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Joanna Waczyńska 1 2 Tomasz Szczepanik 1 Piotr Borycki 1 Sławomir Tadeja 3 Thomas Bohné 3

Przemysław Spurek 1 4

Abstract
Implicit Neural Representations (INRs) approxi-
mate discrete data through continuous functions
and are commonly used for encoding 2D images.
Traditional image-based INRs employ neural net-
works to map pixel coordinates to RGB values,
capturing shapes, colors, and textures within the
network’s weights. Recently, GaussianImage has
been proposed as an alternative, using Gaussian
functions instead of neural networks to achieve
comparable quality and compression. Such a so-
lution obtains a quality and compression ratio
similar to classical INR models but does not allow
image modification. In contrast, our work intro-
duces a novel method, MiraGe, which uses mirror
reflections to perceive 2D images in 3D space
and employs flat-controlled Gaussians for precise
2D image editing. Our approach improves the
rendering quality and allows realistic image mod-
ifications, including human-inspired perception
of photos in the 3D world. Thanks to modeling
images in 3D space, we obtain the illusion of
3D-based modification in 2D images. We also
show that our Gaussian representation can be eas-
ily combined with a physics engine to produce
physics-based modification of 2D images. Conse-
quently, MiraGe allows for better quality than the
standard approach and natural modification of 2D
images.

1. Introduction
Recent research has increasingly emphasized human per-
ception and the understanding of the world through this lens
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Figure 1. MiraGe encodes 2D images with parameterized Gaus-
sians, enabling high-quality reconstruction and real-life-like modi-
fications. The selected parts of the image can be transformed in
3D space, creating a 3D effect with a physics engine controlling
movement and interactions.

(Lu, 2019; Davoodi et al., 2023). In line with this trend, we
introduce a model that encodes 2D images by simulating
human interpretation. Specifically, our model perceives a
2D image as a human would view a photograph or a sheet
of paper, treating it as a flat object within a 3D space. This
approach allows for intuitive and flexible image editing,
capturing the nuances of human perception while enabling
complex transformations (Fig. 1).

Gaussian Splatting (3DGS) framework models the structure
of a 3D scene using Gaussian components (Kerbl et al.,
2023). In the 2D domain, GaussianImage (Zhang et al.,
2024) has shown promising results in image reconstruc-
tion by efficiently encoding images in the 2D space, with a
strong focus on model efficiency and reduced training time.
Unfortunately, GaussianImage does not support user-driven
adjustments of scene objects, which is a key feature of
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Figure 2. MiraGe employs 3D flat parameterized Gaussians in 3D space to encode 2D images, representing each flat Gaussian as three
points, forming a cloud of triangles called a triangle soup. This representation enables real-time manipulation of the 3D triangle/point
clouds, allowing for flexible, real-world modifications. The model seamlessly integrates with a physics engine, enhancing its applicability
in dynamic environments.

3DGS. While GaussianImage has explored image represen-
tation using 2D Gaussians primarily for data compression,
our research highlights an additional benefit, i.e., the use
of parameterized flat 3D Gaussians for editing 2D images.
In our work, we address this by introducing the MiraGe1,
model, which encodes 2D images through the lens of human
perception, bridging the gap between 2D image representa-
tion and 3D spatial understanding (Fig. 2).

Building on the foundational idea that humans intuitively
can perform transformations on photographs–primarily
through affine transformations and bending them beyond the
2D plane–we introduce a novel approach using flat Gaus-
sians with GaMeS parametrization (Waczyńska et al., 2024).
This capability enables our model to support image editing
in both 2D and 3D spaces. Notably, our framework sim-
plifies often difficult perspective adjustments by allowing
intuitive modifications directly within the third dimension
(Fig. 3).

In addition to classical edits, our model has the unique capa-
bility of interfacing with physics engines, enabling applica-
tions that enhance the realism and immersiveness of anima-
tions (Jiang et al., 2024). MiraGe treats the physics engine
as a black box and offers three distinct methods for control-
ling Gaussians, i.e., 2D, Amorphous and Graphite. For 2D
representation (2D-MiraGe) we used Taichi_elements2, for
3D representation (Amorphous-MiraGe, Graphite-MiraGe)

1https://waczjoan.github.io/MiraGe/
2https://github.com/taichi-dev/taichi_

elements

Figure 3. Parameterized flat 3D Gaussians provide a powerful rep-
resentation of 2D images, enabling flexible editing in 3D space.
Triangle Soup can be animated using tools like Blender. The col-
ored lines depict the motion paths of 10 randomly selected points
during the simulation.

we use Blender3. This flexibility makes our model highly
applicable to various fields, such as computer graphics for
populating spatial interfaces, where realistic, physics-factual
2D animations can be incorporated (Tadeja et al., 2023).

Embedding 2D images in 3D space allows for seamless in-
tegration of 2D and 3D objects, enabling the creation of dy-
namic backgrounds or interactive elements within animated
scenes. This versatility extends to applications such as vir-
tual reality, where 2D images can function as backdrops
(Yin et al., 2024). This capability opens up new avenues
for creative composition, offering a powerful toolset for

3https://www.blender.org version 3.6
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Figure 4. Two images were encoded using the MiraGe model on
distinct planes within a 3D space. This setup allows for seamless
integration of the encoded images, resulting in a collage-like com-
position. Moreover, the model facilitates editing capabilities, as
illustrated here, with modifications to the background image (the
rear plane).

users. The novelty of this work lies in its ability to enable
easy, intuitive 3D transformations and integrations within a
traditionally 2D framework, expanding the possibilities for
both image editing and animation (Fig. 4).

Since high-quality image reconstruction is critical in anima-
tion, we compared MiraGe with other models, in particular
with GaussianImage (Fig. 5), showing our state-of-the-art
performance in the image reconstruction task.

It is worth highlighting that flat 3D Gaussians can be utilized
for 2D images in four distinct scenarios, with modifications
that emphasize how controlling the Gaussians during train-
ing affects the perspective of viewing each image (Fig. 6).
The following constitutes a list of our key contributions:

• We introduce the MiraGe model, which represents 2D
images using flat 3D Gaussian components, achieving
state-of-the-art reconstruction quality.

• MiraGe enables the manipulation of 2D images within
3D space, creating the illusion of 3D effects.

• We integrate MiraGe with a physics engine, enabling
physics-based modifications and interactions for both
2D and 3D environments.

2. Related Works
Our work builds on several key research areas, including
image reconstruction techniques, Gaussian-based represen-
tations and Gaussian animation frameworks.

One rapidly growing area in image reconstruction is Im-
plicit Neural Representations (INRs), which have attracted
significant attention for their ability to model continuous
signals, such as images, through neural networks (Klocek
et al., 2019). INRs encode spatial coordinates and map
them to corresponding values, such as RGB color, allowing

Figure 5. Visual comparison of two Gaussian-based methods for
2D image reconstruction. From left to right, the columns display
the ground truth image, the GaussianImage reconstruction, and the
MiraGe reconstruction. The bottom row illustrates the differences
between the ground truth image and the results of each method.

for highly compact and efficient representations (Xie et al.,
2022). This has led to the development of several special-
ized models for image INR, such as SIREN (Sitzmann et al.,
2020a), Fourier feature mapping (Tancik et al., 2020), and
WIRE (Saragadam et al., 2023a). The growing field of re-
search resulted in further improvements of already existing
solutions, e.g. in (Liu et al., 2024b), certain limitations of
SIREN, namely the arising capacity-convergence gap, were
successfully alleviated with the idea of variable-periodic
activation functions. Yet another worth noting work from
this area is (Müller et al., 2022) with INR solution designed
to effectively perform on modern computer architecture uti-
lizing a simple data structure concept of hashmap to offer
speed-oriented image representation with high fidelity of
the outcomes.

Alternative approaches to INRs were presented in Gaus-
sianImage (Zhang et al., 2024). Instead of neural networks,
the authors propose to approximate 2D images using 2D
Gaussian components. In practice, GaussianImage is a 2D
version of 3DGS (Kerbl et al., 2023) that uses 2D Gaussians
instead of their 3D version and a simplified rendering proce-
dure. Thanks to such a modification, the GaussianImage is
invariant to the order of Gaussian components. Therefore,
such a model is numerically efficient.

GaussianImage represents each pixel color as a weighted
sum of 2D Gaussians. The training procedure is similar to
3DGS without pruning. The authors show that such repre-
sentation gives a similar reconstruction quality to classical
INR models and is able to obtain a high compression ratio
and fast rendering.

The interactive image editing of 2D images has been widely
explored in computer graphics. Here, some methods lever-
age the current advancements in generative models. For
instance, (Pan et al., 2023) introduce DragGAN, enabling
point-based manipulation of images by performing them on
the underlying manifold of GAN, achieving realistic edits.
Similarly, (Shi et al., 2023) propose DragDiffusion, which
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Figure 6. We demonstrate three approaches for Gaussian control: Amorphous, 2D, and Graphite. As a baseline, we utilize a single camera
from the Amorphous setup. After applying perspective editing in 3D, the image shows noticeable deformation. In contrast, no deformation
is observed when employing an additional camera. The model employs a mirror setup during training, with the Amorphous configuration
achieving the best results for image reconstruction and 3D analysis. The 2D model represents images on a single plane. The Graphite
model operates across multiple planes, making it ideal for 3D spatial reasoning and image combination.

extends the previous framework to diffusion models, enhanc-
ing the control and applicability of image editing. On the
other hand, (Jacobson et al., 2011) propose bounded bihar-
monic weights for linear blending, which produce smooth
and intuitive deformation for handles of arbitrary topology.
(Wang et al., 2015) further advances this field by proposing
linear subspace design, unifying linear blend skinning and
generalized barycentric coordinates to provide a practical
way of controlling deformations.

The representation and editing of objects using Gaussians is
a well-explored topic in 3D graphics. In this field, meshes
can be modified to simulate Gaussian editing (Guédon &
Lepetit, 2024; Huang et al., 2024), or Gaussians can be di-
rectly parameterized and manipulated to achieve specific

outcomes (Waczyńska et al., 2024; Waczyńska et al., 2024).
This approach enables flexible and continuous deformations,
offering an intuitive method for controlling object shapes
and rendering properties, which has proven particularly use-
ful in tasks like texture mapping, surface smoothing, and
dynamic simulations.

Gaussians enable precise and flexible editing of objects, pro-
viding continuous control over shapes and transformations.
Moreover, integrating physics engines enhances these ca-
pabilities, allowing for more sophisticated and physically
consistent modifications, such as simulating realistic inter-
actions, deformations and movements in 3D environments.
(Xie et al., 2024; Borycki et al., 2024).
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Figure 7. Integration of MiraGe with MPM enables realistic 2D
image alterations. The first column shows the original image, the
next two capture mid-simulation renders, and the last presents the
final result with colored lines tracking point trajectories.

3. MiraGe: Editable 2D Images using
Gaussian Splatting

Here, we describe in detail the inner workings of our MiraGe
model. We start by presenting classical 3DGS. Next, we
present GaMeS-based (Waczyńska et al., 2024) parametriza-
tion of flat Gaussians. In the end, we present our MiraGe
and how it relates to prior works.

3D Gaussian Splatting 3DGS models 3D scene by a set
of Gaussian components with color and opacity:

G = {(N (mi,Σi), σi, ci)}pi=1,

defined by their mean (position) mi, covariance matrix Σi,
opacity σi, and color ci, which is represented using spherical
harmonics (SH) (Fridovich-Keil et al., 2022).

During the rasterization stage, the 3DGS produces a sorted
Gaussian list based on the projected depth information.
Then, the α-blending method is used to create the image.
We refine the Gaussian parameters, color, and opacity in the
training phase according to the reconstruction cost function.
The optimal number of Gaussians required to represent a
given object is not known a priori, and it is non-trivial to
adjust the number of Gaussians. Hence, the initial number
of Gaussians is a parameter of the method. The authors
implement additional strategies for reducing and multiply-
ing Gaussians. Gaussians with low opacity are removed,
while those that change rapidly during optimization are mul-
tiplied. These strategies make the 3D Gaussian approach
very efficient and capable of generating high-quality ren-
ders. We used this strategy to reconstruct 2D images, which
distinguishes us from GaussianImage.

Figure 8. Visual comparison of image editing techniques, demon-
strating the effectiveness of representing 2D images with parame-
terized Gaussians applied to Triangle Soup. This approach enables
highly realistic animations, achieving results comparable to those
of generative models. Specifically, local editing operations pre-
serve fine details, such as a dimple on a face, without affecting un-
related regions. Moreover, we can achieve precise manipulations,
including subtle edits like closing a lion’s mouth, underscoring the
flexibility and control inherent in our method.

Figure 9. Comparison of PSNR obtained on a butterfly image from
DIV2K dataset by MiraGe, GaussianImage and GS. Vertical lines
represent iteration, where MiraGe obtained better results than
GaussianImage, the time in min:sec format above each line is the
training time until this iteration.

GaMeS Parametrization of Gaussian Component In Mi-
raGe, we use flat Gaussian components in 3D space. In
such a model we use Gaussian components with a covari-
ance matrix Σ, factored as: Σ = RSSRT , where R is the
rotation matrix, and S is a diagonal matrix containing the
scaling parameters. However, we force one of the scale
parameters to be zero. Consequently, we obtain a collection
of flat Gaussian:

G = {(N (mi, Ri, Si), σi, ci)}pi=1, (1)

where S = diag(s1, s2, s3), with s1 = ε, and R is the ro-
tation matrix defined as R = [r1, r2, r3], with ri ∈ R3. In
such a case, we can use GaMeS parametrization to represent
flat Gaussian by triangle-face mesh. This mapping is de-
noted by T (·). When applied, this parametrization generates
a set of triangles labeled as triangle soup.

To outline the GaMeS parametrization, consider a Gaus-
sian component N (m, R, S), characterized by the mean
m, the rotation matrix R = [r1, r2, r3] and the scaling ma-
trix S = diag(ε, s2, s3). Then its face representation N (V )
is based on a triangle: V = [v1,v2,v3] = T (m, R, S)
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with the vertices defined as: v1 = m, v2 = m +
s2r2, and v3 = m+ s3r3. Conversely, given a face (tri-
angle) representation V = [v1,v2,v3], we can recover the
Gaussian component N (m̂, R̂, Ŝ) = N (T −1(V )) through
the mean m̂, the rotation matrix R̂ = [r̂1, r̂2, r̂3], and the
scaling matrix Ŝ = diag(ŝ1, ŝ2, ŝ3), where the parameters
are defined by the following formulas:

m̂ = v1, r̂1 =
(v2 − v1)× (v3 − v1)

∥(v2 − v1)× (v3 − v1)∥
,

r̂2 =
(v2 − v1)

∥(v2 − v1)∥
, r̂3 = orth(v3 − v1; r1, r2),

s1 = ε, ŝ2 = ∥v2 − v1∥, and ŝ3 = ⟨v3 − v1, r̂3⟩.

Here orth(·) denotes a single step of the Gram-Schmidt
process (Björck, 1994). Accordingly, the corresponding
covariance matrix of a Gaussian distribution is given as
Σ̂ = R̂ŜŜR̂T .

The parametrization enables control over the Gaussians’
position, scale, and rotation by manipulating the underlying
triangle mesh. Applying transformations to the triangle
directly alters the corresponding Gaussian.

MiraGe In this work, we present an approach that lever-
ages the concept of flat Gaussian distributions in 3D space
to model a single 2D image as input. Our methodology
is grounded in human visual perception. This perspective
allows us to reframe the problem: instead of merely process-
ing a pixel matrix, we interpret the images as objects with a
fixed spatial configuration in a 3D environment.

We put the 2D image on the XZ plane where the center
is situated at axes origin (0, 0, 0) with the fixed distance
from the camera origin. In practice, the distance from the
plane is a hyper-parameter. In our approach, we model
flat objects within 3D space, where the camera distance
parameter effectively controls the perceived scale of the
object. This relationship allows for intuitive adjustments of
object size based on the desired visual effect. For instance,
increasing the camera distance can naturally expand the
apparent size of background elements like distant mountains
(Fig. 4), making it easier to represent them as larger objects
without additional modeling complexity. While this feature
is beneficial, it is not strictly necessary for most applications.

We propose a method that situates the Gaussians within
the XZ plane, ensuring that the entire image remains vis-
ible under perspective projection. To achieve this, the
possible range of x-values and z-values is calculated us-
ing the camera field of view. We first calculate the devia-
tion from 0 on the X axis using the similarity of triangles
devz = camdist · tan( 12Fovvert), where camdist and Fovvert
are camera distance from the XZ plane and camera field of
view respectively. The deviation in the X axis can be then

computed by multiplying this value by the camera aspect
ratio.

Consequently, the initialization of Gaussians is consistently
performed on the XZ plane; however, we have opted to
permit their movement within the 3D space. Drawing in-
spiration from three distinct models, we introduce three
conceptual approaches for manipulating the spatial position-
ing of Gaussians.

Amorphous The baseline approach how to control Gaus-
sians is based on the classical GaMeS parametrization, ini-
tialized randomly on the XZ plane, with the mean parame-
ter’s y coordinate set to zero:

G = {(N ([m1, 0,m3], [r1, r2, r3],diag(ε, s2, s3)), σi, ci)},
(2)

where m = [m1, 0,m3] S = diag(s1, s2, s3), with s1 = ε,
and R is the rotation matrix defined as R = [r1, r2, r3],
with ri ∈ R3.

It should be highlighted that we only initialized the Gaussian
component on the XZ plane. During training, Gaussians
can move amorphously in 3D space. We use the classical
loss function L1 combined with a D-SSIM term:

L = (1− λ)L1(I,GS(I)) + λLD−SSIM (I,GS(I)),

where I is the input image and GS(I) is the constraint ob-
tained by the Gaussian renderer. While this solution enables
the modeling of images using a collection of triangles, often
referred to as “triangle soup,” it proves insufficient for high-
quality representations. During editing, significant artifacts
emerge (Fig. 6–Baseline).

2D Building on the promising outcomes of GaussianIm-
age we anchored all Gaussians to the XZ plane, translating
flat image geometry into a spatial framework. We set the
mean of these components to zero in the second coordinate.
Moreover, we use the projection of flat Gaussians on a 2D
plane. Unfortunately, orthogonal projection can produce
artifacts. Therefore, we use a rotation of Gaussian compo-
nents to lay on the XZ plane. Since we use flat Gaussians to
extract such rotation, we can use a rotation matrix between
two vectors to align the vector in 3D (Markley, 1993). We
use the notation Rot(a, b) for the rotation matrix.

MiraGe on 2D plane is defined by set of 3D parameterized
Gaussian components:

G = {(N (m, Ri Rot(r3, e2), S, σi, ci)},

where S = diag(s1, s2, s3), with s1 = ε, e2 = [0, 1, 0],
m = [m1, 0,m3], and Ri is the rotation matrix defined as
Ri = [r1, r2, r3], with ri ∈ R3.

Graphite Unfortunately, 2D-MiraGe produces artifacts
when we use modification in 3D space (see the third row in
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Figure 10. We compare the animation capabilities of MiraGe a
DragGAN model, highlighting the advantages of our Gaussian-
based image representation. This approach enables highly realistic
edits by not relying on generative techniques. Our method offers
greater control during animation. For example, adjusting the posi-
tion of a leg does not inadvertently alter facial features.

Fig. 6). Such an effect is coursed by the Gaussians, which
appear randomly according to the camera position. To solve
such a problem and obtain the possibility of 3D modifica-
tions, MiraGe allows the Gaussians to leave the XZ plane:

G = {(N (m+ γe2, Ri Rot(r3, e2), S, σi, ci)},

where γ is trainable parameter of translation scale
along the vector e2 = [0, 1, 0], m = [m1, 0,m3],
S = diag(s1, s2, s3), with s1 = ε, and Ri is the rotation
matrix defined as: Ri = [r1, r2, r3], with ri ∈ R3. Such a
model allows for the order of Gassians according to camera
positions.

By leveraging parameterized Gaussians, we achieved pre-
cise manipulation of 2D images directly within their native
2D space, enabling targeted edits of segmented regions
and transformations of complete scenes in an easier way.
While this approach demonstrated substantial promise, we
observed significant artifacts when extending manipulations
into the 3D domain, particularly along the Y -axis, see first
and last row in Fig 6.

Mirror camera We employ a novel approach utilizing two
opposing cameras positioned along the Y axis, symmetri-
cally aligned around the origin and directed towards one an-
other. The first camera is tasked with reconstructing the orig-
inal image, while the second models the mirror reflection.
We introduced the mirror camera to ensure that Gaussians
remain confined within a specific spatial region between the
cameras, enhancing control and precision.

The reflection can be effectively represented by horizontally

Figure 11. MiraGe model allows modifications in 3D space, but
the model is limited by 2D images, which was used in training.
When we move some elements from the foreground, we cannot see
the background since the model only reconstructs objects. Next,
we can use image Inpainting to fill the missing parts, allowing for
more realistic modifications.

flipping the image, denoted as M(I). This mirror-camera
setup enhances the fidelity of the generated reflections, pro-
viding a robust solution for accurately capturing visual el-
ements. We consider the additional camera as a means
of augmenting the dataset to improve the accuracy of the
representation. The MiraGe is initialized according to equa-
tion Eqn. 2 and utilizes a cost function: L(I) + L(M(I)).
We simultaneously model both the image and its mirrored
reflection, as shown in the second row in Fig. 6. We pro-
vide numerical comparisons in the ablation study in the
Appendix.

After thorough experimentation, we find that our model,
Amorphous-MiraGe, utilizing a mirror camera, achieves
state-of-the-art reconstruction results. This model demon-
strates significant advantages over alternative methods in
terms of both performance and outcome quality.

Editability The ability to manipulate Gaussians based on
their spatial positioning empowers MiraGe to effectively
edit 2D images. When utilizing a mirror camera, the quality
of the resulting images is sufficiently high, enabling the pa-
rameterization and animation of Gaussians to significantly
reduce artifacts. Our findings demonstrate that our model fa-
cilitates the animation of both segmented objects and entire
scenes. Users can create manual animation or leverage auto-
mated processes using physics engines like Taichi_elements
or Blender (Fig. 3,7). To incorporate MiraGe with the 2D
physics engine, we use 2D-MiraGe (Fig. 7). In Fig. 8,
we demonstrate that our method can also be applied to edit
more complex scenes, such as changing human expression.

We argue that the Graphite-inspired model allows the cre-
ation of attractive compositions made of multiple images
that effectively present the positive attributes of the layered
structure, like Graphite, through the strategic positioning of
Gaussians.
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Table 1. Quantitative comparison with various baselines in PSNR and MS-SSIM. MiraGe gives state-of-the-art results. Model-x denotes
that the model was initialized with x Gaussians. The metrics for the baselines were taken from (Zhang et al., 2024); however, we re-ran
the experiments for GaussianImage (GI) -70K (GI-70K) and our model using a V100 GPU to ensure a more reliable comparison. Those
experiments are denoted in the following table by asterisk next to the method name.

Kodak dataset DIV2K dataset

PSNR ↑MS-SSIM ↑Train Time(s) ↓PSNR ↑MS-SSIM ↑Train Time(s) ↓
WIRE 41.47 0.9939 14339 35.64 0.9511 25684
SIREN 40.83 0.9960 6582 39.08 0.9958 15125
I-NGP 43.88 0.9976 491 37.06 0.9950 676
NeuRBF 43.78 0.9964 992 38.60 0.9913 1715
3DGS 43.69 0.9991 340 39.36 0.9979 481
GaussianImage-70k 44.08 0.9985 107 39.53 0.9975 121
GaussianImage-70k* 44.12 0.9985 116 39.53 0.9975 112
GaussianImage-100k* 38.93 0.9948 126 41.48 0.9981 120
MiraGe-70k; 5k iter (our) 49.07 0.9993 57 44.37 0.9989 75
MiraGe-100k; 5k iter (our) 51.04 0.9995 59 46.23 0.9992 79
MiraGe-70k; 30k iter (our) 57.41 0.9998 547 53.22 0.9996 789
MiraGe-100k; 30k iter (our) 59.52 0.9999 560 54.54 0.9998 946

Figure 12. Comparison between PhysGen (Liu et al., 2025) and
MiraGe. In the animation of a red block, reasonable doubts related
to the correctness of the simulated physics of PhysGen arise when
a reader follows the behavior of a red element upon hitting the wall;
contrary to everyday experience, the front part (instead of the back
part) of the figure bounces off the tabletop. In another animation,
domino pieces start overlapping throughout the simulation. Our
renders have properly solved the mentioned issues.

4. Experiments
The experimental section is split into two main parts. First,
we demonstrate that our approach achieves high-quality 2D
reconstruction by comparing it with existing models. Sec-
ond, we highlight the versatility of MiraGe in image editing
full scenes (Fig. 8, 13) and selected objects (Fig. 1), pre-
senting examples of user-driven modifications and demon-
strations involving physical simulations (Fig. 3, 7).

Reconstruction quality Our image reconstruction assess-
ment utilizes two widely recognized datasets. Specifically,
we employ the Kodak dataset4, which includes 24 images
at a resolution of 768× 512, alongside the DIV2K valida-
tion set (Agustsson & Timofte, 2017), which involves 2×
bicubic downscaling and comprises 100 images with sizes
ranging from 408× 1020 to 1020× 1020. The dataset was
selected to facilitate direct comparison with the work of
GaussianImage. As a baselines we use competitive INR
methods GaussianImage (Zhang et al., 2024), SIREN (Sitz-
mann et al., 2020b), WIRE (Saragadam et al., 2023b), I-
NGP (Müller et al., 2022), and NeuRBF (Chen et al., 2023).

In Tab. 1, we demonstrate the performance outcomes of
different methods on the Kodak and DIV2K datasets. We
see that our proposition outperforms the previous solutions
on both datasets. The quality measured by both metrics
shows significant improvement compared to all the previ-
ous approaches. Fig. 9 illustrates a general trend observed
during training in the contest of image reconstruction. The
selection of hyperparameters, including the number of itera-
tions, was inspired by the principles of 3DGS. We provide
ablation studies and extensive numerical analyses in the
appendix for further insights.

Tab. 1 provides a comparison of training times across multi-
ple baseline methods. For our approach, we report the full
training durations corresponding to 30000 and 5000 iteration
steps. Our method achieved better PSNR with only 5000
iterations, while requiring significantly less training time
overall. Using the butterfly image from the DIV2K dataset
as a case study, we showed that our method (Our-100K)
surpasses GI in PSNR within just 30 seconds of training
(Fig. 9).

4https://r0k.us/graphics/kodak/
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Figure 13. Although the scene is not fully modeled in 3D, repre-
senting a 2D image using 3D Gaussians enables novel viewpoints
through camera movement. This creates a 2.5D effect, commonly
used in games to simulate a background.

Fig. 9 includes the number of initial Gaussians, indicating
how densely the space has been filled. We see a clear up-
ward trend in performance as the density of the Gaussian
initialization increases.

Manual modification MiraGe allows for manual manipula-
tion of 2D images. By leveraging GaMeS parameterization,
each Gaussian component is represented as a triangle. Ver-
tices can be independently adjusted and moved within 3D
space, enabling flexible image modification (Fig. 2).

We demonstrate examples of modifications using datasets
such as DIV2K, Kodak, and Animals5. Additionally, we
generated our own 2D images using DALL-E 3 to illustrate
the benefits of our method. We can obtain modifications of
small details like changing fingers’ position (Fig. 1), human
facial expressions (Fig. 18), or dog poses (Fig. 11). As
MiraGe can trained in a 3D context, we can implement
modifications in the third dimension to create the illusion of
3D transformation (Fig. 3, 6).

It is crucial to note that when we displace elements from
the foreground, the background remains unseen because the
model only reconstructs the objects. This is demonstrated
in Fig. 11, where artifacts are apparent on the hind paw of
the animal depicted. To reduce such a problem, we can
use Inpainting (Perche-Mahlow et al., 2024) on the image
background.

We conducted a comparative analysis of our editing ap-
proach against the DragGAN model (Pan et al., 2023). Here,
we focus on the ability to perform localized edits, such as
closing the mouth, while preserving other features, such as
dimples (Fig. 8). The visual results, presented in Fig. 10,
highlight key distinctions between the two models. As Drag-
GAN is a generative model, modifications often result in
unintended global transformations, for instance, attempting
to adjust a leg’s position may inadvertently modify facial
features. In contrast, our method demonstrates the ability to

5https://www.kaggle.com/datasets/
alessiocorrado99/animals10

move elements like the leg with realistic results and without
compromising other aspects of the image.

Physics application in MiraGe Using 2D-MiraGe we can
express Gaussian components with a 2D point cloud. There-
fore, we can use an MPM (Hu et al., 2018) based physics
engine implemented, for example, in Taichi_elements. This
high-performance physics engine supports multiple materi-
als. We use inspiration from GASP (Borycki et al., 2024)
and train simulation on 2D points, then use physical defor-
mation on triangle soup. In Fig. 7, we present simulation
results obtained using Taichi_elements. As we can see, we
can add physical properties to 2D objects. On the other
hand, using Amorphous-MiraGe or Graphite-MiraGe, we
can use Blender and modify directly parameterized flat 3D
Gaussian (Fig. 3). Moreover, we compare MiraGe with
PhysGen (Liu et al., 2025) (Fig. 12). Our method demon-
strates better accuracy, ensuring that objects do not overlap.
A key advantage is that users can directly and intuitively
influence modifications.

2.5D effect MiraGe presents a concept that combines 2D
and 3D representations to achieve the 2.5D effect commonly
used in video games and VR (Feyer et al., 2024). Although
we do not reconstruct full 3D geometry, our method lever-
ages the third dimension for spatial manipulation and ani-
mation of 2D images. Fig. 13 illustrates this using a lantern
image from the Kodak dataset, where camera movement
reveals novel viewpoints. This 2.5D representation is espe-
cially useful for static backgrounds such as mountains in
VR, where full 3D modeling is unnecessary. In such cases,
our approach offers an efficient alternative to generative 3D
models.

5. Conclusion
In this paper, we introduce MiraGe that uses flat 3D Gaus-
sian components to model 2D images. MiraGe gives state-
of-the-art reconstruction quality and simultaneously allows
image manipulation. Furthermore, we can modify photos on
a plane (Fig. 7) and in 3D space (Fig. 3). In consequence,
we obtain the illusion of 3D-based modifications. Further-
more, we can combine our solution with a physics engine to
obtain realistic motion in the image. Conducted experiments
show that MiraGe is applicable in many different scenarios
and produces high-quality simulations.

Limitation It is crucial to note that the model is not gen-
erative, so improper adjustment of Gaussian positions can
cause gaps in the image (e.g. missing dog’s paw). This can
be alleviated by using image Inpainting (Fig. 11). Although
the model can produce realistic changes, a significant modifi-
cation may introduce a visual artifact. Moreover, our model
requires encoding more parameters than GaussianImage to
achieve high-quality image reconstruction for animation.
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S., and Spurek, P. Gasp: Gaussian splatting for physic-
based simulations. arXiv preprint arXiv:2409.05819,
2024.

Chen, Z., Li, Z., Song, L., Chen, L., Yu, J., Yuan, J., and Xu,
Y. Neurbf: A neural fields representation with adaptive
radial basis functions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4182–
4194, 2023.

Davoodi, P., Ezoji, M., and Sadeghnejad, N. Classification
of natural images inspired by the human visual system.
Neurocomputing, 518:60–69, 2023.

Feyer, S. P., Pinaud, B., Kobourov, S., Brich, N., Krone,
M., Kerren, A., Behrisch, M., Schreiber, F., and Klein,
K. 2D, 2.5D, or 3D? An Exploratory Study on Multi-
layer Network Visualisations in Virtual Reality . IEEE
Transactions on Visualization & Computer Graphics, 30
(01):469–479, January 2024. ISSN 1941-0506. doi:
10.1109/TVCG.2023.3327402.

Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B.,
and Kanazawa, A. Plenoxels: Radiance fields without
neural networks. In The IEEE / CVF Computer Vision and
Pattern Recognition Conference, pp. 5501–5510, 2022.

Gao, J., Gu, C., Lin, Y., Li, Z., Zhu, H., Cao, X., Zhang,
L., and Yao, Y. Relightable 3d gaussians: Realistic point
cloud relighting with brdf decomposition and ray tracing,
2024.

Guédon, A. and Lepetit, V. Sugar: Surface-aligned gaussian
splatting for efficient 3d mesh reconstruction and high-
quality mesh rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 5354–5363, 2024.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., and
Jiang, C. A moving least squares material point method
with displacement discontinuity and two-way rigid body
coupling. ACM Transactions on Graphics (TOG), 37(4):
1–14, 2018.

Huang, B., Yu, Z., Chen, A., Geiger, A., and Gao, S. 2d
gaussian splatting for geometrically accurate radiance
fields. In ACM SIGGRAPH 2024 Conference Papers, pp.
1–11, 2024.

Jacobson, A., Baran, I., Popović, J., and Sorkine, O.
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A. Appendix
Here, we provide a future directions and a comprehensive
overview of the implementation details. Furthermore, we
present supplementary experimental results, such as ex-
tended performance evaluations and ablation studies focus-
ing on camera settings.

Figure 14. MiraGe use GaMeS (Waczyńska et al., 2024) represen-
tations of flat Gaussian by triangle soup. Therefore, we can use
real-life modification by moving points.

A.1. Future direction

Since our model is built on a flexible 3D Gaussian Splat-
ting framework, it can partially adapt techniques from other
models. We identify two promising directions for extending
the method. For instance, StyleGaussian (Liu et al., 2024a)
allows for color adjustments during style transfer. We be-
lieve that in practice, MiraGe can incorporate various style
transfer methods for Gaussians. An important direction for
future work is to investigate the adaptability of 3D Gaus-
sians across diverse visual styles. Our model does not fully
account for physically accurate lighting, leading to inconsis-
tencies in light positioning. We believe that recent methods
that incorporate real-world lighting (Gao et al., 2024; Bi
et al., 2024) are transferable. Unlike BRDF-based models,
3D Gaussian Ray Tracing (Moenne-Loccoz et al., 2024) en-
ables secondary lighting effects via ray tracing. Integrating
such techniques into MiraGe is feasible and promising for
future development.

Figure 15. Comparison of FPS obtained on a butterfly image from
DIV2K dataset by MiraGe in comparison with GaussianImage
(Zhang et al., 2024) and Gaussian Splatting (Kerbl et al., 2023).
The experiment was performed on the RTX 4070 GPU.

Figure 16. Example of artifacts generated during animation, typi-
cally due to imperfect rendering. The model was trained on a white
background, leaving residual white Gaussians along the border
of the camel’s muzzle, leading to artifacts. In this instance, the
Graphine-MiraGe performed best in handling the head-turning
movement

A.2. Implementation details

The source code for this project is available under . Our
code was developed based on the GaMeS framework (Fig.
14) and is distributed under the GS Vanilla license. Compu-
tational experiments in the main paper were conducted using
NVIDIA GeForce RTX 4070 Laptop version and NVIDIA
GeForce RTX 2080. Appendix time comparisons were re-
ported using NVIDIA GeForce RTX 2080.

Building upon the GaMeS framework, we initialized the
Gaussian distributions to lie perpendicular to the XZ plane.
In our model, where all Gaussians are constrained to a 2D
plane at rendering time, we consider only the rotation angle,
denoted as ϕ, as the primary rotation parameter. To facilitate
the rendering of Gaussians positioned on the XZ plane, ϕ
serves as the primary learning parameter. The corresponding
quaternions of rotation are computed as follows: for rotation
about the x-axis qx = [cos(ϕ2 ), sin(

ϕ
2 ), 0, 0], and for the z-

axis qz = [cos(π2 ), 0, 0, sin(
π
2 )]. Since no rotation occurs

about the y-axis, the quaternion remains qy = [1, 0, 0, 0].
These quaternions are then combined through multiplication
to form a new rotation matrix, ensuring precise alignment
of the Gaussians on the XZ plane.

A.3. Supplementary Numerical Findings from the
Primary Paper

We conducted an extensive analysis of the MiraGe model
due to its unique ability to control the behavior of Gaus-
sians. Three distinct settings for Gaussian movement were
explored:

• Amorphous the first allows Gaussians to move freely
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Table 2. Training time and memory usage of MiraGe across varying image resolutions. For Training we used 100K initial Gaussians;5k,
10k, 30k iterations on the V100 GPU. Experiment is provided on a butterfly from the DIV2K dataset.

Model Our-5k iter Our-10k iter Our-30k iter GaussianImage/default settings

scale PSNR MB Train time PSNR MB Train time PSNR MB Train time PSNR MB Train time
1/none 30.76 3.56 209 36.17 12.2 586 47.04 35.65 2709 28.34 2.41 189

2 43.85 2.54 67 47.21 4.20 158 52.27 8.24 651 38.54 2.41 111
3 51.51 2.41 45 54.20 3.53 104 58.81 5.66 406 41.53 2.41 105
4 56.86 2.36 40 58.52 3.27 92 65.02 4.83 341 34.33 2.41 103

Table 3. Ablation study of the effect of adding the mirror camera as augmentation technique on training time and the output image quality
measured in widely recognized metrics: PSNR, MS-SSIM, LPSIS. The experiment was performed with an initial 100k Gaussians.

Kodak dataset

Gaussian control method Camera Setting PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous One camera 51.56 0.9996 0.0050 448.73
Mirror cameras 59.52 0.9999 0.0005 639.66

Graphite One camera 42.49 0.9948 0.2984 398.54
Mirror cameras 46.90 0.9983 0.1238 739.66

2D One camera 42.75 0.9950 0.2931 552.80
Mirror cameras 48.82 0.9987 0.0071 942.78

DIV2K dataset

Gaussian control method Camera Setting PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous One camera 46.00 0.9991 0.0162 690.98
Mirror cameras 54.54 0.9998 0.0033 946.35

Graphite One camera 40.02 0.9949 0.0312 582.50
Mirror cameras 46.52 0.9986 0.0117 1082.41

2D One camera 39.99 0.9949 0.0310 869.62
Mirror cameras 46.32 0.9985 0.0124 1278.33

in 3D space,

• 2D: the second restricts their movement to align paral-
lel to the XZ plane

• Graphite the third confines all Gaussians to the XZ
plane, effectively creating a 3D representation.

A qualitative analysis was performed, considering the im-
pact of the mirror camera (Tab. 3), as well as the effect
of varying the number of initial Gaussians on the overall
model behavior (Tab. 4). We also examined the impact of
the camera using the Frames Per Second (FPS) metric and
storage memory (Tab. 5). Given the ongoing development
of various 3D Gaussian Splatting compression techniques,
we employed the .spz6 tool to effectively compress the data.

Due to our particular focus on animation, we analyzed FPS
trends to benchmark real-time performance. Fig. 15 shows
that while our model introduces a higher number of pa-
rameters, leading to a decrease in FPS compared to Gaus-
sianImage, it maintains the ability to render animations in

6https://github.com/nianticlabs/spz

real-time.

Tab. 2 presents an analysis of our model’s scalability. We
selected a butterfly image from the DIV2K dataset (Fig. 9),
which provides official rescaling, to evaluate performance
across different resolutions. Our model was trained on each
rescaled version and compared with GaussianImage, a only
Gaussian-based baseline. Even with only 5000 training iter-
ations, our method learns faster and achieves higher PSNR.
Across all scales, our approach consistently outperforms the
baseline in terms of reconstruction quality.

Tab. 3 shows the mirror camera view as the augmentation
technique significantly improves the representation’s fidelity
of every proposed Gaussian method. This behavior can be
detected with the help of any of the measured metrics, i.e.,
PSNR, MS-SSIM and LPSIS. The drawback of improving
the image quality is that a longer training time is required.
The ablation study presented in Tab. 4 similarly suggests
that our model scales well with the number of Gaussians
used during model initialization. The striking example here
is an average 62.12 PSNR score achieved by the Amorphous
method on the Kodak dataset. The price paid in time of
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Figure 17. MiraGe enables modifying 2D images, such as adjust-
ing the scene’s elements’ sizes.

Figure 18. MiraGe allows us to produce realistic modifications of
small details like changing human facial expressions.

training grows here slower, i.e., increasing the number of
starting Gaussians by an order of magnitude results in more
extended though comparable training period length.

A.4. Extension of examples modification and Artifacts

Animating a full scene can be non-trivial, but it is possible.
Fig. 17 demonstrates how a painting can be enlarged to
visualize the impact of its placement in a room, offering a
clear view of the potential arrangement. It is also possible to
animate small, localized areas of the image, as demonstrated
in Fig. 18. For the facial animation, we utilized the Lattice
modifier in Blender. A simple editing concept using 3D is
shown in Fig 19. Fig. 20 illustrates a sculpture where the
movement of the hand is achieved by adjusting the position
of the shield behind the warrior. The image representation,
based on parameterized Gaussians, facilitates precise edit-
ing of fine details within the 3D space. MiraGe enables
manual image editing and incorporates a physics engine for
image modifications (Fig. 21, 22, 20). It is crucial to remem-
ber that if certain Gaussians are shifted without considering
their dependencies on others, the image will be disrupted.
Therefore, the relationships between the Gaussians must be
carefully modeled. We demonstrate this concept with the ex-
ample of children playing with a blanket (Fig. 22). Despite
the movement of the blanket (as seen in the supplementary
video), the image remains uninterrupted and coherent.

Figure 19. MiraGe simplifies intuitive editing of images, allowing
transformations such as adjusting the tilt of a hand with minimal
complexity. This is achieved by modifying the object along the
third dimension.

Integrating the representation into Blender can introduce
automatic adjustments that may result in visual artifacts
(Fig. 16), particularly when training on images with a white
background. These modifications can lead to unrealistic
renderings that are challenging to detect through automated
means and currently require subjective evaluation by a hu-
man observer.
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Figure 20. MiraGe can be integrated with Blender, by using flat 3D Gaussians in 3D space. The initial column presents the original image,
the subsequent two columns display renders captured midway through the simulation, and the final column shows the outcome at the
simulation’s conclusion. The colored lines in the last column trace the paths of 10 randomly chosen points from the simulation.

Figure 21. MiraGe allows for manual image edits and for using a physics engine for real-life-like image modifications. The left image
illustrates a Gaussian representation achieved through a triangle mesh triangle soup, while the accompanying point-based depiction
provides finer details, offering a more refined visual comparison.

Figure 22. MiraGe allows for the modification of larger scenes. We can selectively alter specific areas and introduce smooth movements
or material adjustments. In this example, the bottom of the blanket is shown in motion. This, along with other modifications, is available
in the supplementary files as videos.
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Table 4. Measuring the influence of the initial number of Gaussians on the image reconstruction quality. The experiment was performed
using a mirror camera view for every table entry.

Kodak dataset

Gaussian control method Initial Gaussians PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous 10k 50.66 0.9987 0.3531 584.84
50k 55.54 0.9997 0.0033 634.65
100k 59.52 0.9999 0.0005 639.66
150k 62.12 0.9999 0.0002 676.10

Graphite 10k 40.39 0.9940 0.0599 651.32
50k 44.90 0.9973 0.2024 732.91
100k 46.90 0.9983 0.1238 739.66
150k 48.16 0.9987 0.0105 801.18

2D 10k 39.75 0.9886 0.0769 857.30
50k 45.03 0.9955 0.2789 876.56
100k 48.82 0.9987 0.0071 942.78
150k 50.54 0.9992 0.0031 955.86

DIV2K dataset

Gaussian control method Initial Gaussians PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous 10k 49.53 0.9987 0.0322 852.19
50k 52.23 0.9995 0.0112 902.80
100k 54.54 0.9998 0.0033 946.35
150k 56.40 0.9999 0.0014 975.44

Graphite 10k 40.75 0.9959 0.0457 983.41
50k 44.67 0.9980 0.0216 1008.52
100k 46.52 0.9986 0.0117 1082.41
150k 47.61 0.9989 0.0083 1103.69

2D 10k 38.40 0.9920 0.0616 1166.09
50k 42.86 0.9967 0.0275 1256.62
100k 46.32 0.9985 0.0124 1278.33
150k 48.46 0.9990 0.0065 1415.54

Table 5. Ablation study of the effect of adding the mirror camera as augmentation technique on Kodak dataset measured using Frames Per
Second (FPS) and memory storage.

Kodak dataset

Gaussian control method Camera Setting FPS Memory
(MB)

Compressed
memory
(MB)

GaussianImage-70k - - - 2.41
GaussianImage-100k* - - - 3.44

Amorphous One camera 583.28 31.25 2.42
Mirror cameras 620.10 117.25 7.80

Graphite One camera 1157.75 30.71 2.68
Mirror cameras 650.75 117.91 9.22

2D One camera 1130.08 30.69 2.68
Mirror cameras 418.39 173.64 12.82
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