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ABSTRACT

In this paper, we propose a self-supervised video representation learning (video
SSL) method by taking inspiration from cognitive science and neuroscience on
human visual perception. Different from previous methods that focus on the in-
herent properties of videos, we argue that humans learn to perceive the world
through the self-awareness of the semantic changes or consistency in the input
stimuli in the absence of labels, accompanied by representation reorganization
during the post-learning rest periods. To this end, we first exploit the presence of
saccades as an indicator of semantic changes in a contrastive learning framework,
mimicking the self-awareness in human representation learning. The saccades are
generated artificially without eye-tracking data. Second, we model the semantic
consistency in eye fixation by minimizing the prediction error between the pre-
dicted and the true state of another time point. Finally, we incorporate prototyp-
ical contrastive learning to reorganize the learned representations to enhance the
associations among perceptually similar ones. Compared to previous video SSL
solutions, our method can capture finer-grained semantics from video instances,
and the associations among similar ones are further strengthened. Experiments
show that the proposed bio-inspired video SSL method significantly improves the
Top-1 video retrieval accuracy on UCF101 and achieves superior performance on
downstream tasks such as action recognition under comparable settings.

1 INTRODUCTION

Learning without labels is the most common way for humans to get to know the world (DiCarlo et al.,
2012), and it has also been widely studied in machine learning for developing intelligent agents. In
particular, many researchers focus on self-supervised learning (SSL) from dynamic visual input
data, i.e., videos (Hurri & Hyvärinen, 2003; Mobahi et al., 2009; Srivastava et al., 2015), which
comes closest to the natural data perceived by humans. Recently, deep learning based video SSL
methods have also shown superior performance over traditional non-deep learning methods (Wang
et al., 2021a; Duan et al., 2022). However, there is still a large room for improvement considering
the gap between the unsupervised learning abilities of deep learning models and humans.

One notable difference between deep video SSL methods and human unsupervised learning is that
the former typically learn discriminative representations by considering the inherent data properties,
such as the clip order (Misra et al., 2016), the spatiotemporal coherence (Vondrick et al., 2018),
the transformations exerted (Jenni et al., 2020), etc., and propose various pretext tasks accordingly.
While for humans, the self-awareness of the semantic change or consistency in the input stimuli is
essential for learning without labels (Melcher & Colby, 2008). Besides, the encoded representations
in the brain are not left unchanged but kept being reorganized to yield a representation structure
with strengthened associations among perceptually similar representations (Diekelmann & Born,
2010). Fig. 1 shows an overall comparison. This discrepancy inspired us to propose a new video
SSL method by taking inspiration from cognitive science and neuroscience on human visual percep-
tion. Recently, Illing et al. (2021) proposed a bio-inspired unsupervised learning rule that treats the
presence of saccades as a global synaptic modulator. However, it is less powerful due to the inherent
difficulty in optimizing deep networks with layer-wise optimization.

Human visual perception is mainly accomplished by alternating saccade and fixation when the heads
are relatively still. The former is the rapid foveal motion from one target of interest to another,
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Figure 1: Overall comparison. (a) Previous video SSL methods design pretext tasks based on
the inherent properties of videos, while (b) our method explores the presence of saccades as an
indicator of semantic change to mimic the role of self-awareness in human perception. Since it is
relatively expensive to collect real gaze data, we construct artificial saccades for training (§3.1).

while the latter is the period where the eye is kept aligned with one target for processing visual
details. To capture the semantic change in the video, we propose to exploit the presence of saccades
as an indicator of the semantic change and propose a semantic-change-aware contrastive learning
framework. This is inspired by the fact that the human would perform a saccade when a semantic
change occurs in the fixation area. Specifically, the positive pairs are formed by features of the
same fixation location in a video, and the negative pairs are formed by features of different fixation
locations in the same video or features from different videos. Compared to previous contrastive-
based video SSL methods, our method captures finer-grained semantics within the same video. Note
that we manually construct saccades by exerting different fixation masks on the input without using
real gaze data, making our method a general one for any video data without extra supervision.

We further encourage the semantic consistency within a fixation duration by minimizing the predic-
tion error (PE) when using the current state to predict that of another time point in the same fixation
duration. In this way, PE can serve as an extra supervision signal to avoid semantic discrepancy
during semantic-change-aware contrastive learning. This is also biorational, as PE is known as an
important modulator in perception, attention, and motivation control (Den Ouden et al., 2012).

To enhance the association among the previously learned finer-grained semantics, inspired by the
reorganization in human representation learning (Diekelmann & Born, 2010), we incorporate pro-
totypical contrastive learning (Li et al., 2020) to gradually redistribute the representations. The
learned representations are pulled towards their corresponding prototypes and pushed away from
other prototypes. Such post-learning reorganization facilitates grouping unseen input stimuli into
meaningful categories based on similarity, which leads to improved Top-1 retrieval accuracy com-
pared with previous contrastive-based video SSL methods.

In summary, we propose a video SSL framework by taking inspiration from cognitive science and
neuroscience on human visual perception. We first exploit the presence of saccades as an indicator
of semantic change in a contrastive learning framework for modeling the role of self-awareness in
human representation learning. Then, we model the semantic consistency in the input by minimiz-
ing PE between a predicted and the true states of different time points during a fixation. Third,
we incorporate prototypical contrastive learning to reorganize the learned representations such that
the associations among perceptually similar ones would be strengthened after redistribution. Ex-
periments show that the proposed bio-inspired video SSL method significantly improves the Top-1
video retrieval accuracy on UCF101, and achieves superior performance on downstream tasks such
as action recognition. The code and the pre-trained models will be released.

2 RELATED WORK

Self-supervised learning has been studied with various data formats, including image (Wu et al.,
2018; Grill et al., 2020; He et al., 2020; Li et al., 2020), video (Xu et al., 2019; Benaim et al., 2020;
Qian et al., 2021a; Duan et al., 2022), and multi-modal data (Alayrac et al., 2020; Patrick et al.,
2021). In this section, we focus on self-supervised representation learning on videos.

Non-contrastive video SSL methods. Previous video SSL methods mainly learn discrimina-
tive representations by designing various pretext tasks based on the analysis of the inherent spa-
tiotemporal properties of video data. The pretext tasks include figuring out the correct order of
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the clips (Misra et al., 2016; Fernando et al., 2017; Lee et al., 2017; Wei et al., 2018; Xu et al.,
2019), tracking contents across adjacent frames (Wang & Gupta, 2015; Vondrick et al., 2016; Pathak
et al., 2017; Vondrick et al., 2018; Wang et al., 2019b), studying foreground and background robust-
ness (Luo et al., 2017; Wang et al., 2021b;c; Ding et al., 2022), predicting future frames (Vondrick
et al., 2016; Luo et al., 2017; Villegas et al., 2017; Han et al., 2020a; Behrmann et al., 2021), solving
spatiotemporal puzzles (Kim et al., 2019) or video cloze (Luo et al., 2020), learning the spatiotem-
poral statistics of the videos (Wang et al., 2019a; 2021a), recognizing transformations exerted on
the video (Jenni et al., 2020; Duan et al., 2022) , or determining whether a video is played at the
intrinsic speeds (Benaim et al., 2020; Wang et al., 2020; Yao et al., 2020; Chen et al., 2021).

Contrastive video SSL methods. Another line of research adapts spatiotemporal properties into the
contrastive learning framework (Hadsell et al., 2006) by constructing the positive and negative pairs
based on various spatiotemporal cues. More specifically, some methods extend the instance discrim-
ination methods in image SSL (Wu et al., 2018), and directly use clips randomly sampled from the
same video as a positive pair (Han et al., 2020b; Lin et al., 2021; Pan et al., 2021; Qian et al., 2021b;
Yao et al., 2021). Some methods consider the spatiotemporal consistency of video and treat the
predicted and the ground-truth features at the same spatiotemporal location as a positive pair (Han
et al., 2019; 2020a). Some methods relate video understanding to pace reasoning ability, and con-
struct positive pairs by sampling clips with different sampling rates from the same video or sampling
clips with the same pace from different videos (Huang et al., 2021). Some methods construct the
positive pair from both frame-level and video-level representations (Kong et al., 2020; Kuang et al.,
2021). Some others construct positive pairs through spatiotemporal data augmentations (Qian et al.,
2021b; Sun et al., 2021), or exploit motion information for data augmentation (Dwibedi et al., 2019;
Li et al., 2021; Wang et al., 2021b). Our method also belongs to this line of research. However, we
construct positive and negative pairs based on the semantic change indicated by saccades, resulting
in a finer-grained distinction of the semantics from the same video instance.

Comparison with CLAPP. Both the CLAPP model (Illing et al., 2021) and our work exploit the
self-awareness of saccades for self-supervised representation learning, but we differ significantly in
several aspects. First, CLAPP aims to propose a local learning rule for building deep representations
without back-propagation, where each layer is trained independently to predict whether a saccade
happens. While ours utilizes the presence of saccades to construct the positive and negative pairs in
a contrastive learning framework for end-to-end learning. Second, for each layer, CLAPP restricts
the predictions to be similar to its responses to future inputs and as different as possible from its
responses to fake inputs. However, our method minimizes the discrepancies between the predictions
and the future responses in the absence of a saccade for semantic consistency modeling. Third,
besides constructing a saccade by switching the network inputs from one video to another as in
CLAPP, we also consider inter-video saccades, which are realized by intentionally changing the
fixation area on the same video to capture finer-grained semantics. As shown in §4, we significantly
improve over CLAPP for the video recognition task on UCF101.

3 METHOD

As shown in Fig. 2, our method consists of three parts. First, we explore saccades as the indicator of
semantic change in a contrastive learning process (§3.1), where the negative pairs consist of features
before and after a saccade occurs. Second, we model the semantic consistency during fixation by
minimizing the prediction error (PE) between the predicted and the true features of different time
points (§3.2). Third, we perform a post-learning reorganization to strengthen the associations among
perceptually similar representations (§3.3).

3.1 CAPTURING SEMANTIC CHANGE VIA CONTRASTIVE LEARNING

Preparing saccades. The ground-truth gaze data are generally collected using eye-tracking devices,
which requires a lot of manual effort, and usually has personal heterogeneity considering the exact
fixation locations. To mitigate these problems, we propose to construct artificial saccades, and only
consider a representative set of coarse fixation locations. We simulate the receptive field of the fovea
by exerting fixation masks {mi}

Np

i=1 on the input stimuli. The artificial saccades are constructed
by intentionally alternating the fixation masks. To balance the performance and efficiency, we set
Np = 5. The spatial size of fixation area is 1/4 of the whole input as shown in Fig. 3 (a), and the
temporal length is the same as the clip length. More details are presented in §A.1.
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Figure 2: Framework of the proposed bio-inspired video SSL method. Given a video xi, the
positive and negative pairs for semantic-change-aware contrastive learning can be constructed by
exerting the same or different fixation masks m on different clips of the video (§3.1), respectively.
Further, the semantic consistency is modeled by minimizing the prediction error between the pre-
dicted state (ct∗+∆t

ik )pred and the true state of another time point ct∗+∆t
ik (§3.2). Finally, the learned

representations are reorganized through a prototypical contrastive learning process to strengthen the
association among perceptually similar ones (§3.3).

Semantic-change-aware contrastive learning. To capture the semantic change in the presence of
a saccade, we try to make the representations before and after a saccade distinct from each other.
To this end, we treat the representations before and after a saccade as negative pairs, and otherwise
positive pairs. The latent feature space is thus optimized by minimizing the contrastive loss.

Formally, given a training set X= {x1,x2, . . . ,xN} of N videos without category labels, we aim
to learn an embedding function fθ to map X to features V={v1,v2, . . . ,vN}, where vi= fθ(xi)
and vi∈RD is expected to capture the semantics of xi. The semantic-change-aware contrastive loss
is inspired by InfoNCE (Oord et al., 2018; He et al., 2020), and is calculated as follows:

Lcl =
1

N

N∑
i=1

− log
exp(vik · v′

ik/τ)

exp(vik · v′
ik/τ) +

∑
j∈I−

exp(vik · v′
jh/τ))

, |I−| = Nneg. (1)

Here, v′
ik=fθ(x

′
i ⊙mk) is a positive sample for vik=fθ(xi ⊙mk) (⊙ is Hadamard product), x′

i
is obtained by applying commonly-used data augmentations on xi, v′

jh ̸=v′
ik is a negative sample,

I− is the set of indices for Nneg selected negative samples, and k, h ∈ {1, 2, . . . , Np} are indices of
the mask m. Note that a sample is considered positive if and only if j = i and h= k, i.e., they are
from the same fixation region of the same video. By minimizing Eq. (1), the embedding function
fθ is trained to distinguish between finer-grained semantics within a video. Perceptually similar
finer-grained semantics will be further associated together through a reorganization process.

Memory bank. As previously revealed in (Oord et al., 2018; Wu et al., 2018), a large number of
negative pairs is essential for training InfoNCE loss, which is typically restricted by the batch size.
To alleviate this issue, we follow (Wu et al., 2018) and maintain a memory bank V={vi}

N∗Np

i=1 for
different fixation locations of all the videos in the training dataset. Here, N is the number of training
videos, and Np is the number of masks. Similar to (Wu et al., 2018), we initialize V with random
D-dimensional unit vectors and update the slot vi with the latest feature vi as follows:

vi ← (1−m)vi +mvi, (2)

where m∈ [0, 1] is a momentum value. With V, we can rewrite the contrastive learning procedure
and Eq. (1) by replacing the negative samples v′ by their memory bank representations v.

3.2 MODELING SEMANTIC CONSISTENCY VIA MINIMIZING PE

To encourage the semantic consistency between the states of two time points within the a fixation,
given a video xi, we minimize the PE when using cti to predict ct+∆t

i , where c∗i ∈ RCl×(TlHlWl)

4



Under review as a conference paper at ICLR 2023

attention weight
computation

 

value transform        

(a) Exemplar fixation masks (b) Illustration of the prediction module

attention weight
computation

 

value transform
        

(a) (b)

Figure 3: Method details. (a) Exemplar fixation masks for Np=5, which cover the major region
in the visual field. See §3.1) for more details. (b) Prediction module introduced in §3.2), which is
designed as a variant of the self-attention module to capture the spatiotemporal correlations.

is reshaped from the l-th level feature from the backbone fθ whose size is Cl×Tl×Hl×Wl, and
Cl, Tl, Hl,Wl are the feature channel number, the temporal resolution, the height, and the width,
respectively. Note that t is the time point of a clip from xi, and ∆t can be either positive or negative.

The predictor module pθ is designed as a variant of the self-attention module (Bahdanau et al.,
2015; Xie et al., 2021) to capture the spatiotemporal correlations. It first obtains the spatiotemporal
weights based on the element-wise cosine similarity, and then calculates each predicted element as
the weighted sum of the transformed version of all other spatiotemporal elements. An illustration is
shown in Fig. 3 (b). The u-th element of the predicted feature (ct+∆t

i )pred is calculated as:

(ct+∆t
iu )pred =

TlHlWl∑
v=1

a(ctiu, c
t
iv) · g(ctiv), (3)

where a(·, ·) calculates the attention weights as:
a(ctiu, c

t
iv) = ReLU(cos(ctiu, c

t
iv)), (4)

and the transform function g(·) is a linear layer that maps a Cl-dim input to a Cl-dim output. The
semantic consistency is optimized by minimizing the prediction loss defined as follows:

Lpred =
1

N

N∑
i=1

1

TlHlWl

TlHlWl∑
u=1

|ct+∆t
iu − (ct+∆t

iu )pred|. (5)

3.3 REORGANIZING VIA PROTOTYPICAL CONTRASTIVE LEARNING

Inspired by the gradual redistribution and reorganization of memory representations during the post-
learning rest periods (Diekelmann & Born, 2010), after training the whole framework with Lcl
(Eq. (1)) and Lpred (Eq. (5)) to converge, we further perform reorganization through prototypical
contrastive learning (Li et al., 2020) to strengthen the associations among similar representations.

Specifically, we first cluster the representations {vik} for R times to obtain R distinct clustering re-
sults {G(r)}Rr=1, where G(r) contains Q(r) clusters. Then, we randomly pick Q=min{Q(r), Nneg}
clusters from each G(r) to form G(r)′ ={G(r)

q }Qq=1, where the centroid of G(r)
q is o(r)

q . The reorga-
nization loss is calculated as follows:

Lreorg =
1

N

N∑
i=1

1

Np

Np∑
k=1

1

R

R∑
r=1

− log
exp(vik · o(r)

s /ϕ
(r)
s )∑Q

j=0 exp(vik · o(r)
j /ϕ

(r)
j ))

. (6)

Here, G(r)
s is the cluster to which vik is assigned, o(r)

s is the centroid of G(r)
s , and ϕ

(r)
∗ denotes

the concentration estimation of the cluster G
(r)
∗ as in (Li et al., 2020). In this way, the associa-

tions among previously learned finer-grained semantics are further strengthened, which can facilitate
similarity-based categorization for unknown input stimuli.

3.4 LOSS FUNCTION

The overall loss function is a combination of the three loss terms introduced above:
L = Lcl + Lpred + Lreorg, (7)

where the third term only takes effect at the late stage of the training process.
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Table 1: Video retrieval results on UCF101 and HMDB51. All the models are pre-trained on
UCF101. Larger values are better. See §4.2 for details.

Method Backbone UCF101 HMDB51
Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20

Non-contrastive
video SSL methods

VCOP R(2+1)D 10.7 25.9 35.4 47.3 5.7 19.5 30.7 45.8
VCP R(2+1)D 19.9 33.7 42.0 50.5 6.7 21.3 32.7 49.2
PRP R(2+1)D 20.3 34.0 41.9 51.7 8.2 25.3 36.2 51.0
Pace R(2+1)D 25.6 42.7 51.3 61.3 12.9 31.6 43.2 58.0
STS R(2+1)D 38.1 58.9 68.1 77.0 16.4 36.9 50.5 65.4
VCOP R3D-18 14.1 30.3 40.0 51.1 7.6 22.9 34.4 48.8
VCP R3D-18 18.6 33.6 42.5 53.3 7.6 24.4 36.3 53.6
PRP R3D-18 22.8 38.5 46.7 55.2 8.2 25.8 38.5 53.3
Pace R3D-18 23.8 38.1 46.4 56.6 9.6 26.9 41.1 56.1
STS R3D-18 38.3 59.9 68.9 77.2 18.0 37.2 50.7 64.8
TransRank R3D-18 46.5 63.7 72.8 - 19.4 45.4 59.1 -

Contrastive video
SSL methods

MemDPC R18 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.5
MLRep R3D-18 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7

Ours R3D-18 48.5 58.6 65.3 72.1 17.6 35.7 51.4 65.5
R(2+1)D 47.6 58.8 66.2 74.6 19.0 39.7 54.2 82.8

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We conduct experiments on two representative video datasets, namely UCF101 (Soomro
et al., 2012) and HMDB51 (Kuehne et al., 2011). UCF101 consists of 13K videos of 101 action
classes. HMDB51 contains 7K videos from 51 action classes. Both UCF101 and HMDB51 have
three official train/test splits. We pre-trained on the first train split of UCF101 and used the first
train/test split of UCF101 and HMDB-51 for evaluation following (Wang et al., 2020; Qian et al.,
2021a). For the ablation study, we use the first train/test split of UCF101.

Network architectures. We experiment on two backbones that are commonly used in previous
video SSL methods, namely R3D-18 (Hara et al., 2018) and R(2+1)D-18 (Tran et al., 2018). Given
Np randomly sampled 16-frame clips of resolution 112×112 from a video, the backbone outputs
Np D-dim feature vectors, where D=512, and Np=5 is the number of types of fixation masks. We
sample Np clips for a video and ensure that all the Np memory slots for the video can be updated.

Pre-training. The batch size for R3D is 16, and the batch size for R(2+1)D is 14. The two backbones
are trained for 300 epochs on the UCF101 training set using SGD with a momentum of 0.9 and
weight decay of 10−4. The initial learning rate is 0.1 and is decayed by 5 at epoch 90, 180, and 240.
The number of negative samples Nneg =1024. For PE minimization, we set l=5, i.e., the state c∗i
is from the 5-th level of the backbone network, which shows the best balance between accuracy and
efficiency. For reorganization, we use an unsupervised clustering algorithm Faiss (Johnson et al.,
2019), and set R=3, Q(r)=1500 for r=1, . . . , R, and Q=1024 based on ablation study. We train
for another 60 epochs after incorporating Lreorg using SGD with a learning rate of 8−4.

Action recognition. We initialize the backbone using the model parameters obtained in the pre-
training stage except for the last linear layer. We consider two settings: i) linear probe, where only
the last linear layer is trained with cross-entropy loss, and ii) finetune, where the entire network
is finetuned with cross-entropy loss. For linear probe, when training on UCF101, we use SGD
optimizer and trained for 200 epochs with an initial learning rate of 0.1, which is further decayed by
10 at epoch 60, 120 and 180. For HMDB51, we use Adam with a learning rate of 0.001 and trained
to converge. We use batch size 32 for both R3D and R(2+1)D backbones with input resolution 112×
112. For finetune, we use an SGD optimizer and trained for 200 epochs with a large initial learning
rate of 0.1 following (Duan et al., 2022), which is further decayed by 10 at epoch 60, 120, and 180.
The batch size is 32 for both backbones. During training, we apply the same data augmentation
as in (Han et al., 2020b). For evaluation, we uniformly sample 10 clips from one testing video,
perform the center crop, resize them to 112×112, and average the predicted probabilities as the final
prediction, following (Wang et al., 2020; Qian et al., 2021a).
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Figure 4: Top-1 retrieval accuracy comparison before and after reorganization on UCF101.
The reorganization process can improve the Top-1 retrieval performance by 57.4% out of all the
classes, leading to comparative performance of 22.8% out of all. See §4 for more discussions.

Query Top-1 NN Before Reorg. Top-1 NN After Reorg.
JugglingBalls BoxingPunchingBag JugglingBalls

PlayingCello PlayingSitar PlayingCello

Typing CuttingInKitchen Typing

PommelHorse

Query Top-1 NN Before Reorg. Top-1 NN After Reorg.
JugglingBalls BoxingPunchingBag JugglingBalls

PlayingCello PlayingSitar PlayingCello

PommelHorse ParallelBarsPommelHorse

PommelHorse ParallelBars

Figure 5: Qualitative results for video retrieval before and after reorganization. The first two
examples are improved by reorganization, and the third example is a failure case, where the retrieval
result after the reorganization is more similar in appearance while different in semantics. See §4.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

To evaluate the representations learned in the self-supervised pre-training stage, we perform video
retrieval and action recognition and compare them with other state-of-the-art methods.

Video retrieval. We query the k-nearest neighbors of the testing set video clips from the training set.
The pre-trained backbone model (R3D or R(2+1)D) is directly used as a feature extractor without
further finetuning. For each query video, we obtain one 512-d feature vector by extracting and
averaging the features of 10 uniformly sampled clips. We use cosine similarity to measure the
distance of the features for determining the k-nearest neighbors. A correct retrieval is counted when
the k nearest neighbors contain at least one video of the same class with the query video. We report
Top-k retrieval accuracy in Table 1, where k = 1, 5, 10, 20, and compare it with other video SSL
methods pre-trained on the RGB modality of UCF101, including VCOP (Xu et al., 2019), VCP (Luo
et al., 2020), PRP (Yao et al., 2020), Pace (Wang et al., 2020), STS (Wang et al., 2021a), and
TransRank (Duan et al., 2022). As can be observed, our method achieves the best Top-1 retrieval
accuracy on UCF101, and comparable Top-1 performance on HMDB51. Though our method is
slightly inferior to other Top-k values, we argue that the Top-1 metric matters the most in security-
demanded real-world applications such as autonomous driving. Primates including humans are also
more good at giving out one promising guess than several candidates (Freedman et al., 2001).

Compared to previous methods, our method captures finer-grained semantics, which are reorganized
to yield a better representation structure. To see the change of the learned finer-grained semantics
before and after reorganization, we make statistics on the Top-1 retrieval accuracy before and after
reorganization on UCF101 regarding the 101 categories. As shown in Fig. 4, the post-learning
reorganization improves the Top-1 retrieval accuracy for 57.4% of the 101 action categories. For
22.8% categories, the Top-1 retrieval accuracy remains the same. This shows that the redistributed
finer-grained semantics can facilitate similarity based categorization.

We further visualize video retrieval examples that are corrected by reorganization or conversely in
Fig. 5. The first two examples are rectified by reorganization. For the JugglingBalls query clip,
it retrieves a BoxPunchingBag clip with similar foreground and background color, i.e., a person
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Table 2: Action recognition results on UCF101 and HMDB51. The models are pre-trained on
UCF101 with RGB only. ∗ means learning without back-propagation. See §4.2 for details.

Method Backbone Input Size Frozen UCF101 HMDB51
CLAPP∗ (Illing et al., 2021) VGG-5 - ✓ 41.6 -
Object Patch (Hadsell et al., 2006) AlexNet - ✓ 42.7 15.6
Seq Ver. (Misra et al., 2016) CaffeNet - ✓ 50.9 19.8
OPN (Lee et al., 2017) CaffeNet 1×802 ✓ 56.3 22.1
Geometry (Gan et al., 2018) FlowNet - ✓ 54.1 22.6
Bi-Geometry (Gan et al., 2018) FlowNet - ✓ 55.1 23.3
Ours R3D-18 16×1122 ✓ 59.2 32.0
VCOP (Xu et al., 2019) R3D-18 16×1122 ✗ 64.9 29.5
PRP (Yao et al., 2020) R3D-18 16×1122 ✗ 66.5 29.7
STS (Wang et al., 2021a) R3D-18 16×1122 ✗ 70.4 34.9
VCP (Luo et al., 2020) R3D-18 16×1122 ✗ 66.0 31.5
Pace (Wang et al., 2020) R3D-18 16×1122 ✗ 77.1 36.6
MLRep (Qian et al., 2021a) R3D-18 16×1122 ✗ 76.2 41.1
Ours R3D-18 16×1122 ✗ 76.6 43.1
VCOP (Xu et al., 2019) R(2+1)D 16×1122 ✗ 72.4 30.9
PRP (Yao et al., 2020) R(2+1)D 16×1122 ✗ 72.1 35.0
STS Wang et al. (2021a) R(2+1)D 16×1122 ✗ 77.8 40.7
VCP (Luo et al., 2020) R(2+1)D 16×1122 ✗ 66.3 32.2
Pace (Wang et al., 2020) R(2+1)D 16×1122 ✗ 75.9 35.9
Ours R(2+1)D 16×1122 ✗ 78.1 44.8

in black and red background. For the PlayingCello query clip, it retrieves a PlayingSitar
clip that resembles in both appearance and motion. By representation reorganization, such ambigu-
ousness are removed, and clips with the correct action labels are found. However, we also notice
that, for clips with complicated backgrounds, such as PommeiHorse in the third row of Fig. 5,
reorganization tends to make it easier to be mixed up with clips having similar appearance.

Action recognition. We report the Top-1 action recognition accuracy of linear probe (Frozen ✓)
and finetune (Frozen ✗) in Table 2. For a fair comparison, we exclude methods based on much
deeper backbones, with larger input resolution, using multi-model data, or pre-trained on much
larger video datasets such as Kinetics (Carreira & Zisserman, 2017). For linear probe experiments,
our method outperforms all previous video SSL methods pre-trained on UCF101, especially for
CLAPP (Illing et al., 2021), a bio-inspired unsupervised representation learning method without
back-propagation. This clearly demonstrates that our method is a competitive practice of exploring
cognitive inspirations in deep self-supervised representation learning. For the finetune setting, our
method achieves the highest Top-1 accuracy compared with other video SSL methods pre-trained on
the RGB modality of UCF101, showing a good generalization ability of the learned representations.

4.3 ABLATION STUDY

In this section, we assess the effectiveness of the framework design regarding three components: the
semantic-change-aware contrastive learning that utilizes saccade as an indicator (§3.1), the seman-
tic consistency learning by minimizing the prediction error (PE)(§ 3.2), and the reorganization via
prototypical contrastive learning (§3.3). We report Top-1 video retrieval accuracy on UCF101 to
evaluate the learned video representations without further finetuning.

Overall framework design. As shown in Table 3, although increasing the size of the memory bank
benefits the retrieval performance, major improvements are brought by incorporating the three com-
ponents. Specifically, incorporating saccades for constructing negative pairs achieves an absolute
improvement of 1.7 point, and further including PE minimization or post-learning reorganization
leads to an absolute improvement of 0.8 and 2.4, respectively. The full model is 4.3 point higher
than the baseline with a memory bank of the same size. The results clearly demonstrate the effec-
tiveness of each framework design.

Alternatives of artificial saccades. Besides constructing artificial saccades for training, we tried to
incorporate real gaze data in our scheme by resorting to current video saliency prediction datasets
such as DHF1K (Wang et al., 2018), Hollywood-2, and UCF sports (Mathe & Sminchisescu, 2015).
However, those datasets typically contain no more than 1.5K training videos, which are much
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Table 3: Ablation study on framework
design. We report Top-1 video retrieval re-
sults on UCF101 split 1. Here, N is #train-
ing samples and Np is #fixation locations
considered. See §4.3 for details.

No. Saccade Pred. Err. Reorg. Mem. Size Top-1
1 N 39.4
2 N ∗Np 42.5
3 ✓ N ∗Np 44.2
4 ✓ ✓ N ∗Np 45.0
5 ✓ ✓ N ∗Np 46.5
6 ✓ ✓ ✓ N ∗Np 48.5

Table 4: Ablation study on reorganization pa-
rameters assessed by Top-1 retrieval accuracy on
UCF101 split 1. Here, R is #cluster results, and
Q(r) is #clusters in the r-th result. ∗ denotes updat-
ing prototypes every epoch. See §4.3.

No. R Q(r) Top-1 No. R Q(r) Top-1
1 0 40.8 7 3 500 1000 1500 41.7
2 1 500 41.5 8 3 1000 1000 1000 42.2
3 1 1000 42.1 9 3 1500 1500 1500 42.3
4 1 1500 42.0 10 3 1000 1500 2000 41.8
5 1 2000 41.9 11 3 1500 1500 1500 41.0∗

6 1 2500 41.3 12 3 1500 1500 1500 41.4∗

smaller than video SSL datasets such as HMDB51 and UCF101. Besides, the distribution of the
videos in the saliency prediction datasets are typically not the same as that of the videos used for
SSL training. Thus, it is hard for our SSL method trained on video saliency prediction datasets to
achieve competitive performance when evaluated on downstream tasks.

To mitigate the above-mentioned problems, we resort to saliency models pre-trained on real gaze
data for egocentric (Huang et al., 2018) or third-person videos (Droste et al., 2020), which are
promising to provide an approximation of real gaze data. Considering that UCF101 contains third-
person videos, we utilize UNISAL (Droste et al., 2020) to predict visual saliency maps for UCF101,
and then use these maps to guide the construction of saccades during training. The fixation mask of
a video clip is determined by the majority of the corresponding visual saliency maps. Since more
than 90% of the resulted fixation masks are center masks, to mitigate such distribution center bias,
we randomly perturb the fixation mask labels with a probability of 0.5. To assess the effectiveness
of the saccades, we train the baseline with saccades for 300 epochs on UCF101. The model achieves
45.1% Top-1 retrieval accuracy on UCF101, which is slightly better than 44.2%, the Top-1 accuracy
of the one trained with artificial saccades as reported in Table 3. It is promising that a comparable
amount of real gaze data would also bring in such benefits in our video SSL framework.

Reorganization parameters. To better reorganize the learned finer-grained semantics, we experi-
ment on two key parameters introduced in §3.3, namely the number of cluster results R, the number
of clusters in each result Q(r), as well as the clustering frequency and the number of warmup epochs.
All the baselines are trained on UCF101 for 100 epochs using SGD. The learning rate is 0.1 and is
decayed by 5 at epoch 30, 60 and 80. The results are shown in Table 4. For the first ten baselines, the
reorganization loss Lreorg is incorporated at epoch 61, and the prototypes are updated every 5 epochs.
For baseline 11 and 12, Lreorg is introduces at epoch 2 and 61, respectively, and the prototypes are
updated every epoch. As can be observed, reorganization can consistently improve the Top-1 re-
trieval accuracy for a wide range of R and Q(r). However, it is recommended to start prototypical
learning later when the finer-grained semantics are relatively better captured, with less frequent pro-
totype updates. In our full experiments where the models are trained for 300 epochs, we set R=3
and Q(r)=1500 for r=1, · · · , R, and update prototypes every 5 epochs since epoch 181.

5 CONCLUSION

In this work, we propose a video SSL method by taking inspiration from cognitive science and
neuroscience on human visual perception. Instead of designing pretext tasks based on the inherent
properties of videos, we explore the presence of saccades as an indicator of semantic change in a
contrastive learning framework to mimic the role of self-awareness in human perception. To achieve
semantic consistency in the absence of a saccade, we minimize the prediction error when using the
state of a time point to predict that of another time point during a fixation. Finally, we strengthen the
associations among similar representations through a post-learning reorganization process. Com-
pared to previous contrastive learning based video SSL methods, our method learns more powerful
representations by first making finer-grained distinctions for semantics in a video instance, and then
associating similar semantics across different video instances through a reorganization process. Se-
mantic consistency between the states of two time points within the same fixation is encouraged by
minimizing the prediction error of using the earlier state to predict the later state. The proposed
bio-inspired video SSL method achieves superior Top-1 video retrieval accuracy on UCF101 and
outperforms other methods on the action recognition tasks.
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A APPENDIX

In this section, we present more details of saccades preparation in §A.1, and study more configura-
tions on fixation masks in §A.2.

A.1 DETAILS OF PREPARING SACCADES

The presence of a saccade indicates a semantic change in the stimuli that fall in the receptive field
of the fovea (denoted as “fixation area” in our paper). In view of this, we proposed to manually
determine such receptive fields using fixation masks. Thus, the change of the fixation mask, i.e.,
a “saccade” in our design, reasonably indicates a semantic change of the stimuli in the fixation
area, which inspires the design of our semantic-change-aware contrastive learning framework. The
procedure for generating artificial saccades is detailed as follows.

We first determine the fixation locations by considering two aspects: i) the fixation locations are
better to be evenly distributed since humans may attend to anywhere in the scene, and ii) the central
region of the input shall be covered considering the center bias in free-viewing visual saliency (Tseng
et al., 2009). To balance the performance and efficiency, in our experiments, we divide the mage
into 2! ×2 grids, and take their centroids and the centroid of the entire image, which gives Np =5
locations in total. We also experiment on 9 fixation masks which corresponds to 9 fixation locations
centered in the 3×3 grids, which is shown in §A.2.

Then, since the human eye can be viewed as an optical imaging system, we consider the generalized
pupil function of an ideal imaging system and design the fixation mask as a binary mask where the
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Figure 6: Exemplar fixation masks of various spatial sizes for (a) Np=5 and (b) Np=9, respec-
tively. See §A.1 for more details.

Table 5: Ablation study on fixation mask configurations. We report Top-1 video retrieval results
on UCF101 split 1. The best values are boldfaced. The value of default settings are underlined. See
§A.2 for more discussions.

Spatial size of fixation area
5% 11% 15% 20% 25% 30% 35% 40% 45% 50%

Np=5 43.3 44.7 44.3 44.4 44.2 45.0 45.9 44.8 44.9 44.8
Np=9 43.5 44.3 44.7 45.2 43.9

value is 1 at every point within the fixation area and 0 otherwise. The fixation area, i.e., the receptive
field of the fovea, is represented using a rectangle centered at a fixation location that has the same
aspect ratio as the input. In our experiments, we set the spatial size of the fixation area as 25% of
the entire image size. We also explore the impact of different spatial sizes and numbers of fixations
in §A.2. Exemplar fixation masks are shown in Fig. 6.

Finally, we construct an artificial saccade by manually assigning two different fixation masks to
two video clips, which guarantees that the two fixation masks before and after an artificial saccade
capture different visual receptive fields in the input scene. The two different fixation masks are
randomly picked from Np pre-defined fixation masks.

A.2 FURTHER STUDY ON FIXATION MASKS

In this section, we study the effect of the spatial size of the fixation areas and the number of fixations
Np used for constructing artificial saccades. We train the baseline with saccades only instead of the
full model on UCF101 split 1 for 100 epochs. The Top-1 retrieval accuracy on UCF101 of Np =5
and Np=9 with various spatial sizes are show in Table 5.

As can be observed, the Top-1 retrieval performance first increases and then decreases as the spatial
sizes of the fixation area becomes larger. The optimal spatial sizes are 35% and 20% for Np=5 and
Np=9, respectively. This is because that the information fall in the visual receptive field increases
with the fixation area, and more information is beneficial for representation learning. However,
when the overlap among different fixation areas enlarges, unintentional perturbations would be in-
troduced, which impedes finer-grained semantic learning. Thus it is crucial to determine the optimal
overlapping for different Np values.
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