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ABSTRACT

Automated Machine Learning with ensembling seeks to automatically build ensem-
bles of Deep Neural Networks (DNNs) to achieve qualitative predictions. AutoML
and Ensemble of Deep Neural Network produce qualitative results but they are
computing intensive methods in both building and inference run time. Therefore,
an ideal method would produce at one AutoML run time different ensembles
regarding the desired trade-off between accuracy and inference speed. Despite
multiple initiatives for non-deep machine learning have been proposed there still
no consensus on how to construct efficiently ensemble of deep neural networks.
First, we evaluate the performance and robustness of multiple procedures. Then, an
ensemble selection method SMBOF is proposed to generate efficient ensembles by
controlling their computing cost. Finally, we propose an AutoML workflow using
SMBOF that we compare to several baselines. It shows robust results leveraging
multiple modern GPUs on two datasets but is not limited to.

1 INTRODUCTION

Deep Neural networks (DNNs) are notoriously difficult to tune, train, and ensemble to achieve
qualitative results. Automatic machine learning with ensembling or “AutoML+ensembling” provides
a simple interface to train and evaluate many ensembles of DNNs to achieve high accuracy by
reducing overfitting.

Nowadays, multiple researchers and practitioners have well understood the benefit of homogeneous
ensembles of DNNs to reduce overfitting Sollich & Krogh (1995). Then, authors Liao & Moody
(1999) Gashler et al. (2008) propose heterogeneous ensembles to not only reduce variance but attempt
to cancel out their different biases too at the cost of a more complex procedure. For example, in
cyber-attack detection Haider et al. (2020), time series classification Pathak et al. (2018), medical
image analysis Cea et al. (2021), semi-supervision Sun & Ge (2021) and unbalanced text classification
Sun et al. (2020). Further, several winners and top performers on challenges routinely use ensembles
to improve accuracy Guyon et al. (2019). However, ensembles of DNNs suffer from three main
limitations to be widely deployed in research and industrial applications.

The first limitation is a lack of understanding about the best way to build base DNNs to construct an
ensemble. Multiple AutoML workflows Feurer et al. (2015) Thornton et al. (2012) LeDell & Poirier
(2020) Chen et al. (2018) have been invented aiming at vector classification or vector regression
to build base models and ensemble them to reduce overfitting. They never have been generalized
at scale on deep learning and yet they are models the most affected by overfitting due to a large
number of parameters. It is reasonable to think HPO algorithms can generate DNNs but the choice
of which algorithm to create the best library to then combined needs to be studied experimentally.
We distinguish also multiple ensembling procedures. Post-hoc ensembling where ensembles are
built from a library of previously trained DNNs by HPO with a combinatorial optimizer, and ad-hoc
ensembling where hyperparameters encode directly the ensemble’s hyperparameters. The ensembling
procedure may either build homogeneous ensembles (same hyperparameters but different run times)
or heterogeneous heterogeneous ensembles (each DNN has different hyperparameters). Finally,
different combination rules exist when working with DNN, majority voting, averaging, and weighted
averaging Hashem (1997). AutoML+ensembling is still unexplored in this context of deep learning.
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The second limitation is the lack of control of the computing cost of the produced ensemble. In the
previous works, authors apply ensembling Caruana et al. (2004) Feurer et al. (2015) of non-deep
machine learning and propose that the number of models to put in the ensemble as a threshold between
accuracy and computing cost. In DNNs such as applied on image recognition, the combined models
are heterogeneous with orders of magnitude of difference in inference time. That is why the number
of models as the constraint is not relevant to control the ensemble computational cost. Moreover,
when generating automatically multiple models it is known that Johnston et al. (2017) there is no clear
correlation between accuracy and DNNs cost, meaning that sometimes fast DNNs can be prioritized
without significantly lowering the accuracy. Because today AutoML+ensembles are not computing
cost-aware they generally fail to found efficient ensembles. An ideal AutoML+ensembling should
found a good trade-off between multiple small DNNs or a few large DNNs.

It is time to address this missing piece in deep learning pipelines between AutoML of Deep Neural
Network and ensembles. To summarize our contributions, we run extended benchmarks with
hyperparameter optimization, ensemble construction, and combination rule. We propose a new
simple algorithm named SMOBF (scalarized-multi objective with budget greedy forward) to post-hoc
build an efficient ensemble based on their accuracy and a desired maximum computing cost measured
as the sum of their time to predict 2000 images.

This paper is as follows. In section II we go into further detail in the related fields: AutoML and
AutoML+ensembling. In section (III) the different steps of the workflow AutoML+ensembling are
analyzed and introduced. In section (IV) we analyze our AutoML procedure compared to some
baselines.

2 ANALYSIS OF THE AUTOML FIELD

2.1 AUTOML OF ONE MODEL

The empirical nature of research in Deep Learning leads scientists to try many model architecture
settings, optimization settings, and pre-processing settings to find the best-suited one for data.
AutoML is made of 3 modules, the DNNs search space (the “hyperparameter space”), the DNNs
sampling strategy (or “hyperparameter optimization”), and the evaluation phase consisting in returning
the score associated with one hyperparameter value.

Any model previously trained with hyperparameter λ sampled from hyperparameter space Λ is
written Mλ. The hyperparameter optimization goal defined in equation 1 consists in finding the best
hyperparamer λ∗ ∈ Λ building a model to reduce the error measured by E. The error is measured on
the validation data xvalid matching labels yvalid.

λ∗ = arg min
λ∈Λ

E(Mλ(xvalid), yvalid) (1)

In the literature, AutoML algorithms are typically compared based on their results in the evaluation
phase. While this may seem intuitive, this field is now facing multiple methodological questions
Li & Talwalkar (2020) on the relevance of comparing multiple workflows made of different stages
and different initial conditions. And more, to fairly compare their robustness, multiple datasets,
and multiple random seeds must be reported which is a computing-intensive research area limiting
initiatives.

Therefore, our paper does not claim the superiority of our AutoML+ensembling method in all cases
but it is rather the first step toward AutoML+ensembling of DNNs aiming at the desired trade-off
between ensembles accuracy and their computing cost for practical usage. Our work is applied on the
computed vision task but can be generalized on other tasks where qualitative prediction is required
leveraging one or more clusters of GPUs.

No Free Lunch theorem Wolpert & Macready (1997) proves that no black-box hyperparameter
optimization (HPO) can show superior performance to random search in all cases. Nevertheless, early
stopping Prechelt (1998) Li et al. (2017) has been also proposed to stop the less promising trials to
focus hardware on the most promising trials accelerating the overall optimization process. Recently,
FLAML Wang et al. (2021) has been proposed to search not only hyperparameters based on their
score but faster training too.
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2.2 AUTOML WITH ENSEMBLING

AutoML which not only selects the best model but combines them is valuable for domains that require
the best possible accuracy. Several benchmarks were performed and AutoML+ensembling is today
considered as the big AutoML challenge series winner on data points like AutoML challenges Guyon
et al. (2019). Previous researches on non-deep machine learning ensembles show that over-fitted
machine learning algorithms predictions can be averaged out to get more accurate results Sollich &
Krogh (1995). This phenomenon is mainly explained by the Law of Large Numbers which claims
that the average of the results obtained from many non-biased trials should be close to the expected
value. These results are especially interesting for deep learning models, they are models especially
affected by random effects (over-fitting) due to their huge number of parameters.

We observe two main trends in AutoML with ensembling. First, AutoML+Ad-hoc ensembling
Thornton et al. (2012) LeDell & Poirier (2020) Guan et al. (2020) Chen et al. (2018) Olson et al.
(2016) which consists in searching directly ensembles. The hyperparameter space describes an
ensemble generally of fixed size. In the end, the HPO algorithm keeps the best ensemble and wastes
all the others. It suffers from a lack of flexibility in the case of deep neural networks, because the
number of models in an ensemble is generally fixed, and it is generally unknown much in advance
how much computing power is required to get reasonable accuracy. In other words, changing the
number of DNNs in the ensembles requires a new AutoML runtime with the new ensemble size.

Second, AutoML+Post-hoc ensembling Caruana et al. (2004) Tsoumakas et al. (2008) Feurer et al.
(2015) runs a standard HPO algorithm providing a library of trained models, then constructs ensembles
from the library based on a greedy algorithm often named ”forward greedy”. It starts with the empty
ensemble and successively adds the best available model to improve the ensemble target metric. The
algorithm stops when no available model can improve accuracy.

This approach is flexible in the context of non-deep machine learning because we can produce
several ensembles with different numbers of models with the same library of DNNs allowing a
trade-off between computing cost and accuracy. However, there is a lack of control in DNN such
as applied to image recognition, the combined models are heterogeneous (e.g., different number
of layers, different number of filters per convolution, ...) with sometimes an order of magnitude of
difference in inference time. Thus, the computing cost is poor controlled. We propose instead a
new multi-objective ensemble selection algorithm named SMBOF to efficiently control the produced
ensembles’ trade-offs between accuracy and computing cost.

Another line of research consists in improving the training speed of ensembles for a given hyperpa-
rameter set. Snapshot Learning Huang et al. (2017a) consists to approximate usual homogeneous
ensembles with only one training time. Some methods, speed up the workload of one given ensemble
with efficient communication scheme Pittman et al. (2018) Guan et al. (2020) and efficiently use
large number of GPUs Guan et al. (2020). Those works are complementary to ours. It is useful when
the desired hyperparameter set is already known, for instance, it allows to efficiently re-train the
ensemble when the training dataset is updated. In post-hoc ensembling, the hyperparameter search
workload may be handled like independent DNNs workload, so those efficient ensemble training
pipelines are not applicable during the hyperparameter tuning phase.

Efficient hyperparameter optimizers Wang et al. (2021) Li et al. (2020) keeping hardware for promis-
ing DNNs are useful in the context of AutoML and in the context of AutoML+Ensembling. We may
expect they produce on average more DNNs with the same amount of computation time.

3 PROPOSED WORKFLOW

In this section, we give an overview of the proposed workflow 1 before understanding the nature of
our work. Then, we will go into further detail in each step of the proposed AutoML workflow: HPO
to construct a library of models, Ensemble Selection to construct ensembles based on their validation
accuracy and computing cost, and finally the combination rule.
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Figure 1: The proposed workflow runs 3 steps 1) The HPO algorithm generates a library of models.
The trials are distributed on several GPUs synchronized by a master process. We recommend
asynchronous Hyperband based on experimental results. 2) We propose a new multi-objective
Ensemble Selection algorithm to search the most efficient ensemble honoring a budget given by the
user (here B=20). 3) The returned ensemble predicts by combining (averaging) DNNs predictions on
new data.

3.1 DETAIL OF THE WORKFLOW

Hyperparameter optimization (HPO). The choice of the HPO algorithm has several impacts in
terms of the number of produced models at a given time horizon, the accuracy of models, and their
diversity. After several experiments, we recommend Hyperband based on our experiments.

In this regard, asynchronous Hyperband Li et al. (2020) is a robust hyper-parameter optimizer to
then combine DNNs based on our experiments. It produces the biggest library of models among
tested algorithms because most of the sub-optimal models do not reach the maximum number of
epochs. It is also a lock-free distributed algorithm until the termination of the algorithm, spending
most of its runtime to train models occupying all GPUs and storing them on the library. More models
intuitively increase the probability to found good combinations between them during the ensemble
selection phase. Then, Hyperband produced also diverse models hyperparameters due to the initial
random sampling of hyper-parameters. Finally, Hyperband performs explore-exploit in the time (not
in the hyperparameter space). A larger number of models, hardware occupancy, and hyperparametric
diversity are three reasons explaining why Hyberband is robust to build a library of models but we
still ignore in which proportion they are important. Detailed analysis of the produced ensembles in
terms of bias-variance-covariance decomposition Brown et al. (2005) and distribution of the accuracy
at multiple runtime and multiple datasets would allow providing more insight.

Ensemble selection. An ensemble selection algorithm finds the best combination possible honoring
the budget given by the user. We propose SMOBF greedy standing for ”Scalarized Multi-Objective
with Budget Forward greedy”.

Forward greedy Caruana et al. (2004) starts with the empty ensemble and successively adds the best
available model to improve the ensemble target metric. The algorithm stops when no available model
can improve accuracy or respect the budget.

We propose new equation 2 to inform the greedy algorithm to favor accurate and cheap DNNs
before consuming the overall budget. The current ensemble is a with its computing cost Ca and its
predictions ya. Penalty Pa returns 0 when the budget B is honored (Ca ≤ B ) or an arbitrary large
number when it is not to exclude a from the possible ensembles.

The weight w allows controlling the nature of the solution found by the greedy algorithm by placing
greater or lesser emphasis on the objectives. The greedy algorithm is run multiple times with different
values w = 0.1, w = 0.01, and w = 0.001. Scalarization is a convenient way to handle multi-
objective problems by reducing them to a single objective problem, so a simple mono-objective
optimization can be performed.

scorea = (1− w) ∗ E(ya, y) + w ∗ Ca + Pa (2)
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Then, the best ensemble is picked according to its validation cross-entropy loss and respecting the
given budget. To improve the robustness of the method on new applications Ca is standardized and it
is the rate between the sum of computing cost of base models (time to predict 2000 images) and the
budget B.

Ensemble selection algorithm computes the validation loss of candidate ensembles to evaluate how
well a solution will generalize on the test database. Since the data used for validating is taken away
from training the individual models, keeping the validating set small is important. Smaller validating
sets are however easier to overfit. Contrary to common AutoML on data points datasets, due to the
cost of training and evaluating one model on images datasets, we do not repeat the experience with
K-fold cross-validation.

In the library of models, some models diverge or have such poor performance compared to other
models that they are unlikely to be useful to improve any ensemble building Caruana et al. (2006).
Eliminating these models from the library should not reduce the performance and facilitates the
ensemble selection task by decreasing the number of non-promising combinations. Pruning works
as follows: models are sorted by their performance on the validation metric and only the top X% of
them are used for ensemble selection. After pruning, the predictions on the validation set are cached
before running the ensemble selection algorithm. This allows handling only predictions vector and
not models during the ensemble selection process.

Ensemble combiner rule. We use the simple average as a combiner rule. More advanced methods
exist such as ”ensemble selection with replacement” Caruana et al. (2004), weighted averaging, and
stacking. Those methods are calibrated on a validation set and thus prone to over-fitting.

Now that the workflow is developed, the final accuracy depends on two settings. The tuning effort of
the library of models and the budget given by the user to generate a new ensemble.

3.2 DISTRIBUTED ENSEMBLE SELECTION

Ensemble selection is a greedy algorithm evaluating all neighbors of a current ensemble at each
iteration. For each ensemble a, the equation 2 is performed. To be efficient, this algorithm does not
handle directly the models but their predictions which are cached. To assess one ensemble it generally
takes 0.5 seconds on one CPU with 100 elements per prediction (100 classes) and 2000 data samples.

In the case of more complex tasks, this procedure can be much more computing-intensive. For
instance, in the case of the semantic segmentation images, the class predictions are at pixel scale.
A typical dataset for autonomous vehicle applications Cordts et al. (2016) contains 256x256 input
images, 30 classes per pixel and 500 validation samples. Linear scaling indicates that the computing
cost of this procedure would take 40 minutes (256x256x30x500 predictions elements compared to
100x2000 predictions elements in CIFAR100 taking 0.5 seconds). Because SMOBF is an optimization
algorithm we use a similar distributed framework (previous section) to distribute neighbors evaluation
on CPUs or GPUs to alleviate this computing cost.

4 EXPERIMENTS AND RESULTS

We experiment and discuss our workflow by varying the three steps of the AutoML workflow of deep
neural networks on CIFAR100 and the microfossils datasets. More details is given in appendix A.

We are aware the accuracy may be limited by the hyperparameter space and the ResNet framework.
Our first goal is to compare different procedures relatively against each other. A promising line
of research is searching for more efficient deep neural networks such as EfficientNet Tan & Le
(2019). Additionally, combine models with different convolutional block types and not only residual
blocks should again increase the diversity of ensembles and reduce the variance and bias errors of the
produced ensemble.
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4.1 STEP 1 - HPO

4.1.1 HPO ALGORITHM COMPARISON

We compare in table 1 our presented workflow by varying the HPO algorithm to generate a different
library of models. Random Search (RS) Bergstra & Bengio (2012), asynchronous Hyperband (HB)
Li et al. (2020), Bayesian Optimization with Gaussian Processes (BOGP) Hoffman et al. (2011),
BOHB Falkner et al. (2018), Sequential Model-based Algorithm Configuration (SMAC) Hutter et al.
(2011), Tree Parzen Estimator (TPE) Bergstra et al. (2011), Genetic Algorithm (GA). To combine
generated models, we benchmark them with the SMOBF greedy ensemble selection algorithm.

Not surprisingly, when the budget increases the ensemble selection can find better ensembles from
any library. This is explained by the fact that the number of available good combinations between
them increases. In the table 1 some algorithms converge and do not found better ensembles after high
budgets such as the Bayesian method and genetics ones. More budget reduces also the volatility of
this accuracy at different run times. For CIFAR100 the standard deviation for all HPO algorithms
ranges from 1 (B=20) to 0.2 (B=320). With micro-fossils it goes from 1.6 (B=125) to 0.4 (B=1000).

A priori, accurate base DNNs, diverse DNNs, and bigger library size are expected to improve the
accuracy but we ignore in which proportion, and if this proportion change from one application to
another one.

Accurate base DNNs. When we are looking at the distribution of DNNs accuracy we observe that
different HPO algorithm choices produce different distributions. Random Search and Hyperband due
to the exploration they produce similar distributions after different run times. Bayesian optimization
can produce a very large number of similar performing models and different run times produce
different local minimum exploitation and thus different distributions. However, in AutoML we are
generally interested in the best-produced models and not only the distribution of models, in this case,
we observe no method systematically producing the best DNNs in all run time.

And more, because we ensemble models we are not only searching for the most accurate models
but the best models to combine. This makes our context original compared to previous works and it
justifies our need to compare multiple HPO algorithms.

Diversity of base DNNs. Hyperband and Random Search, due to the exploration of hyper-parameters,
are expected to generate more diverse models. However, the hyper-parameter diversity is maybe not
always mandatory to generate good ensembles. For instance, in later experiments, we observe ad-hoc
homogeneous generally outperforms ad-hoc heterogeneous ensembles.

Bigger library size. Hyperband generally creates a bigger quantity of DNNs compared to HPO
without early stopping. The early stopping allows reducing the time before the final epoch is reached.
And more, its asynchronous versions allow keeping GPU occupied, in comparison, population-based
methods (parallel SMBO or genetics) generally generate a sequence of populations to assess and wait
until they all finish to compute the next population letting some GPUs vacant.

Early stopping and asynchronous technics together create generally a bigger quantity of models when
the time horizon is fixed. However, this number is unstable at different runtimes due to different
DNNs explored and their very different computing requirement.

4.1.2 ENSEMBLE PROCEDURES

We compare in figure 2 different ensemble construction procedures: Post-hoc and ad-hoc generated
with Random Search. The ensemble methods may not be worth the inference computing cost, so we
compare also the “no ensemble” procedure which is a simple HPO of DNNs. All those procedures
were performed by using the random search HPO algorithm to generate hyperparameters during 6
days on 6 GPUs. All of them were run 3 times with different random seeds.

In “ad-hoc” all ensembles have a fixed size of 4 and the produced ensembles. “ad-hoc” ensembles
and “no ensemble” DNNs are associated with their validation score and their computing cost. Then,
we select the best one for each given budget and it is evaluated on the test score. It is possible to
found no model when the budget is too low. On the opposite, when the budget is already high enough,
increasing it may produce multiple times the same ensemble. Both cases are mentioned in table 2
with the symbol ‘-’.
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Data Budget RS HB BOGP BOHB SMAC TPE GA

C100

20 31.26 27.8 31.58 29.24 24.44 29.97 24.61
40 24.24 22.87 28.2 25.6 22.97 26.01 22.91
60 22.27 21.85 26.91 23.53 22.65 25.44 21.51
80 22.69 21.73 26.2 22.58 22.17 24.25 21.07
120 21.63 21.55 24.78 21.86 22.17 23.03 21.95
160 20.11 21.11 24.24 21.64 21.87 22.47 21.91
240 20.7 20.46 23.76 21.2 21.87 22.55 21.91
320 20.64 20.42 23.76 21.1 21.87 22.46 21.91

Micro

125 13.45 11.93 14.44 12.18 10.27 13.91 10.33
250 10.98 9.82 10.93 11.71 9.63 10.66 9.71
375 10.84 9.32 9.93 10.5 9.45 10.49 9.5
500 10.23 8.91 9.93 9.84 9.27 9.06 9.28
750 9.7 8.87 9.21 9.28 9.18 9.3 9.18
1000 9.69 8.46 8.77 8.8 9.09 9.21 9.07

Table 1: Our workflow error (%) by comparing seven HPO algorithms was run on both datasets
for 6 days on 6 GPUs. Each HPO generates a library of models for a given dataset. The budget is
expressed as ”sum of DNNS times (seconds) to predict 2K images on 1 GPU”

Data Budget Posthoc ad-hoc Homo. ad-hoc Hetero. No Ensembles
Avg. Weighted avg. Weighted avg.

20 31.26 ± 0.99 30.0 ± 2.86 - 32.89 ± 2.85
40 24.24 ± 0.96 26.25 ± 0.93 26.31 ± 0.35 30.51 ± 0.95
60 22.27 ± 0.83 25.49 ± 0.66 25.46 ± 0.57 30.36 ± 0.64
80 22.69 ± 0.71 - 23.93∗
120 21.63 ± 0.58 - -
160 20.11 ± 0.31 - -
240 20.7 ± 0.18 - -

C100

320 20.64 ± 0.15 - -

125 13.45 ± 1.56 14.70 ± 3.97 14.78 ± 1.22 13.48 ± 3.97
250 10.98 ± 0.83 12.57 ± 0.74 12.73 ± 0.31 12.82 ± 0.83
375 10.84 ± 0.7 11.67 ± 0.68 11.78 ± 0.28 12.55∗
500 10.23 ± 0.68 - - -
750 9.7 ± 0.61 - - -

Micro

1000 9.69 ± 0.42 - - -

Table 2: Comparison of four procedures: posthoc ensembles, ad-hoc homogeneous, ad-hoc heteroge-
neous and no ensembles. We run 3 random seeds. For each run time we generate DNNs during 6
days on 6 GPUs.

The proposed workflow allows finer control of the ensemble built and generally outperforms other
methods.

4.1.3 EFFECT OF TUNING TIME

In AutoML we often want to see the evolution of performance over the tuning time, not only the final
performance after a time horizon. Therefore, we assess the workflow varying the budgets until it does
not affect the ensemble construction anymore and at different tuning time snapshots. Those figures
are presented in figure 2 3.

First, regarding the benefit of the tuning time, we observe two main trends. When the budget is
very small (B=20) models accuracy converges early to 18, 24, or 48 hours reaching the limit of the
hyperparameter optimization with a little (or without) ensembling. When the budget is bigger the
exploding number of available combinations of ensembles leads to the discovery of better ensembles.
The posthoc ensembling is a promising line of research that deserves more attention and more
understanding of how DNNs interact with each other.

Then, we observe that increasing the budget systematically leads to an increasing accuracy (colored
lines are rarely crossed) but this trend decline. For example, in the figure 2 we show that when
Hyperband is finished, the benefit is obvious from 1 to 2 models: +5 point of accuracy percentage,
but the improvement is small from B=120 to B=320: +1 point of accuracy percentage.
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Figure 2: Ensemble from Hyperband algorithm
on the CIFAR100 dataset

Figure 3: Ensemble from Hyperband on the mi-
crofossils dataset

4.2 STEP 2 - ENSEMBLE SELECTION

4.2.1 ENSEMBLE SELECTION PRUNING

We try multiple pruning factors X such X% only the top X% are kept. It reduces the size of the
library of models and thus helps the ensemble selection algorithm. When the pruning factor is above
20% it does not reduce accuracy and reduce the ensemble selection time, while the threshold under
15% reduces the target metric in some experiments. Therefore, for all experiments of this paper, the
pruning factor is set to 20%.

4.2.2 ENSEMBLE COMBINERS

We compare averaging rule and weighted averaging rule Hashem (1997) in this context of Au-
toML+ensembling for ad-hoc homogeneous and ad-hoc heterogeneous. To compute weights, we grid
search multiple values in {1, 2, 4, 8} then weights are normalized. The ad-hoc ensembles have a fixed
size 4 and 4 possibles weight values making 256 combinations, 175 after redundancy elimination
taking about 80 seconds to compute.

The first observation is that weighted averaging significantly improves heterogeneous ensembles
+1.50 point of accuracy compared to simply averaging. The gain is only +0.26 point of percent
with ad-hoc homogeneous AutoML+ensemble. This performance gap may be explained by the fact
heterogeneous hyperparameters produce diverse accuracy between base DNNs and a calibration step
is needed to give more weights to the best performing models, this is less important with homogeneous
DNNs producing about the same accuracy. However, this grid search computing quickly becomes
intractable when the number of models is larger.

In posthoc ensembling, two procedures can be applied to give more weights to some DNNs with
reasonable computing costs. First ensemble selection with replacement Caruana et al. (2004) consists
in making possible the selection of multiple times the same DNN of the library. The other method
consists in using simply the averaging combination to run posthoc ensembling and return one
ensemble, and then calibrate the weights of this ensemble to perform weighted averaging. Both
procedures fail to improve accuracy compared to the averaging rule. The ensemble selection method
evaluates thousands of ensembles on the validation dataset to return the best one. Therefore, using
again validation set to tune weights seems to overfit the validation dataset too much.

Finally, we evaluate majority voting, it is a method ignoring uncertainty estimate so it can lose useful
information during the combination. On the other hand, it is less sensitive to DNNs which are over-
confident or under-confident relative to the others. Our experiments show this rule underperforms
averaging rule to -0.87 point of percentage on different budgets and both datasets.

It appears that posthoc ensembling with SMBOF efficiently controls the computing cost and accuracy
by controlling DNNs to gather. A more complex combination rule seems useless to calibrate
ensembles because the ensemble construction is already calibrated by evaluating a large number of
combinations.
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4.2.3 SMOBF GREEDY COMPARED TO FORWARD GREEDY (BASELINE)

The ensemble selection algorithm often used by most advanced AutoML software Caruana et al.
(2004) Feurer et al. (2015) is forward greedy with fixed number of models that we pick as baseline.
We perform three runtimes of the overall AutoML workflow and observe that SMOBF is Pareto
dominant or equivalent to the baseline each time.

The figures 4, 5 compares those two algorithms in function of the cost (vertically) and the error rate
(horizontally) of produced ensembles with SMOBF greedy (blue) and the baseline (orange) on one
runtime. In those figures “BX” mention means a budget of X and ”#Y” means an ensemble of size
Y .

Figure 4: Ensembles generated from Hyper-
band algorithm on the CIFAR100 dataset

Figure 5: Ensembles generated from Hyper-
band algorithm on the microfossils dataset

The gain of SMOBF is particularly obvious when the budget is small on both criteria, but it is reduced
when the budget is relaxed. Indeed, when we target the best ensemble at any cost or any size, the
objective of the two algorithms converges. On the opposite when the budget is small, SMOBF informs
the greedy algorithm to go toward efficient models before the budget is consumed.

CONCLUSION

Due to the increasing number of new Deep Learning applications and datasets, Auto Machine Learning
(AutoML) methods are an important line of research. We propose an AutoML workflow capable to
tune, train, ensembling, and deploy DNNs automatically but that runs a heavy workload at each stage.
We aim to fill the gap between Machine Learning researches, the new GPU clusters, and the end-user
application quality of service. To go toward this direction, we formulate the problems by aiming at
the accuracy, the inference speed, and the flexibility of the underlying heterogeneous infrastructure.
First, we presented the experimental results demonstrating that asynchronous Hyperband is suitable
for parallelism and generates the best library of models to ensemble them. We then propose a new
Ensemble Selection strategy that allows controlling the final ensemble computing cost of heterogenous
DNNs.

In future work, we intend to propose an open-source framework based on Ray framework to leverage
modern GPU clusters. The design of this workflow allows the application to a large number of
applications by adapting the combination rule, the hyper-parameter space, and the deep neural
network framework.
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A EXPERIMENTAL DATA SET AND HYPERPARAMETER SETTINGS

This section describes machine learning experiments for reproducibility purposes.

A.1 THE TWO DATASETS USED

The CIFAR100 dataset. CIFAR100 Krizhevsky (2009) consists of 60,000 32x32 RGB images in
100 classes. For each class, there are 580 training images, 20 validation images and 100 testing
images.

The Microfossils dataset. Microfossils are extremely useful in age dating, correlation, and paleo-
environmental reconstruction to refine our knowledge of geology. Microfossil species are identified
and counted on large microscope images and thanks to their frequencies we can compute the date of
sedimentary rocks.

To do reliable statistics, a big number of objects needs to be identified. That is why we need deep
learning to automate this work. Today, thousands of fields of view (microscopy imagery) need to be
shot for 1 rock sample. In each field of view, there are hundreds of objects to identify. Among these
objects, there are non-fossils (crystals, rock grains, etc...) and others are fossils that we are looking
for to study rocks.

Our dataset contains 91 classes of 224x224 RGB images (after homemade preprocessing). Micro-
fossils are calcareous objects took with polarized light microscopy. The classes are unbalanced,
we have from 50 images to 2500 images by class, with a total of 32K images in all the datasets.
The train/validation/test split is as following: 72% 8% 20%. The F1 score was used and labeled as
’accuracy’ on all benchmarks.

A.2 HYPERPARAMETER CONFIGURATION SPACE

Table 3 shows all hyperparameters properties in this workflow. We use ResNet-based architectures
due to their simplicity to yield promising and robust models on many datasets. We explore different
residual block versions: ”V1”, ”V2” He et al. (2016) and ”next” Xie et al. (2017). Regarding
the optimization method, we use Adam optimizer Kingma & Ba (2014) due to its well-known
performance and its lower learning rate tuning requirement.

The simplicity of the ResNet architecture makes this work easy to test by a scientist on its image
dataset Zagoruyko & Komodakis (2016). Exploring other convolutional block type like VGG Zhang
et al. (2016), Xception Chollet (2017), DenseNet Huang et al. (2017b) and EfficientNet Tan & Le
(2019) are potential improvement which could increase the degree of liberty in DNNs construction,
the diversity of DNNs and the accuracy of ensembles.

The CIFAR100 dataset contains 32x32 images while usually ResNet is adapted to be used on
ImageNet (224x244 images). Those different resolutions need some adaptation. Therefore, on the
CIFAR100 case, the first convolutional layer is replaced from the 7x7 kernel size with a stride of
2, to a 3x3 kernel size with a stride of 1. With equivalent settings, our CNN framework produces
nearly the same number of weights between the CIFAR100 and microfossils dataset, but the time
complexity is factor 11 different because of different signal resolutions flowing through the layers.
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Category Name Type Range

Optim.
Learning rate Continuous [0.001; 0.01]

Batch size Discrete [8; 48]

L2 regularization factor Continuous [0; 0.1]

NN
archi.

Convolution type Categorical {v1,v2,next}
Activation function Categorical {tanh,relu,elu}
Number of filters in the first convolutional layer Discrete [32; 128]

Multiplier of filters in the 4 blocks Discrete [32; 128]

Number of convolutional block in the first stage Discrete [1;11]

Number of convolutional block in the second stage Discrete [1;11]

Number of convolutional block in the third stage Discrete [1;11]

Number of convolutional block in the fourth stage Discrete [1;11]

Data
augment.

Max zoom Continuous [0; 0.6]

Max translation Continuous [0; 0.6]

Max shearing Continuous [0; 0.3]

Max channel shifting Continuous [0; 0.3]

Max rotation measured in degrees Discrete [0; 90]

Table 3: The hyperparameter space experimented based on the ResNet neural architecture framework
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POST-HOC HOMOGENOUS OF DNNS WITH POPULAR RESNET ARCHITECTURES

Tables 4 and 5 show the workflow error by replacing the library from any HPO algorithm with a
library from a fixed ResNet architecture. Then SBMOF is applied to build ensembles. Libraries have
been generated at different run times for 6 days and 6 GPUs.

Results show it underperforms the post-hoc ensembles of heterogeneous DNNs generated with an
HPO. The second observation is that a homogeneous ensemble of DNNs benefits also from the
ensemble selection algorithm.

arch. resnet18 resnet34 resnet50 resneXt50 resnet101 resnet152
#weights 31.6M 53.1M 53.1M 13.1M 95.8M 128.4M
cost 10.83 14.35 14.05 11.87 21.14 28.56

#1 35.30 35.77 37.63 42.28 35.85 37.82
#2 32.98 21.70 33.60 38.67 32.77 34.86
#3 29.88 28.58 31.29 36.16 30.30 32.16
#4 28.66 27.63 29.76 35.09 29.74 31.65
#6 27.70 26.88 28.16 32.15 28.93 30.26
#8 26.98 26.21 27.33 31.86 28.26 29.33
#12 26.59 25.88 26.82 31.44 71.85 29.46
#16 26.66 25.74 26.80 31.44 28.15 29.45

Table 4: Comparison different ResNet architectures and ensemble size on the CIFAR100 dataset. The
cost is expressed in second at inference time.

arch. resnet18 resnet34 resnet50 resneXt50 resnet101 resnet152
#weights 31.6M 53.1M 53.1M 13.1M 95.8M 128.4M
cost 120.53 169.71 164.96 118.64 254.45 354.29

#1 13.17 14.76 14.35 15.09 15.78 14.91
#2 12.26 12.23 12.46 12.74 13.96 13.39
#3 11.78 11.45 11.52 12.07 12.46 12.34
#4 11.66 11.29 11.37 11.98 12.26 12.09
#6 10.90 10.50 10.73 11.73 11.76 11.32
#8 10.87 10.41 10.61 11.27 11.60 11.20

Table 5: Comparison different ResNet architectures and ensemble size on the microfossils dataset
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