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ABSTRACT

We study the optimization of wide neural networks (NNs) via gradient flow (GF)
in setups that allow feature learning while admitting non-asymptotic global con-
vergence guarantees. First, for wide shallow NNs under the mean-field scaling
and with a general class of activation functions, we prove that when the input
dimension is no less than the size of the training set, the training loss converges to
zero at a linear rate under GF. Building upon this analysis, we study a model of
wide multi-layer NNs whose second-to-last layer is trained via GF, for which we
also prove a linear-rate convergence of the training loss to zero, but regardless of
the input dimension. We also show empirically that, unlike in the Neural Tangent
Kernel (NTK) regime, our multi-layer model exhibits feature learning and can
achieve better generalization performance than its NTK counterpart.

1 INTRODUCTION

The training of neural networks (NNs) is typically a non-convex optimization problem, but remarkably,
simple algorithms like gradient descent (GD) or its variants can usually succeed in finding solutions
with low training losses. To understand this phenomenon, a promising idea is to focus on NNs with
large widths (a.k.a. under over-parameterization), for which we can derive infinite-width limits under
suitable ways to scale the parameters by the widths. For example, under a “1/

√
width” scaling of

the weights, the GD dynamics of wide NNs can be approximated by the linearized dynamics around
initialization, and as the widths tend to infinity, we obtain the Neural Tangent Kernel (NTK) limit of
NNs, where the solution obtained by GD coincides with a kernel method [37]. Importantly, theoretical
guarantees for optimization and generalization can be obtained for wide NNs under this scaling
[19, 5]. Nonetheless, it was pointed out that this NTK analysis replies on a form of lazy training
that excludes the learning of features or representations [16, 72], which is a crucial ingredient to the
success of deep learning, and is therefore not adequate for explaining the success of NNs [27, 41].

Meanwhile, for shallow (i.e., one-hidden-layer) NNs, if we choose a “1 / width” scaling, we can
derive an alternative mean-field (MF) limit as the widths tend to infinity. Under this scaling, feature
learning occurs even in the infinite-width limit, and the training dynamics can be described by the
Wasserstein gradient flow of a probability measure on the space of the parameters, which converges
to a global minimizer of the loss function under certain conditions [59, 50, 63, 14]. Generalization
guarantees have also been proved for learning with shallow NNs under the MF scaling by identifying
a corresponding function space [6, 48]. However, currently there are three limitations to this model of
over-parameterized NNs. First, the global convergence guarantees for shallow NNs only hold in the
infinite-width limit (i.e. they are asymptotic). While [12] studies the deviation between finite-width
NNs and their infinite-width limits during training, the analysis is done only asymptotically to the
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next order in width. Second, a convergence rate has yet to be established except under special
assumptions or with modifications to the GD algorithm [13, 34, 43, 38]. Third, while several works
have proposed to extend the MF formulation to deep (i.e., multi-layer) NNs [4, 62, 52, 23, 57], there
is less concensus on what the right model should be than for the shallow case. In summary, we still
lack a model for the GD optimization of shallow and multi-layer NNs that goes beyond lazy training
while admitting fast global convergence.

In this work, we study the optimization of both shallow NNs under the MF scaling and a type of
partially-trained multi-layer NNs, and obtain theoretical guarantees of linear-rate global convergence.

1.1 SUMMARY OF MAIN CONTRIBUTIONS

We consider the scenario of training NN models to fit a training set of n data points in dimension d,
where the model parameters are optimized by gradient flow (GF, which is the continuous-time limit
of GD) with respect to the squared loss. Allowing most choices of the activation function, we prove
that:

1. For a shallow NN, if the hidden layer is sufficiently wide and the input data are linearly
independent (requiring n ≤ d), then with high probability, the training loss converges to
zero at a linear rate.

2. For a multi-layer NN where we only train the second-to-last layer, if the hidden layers are
both sufficiently wide, then with high probability, the training loss converges to zero at
a linear rate. Unlike for shallow NNs, here we no longer need the requirement on input
dimension, demonstrating a benefit of jointly having depth and width.

We also run numerical experiments to demonstrate that our model exhibits feature learning and can
achieve better generalization performance than its NTK counterpart.

1.2 RELATED WORKS

Over-parameterized NNs, NTK and lazy training. Many recent works have studied the opti-
mization landscape of NNs and the benefits of over-parameterization [24, 67, 60, 66, 64, 54, 65, 42,
3, 40, 76, 15, 75, 17, 39, 9, 32, 20, 31, 61, 10]. One influential idea is the Neural Tangent Kernel
(NTK) [37], which characterizes the behavior of GD on the infinite-width limit of NNs under a
particular scaling of the parameters (e.g. for shallow NNs, replacing 1/m with 1/

√
m in (1)). In

particular, when the network width is polynomially large in the size of the training set, the training
loss converges to a global minimum at a linear rate under GD [19, 5, 55]. Nonetheless, in the NTK
limit, due to a relatively large scaling of the parameters at initialization, the hidden-layer features do
not move significantly [37, 19, 16]. For this reason, the NTK scaling has been called the lazy-training
regime, as opposed to a feature-learning or rich regime [16, 72, 26]. Several works have investigated
the differences between the two regimes both in theory [28, 29, 69, 47] and in practice [27, 41].
In addition, several works have generalized the NTK analysis by considering higher-order Taylor
approximations of the GD dynamics or finite-width corrections to the NTK [2, 35, 7, 33].

Mean-field theory of NNs. An alternative path has been taken to study shallow NNs in the
mean-field scaling (as in (1)), where the infinite-width limit is analogous to the thermodynamic
or hydrodynamic limit of interacting particle systems [59, 50, 63, 14, 49, 70]. Thanks to the
interchangeability of the parameters, the neural network is equivalently characterized by a probability
measure on the space of its parameters, and the training can then be described by a Wasserstein
gradient flow followed by this probability measure, which, in the infinite-width limit, converges to
global mimima under mild conditions. Regarding convergence rate, ref. [71] proves that if we train
a shallow NN to fit a Lipschitz target function under population loss, the convergence rate cannot
beat the curse of dimensionality. In contrast, we will study the setting of empirical risk minimization,
where there are finitely many training data. Ref. [34] shows that mean field Langevin dynamics on
shallow NNs can converge exponentially to global minimizers in over-regularized scenarios, but we
focus on GF without entropic regularization. Besides the question of optimization, shallow NNs
under this scaling represent functions in the Barron space [48] or variation-norm function space [6],
which provide theoretical guarantees on generalization as well as fluctuation in training [12]. Several
works have proposed different mean-field limits of wide multi-layer NNs and proved convergence
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guarantees [4, 62, 51, 52, 23, 57, 22], but questions remain. First, due to the presence of different
symmetries in a multi-layer network compared to a shallow network [57], the limiting object at the
infinite-width limit is often quite complicated. Second, it has been pointed out that under the MF
scaling of a multi-layer network, an i.i.d. initialization of the weights would lead to a collapse of
the diversity of neurons in the middle layers, diminishing the effect of having large widths [23]. In
addition, while another line of work develops MF models of residual models [8, 46, 21, 36], we are
interested in multi-layer NN models with a large width in every layer.

Feature learning in deep NNs. Ref. [1] demonstrates the importance of hierarchical learning by
proving the existence of concept classes that can be learned efficiently by a deep NN with quadratic
activations but not by non-hierarchical models. Ref. [11] studies the optimization landscape and
generalization properties of a hierarchical model that is similar to ours in spirit, where an untrained
embedding of the input is passed into a trainable shallow model, and prove an improvement in sample
complexity in learning polynomials by having neural network outputs as the embedding. However,
the trainable models they consider are not shallow NNs but their linearized and quadratic-Taylor
approximations, and furthermore the convergence rate of the training is not known. Ref. [73] proposes
a novel parameterization under which there exists an infinite-width limit of deep NNs that exhibits
feature learning, but properties of its training dynamics is not well-understood. Our multi-layer NN
models adopt an equivalent scaling (see Appendix C), and our focus is on proving non-asymptotic
convergence guarantees for its partial training under GF.

2 PROBLEM SETUP

2.1 MODEL

We summarize our notations in Appendix A. Let Ω ⊆ Rd denote the input space, and let x =
[x1, ..., xd]

⊺ ∈ Ω denote a generic input data vector. A shallow NN model under the MF scaling can
be written as:

f(x) =
1

m

m∑
i=1

ciσ
( 1√

d

d∑
j=1

Wijxj

)
, (1)

where m is the width, W ∈ Rm×d and c = [c1, ..., cm] ∈ Rm are the first- and second-layer weight
parameters of the model, and σ : R→ R is the activation function. For simplicity of presentation, we
neglect the bias terms. In this paper, we study a more general type of models with the following form:

f(x) =
1

m

m∑
i=1

ciσ
(
hi(x)

)
, (2)

∀i ∈ [m] : hi(x) =
1√
D

D∑
j=1

Wijϕj(x) , (3)

where W ∈ Rm×D and c = [c1, ..., cm] ∈ Rm are parameters of the model, and ϕ1, ..., ϕD are a set
of functions from Ω to R that we call the embedding. Each of h1, ..., hm is a function from Ω to R,
and we will refer to them as the (hidden-layer) feature map or activations. For simplicity, we write
Φ(x) = [ϕi(x), ...ϕD(x)]

⊺ ∈ RD. We consider two types of the embedding, Φ, as described below:

Fixed embedding D is fixed and Φ is deterministic. In the simplest example, we set D = d and
ϕj(x) = xj , ∀j ∈ [D], and recover the shallow NN model in (1). More generally, our definition
includes cases where Φ is a deterministic transformation of an input vector in Ω into an embedding
vector in RD. This can be understood as input pre-processing or feature engineering.

High-dimensional random embedding D is large and Φ is random. For instance, we can sample
each zj i.i.d. in Rd and set ϕj(x) = σ

(
1√
d
z⊺
j x
)

, equivalent to setting ϕ1, ..., ϕm as the hidden-layer
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activations of a shallow NN with randomly-initialized first-layer weights. Then, the model becomes

f(x) =
1

m

m∑
i=1

ciσ
(
hi(x)

)
, (4)

∀i ∈ [m] : hi(x) =
1√
D

D∑
j=1

Wijσ
( 1√

d
z⊺
j x
)
. (5)

Thus, we obtain a 3-layer feed-forward NN whose first-layer weights are random and fixed, and
we call it a partially-trained 3-layer (P-3L) NN. Note that the scaling in this model is different
from both the NTK scaling (1/

√
m instead of 1/m in (4)) and the MF scaling for multi-layer NNs

adopted in [4, 62, 51, 57, 23] (1/D instead of 1/
√
D in (5)). We show in Appendix B that when σ is

homogeneous, this scaling is consistent with the Xavier initialization of neural network parameters
up to a reparameterization [30, 56]. We also show in Appendix C that in certain cases this scaling is
equivalent to the maximum-update parameterization proposed in [73]. Numerical experiments that
compare different scalings are described in Section 4.

2.2 TRAINING WITH GRADIENT FLOW

Consider the scenario of supervised least-squares regression, where we are given a set of n training
data points together with their target values, (x1, y1), ..., (xn, yn) ∈ Ω× R. We fit our models by
minimizing the empirical squared loss:

L[f ] = 1

2

n∑
a=1

(
f(xa)− ya

)2
. (6)

To do so, we first initialize the parameters randomly by sampling each ci and Wij i.i.d. from
probability measures πc ∈ P(R) and πw ∈ P(RD), respectively, and then perform GD on W . For
simplicity of analysis, we leave c untrained, and further assume that
Assumption 1. πc =

1
2δĉ(dc) +

1
2δ−ĉ(dc) for some ĉ > 0 independent from m, which is the law of

a scaled Rademacher random variable.

If σ is Lipschitz, it is differentiable almost everywhere, and we write σ′(x) to denote the derivative
of σ when it is differentiable at x and 0 otherwise. When σ is differentiable at hi(x), there is

∂f

∂Wij
(x) =

1

m
√
D
ciσ

′(hi(x))ϕj(x) , (7)

and the gradient of the loss function with respect to Wij is given by

∂L[f ]
∂Wij

=
1

m
√
D
ci

n∑
a=1

(f(xa)− ya)σ
′(hi(xa))ϕj(xa) . (8)

Thus, we can perform GD updates on W according to the following rule: ∀i ∈ [m] and ∀j ∈ [D],

Wij ← Wij −mδ
∂L[f ]
∂Wij

= Wij −
δ√
D
ci

n∑
a=1

(f(xa)− ya)σ
′(hi(xa))ϕj(xa) , (9)

where δ > 0 is the step size. As we discuss in Appendix B, this is consistent with the standard GD
update rule for Xavier-initialzed NNs. In the limit of infinitesimal step size (δ → 0), the evolution of
the parameters during training is described by the GF equation: if we use the superscript t ≥ 0 to
denote time elaposed during training, the time-derivative of the parameters is given by

Ẇ t
ij = −

ci√
D

n∑
a=1

(
f t(xa)− ya

)
σ′(hti(xa))ϕj(xa) , (10)

where f t denotes the output function and ht1, ..., h
t
m denote the hidden-layer feature maps determined

by the parameters at time t. Then, induced by the evolution of W t, each hti evolves according to

∀x ∈ Ω : ḣti(x) =
1√
D

D∑
j=1

Ẇ t
ijϕj(x) = −ci

n∑
a=1

G(x,xa)
(
f t(xa)− ya

)
σ′(hti(xa)) , (11)
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where we define a kernel function G : Ω× Ω→ R as

G(x,x′) =
1

D

D∑
j=1

ϕj(x)ϕj(x
′) =

1

D
(Φ(x))⊺Φ(x′) . (12)

Accordingly, the output function f t satisfies

∀x ∈ Ω : ḟ t(x) =
1

m

m∑
i=1

ciσ
′(hti(x))ḣti(x)

=− ĉ2

m

m∑
i=1

σ′(hti(x)) n∑
a=1

G(x,xa)
(
f t(xa)− ya

)
σ′(hti(xa)) , (13)

Thus, the loss function Lt := L[f t] evolves according to

L̇t =
n∑
a=1

(
f t(xa)− ya

)
ḟ t(xa)

=− ĉ2

m

m∑
i=1

n∑
a,b=1

Gab

(
f t(xa)− ya

) (
f t(xb)− yb

)
σ′(hi(xa))σ′(hi(xb))

≤− ĉ2λmin(G)

m

m∑
i=1

n∑
a=1

(
f t(xa)− ya

)2 (
σ′(hi(xa)))2 ,

(14)

where we define the (symmetric) Gram matrix G ∈ Rn×n with entries Gab = Gba = G(xa,xb),
and use λmin(G) to denote its least eigenvalue. We will also use Gmin = mina∈[n] Gaa and
Gmax = maxa∈[n] Gaa to denote the minimum and maximum diagonal entries of G, respectively.
Since G is positive semi-definite, we see that L̇t ≤ 0, which means that the loss value is indeed
non-increasing along the GF trajectory.

Feature learning Compared to the NTK scaling of neural networks, the crucial difference is the
1/m factor in (2), instead of 1/

√
m. It is known that under the NTK scaling, due to the 1/

√
m

factor, the movement of the feature maps, h1, ..., hm, is only of order O(1/
√
m) while the function

value changes by an amount of order Ω(1). While this greatly simplifies the convergence analysis,
it also implies that the hidden-layer representations are not being learned. In contrast, with the
1/m factor in (2), if σ is Lipschitz with Lipschitz constant Lσ, there is |f t2(x) − f t1(x)| ≤
Lσ ĉ
m

∑m
i=1 |ht2i (x)− ht1i (x)|, ∀t1, t2 ≥ 0. Therefore, regardless of m and D,

1

m

m∑
i=1

|ht1i (x)− ht2i (x)| ≥ (ĉ)−1(Lσ)
−1|f t1(x)− f t2(x)| , (15)

which implies that the average movement of the feature maps is on the same order as the change in
function value, and thus the hidden-layer representations as well as the NTK undergoes nontrivial
movement during training. In Appendix C, we further justify the occurrence of feature learning using
the framework developed in [73].

3 CONVERGENCE ANALYSIS

3.1 MODELS WITH A FIXED EMBEDDING

To prove that the training loss converges to zero, we need a lower bound on the absolute value of
L̇t. Indeed, if G is positive definite, which depends on Φ and the training data, we can establish one
in the following way. First, as a simple case, if we use an activation function whose derivative’s
absolute value is uniformly bounded from below by a constant Kσ′ > 0, such as linear, cubic or
(smoothed) Leaky ReLU activations, we can derive a Polyak-Lojasiewicz (PL) condition [58, 45]
from (14) directly,

L̇t ≤− 2ĉ2λmin(G) (Kσ′)
2 Lt , (16)
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which implies Lt ≤ L0e
−2ĉ2λmin(G)(Kσ′ )2t, indicating that the training loss decays to 0 at a linear

rate.

For more general choices of the activation function, a challenge is to guarantee that, heuristically
speaking, for each a ∈ [n], σ′(hi(xa)) does not become near zero for too many i ∈ [m] before the
loss vanishes. To facilitate a finer-grained analysis, we need the following mild assumption on σ:
Assumption 2. σ is Lipschitz with Lipschitz constant Lσ, and there exists an open interval I =
(Il, Ir) ⊆ R on which σ is differentiable and |σ′| is lower-bounded by some Kσ′ > 0.

Intuitively, I is an active region of σ, within which the derivative has a magnitude bounded away
from zero. This assumption is satisfied by the majority of activation functions in practice, including
smooth ones such as tanh and sigmoid as well as non-smooth ones such as ReLU. Then, under the
following initialization scheme, we prove a general result for models with a fixed embedding.
Assumption 3. πw is the D-dimensional standard Gaussian distribution, i.e., each Wij is sampled
independently from a standard Gaussian distribution.
Theorem 1 (Fixed embedding). Suppose that Assumptions 1, 2 and 3 are satisfied, and λmin(G) > 0.
Then ∃ĉ0, r and C > 0 such that ∀δ > 0, if ĉ ≥ ĉ0λmax(G)/λmin(G) and m ≥ C(1+ ĉ2) log (n/δ),
then with probability at least 1− δ, it holds that ∀t ≥ 0,

Lt ≤ L0e
−rĉ2λmin(G)t . (17)

Here, ĉ0, r and C depend on I,Gmin, Gmax, ∥y∥, Lσ and Kσ′ (but not on m, n, d, D, δ, or λmin(G)).

The result is proved in Appendix E, and below we briefly describe the intuition. A key to the proof is
to guarantee that enough neurons remain in the active region throughout training. Specifically, with
respect to each training data point (i.e. for each a ∈ [n]), we can keep track of the proportion of
neurons (among all i ∈ [m]) for which hti(xa) ∈ I . We show that if the proportion is large enough
at initialization (shown by Lemma 3 in Appendix E.2 under Assumption 3), then it cannot drop
dramatically without a simultaneous decrease of the loss value, as long as the ci’s are not too small in
absolute value. This property of the dynamics is formalized in the following lemma:
Lemma 1. Consider the dynamics ofLt and

{
hti(xa)

}
i∈[m],a∈[n]

governed by (11) and (14). Assume
that λmin(G) > 0, and ∀i ∈ [m], |ci| = ĉ > 0. Under Assumption 2, define

ηt = min
a∈[n]

{
1

m

m∑
i=1

1ht
i(xa)∈I

}
,∀t ≥ 0 and η̃0 = min

a∈[n]

{
1

m

m∑
i=1

1
h0
i (xa)∈(

2Il+Ir
3 ,

Il+2Ir
3 )

}
(18)

Then ∀t ≥ 0, there is(
ηt
) 3

2 ≥
(
η̃0
) 3

2 − κ
(
λmin (G) , λmax (G)

)(
(L0)

1
2 − (Lt) 1

2

)
/ĉ , (19)

where κ(λ1, λ2) =
9λ2(Ir−Il)
2λ1Kσ′

.

3.1.1 EXAMPLE: SHALLOW NEURAL NETWORKS WHEN n ≤ d

In the case of shallow NNs under the MF scaling, G = G(0) ∈ Rn×n, where

G
(0)
ab :=

1

d
(xa)

⊺xb (20)

Thus, G(0) is positive definite if and only the training data set
{
x1, ...,xn} ⊆ Rd consists of linearly-

independent vectors, which is possible (and expected if the training data are sampled independently
from some non-degenerate distribution) when n ≤ d. In that case, Theorem 1 implies
Corollary 1 (Shallow NN with n ≤ d). Suppose that Assumptions 1, 2 and 3 are satisfied. If the
training data are linearly-independent vectors, then under GF (10) on the first-layer weights of the
shallow NN, the training loss converges to zero at a linear rate.

While the assumption that n ≤ d is restrictive, we note that existing convergence rate guarantees
for the GD-type training of shallow NNs in the MF scaling need strong additional assumptions [38],
modifications to the GD algorithm [34, 13, 53], or restrictions to certain special tasks [43].
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3.2 MODELS WITH A HIGH-DIMENSIONAL RANDOM EMBEDDING

A clear limitation of Corollary 1 is that it is only applicable when n ≤ d, since otherwise the Gram
matrix G(0) cannot be positive definite. This motivates us to consider the use of a high-dimensional
embedding Φ to lift the effective input dimension. In particular, we focus on the scenario where D is
large and Φ is random. While the Gram matrix G in this case is also random, we only need that it
concentrates around a deterministic and positive definite limit as D tends to infinity:
Condition 1 (Concentration of G around a positive definite matrix). There exists a (determinis-
tic) positive definite matrix Ḡ ∈ Rn×n with least eigenvalue λmin(Ḡ) > 0 such that ∀δ, u > 0,
∃Dmin(δ, u) > 0 such that if D ≥ Dmin(δ, u), then P(∥G− Ḡ∥2 > u) < δ.

Condition 1 is sufficient for us to apply Lemma 1 and obtain the following global convergence
guarantee, which extends Theorem 1 to models with a high-dimensional random embedding. The
proof is given in Appendix F.
Theorem 2 (High-dimensional random embedding). Under Assumptions 1, 2, 3 and Condition 1,
∃ĉ0, r and C > 0 such that ∀δ > 0, if ĉ ≥ ĉ0λmax(Ḡ)/λmin(Ḡ), m ≥ C(1 + ĉ2) log (n/δ) and
D ≥ Dmin(

1
2δ,

1
2λmin(Ḡ)), then with probability at least 1− δ, it holds that ∀t ≥ 0,

Lt ≤ L0e
−rĉ2λmin(G)t . (21)

Here, ĉ0, r and C depend on I, Ḡmin, Ḡmax, ∥y∥, Lσ and Kσ′ (but not m, n, d, D, δ, or λmin(Ḡ)).

3.2.1 EXAMPLE: PARTIALLY-TRAINED THREE-LAYER NEURAL NETWORKS (P-3L NNS)

Consider the P-3L NN model defined in (4). In this case, the Gram matrix is G(1), defined by

G
(1)
ab =

1

D

D∑
j=1

σ
( 1√

d
z⊺
j xa

)
σ
( 1√

d
z⊺
j xb

)
(22)

If z1, ...,zm are sampled i.i.d. from a probability measure πz on Rd and fixed during training, then
the limiting Gram matrix, denoted by Ḡ(1) ∈ Rn×n, is given by

Ḡ
(1)
ab = Ez∼πz

[
σ
( 1√

d
z⊺xa

)
σ
( 1√

d
z⊺xb

)]
(23)

Thus, for the convergence result, the assumption we need on the limiting Gram matrix is
Assumption 4. πz is sub-Gaussian and the matrix Ḡ(1), which depends on the choice of σ and the
training set, is positive definite with λmin

(
Ḡ(1)

)
> 0 and (Ḡ(1))max <∞.

This assumption also plays an important role in the NTK analysis, and it is satisfied if, for example,
πz is the d-dimensional standard Gaussian distribution, no two data points are parallel, and σ is either
the ReLU function [19] or analytic and not a polynomial [18]. When Assumption 4 is satisfied, as
long as σ is Lipschitz, we can use standard concentration techniques to verify Condition 1. Thus,
Theorem 2 implies that
Theorem 3 (P-3L NN). Under Assumptions 1, 2, 3 and 4, ∃ĉ0, r, C1 and C2 > 0 such that ∀δ > 0, if
ĉ ≥ ĉ0λmax(Ḡ

(1))/λmin(Ḡ
(1)), m ≥ C1(1 + ĉ2) log (n/δ) and D ≥ C2n

2 log(n/δ)/λmin(Ḡ
(1))2,

then with probability at least 1− δ, it holds that ∀t ≥ 0,

Lt ≤ L0e
−rĉ2λmin(Ḡ

(1))t . (24)

Here, ĉ0, r, C1 and C2 depend on I, Ḡ
(1)
min, Ḡ

(1)
max, ∥y∥,Kσ′ as well as the sub-Gaussian norm of µz

(but not on m, n, d, D, δ or λmin(Ḡ
(1))).

The proof is given in Appendix G. Compared to Corollary 1 for shallow NNs, a highlight of Theorem 3
is that the requirement of n ≤ d is no longer needed. This demonstrates an advantage of the high-
dimensional random embedding realized by the first hidden layer in the P-3L NN, thus illustrating a
benefit of having both depth and width in NNs from the viewpoint of optimization. Compared to the
NTK result [18], our analysis assumes the same level of over-parameterization, but crucially allows
feature training to occur, which we discuss in Section 2.2 and support empirically in Section 4.3.

Furthermore, by using a multi-layer NN with random and fixed weights as the high-dimensional
random embedding, we extend the P-3L NN to a partially-trained L-layer NN model in Appendix H,
for which similar convergence results can be proved for training its second-to-last layer via GF.
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Table 1: Three different scalings of the partially-trained 3L NN model considered in Experiment 3.

Model Ours NTK MF [4, 52, 62, 23]
f(x) 1

m

∑m
i=1 ciσ

(
hi(x)

)
1√
m

∑m
i=1 ciσ

(
hi(x)

)
1
m

∑m
i=1 ciσ

(
hi(x)

)
hi(x)

1√
m

∑m
j=1 Wijσ(

1√
d
z⊺
jx)

1√
m

∑m
j=1 Wijσ(

1√
d
z⊺
jx)

1
m

∑m
j=1 Wijσ(

1√
d
z⊺
jx)

W k+1
ij W k

ij −mδ ∂Lk

∂Wk
ij

W k
ij − δ ∂Lk

∂Wk
ij

W k
ij −m2δ ∂Lk

∂Wk
ij

4 NUMERICAL EXPERIMENTS

Additional results and details of the experiments are provided in Appendix I.

4.1 EXPERIMENT 1: CONVERGENCE OF TRAINING WHEN FITTING RANDOM DATA

We train shallow NNs to fit a randomly labeled data set {(x1, y1), ..., (xn, yn)} with d = 20.
Specifically, we sample each xa i.i.d. with every entry sampled independently from a standard
Gaussian distribution, and each ya i.i.d. uniformly on [− 1

2 ,
1
2 ] and independently from the xa’s. We

see from Figure 1 that the convergence happens at a nearly linear rate when n = 20 and 40, and the
rate decreases as n becomes larger. This is coherent with our theoretical result (Corollary 1), and
interestingly also echoes a prior result that the convergence rate of optimizing a shallow NN using
population loss can suffer from the curse of dimensionality [71], which implies a worsening of the
convergence rate as the number of data points increases.

4.2 EXPERIMENT 2: BENEFIT OF INPUT EMBEDDING

We consider a model defined by (2) and (3) with d = 30 and Φ(x) = vec(xx⊺) ∈ Rd2 , which we
call a shallow NN augmented with quadratic embedding. We compare this model against a plain
shallow NN (without the extra embedding), both with m = 8192, to fit a series of training sets with
various sizes where the target y is given by another shallow NN augmented with quadratic embedding
with m = 5. We see from Figure 2 that the augmented shallow NN achieves lower test error given
the same number of training samples, demonstrating the benefit of a good embedding.

4.3 EXPERIMENT 3: FEATURE LEARNING V.S. LAZY TRAINING

We consider the P-3L NN model defined in (4) and (5) with D = m (i.e. both hidden layers having
the same width), and compare it with 3-layer NN models under NTK and MF scalings, as we define
in Table 1 based on prior literature [37, 4, 52, 62, 23], which undergo partial training in the same
fashion. We adopt the data set used in [69] (more details in Appendix I.3), and train the models by
minimizing the unregularized squared loss for varying n’s and m’s.

First, we see from the top-left plot in Figure 4 that, consistently across different m, the training loss
converges at a linear rate for the model under our scaling, which is coherent with Theorem 3. Second,
we see from the second row that feature learning occurs in the model under our scaling but negligibly
in the model under the NTK scaling, as expected [16]. Note also that under the MF scaling, the
feature maps h1(x), ..., hm(x) concentrate near 0 at initialization due to the small scaling, but gains
diversity during training. Third, we see from Figure 3 that our model yields the smallest test errors
out of all three, and in addition, as n grows the test error decreases faster under the MF scaling than
under the NTK scaling, both indicating an advantage of feature learning compared to lazy training.

5 CONCLUSIONS AND LIMITATIONS

We consider a general type of models that includes shallow and partially-trained multi-layer NNs,
which exhibits feature learning when trained via GF, and prove non-asymptotic global convergence
guarantees that accommodates a general class of activation functions. For a randomly-initialized
shallow NN in the MF scaling that is wide enough, we prove that by performing GF on the input-layer
weights, the training loss converges to zero at a linear rate if the number of training data does not
exceed the input dimension. For a randomly-initialized multi-layer NN with large widths, we prove
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Figure 4: Results of Experiment 3 when n = 600. Each column corresponds to a different scaling
of the P-3L NN model, as described in Table 1. Row 1: Evolution of training loss (solid curve)
and test error (dashed curve) during training. Row 2: Distribution of the hidden-layer feature map
(pre-activation) associated with two particular input data points. Each dot represents a different i,
(i.e., neuron in the second hidden layer,) and the x- and y-coordinates equal hi(x1) and hi(x2),
respectively, where x1 is an input from the training set and x2 is an input from the test set.

that by performing GF on the weights in the second-to-last layer, the same result holds except there is
no requirement on the input dimension. We also perform numerical experiments to demonstrate the
advantage of feature learning in our partially-trained multi-layer NNs relative to their counterparts
under the NTK scaling.

Our work focuses on the optimization rather than the approximation or generalization properties of
NNs, which are also crucial to understand. In addition, as our current theoretical results on global
convergence neglect the bias terms and assume that the last-layer weights are untrained, a more
general version is left for future work.
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F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252,
2019.
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A ADDITIONAL NOTATIONS

• For a positive integer n, we let [n] denote the set {1, ..., n}.
• We use i, j (as subscripts) to index the neurons in the hidden layers, a, b (as subscripts or

superscripts) to index different training data points, t (as a superscript) to denote the training
time / time parameter in gradient flow.

• We write
∑
a for 1

n

∑n
a=1.

• We use bold letters (e.g. x, z, c, y) to denote vectors.

• We use W and {Wij}i∈[m],j∈[D] interchangeably to refer to the same set of parameters.

B CONSISTENCY OF THE SCALING AND GD UPDATE RULE WITH XAVIER
INITIALIZATION

Consider a three-layer network defined by

f(x) =

m∑
i=1

θ
(3)
i σ

(
hi(x)

)
(25)

∀i ∈ [m] : hi(x) =

m∑
j=1

θ
(2)
ij σ

( 1√
d

d∑
k=1

θ
(1)
jk xk

)
(26)

with weight parameters
{
θ
(1)
jk

}
j,k∈[m]

,
{
θ
(2)
ij

}
i,j∈[m]

and
{
θ
(3)
i

}
i∈[m]

are initialized according to

Xavier initialization, which means that we sample each θ
(1)
jk i.i.d. from N (0, 1

m+d ), each θ
(2)
ij i.i.d.

from N (0, 1
2m ), and each θ

(3)
i i.i.d. from N (0, 1

m+1 ). If m≫ d, both N (0, 1
m+d ) and N (0, 1

m+1 )

can be approximated by N (0, 1
m ). Then, up to this approximation, by redefining ci =

√
mθ

(3)
i ,

Wij =
√
mθ

(2)
ij and zjk =

√
mθ

(1)
jk , we can write

f(x) =
1√
m

m∑
i=1

ciσ
(
hi(x)

)
, (27)

∀i ∈ [m] : hi(x) =
1√
m

D∑
j=1

Wijσ
( 1√

md
z⊺
j x
)
, (28)

and note that ci,Wij and zjk are all initialized i.i.d. of order O(1). In addition, if σ is homogeneous,
this is then equivalent to (4) and (5) when D = m.

Moreover, there is ∂f
∂Wij

(x) = 1√
m

∂f

∂θ
(2)
ij

(x). Then, since performing GD on θ
(2)
ij with step size δ

means updating θ
(2)
ij according to

θ
(2)
ij ← θ

(2)
ij − δ

∂L[f ]
∂θ

(2)
ij

, (29)

this is equivalent to updating Wij according to

Wij ←
√
m
(
θ
(2)
ij − δ

∂L[f ]
∂θ

(2)
ij

)
=Wij −mδ

∂L[f ]
∂Wij

(x) ,

(30)

which justifies the m factor on the right-hand-side of (9).
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C RELATIONSHIP TO THE MAXIMUM-UPDATE PARAMETERIZATION AND
FEATURE LEARNING

Consider the partially-trained L-layer NN model defined in Section H in the case where D = m≫ d.
In the framework of abc-parameterization introduced in [73], our model corresponds to setting

a1 = 0, a2 = ... =aL =
1

2
, aL+1 = 1

bl =0, ∀l ∈ [L+ 1]

Furthermore, as we explain in Appendix B, the appropriate learning rate scales linearly with m (as in
(9)), which corresponds to having

c = −1 (31)

Meanwhile, the maximum-update (µP) parameterization [73] is characterized by setting

a1 = −1

2
, a2 = ... =aL = 0, aL+1 =

1

2
(32)

bl =
1

2
, ∀l ∈ [L+ 1] (33)

c =0 (34)

Recall the symmetry of abc-parameterization derived in [73], which states that one gets a different
but equivalent abc-parameterization by setting

al ← al + θ, bl ← bl − θ, c← c− 2θ (35)

Since our parameterization can be obtained from the maximum-update parameterization by applying
the transformation above with θ = 1

2 , they are equivalent in the function space. In particular, for our
parameterization, the r parameter defined in [73] can be computed as

r =min{bL+1, aL+1 + c}+ aL+1 + c+ min
l=1,...,L

{2al − 1l ̸=1}

=min{0, 1 + (−1)}+ 1 + (−1) + min{2 · 0− 0, 2 · 1
2
− 1}

=0

(36)

Hence, according to [73], our parameterization exhibits feature learning.

D PROOF OF LEMMA 1

Since we assume that G is positive definite and |ci| = ĉ > 0, ∀i ∈ [m], we can derive from (14) that

L̇t =− ĉ2

m

m∑
i=1

n∑
a,b=1

(
f t(xa)− ya

) (
f t(xb)− yb

)
σ′(hti(xa))σ′(hti(xa))Gab

≤− ĉ2λmin

(
G
) 1
m

m∑
i=1

n∑
a=1

(
f t(xa)− ya

)2 (
σ′(hi(xa)))2

=− ĉ2λmin

(
G
) n∑
a=1

(
f t(xa)− ya

)2 1

m

m∑
i=1

(
σ′(hi(xa)))2

≤− ĉ2λmin(G)

n∑
a=1

(
f t(xa)− ya

)2 1

m

m∑
i=1

1ht
i(xa)∈I (Kσ′)

2

≤− ĉ2λmin(G) (Kσ′)
2

n∑
a=1

(
f t(xa)− ya

)2
min
b∈[n]

{
1

m

m∑
i=1

1ht
i(xb)∈I

}

≤− 2ĉ2λmin(G) (Kσ′)
2Lt min

a∈[n]

{
1

m

m∑
i=1

1ht
i(xa)∈I

}

(37)
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Since I is an open interval, ∃ξ > 0 such that we can find a subinterval I0 ⊆ I such that the distance
between I0 and the boundaries of I (if I is bounded on either side) is no less than ξ, i.e.,

inf
u∈I0,u′∈R\I

|u− u′| ≥ ξ (38)

In particular, we can choose ξ = 1
3 (Ir − Il) and I0 = (Il + ξ, Ir − ξ). Then there is

1ht
i(xa)∈I ≥1h0

i (xa)∈I0 , ht
i(xa)∈I

≥1h0
i (xa)∈I0 , |ht

i(xa)−h0
i (xa)|<ξ

≥1h0
i (xa)∈I0 − 1|ht

i(xa)−h0
i (xa)|≥ξ

(39)

and so

min
a∈[n]

{
1

m

m∑
i=1

1ht
i(xa)∈I

}
≥ min
a∈[n]

{
1

m

m∑
i=1

1h0
i (xa)∈I0

}
− max
a∈[n]

{
1

m

m∑
i=1

1|ht
i(xa)−h0

i (xa)|≥ξ

}
(40)

Thus, we have

L̇t ≤ −2ĉ2λmin(G) (Kσ′)
2 Lt

(
min
a∈[n]

{
1

m

m∑
i=1

1h0
i (xa)∈I0

}
− max
a∈[n]

{
1

m

m∑
i=1

1|ht
i(xa)−h0

i (xa)|≥ξ

})
(41)

Meanwhile, since

ḣti(xa) = −ci
n∑
b=1

(
f t(xb)− yb

)
σ′(hti(xb))Gab , (42)

there is

1

m

m∑
i=1

∣∣∣ḣti(xa)∣∣∣ ≤ĉ 1m
m∑
i=1

∣∣∣∣∣
n∑
b=1

(
f t(xb)− yb

)
σ′(hti(xb))Gab

∣∣∣∣∣
≤ĉ

 1

m

m∑
i=1

∣∣∣∣∣
n∑
b=1

(
f t(xb)− yb

)
σ′(hti(xb))Gab

∣∣∣∣∣
2
 1

2

≤ĉ
(

1

m

m∑
i=1

n∑
b=1

∣∣(f t(xb)− yb
)
σ′(hti(xb))Gab

∣∣2) 1
2

≤ĉλmax(G)

(
1

m

m∑
i=1

n∑
b=1

(
f t(xb)− yb

)2 (
σ′(hti(xb)))2

) 1
2

≤ĉλmax(G)


∣∣∣L̇t∣∣∣

(ĉ)2λmin (G)


1
2

≤λmax(G) (λmin (G))
− 1

2

∣∣∣L̇t∣∣∣ 12

(43)

Therefore,

1

m

m∑
i=1

∣∣hti(xa)− h0
i (xa)

∣∣ ≤∫ t

0

1

m

m∑
i=1

∣∣∣ḣsi (xa)∣∣∣ ds
≤λmax(G) (λmin (G))

− 1
2

∫ t

0

∣∣∣L̇s∣∣∣ 12 ds (44)

Since ∀ξ ∈ R, there is

ξ · 1|ht
i(xa)−h0

i (xa)|≥ξ ≤
∣∣hti(xa)− h0

i (xa)
∣∣ , (45)
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we derive that, ∀a ∈ [n],

1

m

m∑
i=1

1|ht
i(xa)−h0

i (xa)|≥ξ ≤ξ−1 1

m

m∑
i=1

∣∣hti(xa)− h0
i (xa)

∣∣
≤C1

∫ t

0

∣∣∣L̇s∣∣∣ 12 ds , (46)

where we set C1 = λmax(G) (λmin (G))
− 1

2 ξ−1 > 0 for simplicity. As a consequence,

max
a∈[n]

{
1

m

m∑
i=1

1|ht
i(xa)−h0

i (xa)|≥ξ

}
≤ C1

∫ t

0

∣∣∣L̇s∣∣∣ 12 ds (47)

Define

η̃t = min
a∈[n]

{
1

m

m∑
i=1

1h0
i (xa)∈I0

}
− C1

∫ t

0

∣∣∣L̇s∣∣∣ 12 ds (48)

Note that at t = 0, there is η̃t = mina∈[n]

{
1
m

∑m
i=1 1h0

i (xa)∈I0

}
. Then, on one hand, we know

from (40) and (47) that ∀t ≥ 0,

ηt ≥ min
a∈[n]

{
1

m

m∑
i=1

1h0
i (xa)∈I0

}
− max
a∈[n]

{
1

m

m∑
i=1

1|ht
i(xa)−h0

i (xa)|≥ξ

}
≥ η̃t , (49)

Hence, (41) implies that

L̇t ≤− 2ĉ2λmin(G) (Kσ′)
2 Ltηt

≤− 2ĉ2λmin(G) (Kσ′)
2 Ltη̃t

(50)

On the other hand, by the definition of η̃t,

˙̃ηt =− C1

∣∣∣L̇t∣∣∣ 12
≥− C1

∣∣∣L̇t∣∣∣ · ∣∣∣L̇t∣∣∣− 1
2

≥C1L̇t
(
2ĉ2λmin(G) (Kσ′)

2 Ltη̃t
)− 1

2

≥C2(ĉ)
−1L̇t

(
Lt
)− 1

2
(
η̃t
)− 1

2 ,

(51)

where we set C2 = 2−
1
2C1 (λmin(G))

− 1
2 (Kσ′)−1 = λmax(G)√

2ξKσ′λmin(G)
≤ nGmax√

2ξKσ′λmin(G)
for simplic-

ity. Therefore, when ηt > 0,

d

dt

(
2

3

(
η̃t
) 3

2

)
=
(
η̃t
) 1

2 ˙̃ηt ≥ C2(ĉ)
−1L̇t

(
Lt
)− 1

2 ≥ C2(ĉ)
−1 d

dt

(
2Lt
) 1

2 , (52)

which implies that

2

3

(
η̃t
) 3

2 − 2

3

(
η̃0
) 3

2 ≥ C2(ĉ)
−1
((

2Lt
) 1

2 −
(
2L0

) 1
2

)
≥ −C2(ĉ)

−1
(
2L0

) 1
2 (53)

and so ∀t ≥ 0,
2

3

(
ηt
) 3

2 ≥ 2

3

(
η̃t
) 3

2 ≥ 2

3

(
η̃0
) 3

2 − C2(ĉ)
−1
(
2L0

) 1
2 (54)

E PROOF OF THEOREM 1

To apply Lemma 1, we need two additional lemmas, which we will prove in Appendix E.1 and
E.2. The first one guarantees that the loss value at initialization, L0, is upper-bounded with high
probability:
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Lemma 2. ∀δ > 0, if m ≥ Ω
(
ĉ2 log

(
nδ−1

)
Gmax/∥y∥2

)
, then with probability at least 1−δ, there

is
L0 ≤ ∥y∥2 (55)

The second one proves that η̃0 is lower-bounded with high probability, which heuristically says that
there is indeed a nontrivial proportion of neurons in the central part of the active region of σ, for
every a ∈ [n]:

Lemma 3. ∀δ > 0, if m ≥ log(nδ−1)

2(K(I,Gmin,Gmax))
2 , then with probability at least 1− δ, there is

η0 > K(I,Gmin, Gmax) , (56)

where K(I, λ1, λ2) =
1

6
√
2πλ2

(Ir − Il) exp
{
−max{|Il|,|Ir|}

(λ1)2

}
is a positive number that depends on

I , λ1 and λ2.

With these two lemmas, we deduce that ∀δ > 0, if m ≥ Ω
(
(1 + ĉ2/∥y∥2) log

(
nδ−1

))
, then with

probability at least δ, there is ∀t ≥ 0,

2

3

(
ηt
) 3

2 ≥ 2

3
(K(I,Gmin, Gmax))

3
2 −
√
2C2(ĉ)

−1∥y∥ , (57)

where K(I,Gmin, Gmax) is defined as in Lemma 3. Therefore, if our choice of ĉ satisfies

ĉ ≥ 3
√
2C2∥y∥

(K(I,Gmin, Gmax))
3
2

, (58)

then there is ∀t ≥ 0,
ηt ≥ 2−

2
3K(I,Gmin, Gmax) > 0 , (59)

in which case (50) gives

L̇t ≤ −2 1
3 ĉ2λmin(G) (Kσ′)

2 LtK(I,Gmin, Gmax) , (60)

which will allow us to finally conclude that

Lt ≤ L0 exp
{
−2 1

3λmin(G) (Kσ′)
2
K(I,Gmin, Gmax)ĉ

2t
}

(61)

Note that (60) establishes a PL condition. Several other convergence analyses of NNs have also relied
on variants of the PL condition [25, 44, 74].

E.1 PROOF OF LEMMA 2

Proof. Since at initialization,
{
ci
}
i∈[m]

and
{
W 0
ij

}
i∈[m],j∈[D]

are both sampled i.i.d. and
{
ci
}
i∈[m]

has mean zero, we know that ∀a ∈ [n], f0(xa) =
1
m

∑m
i=1 ciσ

(
hti(xa)

)
is the sample mean of i.i.d.

random variables with zero-mean. Moreover, since
{
W 0
ij

}
i∈[m],j∈[D]

is sampled from N (0, 1), we

know that ∀i ∈ [m], the random variable ciσ
(
hti(xa)

)
is sub-Gaussian [68], with sub-Gaussian norm

∥ciσ
(
hti(xa)

)
∥ψ2
≤ĉ∥σ

(
hti(xa)

)
∥ψ2

≤ĉLσ(Gaa)
1
2MSG

≤ĉLσ(Gmax)
1
2MSG ,

(62)

where MSG > 0 is some absolute constant. Thus, by Hoeffding’s inequality [68], ∀a ∈ [n], ∀r > 0,

P
(∣∣f0(xa)

∣∣ ≥ u
)
=P

(∣∣∣∣∣ 1m
m∑
i=1

ciσ
(
hti(xa)

)∣∣∣∣∣ ≥ u

)

≤2 exp
{
− Ku2m

∥ciσ
(
hti(xa)

)
∥2ψ2

}

≤2 exp
{
− Ku2m

ĉ2(Lσ)2Gmax(MSG)2

}
,

(63)
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where K is some absolute constant. Hence, by union bound,

P

(
n∑
a=1

∣∣f0(xa)
∣∣2 ≥ ∥y∥2) ≤ n∑

a=1

P
(∣∣f0(xa)

∣∣ ≥ ∥y∥)
≤2n exp

{
− K∥y∥2m
ĉ2(Lσ)2Gmax(MSG)2

} (64)

Thus, ∀δ > 0, if

m ≥ ĉ2(Lσ)
2GmaxK

−1(MSG)
2∥y∥−2 log

(
2n

δ

)
(65)

then with probability at least 1− δ, there is

L0 =
1

2

n∑
a=1

∣∣f0(xa)− ya
∣∣2

≤1

2

n∑
a=1

∣∣f0(xa)
∣∣2 + 1

2
∥y∥2

≤∥y∥2

(66)

E.2 PROOF OF LEMMA 3

Since each W 0
ij are sampled i.i.d. from N (0, 1), we know that ∀a ∈ [n], independently for each

i ∈ [m], h0
i (xa) follows a Gaussian distribution with mean 0 and variance Gaa. Therefore,

m∑
i=1

1h0
i (x

a)/∈I0 ∼ Binomial (m, 1− π (I0;Gaa)) , (67)

Hence, by Hoeffding’s inequality, ∀a ∈ [n], ∀r > 0,

P

(
1

m

m∑
i=1

1h0
i (xa)/∈I0 ≥ 1− π(I0;Gaa) + r

)
≤ exp

{
−2mr2

}
(68)

∀a ∈ [n], choosing r = 1
2π (I0;Gaa), we then get

P

(
1

m

m∑
i=1

1h0
i (xa)∈I0 ≤

1

2
π (I0;Gaa)

)
=P

(
1

m

m∑
i=1

1h0
i (xa)/∈I0 ≥ 1− 1

2
π (I0;Gaa)

)

≤ exp

{
−1

2
m (π (I0;Gaa))

2

}
≤ exp

{
−1

2
m

(
min
b∈[n]

{π (I0;Gbb)}
)2
} (69)

and so by union bound

P
(
η̃0 ≤ 1

2
min
b∈[n]

{π (I0;Gbb)}
)

=P

(
min
a∈[n]

{
1

m

m∑
i=1

1h0
i (xa)∈I0

}
<

1

2
min
b∈[n]

{π (I0;Gbb)}
)

≤
n∑
a=1

P

(
1

m

m∑
i=1

1h0
i (xa)∈I0 <

1

2
min
b∈[n]

{π (I0;Gbb)}
)

≤
n∑
a=1

P

(
1

m

m∑
i=1

1h0
i (xa)∈I0 <

1

2
π (I0;Gaa)

)

≤n exp

{
−1

2
m

(
min
b∈[n]

{π (I0;Gbb)}
)2
}

(70)
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Since ∀b ∈ [n], there is Gmin ≤ Gbb ≤ Gmax,

π (I0;Gbb) =
1√

2πGbb

∫ Ir−ξ

Il+ξ

e
− u2

Gbb du

≥ 1√
2πGbb

(Ir − Il − 2ξ) inf
Il+ξ≤u≤Ir−ξ

exp

{
− u2

Gbb

}
≥ 1√

2πGmax

(Ir − Il − 2ξ) exp

{
−max{|Il|, |Ir|}

(Gmin)2

}
≥ 1

3
√
2πGmax

(Ir − Il) exp

{
−max{|Il|, |Ir|}

(Gmin)2

}
(71)

Letting K(I, λ1, λ2) =
1

6
√
2πλ2

(Ir − Il) exp
{
−max{|Il|,|Ir|}

(λ1)2

}
> 0, we can then write

P
(
η̃0 ≤ K(I,Gmin, Gmax)

)
≤P
(
η̃0 ≤

1

2
min
b∈[n]

{π (I0;Gbb)}
)

≤n exp
{
−2m (K(I,Gmin, Gmax))

2
} (72)

Thus, ∀δ > 0, if m ≥ log(nδ−1)

2(K(I,Gmin,Gmax))
2 , then with probability at least 1 − δ, it holds that

η̃0 > K(I,Gmin, Gmax) > 0.

F PROOF OF THEOREM 2

By Condition 1, we know that ∀δ > 0, if D ≥ Dmin(
1
2δ,

1
2λmin(Ḡ)), then with probability at

least 1 − 1
2δ, there is ∥G − Ḡ∥2 ≤ 1

2λmin(Ḡ), and hence λmin(G) ≥ 1
2λmin(Ḡ), Gmin ≥ 1

2 Ḡmin,
λmax(G) ≤ λmax(Ḡ) + 1

2λmin(Ḡ) ≤ 2λmax(Ḡ), and Gmax ≤ 2Ḡmax. We then perform the
following analysis conditioned on the event that ∥G− Ḡ∥2 ≤ 1

2λmin(Ḡ).

Since the sampling of
{
ci
}
i∈[m]

and
{
W 0
ij

}
i∈[m],j∈[D]

is independent from the realization of G,

we know from Lemma 3 that if m ≥ log(4nδ−1)

2(K(I, 12λmin(Ḡ),2λmax(Ḡ)))
2 ≥ log(4nδ−1)

2(K(I,Gmin,Gmax))
2 , then with

probability at least 1− 1
4δ, there is

η̃0 > K(I,Gmin, Gmax) ≥ K(I,
1

2
Ḡmin, 2Ḡmax) (73)

From Lemma 2, we also know that if m ≥ Ω
(
ĉ2 log

(
nδ−1

)
λmax(Ḡ)/∥y∥2

)
≥

Ω
(
ĉ2 log

(
nδ−1

)
λmax(G)/∥y∥2

)
, then with probability at least 1− 1

4δ, there is L0 ≤ ∥y∥2. There-
fore, in total, we know that with probability at least 1− δ, the following conditions all hold:

∥G− Ḡ∥2 ≤
1

2
λmin(Ḡ) , (74)

η̃0 ≥K(I,
1

2
Ḡmin, 2Ḡmax) , (75)

L0 ≤∥y∥2 , (76)

in which case, by applying Lemma 1 with G = G(1), we get(
ηt
) 3

2 ≥
(
η̃0
) 3

2 −K1(λmin (G) , λmax (G))(ĉ)−1
((
L0
) 1

2 −
(
Lt
) 1

2

)
, (77)

where K1(λ1, λ2) =
9
2λ

−1
1 λ2K

−1
σ′ (Ir − Il) > 0. Thus, by the definition of K1(·, ·), we know that

K1(λmin (G) , λmax (G)) ≤ 4K1(λmin

(
Ḡ
)
, λmax

(
Ḡ
)
) , (78)

and so ∀t ≥ 0,(
ηt
) 3

2 ≥
(
η̃0
) 3

2 − 4K1(λmin

(
Ḡ
)
, λmax

(
Ḡ
)
)(ĉ)−1

((
L0
) 1

2 −
(
Lt
) 1

2

)
≥
(
K(I,

1

2
Ḡmin, 2Ḡmax)

) 3
2 − 4K1(λmin

(
Ḡ
)
, λmax

(
Ḡ
)
)(ĉ)−1∥y∥

(79)
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Therefore, if our choice of ĉ satisfies

ĉ ≥ 8K1(λmin

(
Ḡ
)
, λmax

(
Ḡ
)
)∥y∥(

K(I, 1
2 Ḡmin, 2Ḡmax)

) 3
2

(80)

then there is ∀t ≥ 0,

ηt ≥ 2−
2
3K(I,

1

2
Ḡmin, 2Ḡmax) (81)

Hence, (50) implies that ∀t ≥ 0,

L̇t ≤− 2ĉ2λmin(G)(Kσ′)2Lt2− 2
3K(I,

1

2
Ḡmin, 2Ḡmax)

≤− 2−
2
3 ĉ2λmin(Ḡ)(Kσ′)2LtK(I,

1

2
Ḡmin, 2Ḡmax)

(82)

and therefore

Lt ≤ L0 exp

{
−2− 2

3 ĉ2λmin(Ḡ)(Kσ′)2K(I,
1

2
Ḡmin, 2Ḡmax)

}
(83)

G PROOF OF THEOREM 3

In view of Theorem 2, it is sufficient to verify that Condition 1 holds for Dmin(δ, u) =
Ω
(
n2u−2 log(nδ−1)

)
, which is given by the following lemma:

Lemma 4. ∀δ ≥ 0, if D ≥ Ω
(
n2u−2 log(nδ−1)

)
, then with probability at least 1− δ,

∥G(1) − Ḡ(1)∥2 ≤ u (84)

G.1 PROOF OF LEMMA 4

Let Z be a random vector on Rd with law given by πz , and then we can write Ḡ
(1)
ab =

E [σ(x⊺
aZ)σ(x⊺

bZ)] for a, b ∈ [n]. By assumption, Z is sub-gaussian with sub-gaussian norm

∥Z∥ψ2 := sup
x∈Sd−1

∥x⊺Z∥ψ2 <∞ (85)

Thus, ∀a ∈ [n], we have

∥σ(x⊺
aZ)∥ψ2

≤ Lσ∥x⊺Z∥ψ2
≤ Lσ∥Z∥ψ2

(86)

Hence, by Lemma 2.7.7 in [68], we know that ∀a, b ∈ [n], σ(x⊺
aZ)σ(x⊺

bZ) is a sub-exponential
random variable with sub-exponential norm

∥σ(x⊺
aZ)σ(x⊺

bZ)∥ψ1 ≤ ∥σ(x⊺
aZ)∥ψ2∥σ(x⊺

bZ)∥ψ2 ≤ (Lσ)
2∥Z∥2ψ2

(87)

Then, by Bernstein’s inequality (Theorem 2.8.1 in [68]), since each zj is sampled i.i.d. from πz , we
have that ∀a, b ∈ [n] and ∀u > 0,

P
(∣∣∣G(1)

ab − Ḡ
(1)
ab

∣∣∣ ≥ u
)
=P

∣∣∣∣∣∣ 1D
D∑
j=1

σ(x⊺
az
j)σ(x⊺

b z
j)− E [σ(x⊺

aZ)σ(x⊺
bZ)]

∣∣∣∣∣∣ ≥ u


≤2 exp

{
−Kmin

{
u2D

∥σ(x⊺
aZ)σ(x⊺

bZ)∥2ψ1

,
uD

∥σ(x⊺
aZ)σ(x⊺

bZ)∥ψ1

}}

≤2 exp
{
−Kmin

{
u2D

(Lσ)4∥Z∥4ψ2

,
uD

(Lσ)2∥Z∥2ψ2

}}
,

(88)

where K > 0 is some absolute constant. In other words, for any δ′ > 0, if

D ≥ max

{
(Lσ)

4∥Z∥4ψ2
log(2(δ′)−1)

u2K
,
(Lσ)

2∥Z∥2ψ2
log(2(δ′)−1)

uK

}
, (89)
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then we have
∣∣∣G(1)

ab − Ḡ
(1)
ab

∣∣∣ ≥ u with probability at least 1− δ. If we choose u = u′

n and δ′ = δ
n2 ,

then we get, if

D ≥ max

{
n2(Lσ)

4∥Z∥4ψ2
log(2n2δ−1)

K(u′)2
,
n(Lσ)

2∥Z∥2ψ2
log(2n2δ−1)

Ku′

}
, (90)

then

P
(
∥G(1) − Ḡ(1)∥2F ≥ (u′)

2
)
≤

n∑
a,b=1

P
(∣∣∣G(1)

ab − Ḡ
(1)
ab

∣∣∣ ≥ u′

n

)
≤n2 δ

n2

≤δ

(91)

Hence, with probability at least 1− δ, we have

∥G(1) − Ḡ(1)∥22 ≤ ∥G(1) − Ḡ(1)∥2F ≤ (u′)
2
, (92)

H GENERALIZATION TO DEEPER MODELS

By setting Φ to be the activations of the second-to-last hidden-layer of a multi-layer NN, we can
obtain generalizations of the P-3L NN to deeper architectures. For example, in the feed-forward case,
we can obtain the following partially-trained L-layer NN:

f(x) =
1

m

m∑
i=1

ciσ
(
h
(L−1)
i (x)

)
,

∀i ∈ [m] : h
(L−1)
i (x) =

1√
D

D∑
j=1

Wijσ
(
h
(L−2)
j (x)

)
,

∀l ∈ [L− 3],∀i ∈ [D] : h
(l+1)
i (x) =

1√
D

D∑
j=1

W̄
(l)
ij σ

(
h
(l)
j (x)

)
,

∀j ∈ [D] : h
(1)
j (x) =

1√
d
z⊺
j x ,

where W̄ (1), ..., W̄ (L−3) ∈ RD×D and z1, ...,zD ∈ Rd are sampled randomly and fixed. This model
can be written in the form of (4) and (5) with ϕj(x) = σ

(
h
(L−2)
j (x)

)
. The corresponding Gram

matrix is recursively defined and also appears in the NTK analysis [18]. In particular, the results
in [18] imply that if σ is analytic and not a polynomial, then Condition 1 holds, and hence similar
global convergence results can be obtained as corollaries of Theorem 2.

I FURTHER DETAILS OF THE NUMERICAL EXPERIMENTS

In our models,
{
ci
}
i∈[m]

is sampled i.i.d. from the Rademacher distribution µc = 1
2δ1 + 1

2δ−1,{
zj
}
j∈[D]

is sampled i.i.d. from N (0, Id), and
{
Wij

}
i∈[m],j∈[D]

is initialized by sampling i.i.d.
fromN (0, 1). In the model under NTK scaling, we additionally symmetrize the model at initialization
according to the strategy used in [16] to ensure that the function value at initialization does not blow
up when the width is large. We choose to train the models using 50000 steps of (full-batch) GD with
step size δ = 1. When the test error is computed, we use a test set of size 500 generated by sampling
i.i.d. from the same distribution as the training set.

The experiments are run with NVIDIA GPUs (1080ti and Titan RTX).
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Figure 5: Training loss v.s. number of GD steps for different n in Experiment 1 with m = 4096.

I.1 EXPERIMENT 1

We choose σ to be tanh. For each choice of n, we run the experiment with 5 different random
seeds, and Figure 1 plots the evolution of the training loss during GD averaged over the 5 runs with
m = 8192.

Figure 5 is the same as Figure 1 except for having m = 4096. We see that the two two plots agree
well.

I.2 EXPERIMENT 2

We choose σ to be ReLU. For each choice of n and each of the two models, we experiment with 5
different random seeds, and Figure 2 plots the test error at the 50000 GD step averaged over the 5
runs ± its standard deviation.

In Figure 6, we plot the evolution of the training loss and test error during GD for the two different
models, with m = 2048 or 8192 and different choices of n, averaged over 5 runs with different
random seeds. We see in particular that the difference between the two choices of m is negligible,
suggesting that it is unlikely to obtain performance improvements with further over-parameterization.

I.3 EXPERIMENT 3

We choose σ to be ReLU and input dimension d = 50. We use a training set of size n = 600 for the
results reported in Figure 4. The data set is inspired by [69]: We sample both the training and the test
set i.i.d. from the distribution (x, y) ∼ D on Rd+1, under which the joint distribution of (x1, x2, y)
is

P(x1 = 1, x2 = 0, y = 1) =
1

4
(93)

P(x1 = −1, x2 = 0, y = 1) =
1

4
(94)

P(x1 = 0, x2 = 1, y = −1) =1

4
(95)

P(x1 = 0, x2 = −1, y = −1) =1

4
(96)

(97)

and x3, ..., xd each follow the uniform distribution in [−1, 1], independently from each other as well
as x1, x2 and y.

Figures 7 and 8 are the same as Figure 4 except for having n = 400 and 800, respectively. We see
that as n increases, test error improves for all three models, while our P-3L NN model remains the
one achieving the lowest test error.
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Figure 6: Test error v.s. GD steps in Experiment 2 for the two models and difference choices of n.
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Figure 7: Same as Figure 4 except for setting n = 400.
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Figure 8: Same as Figure 4 except for setting n = 800.
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