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ABSTRACT

The conjugate gradient method is a crucial first-order optimization method that
generally converges faster than the steepest descent method, and its computational
cost is much lower than that of second-order methods. However, while various
types of conjugate gradient methods have been studied in Euclidean spaces and on
Riemannian manifolds, there is little study for those in distributed scenarios. This
paper proposes a decentralized Riemannian conjugate gradient descent (DRCGD)
method that aims at minimizing a global function over the Stiefel manifold. The
optimization problem is distributed among a network of agents, where each agent
is associated with a local function, and the communication between agents occurs
over an undirected connected graph. Since the Stiefel manifold is a non-convex
set, a global function is represented as a finite sum of possibly non-convex (but
smooth) local functions. The proposed method is free from expensive Riemannian
geometric operations such as retractions, exponential maps, and vector transports,
thereby reducing the computational complexity required by each agent. To the
best of our knowledge, DRCGD is the first decentralized Riemannian conjugate
gradient algorithm to achieve global convergence over the Stiefel manifold.

1 INTRODUCTION

In large-scale systems such as machine learning, control, and signal processing, data is often stored
in a distributed manner across multiple nodes and it is also difficult for a single (centralized) server to
meet the growing computing needs. Therefore, the decentralized optimization has gained significant
attention in recent years because it can effectively address the above two potential challenges. In this
paper, we consider the following distributed smooth optimization problem over the Stiefel manifold:

min
1

n

n∑
i=1

fi (xi) ,

s.t. x1 = · · · = xn, xi ∈ M, ∀i = 1, 2, . . . , n,

(1)

where n is the number of agents, fi is the local function at each agent, and M := St(d, r) = {x ∈
Rd×r|x⊤x = Ir} is the Stiefel manifold (r ≤ d) (Zhu, 2017; Sato, 2022). Many important large-
scale tasks can be written as the optimization problem (1), e.g., the principle component analysis (Ye
& Zhang, 2021), eigenvalue estimation (Chen et al., 2021), dictionary learning (Raja & Bajwa,
2015), and deep neural networks with orthogonal constraint (Vorontsov et al., 2017; Huang et al.,
2018; Eryilmaz & Dundar, 2022).

The decentralized optimization has recently attracted increasing attention in Euclidean spaces.
Among the methods explored, the decentralized (sub)-gradient method stands out as a straightfor-
ward way combining local gradient descent and consensus error reduction (Nedic & Ozdaglar, 2009;
Yuan et al., 2016). Further, in order to converge to a stationary point (i.e., exact convergence) with
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fixed step size, various algorithms have considered the local historical information, e.g., gradient
tracking algorithm (Qu & Li, 2017; Yuan et al., 2018), primal-dual framework (Alghunaim et al.,
2020), EXTRA (Shi et al., 2015), and ADMM (Shi et al., 2014; Aybat et al., 2017), when each local
function is convex.

However, none of the above studies can solve the problem (1) since the Stiefel manifold is a non-
convex set. Based on the viewpoint of Chen et al. (2021), the Stiefel manifold is an embedded
sub-manifold in Euclidean space. Thus, with the help of Riemannian optimization (i.e., optimiza-
tion on Riemannian manifolds) (Absil et al., 2008; Boumal et al., 2019; Sato, 2021), the problem (1)
can be thought as a constrained problem in Euclidean space. The Riemannian optimization nature
brings more challenges for consensus construction design. For instance, a straightforward way is to
take the average 1

n

∑n
i=1 xi in Euclidean space. However, the arithmetic average does not apply to

the Riemannian manifold because the arithmetic average of points can be outside of the manifold. To
address this problem, Riemannian consensus method has been developed (Shah, 2017), but it needs
to use an asymptotically infinite number of consensus steps for convergence. Subsequently, Wang
& Liu (2022) combined the gradient tracking algorithm with an augmented Lagrangian function to
achieve the single step of consensus. Recently, Chen et al. (2021) proposed a decentralized Rieman-
nian gradient descent algorithm over the Stiefel manifold, which also requires only the finite step of
consensus to achieve the convergence rate of O(1/

√
K). Simultaneously, the corresponding gradi-

ent tracking version was presented to reach a stationary point with the convergence rate of O(1/K).
On this basis, Deng & Hu (2023) replaced retractions with projection operators, thus establishing
a decentralized projected Riemannian gradient descent algorithm over the compact submanifold to
achieve the convergence rate of O(1/

√
K). Similarly, the corresponding gradient tracking version

also achieved the convergence rate of O(1/K).

In this paper, we address the decentralized conjugate gradient method on Riemannian manifolds,
which we refer to as the decentralized Riemannian conjugate gradient descent (DRCGD) method.
In essence, the conjugate gradient method is an important first-order optimization method, which
generally converges faster than the steepest descent method, and its computational cost is much
lower than that of second-order methods. As well, conjugate gradient methods are highly attractive
for solving large-scale optimization problems (Sato, 2022). Recently, Riemannian conjugate gradi-
ent methods have been studied, however, expensive operations such as parallel translations, vector
transports, exponential maps, and retractions are required. For instance, some studies use a theoret-
ical approach, i.e., parallel translation along the geodesics (Smith, 1995; Edelman & Smith, 1996;
Edelman et al., 1998), which hinders the practical applicability. More generally, other studies utilize
a vector transport (Ring & Wirth, 2012; Sato & Iwai, 2015; Zhu, 2017; Sakai & Iiduka, 2020; 2021)
or inverse retraction (Zhu & Sato, 2020) to simplify the execution of each iteration of Riemannian
conjugate gradient methods. Nonetheless, there is still room for computational improvements.

This paper focuses on designing an efficient Riemannian conjugate gradient algorithm to solve the
problem (1) over any undirected connected graph. Our contributions are summarized as follows:

1. We propose a novel decentralized Riemannian conjugate gradient descent (DRCGD)
method whose global convergence is established under an extended assumption. It is the
first Riemannian conjugate gradient algorithm for distributed optimization.

2. We further develop the projection operator for search directions such that the expensive
retraction and vector transport are completely replaced. Therefore, the proposed method is
retraction-free and vector transport-free, and achieves the consensus of search directions,
giving rise to an appealing algorithm with low computational cost.

3. Numerical experiments are implemented to demonstrate the effectiveness of the theoretical
results. The experimental results are used to compare the performance of state-of-the-art
ones on eigenvalue problems.

2 PRELIMINARIES

2.1 NOTATION

The undirected connected graph G = (V, E), where V = {1, 2, · · · , n} is the set of agents and E is
the set of edges. When W is the adjacency matrix of G, we have Wij = Wji and Wij > 0 if an
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edge (i, j) ∈ E and otherwise Wij = 0. We use x to denote the collection of all local variables xi by
stacking them, i.e., x⊤ := (x⊤

1 , x
⊤
2 , · · · , x⊤

n ). Then define f(x) := 1
n

∑n
i=1 fi(xi). We denote the

n-fold Cartesian product of M with itself as Mn = M× · · · ×M, and use [n] := {1, 2, · · · , n}.
For any x ∈ M, we denote the tangent space and normal space of M at x as TxM and NxM,
respectively. We mark ∥ · ∥ as the Euclidean norm. The Euclidean gradient of f is ∇f(x) and the
Riemannian gradient of f is grad f(x). Let Id and 1n ∈ Rn be the d×d identity matrix and a vector
of all entries one, respectively. Let Wt := W t ⊗ Id, where t is a positive integer and ⊗ denotes the
Kronecker product.

2.2 RIEMANNIAN MANIFOLD

We define the distance of a point x ∈ Rd×r onto M by

dist(x,M) := inf
y∈M

∥y − x∥,

then, for any radius R > 0, the R-tube around M can be defined as the set:

UM(R) := {x : dist(x,M) ≤ R}.
Furthermore, we define the nearest-point projection of a point x ∈ Rd×r onto M by

PM(x) := arg min
y∈M

∥y − x∥.

Based on Definition 1, it should be noted that a closed set M is R-proximally smooth if the projec-
tion PM(x) is a singleton whenever dist(x,M) < R. In particular, when M is the Stiefel manifold,
it is a 1-proximally smooth set (Balashov & Kamalov, 2021). And these properties will be crucial
for us to demonstrate the convergence.

Definition 1 Clarke et al. (1995) An R-proximally smooth set M satisfies that for any real γ ∈
(0, R), the estimate holds:

∥PM(x)− PM(y)∥ ≤ R

R− γ
∥x− y∥, ∀x, y ∈ UM(γ). (2)

To proceed the optimization on Riemannian manifolds, we introduce a key concept called the re-
traction operator in Definition 2. Obviously, the exponential maps (Absil et al., 2008) also satisfies
this definition, so that the retraction operator is not unique.

Definition 2 Absil et al. (2008) A smooth map R : TM → M is called a retraction on a smooth
manifold M if the retraction of R to the tangent space TxM at any point x ∈ M, denoted by Rx,
satisfies the following conditions:
(i) R is continuously differentiable.
(ii) Rx(0x) = x, where 0x is the zero element of TxM.
(iii) DRx(0x) = idTxM, the identity mapping on TxM.

Furthermore, we can introduce a well-known concept called a vector transport, which as a special
case of parallel translation can be explicitly formulated on the Stiefel manifold. Compared to parallel
translation, a vector transport is easier and cheaper to compute (Sato, 2021). Using the Whitney sum
TM⊕ TM := {(η, ξ)|η, ξ ∈ TxM, x ∈ M}, we can define a vector transport as follows.

Definition 3 Absil et al. (2008) A map T : TM ⊕ TM → TM : (η, ξ) 7→ Tη(ξ) is called a
vector transport on M if there exists a retraction R on M and T satisfies the following conditions
for any x ∈ M:
(i) Tη(ξ) ∈ TRx(η)M, η, ξ ∈ TxM.
(ii) T0x(ξ) = ξ, ξ ∈ TxM.
(iii) Tη(aξ + bζ) = aTη(ξ) + bTη(ζ), a, b ∈ R, η, ξ, ζ ∈ TxM .

Example 1 Absil et al. (2008) On a Riemannian manifold M with a retraction R, we can construct
a vector transport T R : TM⊕ TM → TM : (η, ξ) 7→ T R

η (ξ) defined by

T R
η (ξ) := DRx(η)[ξ], η, ξ ∈ TxM, x ∈ M,

called the differentiated retraction.
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3 CONSENSUS PROBLEM ON STIEFEL MANIFOLD

Let x1, · · · , xn ∈ M be the local variables of each agent, we denote the Euclidean average point of
x1, · · · , xn by

x̂ :=
1

n

n∑
i=1

xi. (3)

In Euclidean space, one can use
∑n

i=1 ∥xi − x̂∥2 to measure the consensus error. Instead, on the
Stiefel manifold St(d, r), we use the induced arithmetic mean (Sarlette & Sepulchre, 2009), defined
as follows:

x̄ := arg min
y∈St(d,r)

n∑
i=1

∥y − xi∥2 = PSt(x̂), (4)

where PSt(·) is the orthogonal projection onto St(d, r). Considering the Riemannian optimization,
the Riemannian gradient of fi(x) on St(d, r), endowed with the induced Riemannian metric from
the Euclidean inner product ⟨·, ·⟩, is given by

grad fi(x) = PTxM(∇fi(x)), (5)

where PTxM(·) is the orthogonal projection onto TxM. More specifically (Edelman et al., 1998;
Absil et al., 2008), for any y ∈ Rd×r, we have

PTxM(y) = y − 1

2
x(x⊤y + y⊤x). (6)

Subsequently, the ϵ-stationary point of problem (1) is given by Definition 4.

Definition 4 Chen et al. (2021) The set of points x⊤ = (x⊤
1 x

⊤
2 · · ·x⊤

n ) is called an ϵ-stationary
point of problem (1) if the following holds:

1

n

n∑
i=1

∥xi − x̄∥2 ≤ ϵ and ∥ grad f(x̄)∥2 ≤ ϵ, (7)

where f(x̄) = 1
n

∑n
i=1 fi(x̄).

To achieve the stationary point given in Definition 4, the consensus problem over St(d, r) needs to
be considered to minimize the following quadratic loss function

minφt(x) :=
1

4

n∑
i=1

n∑
j=1

W t
ij ∥xi − xj∥2 ,

s.t. xi ∈ M,∀i ∈ [n],

(8)

where the positive integer t is used to indicate the t-th power of the doubly stochastic matrix W .
Note that W t

ij is computed through performing t steps of communication on the tangent space, and
satisfies the following assumption.

Assumption 1 We assume that the undirected graph G is connected and W is doubly stochastic,
i.e., (i) W = W⊤; (ii) Wij ≥ 0 and 0 < Wii < 1 for all i, j; (iii) Eigenvalues of W lie in (−1, 1].
The second largest singular value σ2 of W lies in [0, 1).

Throughout the paper, we assume that the local function fi(x) is Lipschitz smooth, which is a
standard assumption in theoretical analysis of the optimization problem (Jorge & Stephen, 2006;
Zeng & Yin, 2018; Deng & Hu, 2023).

Assumption 2 Each local function fi(x) has L-Lipschitz continuous gradient

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, i ∈ [n], (9)

and let Lf := maxx∈St(d,r) ∥∇fi(x)∥. Therefore, ∇f(x) is also L-Lipschitz continuous in the
Euclidean space and Lf ≥ maxx∈St(d,r) ∥∇f(x)∥.

With the properties of projection operators, we can derive the similar Lipschitz inequality on the
Stiefel manifold as the Euclidean-type one (Nesterov, 2013) in the following lemma.
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Lemma 1 (Lipschitz-type inequality) Under Assumption 2, for any x, y ∈ St(d, r), if f(x) is L-
Lipschitz smooth in the Euclidean space, then there exists a constant Lg = L+ 2Lf such that

∥ grad fi(x)− grad fi(y)∥ ≤ Lg∥x− y∥, i ∈ [n]. (10)

Proof. The proofs can be found in Appendix A. □

Furthermore, since the Stiefel manifold is a 1-proximally smooth set (Balashov & Kamalov, 2021),
the projection operator on St(d, r) has the following property based on Definition 1

∥PM(x)− PM(y)∥ ≤ 1

1− γ
∥x− y∥, ∀x, y ∈ UM(γ), γ ∈ (0, 1). (11)

This inequality will be used to characterize the local convergence of the consensus problem.

4 DECENTRALIZED RIEMANNIAN CONJUGATE GRADIENT METHOD

In this section, we will present a decentralized Riemannian conjugate gradient descent (DRCGD)
method for solving the problem (1) described in Algorithm 1 and yield the convergence analysis.

4.1 THE ALGORITHM

We now introduce conjugate gradient methods on a Riemannian manifold M. Our goal is to develop
the decentralized version of Riemannian conjugate gradient methods on St(d, r). The generalized
Riemannian conjugate gradient descent (Absil et al., 2008; Sato, 2021) iterates as

xk+1 = Rxk
(αkηk), (12)

where ηk is the search direction on the tangent space Txk
M and αk > 0 is the step size. Then

an operation called retraction Rxk
is performed to ensure feasibility, whose definition is given in

Definition 2. It follows from Definition 3 that we have Tαkηk
(ηk) ∈ Txk+1

M. Thus, the search
direction (Sato, 2021) can be iterated as

ηk+1 = − grad f(xk+1) + βk+1Tαkηk
(ηk), k = 0, 1, · · · , (13)

where the scalar βk+1 ∈ R. Since grad f(xk+1) ∈ Txk+1
M and βk+1ηk ∈ Txk

M, they belong to
different tangent spaces and cannot be added. Hence, the vector transport in Definition 3 needs to
be used to map a tangent vector in Txk

M to one in Txk+1
M.

However, vector transports are still computationally expensive, which significantly affects the ef-
ficiency of our algorithm. To extend search directions in the decentralized scenario together with
computationally cheap needs, we perform the following update of decentralized search directions:

ηi,k+1 = − grad fi(xi,k+1) + βi,k+1PTxi,k+1
M

 n∑
j=1

W t
ijηj,k

 , i ∈ [n], (14)

where grad fi(xi,k+1) ∈ Txi,k+1
M and ηi,k ∈ Txi,k

M. Note that
∑n

j=1 W
t
ijηj,k is clearly not on

the tangent space Txi,k+1
M and even not on the tangent space Txi,k

M. Therefore, it is important to
define the projection PTxi,k+1

M of
∑n

j=1 W
t
ijηj,k to Txi,k+1

M so that we can compute the addition
in the same tangent space Txi,k+1

M to update the ηi,k+1. Simultaneously,
∑n

j=1 W
t
ijηj,k also

achieves the consensus of search directions. On the other hand, similar to the decentralized projected
Riemannian gradient descent (Deng & Hu, 2023), the DRCGD performs the following update in the
k-th iteration

xi,k+1 = PM

 n∑
j=1

W t
ijxj,k + αkηi,k

 , i ∈ [n]. (15)

The Riemanian gradient step with a unit step size, i.e., PM

(∑n
j=1 W

t
ijxj,k

)
, is utilized in the above

iteration for the consensus problem (8). So far, we have presented the efficient method by replacing
both retractions and vector transports with projection operators.
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Regarding βk+1, there are six standard types in the Euclidean space, which were proposed by
Fletcher & Reeves (1964), Dai & Yuan (1999), Fletcher (2000), Polak & Ribiere (1969) and Polyak
(1969), Hestenes et al. (1952), and Liu & Storey (1991), respectively. Furthermore, the Riemannian
version of βk+1 was given in (Sato, 2022). Ring & Wirth (2012) analyzed the Riemannian conju-
gate gradient with a specific scalar βR−FR

k+1 , which is a natural generalization of βFR
k+1 in (Fletcher &

Reeves, 1964). In this paper, we yield a naive extension of βR−FR
k+1 in terms of the decentralized type

βR−FR
i,k+1 =

⟨grad fi(xi,k+1), grad fi(xi,k+1)⟩xi,k+1

⟨grad fi(xi,k), grad fi(xi,k)⟩xi,k

=
∥grad fi(xi,k+1)∥2xi,k+1

∥grad fi(xi,k)∥2xi,k

, (16)

where the “R−” stands for “Riemannian” and “FR” stands for “Fletcher-Reeves” type (Fletcher &
Reeves, 1964). With the above preparations, we present the DRCGD method described in Algo-
rithm 1. The step 3 first performs a consensus step and then updates the local variable using search
directions ηi,k. The step 4 uses the decentralized version of βR−FR

k+1 . The step 5 is to project the
search direction onto the tangent space Txi,k+1

M, which follows a projection update.

Algorithm 1 Decentralized Riemannian Conjugate Gradient Descent (DRCGD) for solving Eq.(1).

Input: Initial point x0 ∈ Mn, an integer t, set ηi,0 = − grad fi(xi,0).
1: for k = 0, · · · do ▷ for each node i ∈ [n], in parallel
2: Choose diminishing step size αk = O(1/

√
k)

3: Update xi,k+1 = PM

(∑n
j=1 W

t
ijxj,k + αkηi,k

)
4: Compute βi,k+1 = ∥ grad fi(xi,k+1)∥2/∥ grad fi(xi,k)∥2

5: Update ηi,k+1 = − grad fi(xi,k+1) + βi,k+1PTxi,k+1
M

(∑n
j=1 W

t
ijηj,k

)
6: end for

To analyze the convergence of the proposed algorithm, the following assumptions on the step size
αk are also needed (Sato, 2022).

Assumption 3 The step size αk > 0 satisfies the following conditions:
(i) αk is decreasing and bounded

lim
k→∞

αk = 0, lim
k→∞

αk+1

αk
= 1, 0 < αk ≤ γ(1− γ)

4C
. (17)

(ii) For constant c1 and c2 with 0 < c1 < c2 < 1, the Armijo condition on M is
fi(xi,k+1) ≤ fi(xi,k) + c1αk⟨grad fi(xi,k), ηi,k⟩xi,k

. (18)
(iii) The strong Wolfe condition is∣∣∣∣〈grad fi (xi,k+1) ,T

R
αkηi,k

(ηi,k)
〉
xi,k+1

∣∣∣∣ ≤ c2

∣∣∣⟨grad fi (xi,k) , ηi,k⟩xi,k

∣∣∣ . (19)

4.2 CONVERGENCE ANALYSIS

This subsection focuses on the global convergence analysis of our DRCGD algorithm. Different
from the bounded assumption of a vector transport in (Sato, 2022), we give an extended assump-
tion about the projection operator in the decentralized scenario, where gi,k+1 := grad fi(xi,k+1).
Specifically, we assume, for each k ≥ 0, that the following inequality holds∣∣∣∣∣∣∣

〈
gi,k+1,PTxi,k+1

M

 n∑
j=1

W t
ijηj,k

〉
xi,k+1

∣∣∣∣∣∣∣ ≤
∣∣∣∣〈gi,k+1,T

R
αkηi,k

(ηi,k)
〉
xi,k+1

∣∣∣∣ , (20)

which will be used as a substitute to proceed the following demonstration. Next, we consider proving
the convergence of the Fletcher-Reeves-type DRCGD method for each agent, i.e., we use βR−FR

i,k+1 in
Eq.(16). See Al-Baali (1985) for its Euclidean version and Sato (2022) for its Riemannian version.

At last, we establish the global convergence based on Theorem 2 and Theorem 3, which give the
locally linear convergence of consensus error and the convergence of each agent, respectively.
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Theorem 1 (Global convergence). Let {xk} be the sequence generated by Algorithm 1. Suppose
that Assumptions 1 and 2 hold. If x0 ∈ N := {x : ∥x̂ − x̄∥ ≤ γ/2} and ∥βi,k∥ ≤ C (a constant
C > 0), then

lim
k→∞

inf ∥ grad f(x̄k)∥2 = 0. (21)

Proof. The proofs can be found in Appendix D.1. □

5 NUMERICAL EXPERIMENT

In this section, we compare our DRCGD method with DRDGD (Chen et al., 2021) and
DPRGD (Deng & Hu, 2023), which are first-order decentralized Riemannian optimization methods
using retraction and projection respectively, on the following decentralized eigenvector problem:

min
x∈Mn

− 1

2n

n∑
i=1

tr
(
x⊤
i A

⊤
i Aixi

)
, s.t. x1 = . . . = xn, (22)

where Mn := St(d, r)× · · · × St(d, r)︸ ︷︷ ︸
n

, Ai ∈ Rmi×d is the local data matrix for agent i and mi

is the sample size. Note that A⊤ := [A⊤
1 , A

⊤
2 , · · · , A⊤

n ] is the global data matrix. For any solution
x∗ of Eq.(22), giving an orthogonal matrix Q ∈ Rr×r, x∗Q is also a solution in essence. Then the
distance between two points x and x∗ can be defined as

ds(x, x
∗) = min

Q⊤Q=QQ⊤=Ir
∥xQ− x∗∥.

We employ fixed step sizes for all comparisons, i.e., the step size is set to αk = α̂√
K

with K

being the maximal number of iterations. We examine various graph matrices used to represent the
topology across agents, i.e., the Erdos-Renyi (ER) network with probability p and the Ring network.
It follows from (Chen et al., 2021) that W is the Metroplis constant matrix (Shi et al., 2015).

We measure algorithms by four metrics, i.e., the consensus error ∥xk − x̄k∥, the gradient norm
∥gradf(x̄k)∥, the objective function f(x̄k)−f∗, and the distance to the global optimum ds(x̄k, x

∗),
respectively. The experiments are evaluated with the Intel(R) Core(TM) i7-12700 CPU. And the
codes are implemented in Python with mpi4py.

5.1 SYNTHETIC DATA

We fix m1 = m2 = · · · = mn = 1000, d = 10, and r = 5. Then we generate m1 × n independent
and identically distributed samples to obtain A by following standard multi-variate Gaussian distri-
bution. Specifically, let A = UΣV ⊤ be the truncated SVD, where U ∈ R1000n×d and V ∈ Rd×d

are orthogonal matrices, and Σ ∈ Rd×d is a diagonal matrix. Then we set the singular values of A
to be Σi,i = Σ0,0×∆i/2 where i ∈ [d] and eigengap ∆ ∈ (0, 1). We also fix the maximum iteration
epoch to 200 and early terminate it if ds(x̄k, x

∗) ≤ 10−5.

The comparison results are shown in Figures 1, 2, and 3. It can be seen from Figure 1 that our
DRCGD converges faster than DPRGD under different numbers of agents (n = 16 and n = 32).
When n becomes larger, these two algorithms both converge slower. In Figure 2, DRDGD gives very
similar performance under different numbers of consensus steps, i.e., t ∈ {1, 10,∞}, which means
that the numbers of consensus steps do not affect the performance of DRDGD much. A similar
phenomenon can be observed in DPRGD. In contrast, as the communication rounds t increase, our
DRCGD consistently achieves better performance. Note that one can achieve the case of t → ∞
through a complete graph with the equally weighted matrix. For Figure 3, we see DPRGD has very
close trajectories under different graphs on the four metrics. In fact, this also occurs for DRDGD.
However, the connected graph ER helps our DRCGD obtain a better final solution than the connected
graph Ring because ER network with the probability of each edge is a better graph connection
than Ring network. Moreover, our DRCGD with ER p = 0.6 performs better than that with ER
p = 0.3. In conclusion, DRCGD always converges faster and performs better than both DRDGD
and DPRGD under different network graphs because the search direction of conjugate gradient
method we designed in Eq.(14) is not only vector transport-free, but also achieves the consensus.
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Figure 1: Numerical results on synthetic data with different numbers of agents, eigengap ∆ = 0.8,
Graph: Ring, t = 1, α̂ = 0.01. y-axis: log-scale.
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Figure 2: Numerical results on synthetic data with different numbers of consensus steps, eigengap
∆ = 0.8, Graph: Ring, n = 16, α̂ = 0.01. y-axis: log-scale.

5.2 REAL-WORLD DATA

We also present some numerical results on the MNIST dataset (LeCun, 1998). For MNIST, the
samples consist of 60000 hand-written images where the dimension of each image is given by d =
784. And these samples make up the data matrix of 60000 × 784, which is randomly and evenly
partitioned into n agents. We normalize the data matrix by dividing 255. Then each agent holds a
local data matrix Ai of 60000

n × 784. For brevity, we fix t = 1, r = 5, and d = 784, respectively. W
is the Metroplis constant matrix and the graph is the Ring network. The step size of our DRCGD,
DRDGD, and DPRGD is αk = α̂

60000 . We set the maximum iteration epoch to 1000 and early
terminate it if ds(x̄k, x

∗) ≤ 10−5.

The results for MNIST data with n = 20 are shown in Figure 4. We see that the performance of
DRDGD and DPRGD are almost the same. When α̂ becomes larger, all algorithms converge faster.
And our DRCGD converges much faster than both DRDGD and DPRGD.

8



Published as a conference paper at ICLR 2024

0 25 50 75 100 125 150 175 200
Epoch

10 3

10 2

10 1

||x
k

x k
||

DRCGD, ER p=0.3
DRCGD, ER p=0.6
DRCGD, Ring
DPRGD, ER p=0.3
DPRGD, ER p=0.6
DPRGD, Ring

0 25 50 75 100 125 150 175 200
Epoch

10 3

10 2

10 1

100

101

||g
ra

df
(x

k)|
|

DRCGD, ER p=0.3
DRCGD, ER p=0.6
DRCGD, Ring
DPRGD, ER p=0.3
DPRGD, ER p=0.6
DPRGD, Ring

0 25 50 75 100 125 150 175 200
Epoch

10 7

10 5

10 3

10 1

101

f(x
k)

f*

DRCGD, ER p=0.3
DRCGD, ER p=0.6
DRCGD, Ring
DPRGD, ER p=0.3
DPRGD, ER p=0.6
DPRGD, Ring

0 25 50 75 100 125 150 175 200
Epoch

10 4

10 3

10 2

10 1

100

d s
(x

k,
x

* )

DRCGD, ER p=0.3
DRCGD, ER p=0.6
DRCGD, Ring
DPRGD, ER p=0.3
DPRGD, ER p=0.6
DPRGD, Ring

Figure 3: Numerical results on synthetic data with different network graphs, eigengap ∆ = 0.8,
t = 10, n = 16, α̂ = 0.05. y-axis: log-scale.
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Figure 4: Numerical results on MNIST data with single-step consensus, Graph: Ring, n = 20.

6 CONCLUSION

We proposed the decentralized Riemannian conjugate gradient method for solving decentralized op-
timization over the Stiefel manifold. In particular, it is the first decentralized version of the Rieman-
nian conjugate gradient. By replacing retractions and vector transports with projection operators,
the global convergence was established under an extended assumption (20) on the basis of (Sato,
2021), thereby reducing the computational complexity required by each agent. Numerical results
demonstrated the effectiveness of our proposed algorithm. In the future, we will further extend
our algorithm to a compact sub-manifold. On the other hand, it will be interesting to develop the
decentralized version of online optimization over Riemannian manifolds.
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A PROOFS FOR LEMMA 1

Proof. Since grad fi(x) = PTxM(∇fi(x)), we have

∥grad fi(x)− grad fi(y)∥ =
∥∥PTxM (∇fi(x))− PTyM (∇fi(y))

∥∥
=
∥∥PTxM (∇fi(x))− PTxM (∇fi(y)) + PTxM (∇fi(y))− PTyM (∇fi(y))

∥∥
≤∥PTxM (∇fi(x)−∇fi(y))∥+

∥∥PTxM (∇fi(y))− PTyM (∇fi(y))
∥∥

≤∥∇fi(x)−∇fi(y)∥+
∥∥PTxM (∇fi(y))− PTyM (∇fi(y))

∥∥
≤∥∇fi(x)−∇fi(y)∥+ 2Lf∥x− y∥
≤(L+ 2Lf )∥x− y∥,

(23)

where, by Eq.(6), the third inequality uses∥∥PTxM (∇fi(y))− PTyM (∇fi(y))
∥∥

=
1

2

∥∥x (x⊤∇fi(y) +∇fi(y)
⊤x

)
− y

(
y⊤∇fi(y) +∇fi(y)

⊤y
)∥∥

≤1

2

(∥∥x ((x− y)⊤∇fi(y) +∇fi(y)
⊤(x− y)

)∥∥+
∥∥(x− y)

(
y⊤∇fi(y) +∇fi(y)

⊤y
)∥∥)

≤1

2
(2∥x∥ · ∥x− y∥ · ∥∇fi(y)∥+ 2∥x− y∥ · ∥∇fi(y)∥ · ∥y∥)

≤2∥x− y∥ · ∥∇fi(y)∥ ≤ 2 max
y∈St(d,r)

∥∇fi(y)∥ · ∥x− y∥ = 2Lf∥x− y∥.

(24)

The proof is completed. □

B LINEAR CONVERGENCE OF CONSENSUS ERROR

Let us first present the linear convergence of consensus error. For the iteration scheme xi,k+1 =

PM

(∑n
j=1 W

t
ijxj,k + αkηi,k

)
where αk > 0 and ηi,k ∈ Txi,k

M, the following lemma yields
that, for xk in the neighborhood N , the iterates xk+1 also remain in this neighborhood N .

Lemma 2 Let xi,k+1 = PM

(∑n
j=1 W

t
ijxj,k + αkηi,k

)
. On the basis of Assumption 1, if xk ∈

N := {x : ∥x̂ − x̄∥ ≤ γ/2}, ∥ηi,k∥ ≤ C, 0 < αk ≤ γ(1−γ)
4C , and t ≥

⌈
logσ2

(
γ(1−γ)
4
√
nζ

)⌉
with

ζ := maxx,y∈M ∥x− y∥, then

n∑
j=1

W t
ijxj,k + αkηi,k ∈ UM(γ), i = 1, · · · , n, (25)

∥x̂k+1 − x̄k+1∥ ≤ 1

2
γ. (26)

Proof. Since xk ∈ N , we have

∥x̂k+1 − x̄k+1∥ ≤ ∥x̂k+1 − x̄k∥ ≤ 1

n

n∑
i=1

∥xi,k+1 − x̄k∥

=
1

n

n∑
i=1

∥∥∥∥∥∥PM

 n∑
j=1

W t
ijxj,k + αkηi,k

− PM (x̂k)

∥∥∥∥∥∥
≤ 1

1− γ

∥∥∥∥∥∥
n∑

j=1

W t
ijxj,k + αkηi,k − x̂k

∥∥∥∥∥∥ ≤ 1

2
γ,
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where the third inequality uses Eq.(11) and the fourth inequality yields∥∥∥∥∥∥
n∑

j=1

W t
ijxj,k + αkηi,k − x̂k

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
n∑

j=1

W t
ijxj,k − x̂k

∥∥∥∥∥∥+ ∥αkηi,k∥

≤

∥∥∥∥∥∥
n∑

j=1

(
W t

ij −
1

n

)
(xj,k − x̂k)

∥∥∥∥∥∥+ αkC

≤
n∑

j=1

∣∣∣∣W t
ij −

1

n

∣∣∣∣ ∥xj,k − x̂k∥+ αkC

≤ ζmax
i

n∑
j=1

∣∣∣∣W t
ij −

1

n

∣∣∣∣+ αkC ≤
√
nσt

2ζ + αkC ≤ γ(1− γ)

2
,

where the fourth inequality uses that ∥xj,k − x̂k∥ ≤ 1
n

∑n
i=1 ∥xj,k − xi,k∥ ≤ ζ (Deng & Hu, 2023)

and the fifth inequality follows from the bound on the total variation distance between any row of
W t and 1

n1n (Diaconis & Stroock, 1991; Boyd et al., 2004). For any i ∈ [n], since x̄k ∈ M and
γ ∈ (0, 1), we have∥∥∥∥∥∥

n∑
j=1

W t
ijxj,k + αkηi,k − x̄k

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
n∑

j=1

W t
ijxj,k + αkηi,k − x̂k

∥∥∥∥∥∥+ ∥x̂k − x̄k∥

≤ γ(1− γ)

2
+

1

2
γ < γ.

The proof is completed. □

In Lemma 2, the search direction ηi,k is required to be bounded. Let ηi,k = 0, then we can consider
the convergence of consensus error.

Theorem 2 (Linear convergence of consensus error). Let xi,k+1 = PM

(∑n
j=1 W

t
ijxj,k

)
.

On the basis of Assumption 1, if xk ∈ N := {x : ∥x̂ − x̄∥ ≤ γ/2} and t ≥
max

{⌈
logσ2

(1− γ)
⌉
,
⌈
logσ2

(
γ(1−γ)
4
√
nζ

)⌉}
, then the following linear convergence with rate

σt
2/(1− γ) < 1 holds

∥xk+1 − x̄k+1∥ ≤ σt
2

1− γ
∥xk − x̄k∥

Proof. According to Lemma 2, ∥x̂0 − x̄0∥ ≤ 1
2γ and xk ∈ N for all k ≥ 0 holds, then it holds that

n∑
j=1

W t
ijxj,k ∈ UM(γ), i = 1, · · · , n.

Let PMn(x)⊤ = [PM(x1)
⊤, · · · ,PM(xn)

⊤], then with the iteration scheme xi,k+1 =

PM

(∑n
j=1 W

t
ijxj,k

)
we have

∥xk+1 − x̄k+1∥ ≤ ∥xk+1 − x̄k∥ =
∥∥PMn

(
Wtxk

)
− PMn (x̂k)

∥∥
≤ 1

1− γ

∥∥Wtxk − x̂k

∥∥ =
1

1− γ

∥∥(W t ⊗ Id
)
xk − x̂k

∥∥
=

1

1− γ

∥∥∥∥((W t − 1

n
1n1⊤n

)
⊗ Id

)
(xk − x̂k)

∥∥∥∥
≤ 1

1− γ
σt
2 ∥xk − x̂k∥ ≤ 1

1− γ
σt
2 ∥xk − x̄k∥ ,

(27)

where the second inequality uses Eq.(11). The proof is completed. □
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On the Stiefel manifold, by utilizing the 1-proximally smooth property of projection operators, we
establish the locally linear convergence of consensus error with a rate of σt

2/(1− γ), where t can be
any positive integer, which is consistent with the cases in the Euclidean space (Nedic et al., 2010;
Nedić et al., 2018).

C CONVERGENCE OF EACH AGENT

Lemma 3 In Algorithm 1 with βi,k+1 = βR−FR
i,k+1 in Eq. (16) and Eq. (20), assume that αk satisfies

the strong Wolfe conditions in Eq.(18) and Eq.(19) with 0 < c1 < c2 < 1/2, for each k ≥ 0. If
grad fi(xi,k) ̸= 0 for each k ≥ 0, then ηi,k as a descent direction satisfies

− 1

1− c2
≤

⟨grad fi(xi,k), ηi,k⟩xi,k

∥grad fi(xi,k)∥2xi,k

≤ −1− 2c2
1− c2

. (28)

Proof. For ease of notation, we denote gi,k := grad fi(xi,k). When k = 0, ηi,0 = −gi,0 is the initial
condition and we have

⟨gi,0, ηi,0⟩xi,0

∥gi,0∥2xi,0

=
⟨gi,0,−gi,0⟩xi,0

∥gi,0∥2xi,0

= −1.

Hence, Eq. (28) holds. Supposing that ηi,k is a descent direction satisfying Eq. (28) for some k, we
will prove that ηi,k+1 is also a descent and satisfies Eq. (28) in which k is replaced with k+1. Based
on Eq.(14) and Eq.(16), we yield

⟨gi,k+1, ηi,k+1⟩xi,k+1

∥gi,k+1∥2xi,k+1

=

〈
gi,k+1,−gi,k+1 + βi,k+1PTxi,k+1

M

(∑n
j=1 W

t
ijηj,k

)〉
xi,k+1

∥gi,k+1∥2xi,k+1

= −1 +

〈
gi,k+1,PTxi,k+1

M

(∑n
j=1 W

t
ijηj,k

)〉
xi,k+1

∥gi,k∥2xi,k

.

(29)

Similar to (Sato, 2022), the assumption in Eq.(20) and the strong Wolfe condition in Eq.(19) yield∣∣∣∣∣∣∣
〈
gi,k+1,PTxi,k+1

M

 n∑
j=1

W t
ijηj,k

〉
xi,k+1

∣∣∣∣∣∣∣ ≤ c2

∣∣∣⟨gi,k, ηi,k⟩xi,k

∣∣∣ = −c2 ⟨gi,k, ηi,k⟩xi,k
. (30)

It follows from Eq.(29) and Eq.(30) that

−1 + c2
⟨gi,k, ηi,k⟩xi,k

∥gi,k∥2xi,k

≤
⟨gi,k+1, ηk+1⟩xi,k+1

∥gi,k+1∥2xi,k+1

≤ −1− c2
⟨gi,k, ηi,k⟩xi,k

∥gi,k∥2xi,k

.

From the induction hypothesis in Eq.(28), i.e., ⟨gi,k, ηi,k⟩xi,k
/∥gi,k∥2xi,k

≥ −(1 − c2)
−1, and the

assumption c2 > 0, we finally obtain the following inequality

− 1

1− c2
≤

⟨gi,k+1, ηi,k+1⟩xi,k+1

∥gi,k+1∥2xi,k+1

≤ −1− 2c2
1− c2

,

which also implies ⟨gi,k+1, ηi,k+1⟩xi,k+1
< 0. The proof is completed. □

Subsequently, we proceed to the convergence property of each agent. The proof below is based on
the Riemannian version given in Sato (2022).

Theorem 3 In Algorithm 1 with βi,k+1 = βR−FR
i,k+1 in Eq. (16) and Eq. (20), assume that αk satisfies

the strong Wolfe conditions in Eq.(18) and Eq.(19) with 0 < c1 < c2 < 1/2, for each k ≥ 0. If fi is
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bounded below and is of class C1, and the Riemannian version (Ring & Wirth, 2012; Sato & Iwai,
2015) of Zoutendijk’s Theorem (Nocedal & Wright, 1999) holds, then we yield

lim
k→∞

inf ∥ grad fi(xi,k)∥xi,k
= 0, i = 1, · · · , n. (31)

Proof. We denote gi,k := grad fi(xi,k) again. If gi,k0
= 0 holds for some k0, then we have βi,k0

= 0

and ηi,k0 = 0 from Eq.(16) and Eq.(14), which implies xi,k0+1 = PM

(∑n
j=1 W

t
ijxj,k0

)
. Based

on Theorem 2, the consensus error converges such that xi,k0+1 → xi,k0
holds. Thus, we obtain

gi,k = 0 for all k ≥ k0 so that Eq.(31) holds.

We next consider the case in which gi,k ̸= 0 for all k ≥ 0. Let θi,k be the angle between −gi,k and
ηi,k, i.e.,

cos θi,k =
⟨−gi,k, ηi,k⟩xi,k

∥−gi,k∥xi,k
∥ηi,k∥xi,k

= −
⟨gi,k, ηi,k⟩xi,k

∥gi,k∥xi,k
∥ηi,k∥xi,k

. (32)

It follows from Eq.(32) and Eq.(28) that

cos θi,k ≥ 1− 2c2
1− c2

∥gi,k∥xi,k

∥ηi,k∥xi,k

. (33)

Since the search directions are descent directions from Lemma 3, Zoutendijk’s Theorem together
with Eq.(33) yields

∞∑
k=0

∥gi,k∥4xi,k

∥ηi,k∥2xi,k

< ∞. (34)

Combined Eq.(28) and Eq.(30), we have∣∣∣∣∣∣∣
〈
gi,k,PTxi,k

M

 n∑
j=1

W t
ijηj,k−1

〉
xi,k

∣∣∣∣∣∣∣ ≤ −c2 ⟨gi,k−1, ηi,k−1⟩xi,k−1
≤ c2

1− c2
∥gi,k−1∥2xi,k−1

.

(35)

Using Eq.(16), Eq.(20), and Eq.(35), we obtain the recurrence inequality for ∥ηi,k∥2xi,k
:

∥ηi,k∥2xi,k

=

∥∥∥∥∥∥−gi,k + βi,kPTxi,k
M

 n∑
j=1

W t
ijηj,k−1

∥∥∥∥∥∥
2

xi,k

≤ ∥gi,k∥2xi,k
+ 2βi,k

∣∣∣∣∣∣∣
〈
gi,k,PTxi,k

M

 n∑
j=1

W t
ijηj,k−1

〉
xi,k

∣∣∣∣∣∣∣+ β2
i,k

∥∥∥∥∥∥PTxi,k
M

 n∑
j=1

W t
ijηj,k−1

∥∥∥∥∥∥
2

xi,k

≤ ∥gi,k∥2xi,k
+

2c2
1− c2

βi,k ∥gi,k−1∥2xi,k−1
+ β2

i,k ∥ηi,k−1∥2xi,k−1

= ∥gi,k∥2xi,k
+

2c2
1− c2

∥gi,k∥2xi,k
+ β2

i,k ∥ηi,k−1∥2xi,k−1

= c ∥gi,k∥2xi,k
+ β2

i,k ∥ηi,k−1∥2xi,k−1
,

(36)
where c := (1 + c2)/(1 − c2) > 1. Note that we assume in the second inequality, for each k ≥ 1,
that

∥∥∥∑n
j=1 W

t
ijηj,k−1

∥∥∥
xi,k

≤ ∥ηi,k−1∥xi,k−1
holds, which is similar to Formula (4.28) in (Sato,
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2021). We can successively use Eq.(36) with Eq.(16) as

∥ηi,k∥2xi,k

≤c
(
∥gi,k∥2xi,k

+ β2
i,k ∥gi,k−1∥2xi,k−1

+ · · ·+ β2
i,kβ

2
i,k−1 · · ·β2

i,2 ∥gi,1∥
2
xi,1

)
+ β2

i,kβ
2
i,k−1 · · ·β2

i,1 ∥ηi,0∥
2
xi,0

=c ∥gi,k∥4xi,k

(
∥gi,k∥−2

xi,k
+ ∥gi,k−1∥−2

xi,k−1
+ · · ·+ ∥gi,1∥−2

xi,1

)
+ ∥gi,k∥4xi,k

∥gi,0∥−2
xi,0

<c ∥gi,k∥4xi,k

k∑
j=0

∥gi,j∥−2
xi,j

.

(37)

We can prove Eq.(31) by contradiction. We first assume that Eq.(31) does not hold. Then there
exists a constant C > 0 such that ∥gi,k∥xi,k

≥ C > 0 for all k ≥ 0 because we also assume gi,k ̸= 0

for all k ≥ 0 at the same time. Consequently, we have
∑k

j=0 ∥gi,j∥2xi,j
≤ C−2(k + 1). Hence,

based on Eq.(37), the left hand side of Eq.(34) is evaluated as

∞∑
k=0

∥gi,k∥4xi,k

∥ηi,k∥2xi,k

≥
∞∑
k=0

ϵ2

c

1

k + 1
= ∞,

which contradicts Eq.(34). The proof is completed. □

Figure 5: An overview of the proofs.

D GLOBAL CONVERGENCE

An overview of this paper is shown in the Figure 5. We now investigate the uniform boundedness of
∥ηk∥ in the following lemma.

Lemma 4 Let {xk} be the sequence generated by Algorithm 1. Suppose that Assumptions 1

and 2 hold. If x0 ∈ N , ∥βi,k∥ ≤ C, 0 < αk < min
{

1−γ
8Lg

, γ(1−γ)
4C

}
, and t ≥

max
{⌈

logσ2

(
1−γ
2
√
nζ

)⌉
,
⌈
logσ2

(
1

8
√
nC

)⌉
,
⌈
logσ2

(
γ(1−γ)
4
√
nζ

)⌉}
, it follows that for all k, xk ∈ N

and

∥ηi,k∥ ≤ 2Lg, ∀i ∈ [n]. (38)

Proof. We prove it by induction on both ∥ηi,k∥ and ∥x̂k − x̄k∥. Based on Assumption 2, we have
∥ grad fi (xi,k) ∥ ≤ ∥∇fi (xi,k) ∥ ≤ Lf ≤ Lg due to Lg = L + 2Lf ≥ Lf . Then we have
∥ηi,0∥ = ∥ grad fi (xi,0) ∥ ≤ Lg for all i ∈ [n] and ∥x̂0 − x̄0∥ ≤ 1

2γ. Suppose for some k ≥ 0

17
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that ∥ηi,k∥ ≤ 2Lg and ∥x̂k − x̄k∥ ≤ 1
2γ. Since ∥ηi,k∥ ≤ 2Lg and αk < γ(1−γ)

4C , it follows from
Lemma 2 that

n∑
j=1

W t
ijxj,k + αkηi,k ∈ UM(γ), i = 1, · · · , n, ∥x̂k+1 − x̄k+1∥ ≤ 1

2
γ.

Then, we have

∥ηi,k+1 + grad fi (xi,k)∥

=

∥∥∥∥∥∥βi,k+1PTxi,k+1
M

 n∑
j=1

W t
ijηj,k

− (grad fi (xi,k+1)− grad fi (xi,k))

∥∥∥∥∥∥
≤ βi,k+1

∥∥∥∥∥∥PTxi,k+1
M

 n∑
j=1

W t
ijηj,k

∥∥∥∥∥∥+ ∥grad fi (xi,k+1)− grad fi (xi,k)∥

≤ C

∥∥∥∥∥∥
n∑

j=1

(
W t

ij −
1

n

)
ηj,k

∥∥∥∥∥∥+ Lg ∥xi,k+1 − xi,k∥

≤ Cσt
2

√
nmax

i
∥ηi,k∥+ Lg ∥xi,k+1 − xi,k∥

≤ Cσt
2

√
nmax

i
∥ηi,k∥+

Lg

1− γ

∥∥∥∥∥∥
n∑

j=1

(
W t

ij −
1

n

)
xi,k + αkηi,k

∥∥∥∥∥∥
≤

(
Cσt

2

√
n+ αk

Lg

1− γ

)
max

i
∥ηi,k∥+

Lg

1− γ
σt
2

√
nζ

≤ 1

4
max

i
∥ηi,k∥+

1

2
Lg ≤ 1

2
Lg +

1

2
Lg ≤ Lg,

(39)

where the second inequality uses Lemma 1 and the fourth inequality utilizes Eq.(11). Hence,
∥ηi,k+1∥ ≤ ∥ηi,k+1 + grad fi (xi,k)∥+ ∥grad fi (xi,k)∥ ≤ 2Lg . The proof is completed. □

With the above lemma, we can elaborate the relationship between the consensus error and step size.

Lemma 5 Let {xk} be the sequence generated by Algorithm 1. Suppose that Assumptions 1 and 2
hold. If x0 ∈ N , ∥ηi,k∥ ≤ 2Lg , t ≥

⌈
logσ2

(1− γ)
⌉
, and 0 < αk ≤ γ(1−γ)

8Lg
, it follows that for all

k, xk ∈ N and

1

n
∥x̄k − xk∥2 ≤ C

1

(1− γ)2
L2
gα

2
k. (40)

Proof. Since ∥ grad fi (xi,k) ∥ ≤ Lg and ∥x̂0 − x̄0∥ ≤ 1
2γ, it follows from Lemma 2 that for any

k > 0, we have
n∑

j=1

W t
ijxj,k + αkηi,k ∈ UM(γ), i = 1, · · · , n,

Let PMn(x)⊤ = [PM(x1)
⊤, · · · ,PM(xn)

⊤]. By the definition of x̄k+1 and Theorem 2, then we
yield

∥xk+1 − x̄k+1∥ ≤ ∥xk+1 − x̄k∥
=

∥∥PMn

(
Wtxk + αkηk

)
− PMn (x̂k)

∥∥
≤ 1

1− γ

∥∥Wtxk + αkηk − x̂k

∥∥
≤ 1

1− γ
σt
2 ∥xk − x̄k∥+

2

1− γ

√
nαkLg,

(41)

where the first inequality follows from the optimality of x̄k+1, the second inequality uses Eq.(11),
and the third inequality utilizes the fact that ∥ηk∥ ≤ 2

√
nLg .

18
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Let ρt = 1
1−γσ

t
2 where 0 < ρt < 1, it follows from Eq.(42) that

∥xk+1 − x̄k+1∥ ≤ ρt ∥xk − x̄k∥+
2

1− γ

√
nαkLg

≤ ρk+1
t ∥x0 − x̄0∥+

2
√
nLg

1− γ

k∑
l=0

ρk−l
t αl.

(42)

Let yk = ∥xk−x̄k∥√
nαk

. For a positive integer K ≤ k, it follows from Eq.(42) that

yk+1 ≤ ρtyk +
2

1− γ
Lg

αk

αk+1
≤ ρk+1−K

t yK +
2

1− γ
Lg

k∑
l=0

ρk−l
t

αl

αl+1
.

Since αk = O(1/Lg) and ∥x̄0 − x0∥ ≤ 1
2

√
nγ, one has that y0 ≤ 1

2γ/α0 = O(Lg). Since
limk→∞

αk+1

αk
= 1, there exists sufficiently large K such that αk/αk+1 ≤ 2,∀k ≥ K. For 0 ≤

k ≤ K, there exists some C ′ > 0 such that y2k ≤ C ′ 1
(1−γ)2L

2
g , where C ′ is independent of Lg

and n. For k ≥ K, one has that y2k ≤ C 1
(1−γ)2L

2
g , where C = 2C ′ + 32

(1−ρt)2
. Hence, we get

∥xk−x̄k∥2

n ≤ C 1
(1−γ)2L

2
g for all k ≥ 0, where C = O( 1

(1−ρt)2
). The proof is completed. □

D.1 PROOFS FOR THEOREM 1

Proof. We have the following inequality:

∥ grad f(x̄k)∥2

=

∥∥∥∥∥ 1n
n∑

i=1

grad fi(xi,k) + grad f(x̄k)−
1

n

n∑
i=1

grad fi(xi,k)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1n
n∑

i=1

grad fi(xi,k)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥grad f(x̄k)−
1

n

n∑
i=1

grad fi(xi,k)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1n
n∑

i=1

grad fi(xi,k)

∥∥∥∥∥
2

+
2

n

n∑
i=1

∥grad fi(x̄k)− grad fi(xi,k)∥2

≤ 2

∥∥∥∥∥ 1n
n∑

i=1

grad fi(xi,k)

∥∥∥∥∥
2

+
2L2

g

n

n∑
i=1

∥x̄k − xi,k∥2

= 2

∥∥∥∥∥ 1n
n∑

i=1

grad fi(xi,k)

∥∥∥∥∥
2

+
2L2

g

n
∥x̄k − xk∥2 ,

(43)

where the third inequality uses Lemma 1. Since limk→∞ inf ∥ grad fi(xi,k)∥ = 0 based on The-
orem 2 and ∥x̄k − xk∥2 ≤ nC 1

(1−γ)2L
2
gα

2
k based on Lemma 5, it follows from limk→∞ αk = 0

that

lim
k→∞

∥ grad f(x̄k)∥2 ≤ 2

∥∥∥∥∥ 1n
n∑

i=1

grad fi(xi,k)

∥∥∥∥∥
2

+ 2C
1

(1− γ)2
L4
gα

2
k = 0.

The proof is completed. □
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