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Abstract

Predicting protein conformational changes driven by binding of small molecular
ligands is imperative to accelerate drug discovery for protein targets with no estab-
lished binders. This work presents a novel method to capture such conformational
changes: given a protein apo conformation (unbound state), we propose an equiv-
ariant conditional diffusion model to predict its holo conformations (bound state
with external small molecular ligands). We design a novel variant of the EGNN
architecture for the score network (score-informed EGNN), which is able to exploit
conditioning information in the form of the reference (apo) structure to guide the
diffusion’s sampling process. Learning from experimentally determined apo/holo
conformations, we observe that our model can generate conformations close to
holo conditioned only on apo state.

1 Introduction

Protein conformational changes upon ligand binding is a common phenomenon in drug discovery
and design [1–3]. Such conformational changes are frequently thought to stem from “conformational
selection,” in which the protein conformation distribution is biased by the presence of a ligand towards
existing conformations that are compatible with ligand binding [3, 4]. If this hypothesis is true, we
might expect to be able to predict ligand-induced conformational changes without incorporating
information about the ligand identity or structure.

To test this hypothesis, we design a method to predict conformational changes conditioned on protein
structure and sequence, excluding the ligand. Since our focus is on capturing protein conformational
diversity, we build on diffusion models [5–7], a powerful method for approximating distributions
(diffusion models are introduced briefly in Appendix A). Specifically, we propose APOLLODIFF
(Apo-to-holo diffusion, Fig. 1), an equivariant conditional diffusion model [8, 9] to sample a protein’s
holo conformations (i.e., bound) given its apo structure (i.e., unbound) and sequence as conditioning
variables. The score network used by APOLLODIFF has two main components: an Evoformer block
[10] that produces a protein representation, followed by a score-informed EGNN, and a novel variant
of the EGNN architecture [11] that leverages the reference apo structure provided to produce the
score required by the diffusion to generate samples.
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Figure 1: APOLLODIFF overview. Given an apo structure, APOLLODIFF uses a diffusion model to
produce an ensemble of predicted conformations approximating the protein structure in the holo state.

Our methodology presents a significant advantage over ligand-based strategies, as it enables the
enumeration of alternative backbone conformations prior to the knowledge of the ligand, facilitating
more efficient virtual screenings. This computational efficiency derives from the capacity to substitute
the redundant process of enumerating protein backbone conformation changes for each distinct ligand
during the docking phase with a single, a-priori enumeration step. Furthermore, we find that our
method outperforms the previous state-of-the-art, suggesting that it represents a promising alternative
to model ligand-induced conformational changes, obviating the need for direct incorporation of ligand
information.

2 Apo-Conditioned Diffusion for Holo Protein Structures
As mentioned above, our aim is to predict holo conformations given an apo structure. We frame
this as approximating the distribution p(xholo |xapo, s), where xholo and xapo represent a protein’s
aligned holo and apo structures, and s the protein sequence. We represent protein structures as 3D
point clouds xholo,xapo ∈ Rnres×3, where each residue is identified with the Cα coordinates. Since
the apo and holo coordinates are aligned (and centered), the target distribution is equivariant under
rigid body transformations, i.e. p(xholo |xapo, s) = p(Rxholo + t |Rxapo + t, s) for any (t,R).

We use a rotation-equivariant conditional diffusion model to approximate this distribution. We handle
translations following Hoogeboom et al. [8], Yim et al. [12], centering all structures and defining the
diffusion in the zero center-of-mass linear subspace. As noted by Igashov et al. [9], two conditions are
sufficient to guarantee that the marginal distribution defined by the diffusion is rotation-equivariant: an
equivariant reference distribution, and an equivariant score network. We use the variance-preserving
SDE formulation for diffusion models (presented in Appendix A), which yields a standard Gaussian
reference, satisfying the first condition. Additionally, we use a rotation-equivariant score network
with two main components (Fig. 4):

Evoformer block [10]. This block takes as input the sequence ESM [13] embedding r, an nres × cs
matrix, and the pair features p, an nres × nres × cp tensor, where pij is obtained combining the
sequence separation between residues i, j and their pairwise distance in the apo structure (both
features are binned, producing one-hot vectors which are concatenated). Each layer updates (r,p)←
Evoformer(r,p), allowing the exchange of information between r and p.1

SI-EGNN. A novel variant of the EGNN [11] we call score-informed equivariant GNN (SI-EGNN),
which produces the predicted score leveraging the apo structure provided as input. Each node i in our
GNN represents a residue in the protein, and consists of a tuple (xt

holo(i), r
t
i), where xt

holo denotes
the diffused holo coordinates at diffusion time t, and rti denotes ri concatenated with the sinusoidal
encoding of t. The edges between nodes are assigned the features in p, with pij corresponding to the

1The evoformer layers do not include triangle attention (for efficiency) nor column attention (no MSA).
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edge connecting nodes i and j. Each layer (xt
holo, r

t)← SI-EGNN(xt
holo,xapo, r

t,p, t) is given by

mij ← ϕp

(
rti, r

t
j , ∥xt

holo(i)− xt
holo(j)∥2,pij

)
, mi ←

∑
j ̸=i mij

nres − 1
, rti ← ϕr

(
rti,mi

)
,

(1)
sapo ← ∇ log pt(x

t
holo |xapo), xt

holo(i)← xt
holo(i)+

∑
j ̸=i

(
xt
holo(i)− xt

holo(j)
)
ϕx(mij)+sapo ϕs

(
rti
)
,

where ϕ∗ are MLPs, pt(x |xapo) is the distribution obtained by applying the diffusion forward kernel
(Appendix A) to the apo conformation, and mij represents the “message” sent from node j to node
i. The predicted score is then computed as the difference between the initial and the updated holo
coordinates (i.e. difference between input and output of the SI-EGNN).

It can be observed that the SI-EGNN follows the EGNN architecture with some additional terms,
underlined in Eq. (1). Empirically, we observe this variant of the EGNN, applicable due the avail-
able reference apo structure, yields improved training convergence and final results. An intuitive
explanation for this stems from the fact that, by fixing ϕp, ϕr, ϕx = 0 and ϕs = 1/L (with L the
number of SI-EGNN layers), the predicted score results in the score required to generate the reference
apo structure (with these choices, the reverse diffusion approximately produces the reference apo
structure without any training). If the holo and apo structures display structural similarities, as they
typically do [14], this provides useful guidance to the network. Critically, the SI-EGNN maintains
the rotation equivariance property from the original EGNN, as ∇ log pt(x|xapo) is equivariant to
joint rotations (x,xapo) 7→ (Rx,Rxapo) for the Gaussian forward kernel from Appendix A.
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3 Results
We evaluate APOLLODIFF on a subset of the D3PM dataset [14] using Cα RMSD as our evaluation
metric (see Appendix C for data processing details). We compare against the “Aligned Diffusion
Schrödinger Bridge” approach (SBALIGN) [15], described in Appendix B. Briefly, this method
trains a diffusion to transport proteins from their apo to their holo conformations (i.e. the diffusion
starts from the apo conformation, not from random noise). To ensure a fair comparison, we re-train
SBALIGN on our variant of the D3PM dataset.

Figure 2: (A) RMSD improvement per UniProtID accession (∆RMSD > 0 indicates the model
produces structures closer to the holo than the reference apo). (B) Global and Pocket RMSD between
generated conformations by our model and holo structures (one dot per holo structure in the test set).

APOLLODIFF vs SBALIGN We begin by studying whether the methods are able to produce
structures closer to the holo conformation than the respective apo used as reference. We evaluate
this measuring ∆RMSD = RMSDapo−holo−RMSDgen−holo, which compares the RMSD between
the models’ predictions and holo conformations (RMSDgen−holo) against the RMSD between apo
and holo conformations (RMSDapo−holo). We note that positive values for ∆RMSD indicate good
performance, while negative values are indicative of poor performance. We report two variants of
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this metric for each UniProt accession (using 5 generated samples for each model): oracle ∆RMSD
(Fig. 2A, left), computed using the best generated sample (minimum RMSD w.r.t. holo), and average
∆RMSD (Fig. 2A, right), computed using the average RMSD across all generated samples. Results
in Fig. 2 shows that our model is able to produce conformations closer to the holo than the reference
apo (i.e. ∆RMSD > 0) for most cases, outperforming SBALIGN.

APOLLODIFF APOLLODIFF (apo masked) SBALIGN

∆RMSD Average ↑ Oracle ↑ Average ↑ Oracle ↑ Average ↑ Oracle ↑

≥0.1Å 31 55 30 54 4 7
≥0.5Å 21 23 21 24 4 4
≥1Å 16 19 16 19 0 4
≥2Å 10 10 10 10 0 0

Table 1: ∆RMSD for each of the 74 holo structures in the test set. Average and Oracle are computed
as explained in the main text for Fig. 2A. All 74 structures have ∆RMSDapo−holo within [3Å, 10Å].
APOLLODIFF (apo masked) stands for our method when the apo structure has 10 consecutive residues
artificially masked, included to evaluate the APOLLODIFF’s ability to impute unresolved residues.

We further study APOLLODIFF and SBALIGN by reporting the number of cases for which each one is
able to generate predictions with ∆RMSD > δ, for δ ∈{0.1Å, 0.5Å, 1Å, 2Å}. Results are shown in
Table 1. Using the oracle metric, we observe that SBALIGN generates conformations that are better
than the reference apo for 7 cases out of the 74 in the test set, with this number dropping to 4 for the
average metric. On the other hand, APOLLODIFF generates improved conformations for 55 cases out
of the 74 in the test set (oracle metric, 31 for average), outperforming SBALIGN. We show structures
predicted by APOLLODIFF for four holo structures from the test set in Fig. 3.

APOLLODIFF and missing residues To evaluate APOLLODIFF’s ability to handle missing residues
in the reference apo structure, we use it with artificially masked apo conformations (masking 10
consecutive residues with location chosen at random). We show results in Table 1, where it can be
observed that APOLLODIFF’s performance in this scenario is on par with the performance obtained
without masked residues.

Figure 3: Structures generated by APOLLODIFF without masks for four proteins in the test set. Apo
structures and all generated samples are aligned with the holo structure under consideration.

Global vs Local (Pocket) Conformational Changes To further evaluate our model, we split the
test set into two categories, measuring the TMscore2 for each holo structure in the test against all
structures in the training set. The structures for which the maximum observed TMscore is less than
0.7 were labeled as Difficult, while the remaining structures (maximum TM score greater than 0.7)
were labeled as Easy. Figure 2 shows average RMSD values between APOLLODIFF predictions
and holo structures in the test set. The left plot shows the global RMSD (computed using all Cα

atoms), and the right plot shows pocket RMSD (computed using Cα atoms within 8Å from the ligand,
provided in D3PM database). We observe that in several cases APOLLODIFF generated backbones
display lower pocket RMSD than global RMSD.

2Briefly, the TMscore [16] ranges between 0 and 1, and measures the similarity between two proteins, taking
into account the sequences and structure. Scores close to 1 indicate high similarity.
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4 Conclusions

We introduce a novel generative method, APOLLODIFF, to predict protein conformations associated
with the binding of small molecules, i.e. transitions from apo to holo state. While docking of small
molecules and virtual screening has a significantly higher success rate if holo conformations are
used, the associated holo structures are rarely experimentally solved. Our method provides a new
framework for modelling apo-to-holo conformational changes through a diffusion process with
explicit task-optimized priors in the network architecture, such as an implicit bias to fall back on the
conditioning apo structure. We show despite lack of knowledge of the ligand, APOLLODIFF generates
conformations that are closer to holo than apo in 74% of the cases, compared to 9% in the current
state of the art method. Our method thus has the potential to improve the performance of downstream
screening campaigns that may rely on accurate modeling of holo structures. While this presents a
significant improvement over state of the art, there is further room for improvement, for instance, by
augmenting training data with simulated conformations (e.g. obtained via MD simulations), adding
additional relevant conditions such as pocket position, and incorporating auxiliary losses penalizing
unrealistic conformations in our training pipeline (e.g. steric clashes).
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A Diffusion Models

Diffusion models are generative modelling techniques trained to produce samples from a target
distribution. They work by learning to reverse a diffusion process that gradually converts clean
samples to noise. In this work, we use the variance-preserving formulation from Song et al. [17],
which defines this forward process as

dxt = −
1

2
β(t)xtdt+

√
β(t)dwt, where t ∈ [0, 1] and x0 ∼ pdata. (2)

While many choices for β(t) are possible, a widely used one [17] is given by β(t) = t(βmax −
βmin) + βmin. For a sufficiently large βmax, it can be shown that samples x1 obtained by simulating
the forward process from Eq. (2) approximately satisfy x1 ∼ N (0, I). Therefore, new samples from
the data distribution can be generated by simulating the time-reversed process, given by

dxt = −
β(t)

2

(
xt + 2∇ log pt(xt)

)
dt+

√
β(t)dw̄t, x1 ∼ N (0, I), (3)

where ∇ log pt(xt) represents the scores of the marginal density of the forward process at time t.
Since these densities and their scores are often unavailable, a score network sθ(xt, t) is trained to
approximate them minimizing the denoising score matching objective [18, 19]

L(θ) = Et,pdata(x0),pt(xt | x0)

[
λ(t) ∥sθ(xt, t)−∇ log pt(xt |x0)∥2

]
. (4)

Here pt(xt |x0) represents the transition kernel from the forward SDE, given by pt(xt |x0) =

N (xt |x0e
−β̃(t)/2, I − Ie−β̃(t)), where β̃(t) = t2(βmax− βmin)/2+ tβmin. After training, samples

are produced by simulating the reverse SDE from Eq. (3) with the score network in place of the true
scores.

Diffusion models can be naturally extended to handle conditional distributions. In this case, the
dataset consists on pairs (xi, ci), the score network takes the conditioning variable c as additional
input, sθ(xt, t, c), and the reverse diffusion produces samples from p(x | c).

B Related Work

Diffusion models are being increasingly used for molecule synthesis [20] and (conditional) protein
generation tasks. For instance, many approaches for backbone generation use diffusion models,
effectively treating the problem as approximating a distribution over backbones [12, 21, 22]. These
approaches often do not take a sequence as input (but a sequence can be produced using inverse
folding methods [23–26]).

Diffusion models have also been used for protein folding. Most machine learning methods for
this task aim to predict single structures [10, 27], not capturing proteins inherent flexibility. While
multiple approaches addressed this by introducing stochastic subsampling (e.g. dropout) and reducing
MSA depth [28, 29] withing AlphaFold2 [10], another line of work involves using SE(3) equivariant
diffusion models. Given a sequence, the model is trained to approximate the conditional distribution
over protein structures compatible with the sequence.

Recently, techniques used for diffusion models (e.g. score matching) have been used to solve the
Schrödinger bridge (SB) problem [30, 31]. Briefly, the SB problem involves finding a bridge between
two distributions under some prior condition. This is related to the traditional formulation behind
diffusion models, which often bridge a tractable Gaussian and the data distribution. The appeal
behind SB involves its capacity to bridge two distributions without requiring a tractable reference.
However, score matching based approaches for this task often build on Iterative Proportional Fitting
(an iterative algorithm to solve the Schrödinger bridge problem), which may impact their efficiency.

Somnath et al. [15] proposed SBALIGN, an alternative approach to solve the SB problem under the
assumption that joint samples from the two distributions of interest are available. Their method
bypasses the iterative proportional fitting algorithm, and can be trained as efficiently as traditional
diffusion models. One of the applications they explore involves predicting apo-holo conformational
changes. They attempt to predict holo conformations initializing the diffusion from the reference apo
structure. The method’s main benefit is that, if the apo and holo conformations are close to each other,
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the reverse diffusion can be simulated accurately with a relatively small number of steps. However, it
relies on the availability of a complete reference apo structure (this is in contrast to our model, that
can impute unresolved residues).

Concurrently with our work, Lu et al. [32] proposed a flexible molecular docking method based on
equivariant diffusion models. Their approach follows a SB-like formulation, producing protein+ligand
complexes starting from AlphaFold2 [10] conformations and a specific ligand specification (with an
initial conformation obtained with RDkit [33]). Their score network builds on the e3nn architecture
[34] to predict the necessary transformations (translations and rotations) of the input protein residues
and ligand. This method, however, is focused on a different set of problems, as it cannot handle
missing residues in the reference structure, and requires a fully-specified ligand to perform docking
(while our approach predicts holo conformations without ligand information).

Finally, Zhang et al. [35] designed an improved ensemble docking protocol to generate holo-like
conformations of protein from apo structures via metadynamics simulations. Unlike our approach,
this protocol aims to predict the physical movements of protein over time.

C Dataset and data processing

We use the subset of D3PM [14] used by Somnath et al. [15], which groups proteins by UniProt
accession [36] and keeps proteins for which there exists apo-holo conformations that differ by more
than 3Å. However, we chose a different processing pipeline. While Somnath et al. [15] chose a
random set of apo-holo pairs for train, validation and test, we argue that at inference time, frequently,
apo-holo pairs are unknown for a given protein. Indeed, a suitable method should be able to predict
not only proteins where no corresponding apo-holo pairs were available at training time, but ideally
also generalize towards structures with significant structural differences. We find that for 93% of
the test data points in Somnath et al. [15], there exists an apo-holo pair in train or validation with an
identical UniProt accession, inadequately capturing these scenarios. We thus create our data set splits
from two fractions to capture these two scenarios, and provide a breakdown of performance for both
fractions in Fig. 2. It is of note that this is a significantly more challenging evaluation scenario than
proposed in Somnath et al. [15], but we believe captures real-life usage more accurately.

The D3PM dataset contains 2152 unique PDB chains of which 783 are apo and 1369 are holo,
stemming from 589 unique proteins. To have a significant fraction of the test data with sufficient
structural and sequence difference from train and validation set (required to assess the second
scenario), we calculate pairwise sequence similarity and structural alignment via TMscore. The
sequence similarity is defined as SeqSim(s1, s2) =

1
L

∑
i 1{s1[i] = s2[i]}, where 1{·} stands for

the indicator function (it is one if the condition inside the brackets is true, zero otherwise). We cluster
by structural and sequence similarity as well as UniProt accession which yields clusters of proteins
where the sequence and structure difference is larger than >0.7. We select 20 of these clusters at
random as validation and test sets, respectively. To assess the first scenario, i.e. inference on similar
but not identical proteins to what is observed during training, we also add apo-holo pairs from an
additional 10 UniProt accessions to the validation and test data sets, respectively. In total, this results
in 74 unique PDB chains from 32 UniProt accessions in the test set. The statistics of this data set are
shown in Table 2.

# PDB chains # Apo PDB chains # Holo PDB chains # Unique Proteins

Train 1924 690 1234 518
Val 112 51 61 39
Test 116 42 74 32

Table 2: Overview of training, validation, and test sets.

D Model Details

The ESM embeddings, of size 1280, were obtained with the ESMFold [37] esm2_t33_650M_UR50D,
and then projected down to a dimension of 256 using a learned linear layer, resulting in r. The
pair representation p was initialized using relative sequence separation between residues (as a one
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Figure 4: Overview of the score network used by APOLLODIFF.

hot vector of length 65, with sequence separation values ±32), and the pairwise distances between
residues in the reference apo structure (binned into bins of width 2Å between 2-16Å, and an additional
bin for distances >16Å). These two one-hot vectors are concatenated and fed through a learned linear
layer, which produces the pair representation of length 128. We use a sinusoidal encoding for the
diffusion time t of size 48.

E Training and sampling

During APOLLODIFF training, we randomly mask residues in the reference apo structure, to train the
model’s capabilities to impute missing residues, a common problem in PDB structures. We do this
through two random masking mechanisms: (i) randomly masking each residue with a probability
p, with p ∼ U(0, L/10), and randomly masking a continuous sub-sequence of residues of length
Lmask ∼ U(0, 15). We first train our model on crops of 100 residues, and finetune on 500 residues.
Training took a total of two days on a A100 (80 GB) GPU. We train using Adam [38] with a learning
rate of 10−4. For all models we generate five samples per apo-holo pair provided.
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