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Abstract

Robust decisions leverage a high proportion of robust features. Natural images have spectral
anisotropy and the majority of spectral energy concentrates on low-frequency components. A
change with an infinitesimal amount of energy on the high-frequency components can rewrite
the features dominated by high-frequency components. Image models are parameterized
general non-linear signal filters. The fragility of the learned feature representations of image
models correlates with spectral structures. The spectral importance decomposition of the
statistical expectations of the negative decision risks of models with respect to spectrum can
thus reflect model robustness from the perspective of feature robustness. To this end, we
formulate the spectral importance decomposition problem, and, present Image Axiomatic
Spectral Importance Decomposition Explanation (I-ASIDE) — a model-agnostic global
interpretability method — to quantify model global robustness from the perspective of the
susceptibility of feature representations to perturbations. Our approach provides a unique
insight into interpreting model global robustness and enables a considerable number of
applications in research, from measuring model robustness, to studying learning dynamics,
to assessing label noise, to investigating adversarial vulnerability, etc. We also showcase
multiple applications across multiple research domains to endorse such claims.

1 Introduction

Global interpretability (Lipton, |2018) summarizes the decision dynamics of neural networks en masse in
contrast to instance-wise local interpretability. Local interpretability for image models has achieved great
success (Sundararajan et al., [2017; |Smilkov et al., [2017; [Linardatos et al., 2020; (Selvaraju et al. 2017}
Arrieta et all, [2020; [Zhou et all [2016} Ribeiro et al., [2016} [Lundberg & Lee), 2017} [Lakkaraju et al., 2019}
Guidotti et al., 2018; |[Bach et al., [2015; Montavon et al.; 2019; |Shrikumar et al., [2017)), yet quantifiable global
interpretability remains virtually unexplored. A brief literature review regarding global interpretability for
image models is provided in Section

The global robustness of models reflects an intrinsic property of models and delineates a crucial aspect
towards interpretability and trustworthiness. To this end, we present I-ASIDHElﬂ a model-agnostic method,
to quantify the global robustness of image models from the perspective of the interactions of robust features
and non-robust features in decisions from the perspective of spectral importance. Unlike prior works, I-
ASIDE directly quantifies model global robustness and enables a considerable number of applications in
deep learning research across multiple domains (See Section .

Feature representations are the maps associated with supervision signals learned by models in the training
process. The robustness of learned feature representations largely delimits decision robustness afterwards.
Robust decisions leverage more robust features while non-robust decisions leverage less robust features. The
fragility of learned features correlates with the energy distributions of spectral structures from the perspective

1 Anonymized reproducibility: https://anonymous.4open.science/r/IASIDE_paper_reproducibility-BB9F/.
2The full showcase experiments have consumed 18000+ core hours on supercomputing center with multiple GPUs to complete.
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Figure 1: This diagram shows the relationship between the anisotropic spectral structures of natural images and
the robustness of feature representations. According to Parseval identity theorem, small spatial perturbations
can rewrite the feature representations dominated by high-frequency components.

of the susceptibility of feature representations to perturbations. Natural images have spectral anisotropy
and the majority of spectral energy concentrates on low-frequency components (See Figure . According
to the Parseval identity theorem — the energy of the perturbations in the spatial domain and the spectral
domain is conservative and equivalent; small spatial perturbations can rewrite those feature representations
dominated by high-frequency components. Consequently, the signal spectrum can index the robustness of
feature representations.

use the terms ‘robust feature (RF)’ and ‘non-robust feature (NRF)’ to theoretically analyze the
adversarial robustness problem from the perspective of feature representations and argue that the presence of
non-robust features can incur model robustness issues (Ilyas et all [2019} [Tsipras et all [2018)). We adopt
the use of their terms and step forward to rigorously discuss the robust decision problem in a broader scope
beyond adversarial robustness.

Measuring the ratio of the robust features in decisions can help to interpret model inference dynamics globally
from the perspective of feature representations. Unfortunately, discriminating features between being robust
and being non-robust is difficult. This research is inspired by the power-law like spectral structures of natural
images and feature robustness can be indexed by radial spectrum (See Figure [1). We refer to the radial
spectrum as the ‘robustness spectrum’ thereafter. The decompositions of the statistical expectations of
the negative decision risksEl of models with respect to robustness spectrum can summarize model decision
robustness, and quantitatively reflect how neural networks respond to signals in the frequency-domain.

The spectral decompositions are a unique solution satisfying a set of desirable axioms. We formulate this
problem by taking four fair distribution axioms from Shapley value theory (Roth} |1988; |Aumann & Shapley,
and adapting them into a strong version: strong efficiency, symmetry, linearity, and the null player
(See Section [3.2)). Unlike the ordinary representation of Shapley value theory, the spectral decomposition is
represented as a linear equation system in terms of the statistical expectation of some decision risk function.
I-ASIDE is implemented by solving the spectral importance decomposition equation @ Our approach
provides a unique insight into interpreting the global decision robustness of image models and enables multiple
applications in research such as:

o Quantifying model global robustness by examining spectral importance distributions (See the experi-
ments regarding spectral importance distributions in Figure [3] summarized numerical comparison
and t-SNE projection in Figure [4));

3Larger decision risk values have lower prediction confidences for fixed labels.
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Figure 2: This diagram illustrates the overview of I-ASIDE with some baseline dataset X and some model
with the decision risk function R : (I,y) — R. Image samples are sampled from X. The sampled images
are filtered with the spectral coalition filtering consisting of 2™ — 1 filtering transfer functions to derive the
2M _ 1 filtered samples exclusively containing the specific features indicated by Z < Z. The filtered samples
are used to compute the spectral contributions by using the Axiomatic Spectral Importance Decomposition
Equation [7}

¢ Understanding the learning behaviours of image models on the datasets with supervision noise (See
the experiments in Figure [5));

¢ Investigating the learning dynamics of models from the perspective of the evolution of feature
representation robustness in optimization (See the experiments in Figure @;

e Providing an insight into understanding the adversarial vulnerability of models by examining spectral
importance distributions (See the experiments in Figure El and the full results are provided in
supplementary material).

It is also notable that the potential applications are not restricted to the above fields. Other research fields
such as data augmentation and self-supervised learning can also use I-ASIDE as a device to understand
the dynamics of the learned feature representations of models. For example, in data augmentation research,
I-ASIDE can interpret the training dynamics with ablation experiments by understanding how hyper
parameters and augmentation tricks can affect the robustness of the learned features.

2 Related work

We summarize related works from three categories to provide research context in visual models: (1) Global
interpretability, (2) model robustness and (3) frequency-domain research for learning dynamics.

Global interpretability: Global interpretability summarizes the decision behaviours of models and provides
a holistic view. Feature visualization with neuron or class activation maximization can show the ideal inputs
for specific neurons or classes by optimizing inputs, and help to understand the learned feature representations
of models (Olah et al.l [2017; Nguyen et al., 2019} |Zeiler et al., |2010; [Simonyan et al., 2013} Nguyen et al.,
. Yet, neural networks are surjective maps and the results often yield ‘surrealistic’ inputs which are
not interpretable. Network dissection attempts to establish the connection between the functions of the units
(e.g. a set of channels or a set of layers) in convolutional neural networks and some concepts — e.g. eyes
or ears (Bau et al., 2017). Concept-based approach measures the activations of networks with respect to
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Figure 3: We showcase the spectral importance distributions from multiple models trained on STL10 with 70
epochs and pre-trained on ImageNet-1k respectively. We also include the models with random weights as
a control marked by blue box. There are three findings: (1) The spectral importance of the robustness of
feature representations of trained models is anisotropic, (2) the spectral importance of the robustness of the
feature representations of un-trained models is isotropic, and (3) the models trained on larger datasets (e.g.
the middle row) learn more robust feature representations.

concepts, and interpret networks at concept level (Kim et al., 2018} |Ghorbani et al., 2019} [Koh et al., |2020;
|Chen et all [2020)).

Model robustness: notice the robustness problem of deep models arising from adversarial
perturbations. Thereafter, empirical observations demonstrate that boosting model robustness with adversarial
training is at the cost of model standard accuracy for visual tasks (Goodfellow et al., 2014). Later theoretical
analyses show standard accuracy is at odds with model robustness (Zhang et al.l |2019; Tsipras et all [2018).
argue features can be distinguished by their brittleness from robust features and non-robust
features, and show that adversarial robustness relates to non-robust features. Our research is based on the
above insights.

Frequency-domain research: Neural networks are non-linear parameterized signal processing filters.
Investigating how neural networks respond to inputs in the the frequency-domain can provide a unique insight
into understanding its functions. approximate ReLU networks with piece-wise continuous
linear functions in order to perform Fourier analysis. Their results suggest neural networks have a ‘spectral
bias’ on smooth hypotheses (Raghu et al., |2017; [Montufar et al., |2014; Rahaman et al., 2019)). Xu et al.
investigate the learning dynamics of neural networks on frequency-domain in their work ‘F-Principle’ (Xu
. Their work suggests that the learning behaviors of neural networks are spectral anisotropic:
Neural networks fit low-frequency components first, then high-frequency components later. [Tsuzuku ato
affirm convolutional neural networks have spectral anisotropy regarding Fourier bases (Tsuzuku & Sato,
[2019). [Wang et al.| conducts an empirical study of the connection between supervision signals and feature
representations from the perspective of frequency (Wang et al., [2020]). Their works motivate this work to
treat neural networks as signal processing filters and investigate how neural networks respond to signals in
the frequency-domain.

3 Axiomatic spectral importance decomposition

Figure |2 shows the overview of I-ASIDE. We derive the decomposition equation from a set of stronger
desirable fair distribution axioms adapted from the ordinary axioms in Shapley value theory (Rothl, [1988).
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Figure 4: This is an application showcase (A1) in research with two experiments. The left bidirectional
chart showcases to model spectral importance scores with respect to trainable parameters. The right figure
showcases to visualize model robustness by projecting the spectral importance distributions with t-SNE. The
shape sizes correspond to robustness (the larger is the better). The experiments are performed on dataset
ImageNet. The results also correlate with the experiments in Figure [7] regarding adversarial perturbations.
In our experiments, the numbers of the trainable parameters of models do not play a crucial role on model
robustness.

3.1 Setting

We use the coalitional game theory language. Let [0, 1] be the normalized 1-dimensional radial spectrum.
The radial spectrum is partitioned into M equispaced regions in which each 1-dimensional radial spectral
region corresponds to a 2-dimensional spectral region in a 2-dimensional image spectrum (See Figure [1)).
Every partition is a ‘spectral player’ and the i-th spectral player is denoted as Z;. The M spectral players
consist of a player set (partially ordered set) indexed by feature robustness and such a player set is denoted as

= {Z;}M " (where M = |Z|). Spectral players cooperate, interact, and contribute to the decisions of neural
networks with various bargaining powers. A ‘spectral player coalition’ 7 is a subset of 7. A gain measure
function x : 7 — R measures the gain for some coalition Z. The contributions of some coalition Z with |I |

|1Z|-1
players regarding some gain measure function p are denoted as Vz(u) := (Vf Z(u)) H In this paper, the
' i=0

gain functions are the statistical expectation of the negative decision risk function of some neural network
over some baseline dataset X.

3.2 Decomposition axioms

The fair decompositions of the statistical expectations of the negative decision risks can reflect the spectral
importance in decisions and should satisfy a set of desirable axioms: strong efficiency, symmetry, linearity
and null player (Rothl [1988; [Hart| 1989} |Winter, 2002).

4The notation a := (ai)?:_ol denotes a d-dimensional vector a in which the i-th member is a;.
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Figure 5: This is an application showcase (A2) demonstrating how models respond to label noise in training.
We create the noisy-label datasets from clean Caltech101 by randomly re-assigning a proportion of labels. We
vary the proportions (label noise levels) from 0 to 1 with stride 0.1. We train googlenet, resnet18 and wvit on
the derived noisy-label datasets with 200 epochs, learning rate 0.0025 and SGD optimizer. The image sizes
are set to 64 x 64, 64 x 64 and 224 x 224 respectively. There are two findings: (1) The spectral importance of
the learned feature representations of models is more anisotropic with low supervision signal noise levels and
(2) the spectral importance gradually loses anisotropy and exhibits more isotropic.

Strong efficiency axionﬂ This axiom states that spectral importance decompositions must be o-additive

|Z|-1 ~ ~
(Halmos| 2013) on set Z. Let (Vf 1(/1)) be the contributions of the |Z| players on coalition Z. The axiom
: i=0

1Z]-1 N |Z|—1

states that the contributions (Vj 1(U)) must be summed to p(Z) such that: >} Vi (u) = w(Z).
; = T

Symmetry axiom: Let fwbe some spectral player coalition. Let Z,,7; ¢ 7 be two spectral players. The
condition u(Z U {Z,}) = w(Z U {Zp}) implies that the decomposed contributions for Z, and Z, must satisfy
the ‘equal treatment of equals’ principle such that: Viz y(1) = Viz,3 (1)

Linearity axiom: Let y and p be two gain measure functions. Let 7 be some spectral player coalition. The
axiom states that the decomposition must satisfy Vz(u + p) = Vz(n) + Vz(p) and Vz(kp) = kVz(n) where

~ ~

(w+p) D) := @) + p(Z) and k € R.

Null player axiom: A null player Z* is the player who has no contribution such that: Vizs(u) = 0 and
Viozxy () = Vi(p) for VI* ¢ T 1.

3.3 Decision risk function design

We use the statistical expectations of negative decision risks to measure the ‘gains’ of spectral players over
some baseline dataset X and decompose the ‘gains’ among them. In this paper, we use image classifiers
to conduct experiments. The decision risk function design for the case when models output embeddings is
provided in supplementary material.

There are two candidates for image classifiers: (1) The loss function ¢ : (I,y) — R can be directly used as
the decision risk function R : (I,y) — R by simply taking R(I,y) = ¢(I,y), and, (2) the negative prediction
probability can also be used as decision risk function by taking R(I,y) = —Pr(I,y) where Pr: (I,y) — [0,1]
measures the probability with respect to label y and 7T is a temperature parameter if we choose ‘soft” Softmax
(Hinton et al.| 2015, |Goodfellow et al.| [2016). In this paper, we choose the latter probability measure with
T =1 as the decision risk function.

5We use a strong efficiency axiom statement which implies the usual efficiency axiom.
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Figure 6: This is an application showcase (A3) in research demonstrating how the robustness of feature
representations of models evolves with respect to training epochs. We train ‘googlenet’, ‘resnet18’ and
‘efficientnet_ v2’ with 120 epochs, SGD optimizer and learning rate 0.0025. The training dataset is Caltech101.
The spectral importance distributions are measured for every 5 epochs using I-ASIDE. The result suggests
that models have two learning stages: (1) Learning the feature representations dominated by low-frequency
components at an earlier stage and (2) refining by learning the feature representations associated with
high-frequency components at later stage. This result from I-ASIDE also echos with the major claims
from prior works: (1) The results from F-Principle (Xu et al., 2019a; Luo et al., 2019) and (2) the standard
accuracy of visual models is at odds with robustness (Tsipras et al., [2018; Tlyas et al.,2019)). The full results
are provided in supplementary material.

3.4 Spectral coalition filtering

Spectral coalition vector: A spectral coalition vector C(f) = (C’l(f))l]‘i o' is an indicator function for
some spectral coalition Z with dimension M such that:

N if 7, e 7
Ci(Z):=<X" Hhe _’ (1)
0, otherwise.

Coalition ﬁlterlng Let . be Discrete Fourier transform (DFT) operator and .# ! be inverse DFT
(IDFT) operatorﬁ Tan & J1ang|, |2018|) We take some spectral coalition 7 and crop the frequency
components not present in Z by using a channel-wise plane comb filter on frequency-domain. Let

Hz = (Hz(m,n))(mn)efo,N—1]x[0,N—1] De the filter transfer function for some spectral coalition Z such
that:

(2)

1, if the frequency point (m,n) in i’,
(mv n) = .
0, otherwise

L=1+1=(F ' (F(L)© Hy)y 3)

where ‘®’ denotes Hadamard product (Kim et al., 2016).

3.5 Decision measure on spectral coalition

Let R: (I,y) — R be the decision risk function of some neural network where I is input and y is label.
(R)

Let R T : R — R be the statistical expectation of the decision risk function R on spectral coalition 7

6The formal definitions of DFT and IDFT are provided in supplementary material.
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Figure 7: This is an application showcase (A4) in research demonstrating that there is a correlation between
adversarial perturbations and the spectral importance scores using I-ASIDE. The adversarial perturbations
are measured by the statistical expectations of prediction probability variations (See Figure . We choose
multiple pretrained models (on ImageNet) and perform un-targeted FGSM/PGD attacking with eps = 0.2.
The adversarial samples carry a high proportion of non-robust features (Ilyas et all 2019)). For most models,
adversarial perturbations are negatively proportional to spectral importance scores. The circle sizes are
proportional to spectral importance scores. It is also notable there are some outliers, and this implies the
perturbation-based robustness research can merely capture an aspect of the holistic robustness of models.
The full results are provided in supplementary material.

over dataset X'. In this paper, the statistical expectation of the decision risks over dataset X’ with spectral
coalition Z is defined by:

Rx(RT)= E (RU+Zy)~RUI+@.y)). (4)

3.6 Decomposition equation

Let Va(R) = (Va.z,(R))M5" be the decomposition of the statistical expectation of some negative decision

risk function — R (R,Z) and Vx,i(R) be the importance of the i-th spectral player Z; for some neural network
R: (I,y) — R over some dataset X. The Vy(R) must satisfy the strong efficiency axiom by:

C(I)Vx(R) = —Rx(R,7) (5)
for VI € T and Z # & where C (i) is the spectral coalition vector. It is not difficult to show that the equation
(5) satisfies: (1) ‘symmetry axiom’, (2) ‘linearity axiom’ and (3) ‘null player axiomﬂ

Let Ciom_1yxpr = (C(i))fgz/\fyég be a collection of every coalition vector C(Z) (Z # ). We refer C as the

‘spectral coalition matrix Let Ry (R) := (Rx (Rvi))igIAi;&@ be a collection of the statistical expectation
of every decision risk with respect to spectral coalitions. The equation can be rewritten into the form of
matrix:

CVx(R) = —Rx(R). (6)

"The proof that the decomposition equation satisfies the distribution axioms is provided in supplementary material.
8An example of a spectral coalition matrix with M = 3 is provided in supplementary material.
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Hence the spectral importance decomposition can be represented as:

Va(R) = —(CTC)'C"Rx(R) = —(CTC)7'CT (ﬁX(RijgIAi#@

where CTC is an invertible symmetric real matri{?}

3.7 Spectral importance score

We summarize the derived spectral importance distributions into scalars by comparing against a feature
representation robustness prior: The learned feature representations dominated by low-frequency components
are more robust than those feature representations dominated by high-frequency components. We thus
devise a hand-crafted weighting vector 8 := (Bk)g/[: 61 as a ‘prior’ emphasizing low-frequency components to
summarize the robustness by summing with weighting. We also scale scores to [0, 1] against random decisions.
The empirical spectral importance score Sy (R) of some model R over some baseline dataset X is given byiﬂ

B*TVE(R) —

Sx(R) := 1

(8)

where 8 € (0,1), B* = Hﬁ?l\z’ n= < H/;Hi and Vi (R) = H\}i\/((RR)):Inmiir?\Y;((RR))Hl is a normalized probability

distribution. We choose 8 = 0.75 in this work.

=g

3.8 Estimation of error upper bound

Suffering from the limit of computational resources, the statistical expectation is evaluated by using Monte
Carlo sampling. We analyze the error bound by taking K samples. Let V3 (R) and R% (R) be the estimations
of the spectral importance and decision risks using Monte Carlo. The error bound with L; norm is given by:

_ Var(Rx(R)) | *
ex (Vi R) = EI[VE(R) ~ Va(R)|l < |(CCT) " Clly - M - {W}
where K gives the number of samples, Var(Rx(R)) gives the variance of the decision risk functional Ry (R)
of model R and M is the number of spectral regions. The full derivation is provided in supplementary
material. In our experiments, we empirically choose K = 200 due to this error upper bound. For example,
evaluating resnet18 on ImageNet with K = 200, the L norm of the distribution difference is less than 0.007.

4 Applications

We showcase multiple applications to demonstrate the potential uses of I-ASIDE‘E (Al) Quantifying
model global robustness by examining spectral importance distributions, (A2) understanding the learning
behaviours of image models on the datasets with supervision noise, (A3) investigating the learning dynamics
of models from the perspective of the evolution of feature representation robustness in optimization and (A4)
understanding the adversarial vulnerability of models by examining spectral importance distributions.

4.1 Showcase Al: Quantifying model global robustness

We measure the robustness by examining the spectral importance distributions or the spectral importance
scores.

Spectral importance distribution: The experiments in Figure [3] showcase the measured spectral distribu-
tions of multiple models with multiple datasets. The results show that the spectral importance of the learned

9The proof of the invertibility of the CTC matrix is demonstrated in supplementary material.
10The deduction of this formula is provided in supplementary material.
HThe core code implementation is provided in supplementary material.
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feature representations of trained models is anisotropic. Furthermore, models trained on larger training
datasets exhibit higher robustness.

Numerical comparison: The experiment (a) in Figure [4 showcases the application of numerically comparing
model robustness. The results correlate with the adversarial perturbation experiments in Figure [7]in which we
measure the prediction probability variations between clean samples and adversarial samples for given labels
with un-targeted FGSM/PGD attacking (Szegedy et al., |2013; [Moosavi-Dezfooli et al., [2016}; |Goodfellow|
et al} 2014; [Madry et all 2017). The result implies that the numbers of trainable parameters seem not to
play a crucial aspect on model robustness.

Visualizing by projection: The experiment (b) in Figure [4| showcases the projection of spectral importance
distributions. The projection is performed by using t-SNE (Hinton & Roweis, 2002]).

Interestingly, the very light model shufflenet_v2 20 5 (1.4M weights) (Zhang et al.; |2018; Ma et al 2018}
Shao et al.,[2021) has a high robustness and [Tang et al.| also report similar observations. Our later adversarial
perturbation experiments in Figure 7] can further affirm this. The speculation behind is that the channel shuffle
operations in shufflenet impose the ‘architectural bias’ to encourage the channel-wise feature interactions, and
can implicitly guide neural networks to ignore the features sensitive to such operation-wise ‘perturbations’.

4.2 Showcase A2: Understanding how models respond to supervision noise

The experiments in Figure [5] showcase the investigation of how models respond to various label noise levels
in the training process. We conduct the experiment using the Caltech101 dataset. We create noisy-label
datasets from the clean Caltech101 by randomly re-assigning a proportion (referred to as‘label noise level’ or
’supervision noise level’) of clean labels. We vary the label noise level from 0 to 1 with stride 0.1. The results
show that the models trained with higher label noise levels tend to use a higher proportion of non-robust
features.

4.3 Showcase A3: Investigating how feature representations are learned in training

The experiments in Figure [6] showcase how the feature representations learned by models evolve with respect
to epochs in training process. The learning dynamics of models exhibit two stages. In the first stage, models
readily learn more robust feature representations. In the second stage, models learn more non-robust feature
representations to achieve higher accuracy. This result gives an insight into designing better optimization
goals by introducing robustness penalty towards more robust models.

4.4 Showcase A4: Understanding adversarial vulnerability

Adversarial samples carry a high proportion of non-robust features (Su et al., |2018; [Ilyas et al.l |2019; |[Bai
et al) 2021 [Tsipras et all 2018). Intuitively, the models with high spectral importance scores are less
likely susceptible to adversarial perturbations. In Figure |7, we show how FGSM/PGD (Yuan et al., [2019;
Madry et al., [2017; |Akhtar & Mian| 2018} (Chakraborty et al., |2018) adversarial perturbations correlate
with the spectral importance scores by I-ASIDE. The full results are provided in supplementary material.
We measure the prediction probability variations between the prediction probabilities of clean samples and
adversarial samples. We use the ‘smooth’ version of Softmax function with temperature T to convert logits
into probabilities (Hinton et al. 2015; |(Goodfellow et al., [2016; |[Jang et al., 2016)).

Experimental method: Let I be some clean image and I* be the corresponding adversarial sample. Let
Pr : (I,y) — [0,1] be some neural network which outputs the probability with respect to some category
y by using Softmax with the temperature parameter 7. We define the adversarial perturbation APy (P)

as E |Pr(I,y) — Pr(I*,y)| over some dataset X where (I,y) denotes samples. We set T = 2 for both
Iy~X
FGSM and PGD attacking. We plot the prediction perturbations against spectral importance scores.

The results in Figure [7] and the full experiment in supplementary material shows that the adversarial
perturbations are negatively correlated with spectral importance scores. The outliers remind us: Spectral
importance distributions can merely reflect one aspect of the robustness of models.
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5 Limitations

I-ASIDE provides a unique insight into the interpretability of image models from the feature robustness on
spectral perspective. Yet it remains noteworthy that spectral perspective can merely reflect one aspect of
the holistic view of model robustness. For example, carefully crafted malicious adversarial perturbations on
low-frequency components can fool neural networks (Luo et al.| [2022; [Liu et al., 2023} Maiya et al., |2021)).
This further implies the complexity of this research topic. Also, as the spectral energy follows power law alike
distribution, measuring the expectations of spectral contributions on decisions on high-frequency components
poses a challenge. As such, I-ASIDE does not use sampling based approach on spectral coalitions to avoid
inaccurate results and thus suffers from the computation cost by @(2M). Fortunately, we do not need high
spectral resolution to analyze model robustness problem.

6 Conclusions

This research is motivated by the link between feature representation robustness and the anisotropy of the
spectral structures of natural images, in tandem with the insight that neural networks are parameterized
non-linear signal filters. I-ASIDE investigates how the ‘neural signal filter’ respond to signals on spectrum,
and quantifies the network transfers by using axiomatic spectral decomposition approach. Our work provides
a unique insight into deep learning research and enables a considerable number of applications as we have
demonstrated.
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