotes the model’s accuracy on task
j after learning task i. Then each row Ai,: of A show the model’s accuracy on all previous tasks
after learning task i and each column A:,j shows how the model’s accuracy on task j changes when
being trained sequentially on all the tasks. Besides the accuracy matrix, to more concretely show the
dynamics of the overall performance, we also adopt the curve of average accuracy as a tool. To plot
this curve, we compute the average accuracy after learning each task, i.e.:

{∑i
j=1 Ai,j

i
|i = 1, ..., T

}
. (37)

Denoting the forgetting on task j after learning task i as Ai,j − Aj,j , the dynamics of the average
forgetting is similarly defined as:

{∑i
j=2 Ai,j −Ai,j−1

i− 1
|i = 1, ..., T

}
. (38)

When a single numerical value is preferred to evaluate the performance, the final average accuracy
and average forgetting after learning all T tasks could be used.

Class imbalance in continual learning on expanding graphs. According to Equation 39, the
performance on different tasks contributes equally to the average accuracy. However, unlike the
traditional continual learning with balanced datasets, the class imbalance problem is usually severe
in graphs, of which the effect will be entangled with the effect of forgetting. Directly balancing the
data by choosing equal number of nodes from each class may not be practical. For example, in the
OGB-Products dataset, the largest class has 668,950 nodes, while the smallest contains only 1 node.
Therefore, sampling equal amount of nodes from each class would result in either deleting many
classes without enough nodes or sampling a very small number of nodes from each class so that
all classes can provide the same amount of nodes. Moreover, deleting nodes in a graph would also
change the original topological structures of the remaining nodes, which is undesired.

To this end, we propose to re-scale the loss of nodes in each class according to the class sizes.
Denoting the set of the classes of our training data as C, the number of examples of each class in
C can be represented as {nc | c ∈ C}. Then, we calculate a scale for each class c to balance their
contribution in the loss function as syv

= nc∑
i∈C ni

, where yv,c = 1. Finally, our balanced loss is:

L =
∑
v∈Vτ

l(f(ev;θ),yv) · syv +
∑

ew∈T EM
l(f(ew;θ),yw) · syw . (39)

Since the evaluation treats all classes equally and the loss on each class is balanced, λ is omitted in
our implementation, as it will influence the balance of each class.

Class-incremental classifier. In standard classification tasks, the number of the output heads of a
model equals the number of classes and is fixed at the beginning. But in class-IL setting, the output
heads will continually increase along with the new classes. To better accommodate new classes,
cosine distance is adopted by several works (Wu et al., 2021; Wang et al., 2018; Gidaris & Komodakis,
2018) to slightly modify the standard softmax classifier. Empirically, PDGNNs with TEM outperform
the standard softmax classifier which simply increases the output heads with the number of classes.
All baselines are tested with both strategies and the one that achieves better performance over the
validation set is employed for comparison. Specifically, only LwF exhibits better performance with
the cosine distance based classifier.
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Figure 9: Average accuracy (Red circles) and average forgetting (Black crosses) changes with buffer
size on OGB-Products dataset (the left two) and Reddit dataset (the right two).

Figure 10: Average accuracy (Red circles) and average forgetting (Black crosses) changes with buffer
size on CoraFull dataset.

C ADDITIONAL DETAILS OF PARAMETER DECOUPLED GNNS WITH TEM

C.1 MEMORY UPDATE

As mentioned in Section 3.3 of the paper, in real-world applications, the data may come in batches
instead of being presented simultaneously. Therefore, the updating of T EM may need modification.
The key issue is to determine how to update T EM such that the newly sampled TEs can be
accommodated accordingly. We present two different approaches to handle this.

1. The most straightforward approach is to store the computation ego-subgraph size ssubv of
each ev and recalculate the multinomial distribution. Given the incoming new node set Vτ ,
the probability of sampling each node is recalculated as pv =

ssub
v∑

w∈Vτ
⋃

T EMi
ssub
w

. Then n

TEs are sampled to populate the T EM.

2. For efficiency, we can also adopt the reservoir sampling based strategy to update existing
TEs in T EM without recalculating the multinomial distribution. Specifically, given a
new node set Vτ , we first sample min{n, |Vτ |} nodes (TEs) S from Vτ with the coverage
maximization sampling. Next, we align all TEs in T EM and S in a sequence, i.e. the first
|T EM| elements are from T EM and the following elements are from S . Finally, for each
TE ev in S, suppose its order in the sequence is ov ∈ {|T EM|, |T EM|+ 1, ..., |T EM|+
|S|}, we generate a random integer r from uniform distribution on 1 to |T EM|+ ov}. If r
falls in the range from 1 to |T EM|, then the r-th TEs in T EM is replaced by ev , otherwise
ev is deleted. In this way, the nodes in T EM can be randomly updated with the newly
sampled TEs.

C.2 DIFFERENTIATION BETWEEN COVERAGE MAXIMIZATION SAMPLING AND SEVERAL
OTHER WORKS WITH SIMILAR NAMES

In this work, we propose the Coverage Maximization Sampling to maximize the number of nodes
covered by the computation ego-subgraphs of the selected TEs. Several other works that may be
confused with our proposed sampling method include the coverage maximization in ER-GNN (Zhou
& Cao, 2021) and the influence maximization works on social networks (Chen et al., 2009; Wang
et al., 2016).
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First, although the names are same, our coverage maximization is entirely different from the one of
ER-GNN. The one in ER-GNN follows the idea to maximally cover the node attribute/embedding
space. Specifically, given the attributes/embeddings of a set of nodes, they aim to maximize the
mutual distance among the selected subset of nodes to maximally cover the attribute/embedding space.
In contrast, our coverage maximization aims to select the TEs of the nodes with larger computation
ego-subgraphs, and does not consider the coverage in attribute/embedding space. Our design is based
on our theoretical finding of the pseudo-training effect (Section 3.5,3.6) and is specially beneficial for
continual learning.

Second, the influence maximization in (Chen et al., 2009; Wang et al., 2016) has a different target
compared to our proposed coverage maximization sampling. Our maximization coverage sampling
is based on our theoretical analysis on the pseudo-training effect. Specifically, we theoretically
demonstrate that retraining the TE of a node, to some extent, is equivalent to training with all nodes
in the computation ego-subgraph. Therefore, we aim to choose the nodes with larger computation
ego-subgraphs. However, in an influence maximization problem, the influence of a node can only be
disseminated to its neighbors with a specific propagation probability. Therefore, given the computation
ego-subgraph of a node v, the influence of v only spreads to part of the computation ego-subgraph,
which is inconsistent with the information propagation in GNNs, and does not faithfully reflect the
number of nodes benefiting from the pseudo-training effect. Above all, coverage maximization is a
natural choice given our theoretical analysis, while influence maximization serves for other purposes.

C.3 DETAILED DESCRIPTION OF THE WORKFLOW OF PDGNNS-TEM

Algorithm 2 Training of PDGNNs-TEM
Input: Training task sequence S = {G1, G2,...,GT }, function ftopo(·), fout(·;θ), sampling function

sampler(·, ·), memory budget n, loss function l(·, ·), neural network optimizer Optim(·, ·), number of epochs
M .

Output: Constructed memory buffer T EM, trained parameters θ.
1: Initialize T EM = {}.
2: for each G ∈ S do
3: for each epoch ∈ {1, ...,M} do
4: Calculate the TEs for nodes in node set Nτ of Gτ
5: {ev | ev = ftopo(Gsubv ), v ∈ Vτ}
6: Calculate final prediction of nodes in Nτ

7: {ŷv | ŷv = fout(ev;θ), v ∈ Vτ}
8: Calculate loss of the current task τ
9: Lτ =

∑
v∈Vτ

l(fout(ev;θ),yv)
10: Calculate the TEs for nodes in memory T EM
11: {ev | ev = ftopo(Gsubv ), v ∈ T EM}
12: Calculate final prediction of nodes in T EM
13: {ŷv | ŷv = fout(ev;θ), v ∈ Vτ}
14: Calculate the auxiliary loss for preventing forgetting
15: Laux =

∑
ew∈T EM l(fout(ew;θ),yw)

16: Calculate balancing parameter λ according to the class sizes in Nτ and T EM
17: Calculate the total loss
18: Ltotal = Lτ + λLaux

19: Calculating the gradients of the trainable parameters ∂Ltotal
∂θ

.
20: Update θ with the optimizer
21: θ = Optim(θ, ∂Ltotal

∂θ
)

22: end for each
23: Update the memory buffer
24: T EM = T EM

⋃
sampler({ev | v ∈ Vτ}, n)

25: end for each

In this subsection, we provide an algorithm to describe the working procedure of PDGNNs-TEM
step by step. The training process iterates over the tasks sequences containing T subgraphs.

During training, when learning on each task, function ftopo(·) will first generate the TE for each
node, which is subsequently fed into the output function fout(·;θ) to get the final prediction. After
obtaining the predictions, the loss Lτ is calculated based on the predictions and the ground-truth
labels. The same procedure is also conducted for data in the memory buffer T EM to get the loss
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Laux. Then a total loss is obtained by summing up Lτ and Laux with λ to balance the contribution
from classes with different sizes. After learning each task, the memory buffer will be updated with
new representative data selected by the sampling function sampler(·, ·).
During testing, only the inference stage is conducted. The given data will sequentially go through
function ftopo(·) and fout(·;θ) to get the final prediction.

Algorithm 3 Inference of PDGNNs-TEM
Input: Test task sequence S = {G1, G2,...,GT }, function ftopo(·), fout(·;θ).
Output: Constructed memory buffer T EM, trained parameters θ.

1: for each G ∈ S do
2: Calculate the TEs for nodes in node set Nτ of Gτ
3: {ev | ev = ftopo(Gsubv ), v ∈ Vτ}
4: Calculate final prediction of nodes in Nτ

5: {ŷv | ŷv = fout(ev;θ), v ∈ Vτ}
6: end for each

D REMAINING CHALLENGES AND FUTURE DIRECTIONS

Our proposed PDGNNs-TEM has successfully teckled the memory explosion problem in continual
learning on expanding graphs, and brought the performance to a new level especially under the
class-IL scenario. However, there are still remaining challenges in the field waiting to be overcome. A
prominent challenge is that most methods for continual learning on expanding graphs, including our
proposed PDGNNs-TEM, require clear task boundaries when learning on a sequence of tasks. But in
real-world applications, the distribution of the data may shift gradually without explicit boundaries.
In this case, for the regularization based methods (e.g. EWC, TWP), mechanisms are needed to
decide when to record the importance of the parameters. For memory replay based methods (e.g.
our proposed PDGNNs-TEM, SSM), how to ensure the data from different tasks are balanced in
the buffer becomes challenging. For the parameter-isolation based methods (e.g. HPNs), the model
would need to know when to allocate new parameters. Above all, significant opportunities for future
exploration and inquiry persist within the domain of continual learning on expanding graphs, which
will be investigated by our future works.

E BROADER IMPACT

In this paper, we proposed a general technique to enable GNNs which can fit into the PDGNNs
framework to continually learn on expanding networks. The method can be applied to any scenario
requiring generating node representations on networks. The results of this paper can have an
immediate and strong impact to address existing challenges for continual learning on expanding
graphs, enabling to achieve state-of-the-art performance, and thus positively impacting applications
on social networks, recommender systems, dynamic systems, etc.

Potential negative social impact may arise depending on the application scenario. For example, the
privacy issue should be carefully considered when dealing with data containing user information.
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