
Under review as submission to TMLR

Evaluating Selective Encryption Against Gradient Inversion
Attacks

Anonymous authors
Paper under double-blind review

Abstract

Gradient inversion attacks pose significant privacy threats to distributed training frame-
works such as federated learning, enabling malicious parties to reconstruct sensitive local
training data from gradient communications between clients and an aggregation server dur-
ing the aggregation process. While traditional encryption-based defenses, such as homo-
morphic encryption, offer strong privacy guarantees without compromising model utility,
they often incur prohibitive computational overheads. To mitigate this, selective encryption
has emerged as a promising approach, encrypting only a subset of gradient data based on
the data’s significance under a certain metric. However, there have been few systematic
studies on how to specify this metric in practice. This paper systematically evaluates selec-
tive encryption methods with different significance metrics against state-of-the-art attacks.
Our findings demonstrate the feasibility of selective encryption in reducing computational
overhead while maintaining resilience against attacks. We propose a distance-based signifi-
cance analysis framework that provides theoretical foundations for selecting critical gradient
elements for encryption. Through extensive experiments on different model architectures
(LeNet, CNN, BERT, GPT-2) and attack types, we identify gradient magnitude as a gener-
ally effective metric for protection against optimization-based gradient inversions. However,
we also observe that no single selective encryption strategy is universally optimal across all
attack scenarios, and we provide guidelines for choosing appropriate strategies for different
model architectures and privacy requirements.

1 Introduction

As ever-larger machine learning models need to be trained on ever-larger amounts of data, e.g., large language
models (LLMs) or computer vision models (Verbraeken et al., 2020), distributed training methods have
become essential to many model training pipelines. Typically, such training methods allow multiple clients,
e.g., separate GPUs, to each hold a subset of the training data; each client then computes updates to a
local copy of the model based on its local training data. These model copies are aggregated at a coordinator
server to obtain a global model that is then sent back to the clients, and this process repeats in an iterative
manner. Popular variants of this distributed training framework include federated learning, e.g., FedSGD
and FedAvg (McMahan et al., 2017), in which the frequency of model aggregations is reduced in order to
reduce communication overhead or preserve the privacy of client data.

While privacy is often cited as one of the key benefits of a federated learning framework, as raw training data
never leaves the clients (Li et al., 2020), federated learning still raises privacy risks. In particular, raw model
gradients are communicated between the clients and the coordinator server, which can be used to reconstruct
client data via gradient inversion attacks (Zhang et al., 2022). Recent studies have demonstrated that these
attacks can achieve near-perfect reconstruction of training data in certain scenarios, making gradient privacy
a critical concern for real-world federated learning deployments (Geiping et al., 2020; Balunovic et al., 2022;
Petrov et al., 2024).

Several works have accordingly proposed modifications to the typical federated learning framework that aim
to enhance privacy, e.g., differential privacy (Wei et al., 2020) and secure aggregation (Bonawitz et al., 2016).
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Homomorphic encryption, in which clients encrypt their model updates before sending them to the central
server, where they are aggregated without being decrypted, is often preferable as it easily accommodates
client dropouts, unlike secure aggregation, and it does not slow down convergence with respect to training
rounds, unlike differential privacy (Jin et al., 2023). However, homomorphic encryption introduces high com-
puting and communication overheads. For instance, homomorphic encryption can increase communication
costs by 10-100x and computational overhead by similar factors, making it impractical for client devices that
are resource-constrained, as is typical in federated learning scenarios (Jin et al., 2023). Thus, prior work has
suggested selective or partial gradient encryption approaches (Figure 1) to reduce computational overhead
while preserving data privacy (Jin et al., 2023).

Selective gradient encryption methods, inspired by the selective encryption methods that have been applied
in other domains (Spanos & Maples, 1995), aim to select a subset of model gradients to encrypt in each
communication round. By encrypting only the gradients that carry the most information about the training
data on which they are computed, we ensure that gradient inversion attacks cannot reconstruct this training
data. However, while several prior works have proposed different methods for measuring the significance
of different gradient parameters, many are either based on heuristics or only evaluated on smaller models,
leaving the open question of which gradient significance measure best defends against gradient inversion
attacks. Complicating this choice further, some metrics like sensitivity may require significant additional
computation, making them impractical (McRae et al., 1982). In this paper, we fill this research gap by
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Figure 1: Selective Encryption Against Gradient Inversion Attacks. The gradient g0 calculated by the
ground-truth data x0 is selectively encrypted based on the mask m generated according to some significance
metric. Red indicates elements with high significance. The adversary can try to recover x0 by matching the
generated gradient with the eavesdropped encrypted gradient (g0)enc := (1 − m) ⊙ g0 + E(m ⊙ g0).

providing the first comprehensive evaluation framework, both theoretically and empirically, for selective
encryption strategies against gradient inversion attacks. Our evaluation spans multiple model architectures
(LeNet, CNN, BERT, GPT-2), attack types, and selection measures. Our main contributions are as follows:

• We are the first to formally describe the selective encryption procedure with different
significance metrics and systematically evaluate its effectiveness against gradient inversion
attacks.

• We propose a distance-based significance analysis framework to analyze selective encryption’s
ability to defend against gradient inversion attacks, and we use this analysis to propose a new,
distance-based significance measure.

• We evaluate the effectiveness of selective encryption with different significance metrics
in defending gradient inversion attacks for distributed learning.

2



Under review as submission to TMLR

• Based on our evaluation results, we provide general guidelines for how to choose defense
strategies for different learning tasks.

We first give an overview of related work in Section 2 before introducing our threat model in Section 3. We
present our analysis of selective encryption methods in Section 4 and our experimental evaluation of these
methods in Section 5 before discussing future work in Section 6 and concluding in Section 7.

2 Background and Related Work

2.1 Gradient Inversion Attacks

In the rest of the paper, we denote x0, x∗ ∈ Rn as the ground truth and recovered input data respectively, y0,
y∗ ∈ Rk as the corresponding one-hot vector representing the ground truth and recovered label respectively,
θ ∈ Rm as the model parameters, f(x, θ) : Rn×Rm → Rk as the machine learning model, L : Rn×Rk×Rm →
R as the model’s loss function, and g := ∇θL as the gradient of the loss with respect to θ. For simplicity, in
the following sections, we may write g0(θ) := g(x0, θ) as the ground truth gradient data evaluated with the
loss at x0 and θ, and g∗(θ) := g(x∗, θ) as the gradient data reproduced by the attacker with reconstructed
training data x∗ using its knowledge of the model structure and loss function L.

The general procedure for gradient inversion attacks usually includes the formulation of the optimization
problem

arg min
x,y

∥g(x, y, θ) − g(x0, y0, θ)∥ + αR(x, y), (1)

where the first term shows the effort to match the gradient generated by recovered data with the ground
truth, and αR(x, y) is a regularization term varying for different methods (Huang et al., 2021). Deep
Leakage (Zhu et al., 2019), Inverting Gradients (Geiping et al., 2020), and TAG (Deng et al., 2021) follow
this framework with variations in the regularization term R(x, y) or the norm. Other approaches, such as
Decepticons (Fowl et al., 2022), DAGER (Petrov et al., 2024), and APRIL (Lu et al., 2022), incorporate
analytical methods tailored to specific model types, achieving remarkable recovery performance with high
efficiency. Recent studies further enhance recovery capabilities by integrating auxiliary models (Balunovic
et al., 2022; Yue et al., 2023). Despite the development of various sophisticated techniques, the general
optimization-based framework remains the foundation and starting point of these methods.

In response to the gradient inversion attacks, researchers have also proposed various defense methods. Gradi-
ent pruning (Zhang et al., 2023) demonstrates the defense effectiveness of pruning the large gradient elements
but does not provide any theoretical support. The use of differential privacy is lightweight but leads to in-
evitable downgrading in the model utility (Wei et al., 2020), and works such as Yue et al. (2023) also show
the vulnerability of naive differential privacy mechanisms. Other defense frameworks include Soteria (Sun
et al., 2021), ATS (Gao et al., 2021), and PRECODE (Scheliga et al., 2022), though these are shown to be
sometimes unreliable by works like Balunović et al. (2021). Encryption-based defenses have high reliability
and thus are still of interest, but have high computational overhead.

2.2 Sensitivity Analysis

Existing works on sensitivity analysis of model gradients provide the foundation for the selection of en-
crypted parameters in the efficient federated learning system proposed by Jin et al. (2023). Novak et al.
(2018) introduces two sensitivity metrics, the Frobenius norm of the input-output Jacobian and the num-
ber of linear region transitions, for fully connected neural networks. Yeh et al. (2019) developed objective
evaluation measures for machine learning explanations, including infidelity (how well explanations capture
model behavior under perturbations) and sensitivity (explanation stability under small input changes). De-
spite these advances in sensitivity analysis frameworks, there remains a gap in the literature regarding the
use of these frameworks to defend against gradient inversion attacks specifically. Though Mo et al. (2021)
propose an empirical sensitivity analysis framework, their layer-wise analysis is coarse and is not evaluated
against gradient inversions. To our knowledge, existing approaches do not adequately explain how different
parameters affect gradient-based data recovery results.
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2.3 Selective Encryption

Existing selective encryption methods are mainly proposed to reduce the delay and encrypted data size
during real-time video transmission over potentially insecure networks (Spanos & Maples, 1995; Kunkelmann
& Reinema, 1997). Their selection strategies rely on techniques like data compression and Discrete Cosine
Transform (DCT) coefficients, with choices primarily guided by ad hoc evaluations. These are difficult to
extend to our scenario of using selective encryption to defend models against gradient inversion attacks.

In recent years, selective encryption has been applied to the regime of machine learning to enhance security
while efficiently handling the growing size of models. Tian et al. (2021) proposes a probabilistic selection
strategy to encrypt the parameters of Convolutional Neural Networks (CNNs). Sparse Fast Gradient En-
cryption (SFGE) identifies the most critical NN weights to encrypt based on their sensitivity to adversarial
perturbations (Cai et al., 2019). However, it does not address the threat of gradient inversion attacks, fo-
cusing solely on protecting the model parameters from being extracted. Zuo et al. (2021) focuses on the
convolution layers in CNNs and adopts the ℓ1-norm of each kernel row as the significance metric. However,
these efforts are limited by their reliance on specific model structures, and to the best of our knowledge,
no study has systematically compared the effectiveness of selective encryption methods against gradient
inversion attacks for more general types of neural network models, as we do in this work.

3 Threat Model

We restrict the attacking scenario to be honest-but-curious, where the adversary A can obtain clients’ model
gradients through eavesdropping when they are communicated to the server or corrupting the aggregation
server during distributed training. The attack setting is assumed to be white-box, that is, A always knows
the model structure, the current global model parameter values, as well as the gradient used to update them
at an arbitrary training iteration. The training setting assumes stochastic sampling of the clients and their
data points across iterations.

We also assume that A is strong enough so that all gradient elements except those encrypted can be perfectly
reproduced. As encryption methods typically transform data into seemingly random or nonsensical patterns,
we assume that an attacker can easily identify the encrypted portion of the gradient elements and exclude
them during the reconstruction process. This filtering prevents the attacker from being misled by the
encrypted content, allowing them to perform the reconstruction relying solely on the meaningful, unencrypted
gradient elements. This also means that the elements of generated gradient g∗(θ0) coincide with those of the
ground truth gradient g0(θ0) at every position except for those in the set M of indices of masked gradient
elements, while we claim that the other elements of g∗(θ0) are random and bounded in a certain range.
More formally, we assume that: g∗(θ0)(i) = g0(θ0)(i) for any i /∈ M and otherwise, g∗(θ0)(i) = δi, where
∥δi∥ ≤ ξ for some ξ > 0.

Additionally, we assume that A has access to the ground truth label y0 throughout this study. This as-
sumption is based not only on prior works (Geiping et al., 2020; Geng et al., 2021; Yin et al., 2021), which
demonstrate the feasibility of label recovery, but also on our intent to evaluate the attack in a worst-case
scenario where the attacker has as much information as possible.

4 Selective Encryption Based on Significance Metrics

In this section, we formalize the selective encryption process and give an overview of the metrics that we later
evaluate. We then present our distance-based analysis, which provides theoretical foundations for selecting
gradient elements most critical to data privacy.
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4.1 Selective Encryption

Let g represent the gradient of a model’s parameters at a given training step. We express g as a vector of
Rm where m is the number of model parameters:

g =
(

g(1), g(2), . . . , g(m)
)T

. (2)

To protect against gradient inversion attacks, we use a given significance metric to attach a significance
value to each gradient element g(i), i = 1, 2, . . . , m. We then encrypt the gradient elements with the top s
significance values. We define the encryption function E applied to a subset of gradients, parameterized by
a binary mask m ∈ {0, 1}m:

E(g, m) = E(m ⊙ g), (3)
where mi = 1 indicates the selection of the i-th element to encrypt. We also denote M := {i|mi = 1} as
the set of selected indices.

4.2 Overview of Significance Metrics

We summarize the significance metrics considered in Table 1. We consider sensitivity-based and distance-
based metrics as two fundamentally different approaches to identifying critical gradient components for
selective encryption. The sensitivity (Sens) metric is adopted from previous studies of selective encryption
against gradient inversion, where the second-order derivative of the gradient with respect to the model inputs,
∇x0∇θL, serves as the sensitivity measure (Jin et al., 2023). This is a natural choice given the iterative
nature of data reconstruction in gradient inversions, assuming that gradient components most susceptible to
input perturbations are the most informative for attackers and thus should be prioritized for protection. The
product significance (ProdSig) and gradient magnitude (Grad) metrics are derived from our distance-based
analysis presented in the following section, which assigns more significance to the geometric contribution of
gradient elements to the reconstruction process itself. We also examine model parameter magnitude (Param)
primarily due to its ease of access and implementation.

Table 1: Significance Metrics to Evaluate. Note that Grad and Param Require No Additional Computation
(“Get for Free”).

Metric Sensitivity-Based Distance-Based Get for Free
Sensitivity (Sens) ✓ ✗ ✗

Product Significance (ProdSig) ✗ ✓ ✗

Gradient (Grad) ✗ ✓ ✓

Model Parameter (Param) ✗ ✗ ✓

4.3 Distance-Based Significance Analysis

We next aim to maximize the distance between recovered and ground-truth data through selective encryption,
focusing primarily on tasks employing the widely-used cross-entropy loss. Our theoretical framework builds
on the observation that gradient inversion attacks succeed by minimizing the distance between reconstructed
and original gradients. By selectively encrypting the gradient elements that most strongly influence this
distance, we can effectively disrupt the attack while maintaining computational efficiency.

Leveraging Lipschitz continuity assumptions, we derive two effective metrics: Product Significance (ProdSig),
which utilizes the product of gradient elements and model parameters, and Gradient Magnitude (Grad),
which employs the absolute values of gradient elements. These metrics establish theoretical lower bounds
on the distance between recovered and ground truth data, providing principled approaches to selective
encryption that advance beyond existing sensitivity-based methods.

The theoretical foundation rests on the following key insight: if we can ensure that the most informative
gradient elements (those that contribute most to reducing reconstruction distance) are encrypted, we can
establish a lower bound on the achievable reconstruction quality by any gradient inversion attack.
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Beginning with several Lipschitz continuity-based assumptions, we derive Lemma 4.3 (proof in Ap-
pendix A.2), which serves as the foundation for our comprehensive distance-based analysis.
Assumption 4.1. L (x, θ) is Lipschitz continuous with a coefficient CL with respect to the input x.

Justification: This assumption holds for most practical loss functions used in machine learning, including
cross-entropy loss with bounded inputs.
Assumption 4.2. g (x, θ) is smooth with respect to the model parameter θ and vary slowly near θ. More
formally, given any t ∈ [0, 1], ∥g(x, tθ) − g(x, θ)∥ ≤ ξ for some ξ > 0.

Justification: This assumption is reasonable for neural networks with continuous activation functions, where
small changes in parameters lead to small changes in gradients in local neighborhoods.
Lemma 4.3. Under Assumptions 4.1 and 4.2,

log
(

f(x, θ)(k0)
)

≈ −
m∑

i=1
g(x, θ)(i)θ(i) + C, (4)

where C := log (f(x0, 0)) = log (f(x∗, 0)) indicates the output of an all-zero model.

Under Assumption 4.1, the distance-based significance analysis is formulated as

∥x∗ − x0∥ ≥ 1
CL

∣∣∣log
(

f(x∗, θ)(k0)
)

− log
(

f(x0, θ)(k0)
)∣∣∣ (5)

≈ 1
CL

∣∣∣∣∣
m∑

i=1
g∗(θ)(i)θ(i) −

m∑
i=1

g0(θ)(i)θ(i)

∣∣∣∣∣ (6)

= 1
CL

∣∣∣∣∣∑
i∈M

(
g∗(θ)(i) − g0(θ)(i)

)
θ(i)

∣∣∣∣∣ , (7)

where the Approximation 6 holds under Lemma 4.3. Equation 7 is then dominated by
∣∣∑

i∈M g0(θ)(i)θ(i)
∣∣ ≤∑

i∈M

∣∣g0(θ)(i)θ(i)
∣∣ due to the claim that g∗(θ)(i) is bounded. This shows that the product of masked g0(θ)(i)

and θ(i) can serve as an indicator of the distance between the recovered and ground truth data. We name
it as Product Significance (ProdSig).
Assumption 4.4. g (x, θ) is Lipschitz continuous with a coefficient Cg with respect to the input x.

Similarly, under Assumption 4.4, we use Equation (7) to obtain

∥x∗ − x0∥ ≥ 1
Cg

∥g∗(θ) − g0(θ)∥ , (8)

and the bound is dominated by |g0(θ)(i)| for i ∈ M . Therefore, we claim the magnitude of gradient elements
can also be seen as a significance indicator, which we call Grad in the following sections.

Key Theoretical Findings.

• Distance-based analysis establishes rigorous theoretical lower bounds on reconstruction error, pro-
viding formal guarantees on defense effectiveness.

• Product Significance (ProdSig) maximizes the theoretical bound on the data reconstruction error
through products of gradient and parameter values, offering optimal protection under our assump-
tions.

• Gradient magnitude (Grad) offers a computationally efficient yet theoretically sound alternative to
ProdSig that requires no additional computation.

Practical Implications. Our theoretical analysis provides clear guidance for practitioners: When com-
putational resources are abundant, ProdSig offers theoretically optimal protection, while Grad provides
near-optimal protection with zero computational overhead, making it ideal for resource-constrained feder-
ated learning scenarios.
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5 Experiments

In this section, we aim to illustrate the defense effectiveness and efficiency of the significance metrics we
consider. In addition to those presented in Table 1, we also take into account the magnitude of model
parameters (Param) as an intuitive way to indicate the significance. For large attention-based models, we
also evaluate encryption of the attention layers (Attn) and one-fifth of the vulnerable layers (OneFifth-i),
which we would intuitively expect to carry significant information.

5.1 Experimental Setup

Tasks. We evaluate our defense methods against attacks on fundamental machine learning tasks, including
image and sequence classifications, demonstrating their effectiveness against strong adversaries. To assess
performance in the worst-case scenario, we set the batch size to 1, i.e., each gradient is computed on a single
data point.

Models. We test our framework on vision models including LeNet (Lecun et al., 1998) (88,648 parameters)
and a CNN with two 5 × 5 convolution layers (McMahan et al., 2017) (2,202,660 parameters) and language
models including BERT (Devlin et al., 2019) (109,483,778) and GPT-2 (Radford et al., 2019) (124,441,344
parameters).

Attacks. For image models, we use the Inverting Gradients (IG) (Geiping et al., 2020), as it shows sta-
ble attacking outcomes. For language models, we use the recently proposed optimization-based attack
LAMP (Balunovic et al., 2022) and the analytical attack DAGER (Petrov et al., 2024), which is claimed to
attack large language models successfully.

Metrics. Building on previous studies evaluating gradient inversions on images (Huang et al., 2021; Yin
et al., 2021), we use the Learned Perceptual Image Patch Similarity (LPIPS) introduced by Zhang et al. (2018)
to quantify image dissimilarity, where higher values indicate greater differences (i.e., reconstructed images
that are less similar to the ground truth images). In addition, we report the Mean Squared Error (MSE)
between the reconstructed and ground truth data to highlight the impact of our distance-based analysis.
For language models, we evaluate recovery performance using the ROUGE-1 metric proposed by Lin (2004),
while the Wasserstein distance is used to measure differences between embeddings. We further evaluate the
additional time needed to calculate each selective encryption method, which quantifies its computational
overhead.

Datasets. We use the image classification dataset CIFAR-100 (Krizhevsky, 2012) for vision tasks, and
sentiment analysis datasets CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013), and Rotten Toma-
toes (Pang & Lee, 2005) for language tasks.

5.2 Defense Effectiveness

We use 10 random samples (see Figure 2) from the CIFAR-100 dataset for the evaluation of Inverting
Gradients, 5 sequences from each of the sequence classification datasets for LAMP, and 10 sequences for
DAGER. We perform at least 5 repetitions on each sample and take the best recovery results. The averaged
best recovery results among the samples are then presented in the figures in Appendix A.4.

We summarize the minimal encryption ratio needed for each method to reach a desired protection level in
Table 4, where NA means this method fails to reach the level within the range we choose. We empirically
set the desired protection level to LPIPS ≥ 0.3 for image tasks and ROUGE-1 ≤ 0.2 for language tasks. We
also summarize the distance between the recovered and ground-truth data for each case in Table 5, where
we fix the encryption ratio at 30% to make comparisons before the convergence of recovery and avoid the
unexpected distance drop due to the appearance of nearly blank recovered images.

Summary of Findings. Our comprehensive evaluation across multiple models and attack types reveals
distinct performance patterns for each significance metric. Grad emerges as the most consistent performer,
while other metrics show scenario-specific strengths. Sens excels against analytical attacks but struggles
with LAMP, and Param shows surprising effectiveness against DAGER despite failing against optimization-
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based attacks. Table 2 provides a qualitative overview of each metric’s performance to guide selection based
on specific requirements and attack scenarios. Our criteria are:

• Poor: Fails to reach desired protection with average < 60% encryption

• Moderate: Reaches desired protection with average 50-60% encryption

• Good: Reaches desired protection with average 10-50% encryption

• Excellent: Reaches desired protection with average ≤ 10% encryption

Table 2: Qualitative Summary of Significance Metrics Per-
formance Against Different Attacks

Attack Model Sens ProdSig Grad Param

IG LeNet ⋆⋆ ⋆⋆ ⋆⋆ ×
CNN ⋆⋆ ⋆⋆ ⋆⋆ ×

LAMP BERT × ⋆ ⋆⋆ ×
GPT-2 × ⋆⋆ ⋆⋆⋆ ×

DAGER GPT-2 ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
× Poor
⋆ Moderate
⋆⋆ Good
⋆⋆⋆ Excellent

Attn and OneFifth. We summarize the performance of Attn and OneFifth-i against LAMP in Table 3. The
performance against DAGER is not reported here as it cannot recover anything if its target attention layers
are encrypted. Note that the encryption ratio of OneFifth-i is not exactly 0.2 because the embedding layer
is not used and thus not considered for encryption during the iterative reconstruction of LAMP. The results
show that encrypting only the attention layers is insufficient, even though they contain much important
information, and that the second one-fifth portion of the GPT-2 (ignoring the embedding layer) seems to
carry more significance to gradient inversion adversaries.

Figure 2: Target Images

Sens. The selection by sensitivity shows a stable and (nearly) optimal defense performance against Inverting
Gradients and DAGER. However, in some cases against LAMP, encrypting the gradient elements with the
highest sensitivity fails to provide sufficient protection with less than 60% of elements encrypted (see Figure 7
in Appendix A.4).

ProdSig. Our results show that the product significance acts as a stable significance metric in the defenses
against the attacks we consider. As shown in Tabel 4, it provides the second-best protection under Inverting
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Table 3: LAMP Recovers the Training Data on GPT-2 Under Attn and OneFifth (CoLA) Selective Encryp-
tion.

Defense Enc.Ratio EmbedDist ROUGE-1 ROUGE-2
Attn 0.2278 42.7297 ± 20.4964 0.7090 ± 0.1860 0.4111 ± 0.2960

OneFifth-1 0.1392 45.8534 ± 20.6135 0.7732 ± 0.1536 0.5543 ± 0.2474
OneFifth-2 0.1519 40.7201 ± 20.3857 0.7389 ± 0.1625 0.4409 ± 0.2982
OneFifth-3 0.1519 39.2692 ± 20.0363 0.7810 ± 0.1623 0.4690 ± 0.2706
OneFifth-4 0.1519 30.9490 ± 13.5714 0.8578 ± 0.1049 0.6538 ± 0.2453
OneFifth-5 0.0949 31.2776 ± 14.6672 0.8640 ± 0.1032 0.7591 ± 0.1790

Table 4: Grad Requires a Lower Minimum Encryption Ratio Needed to Reach a Desired Protection Level
of ≥ 0.3 for LPIPS on Image Tasks or ≤ 0.2 for ROUGE-1 for Language Tasks.

Sens ProdSig Grad Param

IG LeNet CIFAR100 0.3 0.2 0.2 NA
CNN CIFAR100 0.3 0.3 0.2 NA

LAMP

BERT CoLA NA 0.6 0.4 NA

GPT-2 CoLA NA 0.5 0.1 NA
SST-2 0.6 0.3 0.1 NA

DAGER GPT-2 CoLA 0.005 0.04 0.01 0.002
SST-2 0.002 0.02 0.01 0.002

Gradients and LAMP. In some cases such as Figure 4b in Appendix A.4, it also leads to the largest difference
between the recovered and ground truth image.

Grad. The encryption by gradient magnitude serves as the best defense strategy against Inverting Gra-
dients and LAMP, and its performance against DAGER is also good. Furthermore, it leads to the largest
distance between the recovered and ground truth sequence against LAMP (see Figures 7b, 10b, and 11 in
Appendix A.4.

Param. According to our results, the naive method of using the magnitude of model parameters fails to
protect against optimization-based gradient inversions. This suggests that it may not be a wise choice in
most cases. However, it does show excellent protection against DAGER. This could be because DAGER
relies on a small subset of gradient in the attention layers where the model parameters with large values
tend to concentrate.

Table 5: Grad Yields the Largest Distance Between the Recovered and Ground Truth Data at Encryption
Ratio of 30%.

Sens ProdSig Grad Param

IG LeNet CIFAR 0.063 ± 0.049 0.14 ± 0.07 0.11 ± 0.04 0.01 ± 0.01
CNN CIFAR 0.084 ± 0.041 0.077 ± 0.032 0.087 ± 0.032 0.01 ± 0.01

LAMP

BERT CoLA 10.06 ± 6.20 12.30 ± 8.37 16.34 ± 7.29 10.64 ± 6.99

GPT-2 CoLA 47.17 ± 21.46 49.58 ± 21.15 52.30 ± 21.14 42.76 ± 20.10
SST-2 16.22 ± 2.97 22.37 ± 1.60 25.11 ± 2.34 17.09 ± 3.22

Effects During Reconstruction. We also study the effects of our five selective encryption methods during
the iterative reconstruction steps of gradient inversions. Figure 3 shows the effort of each methods to hold
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back the convergence of the reconstruction loss on a LeNet image example, under different encryption levels.
ProdSig and Grad show the best results in this case. However, this is not the case for all the data points
(see more results including those on CNN in Appendix A.5). This suggests a potential future direction for
evaluating defenses against gradient inversions in terms of reconstruction loss.

0 20 40 60 80 100
Iteration

0.0

0.2

0.4

0.6

0.8

R
ec

on
st

ru
ct

io
n 

Lo
ss

sens
prod_sig
grad
param

(a) Encryption Ratio = 0.1
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(b) Encryption Ratio = 0.2
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(c) Encryption Ratio = 0.3
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(d) Encryption Ratio = 0.4

Figure 3: Reconstruction Loss During Inverting Gradients on LeNet (Image 1)

Furthermore, increasing the encryption ratio generally improves protection, but at the cost of training ef-
ficiency. This trade-off suggests that practical deployments should aim for a balance between encryption
strength and model usability. Additionally, model-specific characteristics influence the effectiveness of differ-
ent encryption strategies, highlighting the need for adaptive approaches tailored to individual architectures.

5.3 Defense Efficiency

Finally, we consider calculation time to obtain the significance metrics (Table 6). The magnitude of gradient
elements and model parameters can be obtained for free, so they are omitted here. For larger models
like BERT and GPT-2, the calculation time of sensitivity can be unacceptably long in our setting, so
here we also include the use of a discrete approximation of the real sensitivity, which instead calculates
(g(x + ei, θ) − g(x − ei, θ)) /2 for each coordinate direction i, and takes the mean over all dimensions. It
is clear that the calculation of sensitivity takes much longer than the other metrics. Even though discrete
approximation greatly reduces the computational overhead of sensitivity, it is still costly for large models
like BERT and GPT-2, as shown in Table 6. Without the discrete approximation, sensitivity calculation is
not even feasible for larger models. We do not include the gradient method as clients must already calculate
gradients, so it does not introduce any additional computational overhead. Since the gradient method is also
the best defense method in general (see Section 5.2), we conclude that it is the best choice in most cases.
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Table 6: Calculation Time for Significance Metrics (CoLA)

Model Layer Num. Calculation Time (s)
Sens Sens (Discrete) ProdSig

LeNet 10 80.70 ± 1.54 11.50 ± 0.06 0.0009 ± 0.00006
CNN 8 1832.13 ± 20.00 10.01 ± 0.15 0.0030 ± 0.00019
BERT 201 - 3425.18 ± 1777.28 0.10 ± 0.27
GPT-2 149 - 2669.81 ± 1610.84 0.07 ± 0.18

6 Discussion

Our comprehensive evaluation across multiple model architectures and attack types provides strong evidence
for the practical effectiveness of selective encryption strategies in federated learning scenarios. However,
several important considerations, including limitations, emerge from our analysis that warrant discussion for
practical deployment.

6.1 Limitations

Still Limited Attack Scenarios. Our evaluation focused on specific attack methods (Inverting Gradients,
LAMP, and DAGER) and model architectures (LeNet, CNN, BERT, and GPT-2). While these represent a
range of important benchmarks, they may not capture the full spectrum of possible attack vectors. Sensi-
tivity, for instance, may still offer defensibility through explainability against other gradient-based attacks
and their combinations. Future evaluations should consider a broader range of attack methods, particularly
as new gradient inversion techniques emerge.

Protection Level Variability. The protection levels achieved by our methods vary significantly across
different samples, as indicated by the high standard deviations in our results (Table 5). This variability
suggests that the effectiveness of our defenses may depend on specific characteristics of the input data or
model. Quantitatively characterizing these dependencies may lead to more effective selection encryption
defenses tailored to specific input data samples.

6.2 Future Work

Adaptive Defense Strategies. Future research could explore adaptive defense strategies that dynami-
cally adjust the encryption method and ratio of encrypted gradient elements based on the specific model
architecture, data characteristics, and perceived threat level. Such adaptive approaches could optimize the
security-efficiency trade-off in different contexts.

Hybrid Significance Metrics. Given that different significance metrics show varying effectiveness against
different attacks, developing hybrid metrics that combine the strengths of multiple approaches could improve
overall defense performance. For instance, a weighted combination of gradient magnitude and product
significance might provide more robust protection across a larger range of model architectures and data
modalities.

Scalability Considerations. Our analysis focuses on single-sample scenarios representing worst-case pri-
vacy threats. In practical federated learning with larger batch sizes, selective encryption effectiveness may
vary. Future work should investigate how batch size affects the required encryption ratios and whether
adaptive strategies can optimize the privacy-utility trade-off in different batch size scenarios.

Advanced Model Architectures. Extending our evaluation to more advanced model architectures, par-
ticularly larger models and multi-modal architectures, would enhance the practical relevance of our findings
in the context of current AI developments.
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7 Conclusion

This work systematically evaluates different encryption strategies for protecting model gradients from inver-
sion attacks. We find that selecting gradient elements based on their magnitude is the most robust defense
against Inverting Gradients and LAMP attacks, while parameter-magnitude-based encryption is highly ef-
fective against DAGER. The results also suggest that encrypting attention layers alone is inadequate and
that strategic selection of vulnerable model components can yield better protection.

These findings emphasize the importance of adaptive encryption strategies that consider attack type and
model architecture. Future work could explore fine-grained layer-wise encryption approaches and assess
trade-offs between encryption efficiency and model utility in real-world federated learning scenarios. Ad-
ditionally, integrating encryption with other privacy-preserving techniques, such as differential privacy or
secure multi-party computation, may further enhance defenses against gradient inversion attacks.
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A Appendix

A.1 Federated Learning

Federated learning was first proposed in McMahan et al. (2017), which builds distributed machine learning
models while keeping personal data on clients. Instead of uploading data to the server for centralized training,
clients process their local data and share updated local models with the server. Model parameters from a
large population of clients are aggregated by the server and combined to create an improved global model.

The FedAvg is commonly used on the server to combine client updates and produce a new global
model (McMahan et al., 2017). At each round, a global model Wglob is sent to N client devices. Each client
i performs gradient descent on its local data with E local iterations to update the model Wi. The server
then does a weighted aggregation of the local models to obtain a new global model, Wglob =

∑N
i=1 αiWi,

where αi is the weighting factor for client i.

Typically, the aggregation runs using plaintext model parameters through a central server (in some cases,
via a decentralized protocol), giving the server visibility of each local client’s model in plaintext.

A.2 Proof of Lemma 4.3

Proof. From the definition of the cross entropy, and supposing k0 is the index of the true label, we can write
g(x, θ) = ∇θL(x, θ) (9)

= −y
(k0)
0 ∇θ log

(
f(x, θ)(k0)

)
. (10)

Applying the fundamental theorem of calculus then gives

log
(

f(x, θ)(k0)
)

− log
(

f(x, θ′)(k0)
)

= −
∫ θ

θ′
g0(θ) · dθ (11)

= −
∫ 1

0
g0(r(t)) · r′(t)dt, (12)

where r : R → Rm is a curve with θ and θ′ as its endpoints. Without loss of generality, we take θ′ = 0 and
r(θ) = tθ for t ∈ [0, 1] and

log
(

f(x, θ)(k0)
)

= −
∫ 1

0
g(x, tθ) · θdt + C (13)

= −
m∑

i=1

∫ 1

0
g(x, tθ)(i)θ(i)dt + C (14)

= −
m∑

i=1
g(x, tµθ)(i)θ(i) + C, (15)

for some tµ ∈ [0, 1]. Under Assumption 4.2 that g(x, θ) varies slowly near θ, we can do the approximation
and yield

log
(

f(x, θ)(k0)
)

≈ −
m∑

i=1
g(x, θ)(i)θ(i) + C. (16)

A.3 Devices Used for Experiments

Devices. For the attack experiments, we use (1) Intel 4-core 2.50GHz Xeon Platinum 8259CL CPU with
16GB memory and NVIDIA Tesla T4, (2) Intel 10-core 2.80GHz i9-10900 CPU with 32GB memory and
NVIDIA GeForce RTX 3090, and (3) AMD EPYC 7R32 8-core 3.30GHz CPU with 32GB memory and
NVIDIA A10G according to the needs. The calculation time measures are all on Intel 2.50GHz Xeon
Platinum 8259CL CPU with 16GB memory and NVIDIA Tesla T4.
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A.4 Defense Effectiveness
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Figure 4: Inverting Gradients on LeNet Under Defenses
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Figure 5: Inverting Gradients on CNN Under Defenses
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Figure 6: Recovered Images by Inverting Gradients on CNN
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Figure 7: LAMP on BERT Under Defenses (CoLA)
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Figure 8: LAMP on BERT Under Defenses (SST-2)
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Figure 9: LAMP on BERT Under Defenses (Rotten Tomatoes)
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Figure 10: LAMP on GPT-2 Under Defenses (CoLA)
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Figure 11: LAMP on GPT-2 Under Defenses (SST-2)
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Figure 12: LAMP on GPT-2 Under Defenses (Rotten Tomatoes)
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Figure 13: DAGER on GPT-2 Under Defenses
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Figure 14: DAGER on GPT-2 Under Defenses
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A.5 Reconstruction Loss During Inverting Gradients on Image Models
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(c) Encryption Ratio = 0.3
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Figure 15: Reconstruction Loss During Inverting Gradients on LeNet (Image 2)
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(c) Encryption Ratio = 0.3
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Figure 16: Reconstruction Loss During Inverting Gradients on LeNet (Image 3)
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Figure 17: Reconstruction Loss During Inverting Gradients on LeNet (Image 4)
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(c) Encryption Ratio = 0.3
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(d) Encryption Ratio = 0.4

Figure 18: Reconstruction Loss During Inverting Gradients on LeNet (Image 5)
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(d) Encryption Ratio = 0.4

Figure 19: Reconstruction Loss During Inverting Gradients on LeNet (Image 6)
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(d) Encryption Ratio = 0.4

Figure 20: Reconstruction Loss During Inverting Gradients on LeNet (Image 7)
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(d) Encryption Ratio = 0.4

Figure 21: Reconstruction Loss During Inverting Gradients on LeNet (Image 8)
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(d) Encryption Ratio = 0.4

Figure 22: Reconstruction Loss During Inverting Gradients on LeNet (Image 9)
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(d) Encryption Ratio = 0.4

Figure 23: Reconstruction Loss During Inverting Gradients on LeNet (Image 10)
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(d) Encryption Ratio = 0.4

Figure 24: Reconstruction Loss During Inverting Gradients on CNN (Image 1)
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(d) Encryption Ratio = 0.4

Figure 25: Reconstruction Loss During Inverting Gradients on CNN (Image 2)
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(d) Encryption Ratio = 0.4

Figure 26: Reconstruction Loss During Inverting Gradients on CNN (Image 3)
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(d) Encryption Ratio = 0.4

Figure 27: Reconstruction Loss During Inverting Gradients on CNN (Image 4)
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(d) Encryption Ratio = 0.4

Figure 28: Reconstruction Loss During Inverting Gradients on CNN (Image 5)

28



Under review as submission to TMLR

0 20 40 60 80 100
Iteration

0.0

0.2

0.4

0.6

0.8
R

ec
on

st
ru

ct
io

n 
Lo

ss
sens
prod_sig
grad
param

(a) Encryption Ratio = 0.1

0 20 40 60 80 100
Iteration

0.0

0.2

0.4

0.6

0.8

R
ec

on
st

ru
ct

io
n 

Lo
ss

sens
prod_sig
grad
param

(b) Encryption Ratio = 0.2

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

R
ec

on
st

ru
ct

io
n 

Lo
ss

sens
prod_sig
grad
param

(c) Encryption Ratio = 0.3
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(d) Encryption Ratio = 0.4

Figure 29: Reconstruction Loss During Inverting Gradients on CNN (Image 6)
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(d) Encryption Ratio = 0.4

Figure 30: Reconstruction Loss During Inverting Gradients on CNN (Image 7)
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(d) Encryption Ratio = 0.4

Figure 31: Reconstruction Loss During Inverting Gradients on CNN (Image 8)
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(d) Encryption Ratio = 0.4

Figure 32: Reconstruction Loss During Inverting Gradients on CNN (Image 9)
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(d) Encryption Ratio = 0.4

Figure 33: Reconstruction Loss During Inverting Gradients on CNN (Image 10)
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