DC4GS: Directional Consistency-Driven Adaptive
Density Control for 3D Gaussian Splatting

Moonsoo Jeong' Dongbeen Kim? Minseong Kim? Sungkil Lee!-23:*

!Department of Electrical and Computer Engineering, Sungkyunkwan University, South Korea
2Department of Computer Science and Engineering, Sungkyunkwan University, South Korea
3Department of Immersive Media Engineering, Sungkyunkwan University, South Korea
{moonso0101, rlaehdqls021, leon0106, sungkil}@skku.edu

Abstract

We present a Directional Consistency (DC)-driven Adaptive Density Control (ADC)
for 3D Gaussian Splatting (DC4GS). Whereas the conventional ADC bases its
primitive splitting on the magnitudes of positional gradients, we further incorporate
the DC of the gradients into ADC, and realize it through the angular coherence
of the gradients. Our DC better captures local structural complexities in ADC,
avoiding redundant splitting. When splitting is required, we again utilize the DC
to define optimal split positions so that sub-primitives best align with the local
structures than the conventional random placement. As a consequence, our DC4GS
greatly reduces the number of primitives (up to 30% in our experiments) than the
existing ADC, and also enhances reconstruction fidelity greatly.

1 Introduction

Primitive count AbsGS
700K - —— AbsGS + DC4GS

1500K -
1300K -
1200K -

1000K -

800K -

““““ LCECUN /\hsGS + DC4GS (Ours) Ground Truth(GT)

(a) Evolution of primitive counts during training (b) Rendering quality improvement in high-frequency details

Figure 1: Comparison of AbsGS [38]] and our Directional Consistency-driven density control (DC4GS)
in terms of (a) primitive counts during training and (b) reconstruction quality. DC4GS saturates
much earlier (here, 6k iterations) than the AbsGS does. Upon convergence, it achieves a significant
reduction in primitive counts (here, 30%) and high-quality splits as well, resulting in much higher
reconstruction quality (b) for high-frequency details (here, see the red inset).

3D Gaussian Splatting (3DGS) can synthesize high-quality renderings well, even from sparse point
clouds [[14]. Its efficiency stems from its adaptive density control (ADC) that leverages 2D positional
gradients, derived from reconstruction loss, indicating how effectively the observations of the input
signals are represented. When the primitives in fact are likely to require finer details (i.e., over-
reconstruction), the ADC spawns new primitives by splitting coarse ones where they matter most.

*Corresponding author.
Code is available at https://github.com/cgskku/dc4gs.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/cgskku/dc4gs

B -
. st 2. Low variance
Update - ¥

Ground truth Output Ground truth Output
(homogeneous) (gaussian intensity) l (heterogeneous) (gaussian intensity) l
6| A 1
- = - 4

variance: 0.39
L2 norm: 0.037
High DC

[N
{}
\ /
N _
ReispLEIIRE

aligned with GT
(a) High Directional Consistency (DC) (b) Low DC (c) Visualization of per-pixel DC

Gradient field
(low variance)

Gradient field

(high variance) still not aligned with GT

Figure 2: Visualization of how DC reflects structural complexities. In (a), a Gaussian can be aligned
with a single-peak ground truth (GT) using a simple shift, which is indicated by a low angular variance
(i.e., high DC). In contrast, (b) requires splitting due to the mismatch from the two-peak GT. This can
be reflected in its divergent gradients (i.e., low DC), but not in the gradient magnitudes. (c) visualizes
the per-pixel DC values in a real-world image, distinguishing directionally coherent (e.g., the sky)
and incoherent (the train) regions well.

The positional gradients include valuable information of reconstruction, but the majority of the
existing 3DGS-based methods still take only their magnitude (L2 norm) into account [[14} [38] 40,
i41], [44]]. The amount of information available from the magnitude is limited in representing the
distributions of individual primitives, and often leads to redundant splits where they are actually not
required (e.g., low-frequency or already well-refined areas). Furthermore, split positions are randomly
chosen and thereby disregard local structural cues, which often result in misaligned or overlapping
sub-primitives.

In order for ADC to better reflect the homogeneity of the local structures, we exploit the directional
distributions of the positional gradients as well as their magnitudes. When the directions of the
gradients are coherent, the regions encompassing them are likely to be simpler, not requiring splitting.
In contrast, regions with incoherent gradients require improving details. This approach can take
advantages both of primitive counts and reconstruction quality (see Fig.[T|for example). To this end, we
introduce Directional Consistency (DC) that captures the spatial coherence of the directional patterns
of positional gradients within Gaussians. For its simple yet effective realization, our implementation
uses the angular variance of gradient directions across pixels. Fig. [2]exemplifies the two Gaussian
patterns whose gradient magnitudes are identical, but their DCs are different.

Building on this insight, we use DC as a versatile criterion in determining whether to split a primitive
and where to place its sub-primitives. To guide the splitting, we incorporate DC into the existing
ADC criteria, which better detects primitives in structurally complex regions. For split placement,
we present a DC-guided split, splitting a primitive where the DCs of its sub-primitive candidates are
maximized and the structural complexity each sub-primitive represents is minimized. By leveraging
the DC cue in both decision and placement of splitting, we achieve higher reconstruction fidelity with
much fewer primitives than the previous simpler approaches.

To summarize, the contributions of this paper can be listed in what follows:

* introduction of Directional Consistency (DC) as a criterion to better capture the structural
complexity of local positional gradients in 3DGS;

» a DC-guided split decision so that structurally complex regions are better selected;

* a DC-guided split scheme so that the DCs of resulting sub-primitives are maximized and
thereby their structures are best distinguished.

2 Related work

2.1 3D Gaussian splatting

The 3DGS [14] has emerged as a real-time alternative to Neural Radiance Fields (NeRFs) [24] that
remains computationally intensive despite extensive advances in acceleration [} 16} 9} [25] 128 133} 39],
anti-aliasing [1H3]], and robustness [17, 34]. Unlike NeRFs, 3DGS enables efficient rendering by
directly rasterizing explicit 3D Gaussian primitives without requiring dense regular grids/fields.
However, 3DGS suffers from aliasing, blurring, and high-frequency detail loss in reconstruction [7]].

To address aliasing from mismatched scale and insufficient filtering, several 3DGS-based methods [[19}
21,132, 140] introduce multiscale filtering and analytic rasterization to reduce artifacts and improve
sharpness.

To better preserve high-frequency details and mitigate blurring caused by over-reconstruction,
FreGS [42] applies progressive Fourier-space regularization to emphasize texture-rich structures, and
BAGS [26]] learns spatial blur kernels to recover over-smoothed details.

Geometric inconsistencies in 3DGS have also been addressed. Optimal-GS [[13]] reduces projection
errors through local affine approximations, and Scaffold-GS [22]] adopts anchor-based hierarchical
representations, where neural anchors spawn offset primitives to model local structures, preserving
global structural coherence.

2.2 Adaptive density control for 3D Gaussian splatting

The conventional ADC scheme in the 3DGS refines Gaussian primitives by iteratively splitting or
cloning them based on positional gradient magnitudes. However, the ADC is sensitive to hyperparam-
eters and often causes redundant splits and spatial misalignment.

To improve the selectivity of the ADC, several methods refine the processing of view-space positional
gradients. AbsGS [38]] and GOF [41] mitigate gradient cancellation by using the magnitude of
homodirectional (absolute) gradients and the norm of positional gradients. Pixel-GS [44] introduces
pixel-aware gradients by weighting contributions based on pixel coverage and view-space depth,
densifying under-sampled regions.

The ADC was reformulated from alternative optimization perspectives. Revising Densification [[29]
guides growth via pixel-level error propagation, while a Markov Chain Monte Carlo-based
method [15] interprets the ADC as stochastic sampling using Stochastic Gradient Langevin Dy-
namics [4] to reallocate inactive Gaussians without explicit densification.

Memory-efficient ADC is explored in Compact-3DGS [18], which prunes primitives using volume
masks, and GES [10], which applies frequency-based pruning via generalized exponents. Recently,
Localized Points Management (LPM) [37] improves ADC by identifying error-contributing zones
under multi-view constraints and applying localized densification with opacity reset.

While the existing 3DGS-based methods often over-refine homogeneous regions and misalign sub-
primitives, our work incorporates the DC to evaluate the homogeneity of Gaussians, enabling more
selective splitting and better alignment with scene structure. This results in significant improvements
in both the quality and storage efficiency.

3 Preliminary: adaptive density control in 3D Gaussian splatting

In this section, we briefly review the ADC in the standard 3DGS [14]. The 3DGS is typically
initialized with sparse points derived from Structure-from-Motion (SfM) [30, [31]], and densifies
Gaussians via the ADC. This process entails evaluating view-space positional gradients 9L/a.’, where
L is reconstruction loss and 4 is the center of a projected 2D Gaussian. The gradients are used
to identify regions requiring higher details. The ADC criterion VL is computed every hundred
optimization iterations, and is defined as the average magnitude of the positional gradients:

1~ OLy
Vil=- ; I (1)

VL= Trag DCC (Sec. 4.2) VoL 2 Tgraa
Gradient magnitude (||g||]) Random sampling split /2 Aggregatedy & DCS (Sec. 4.3)

Aggrdega«ed 3 aradients "\ T
radients
grad! 9 /4 /4 \/ -4
C
_ o \\‘ . . o /
. (
N

/ / DC (k) Gradient magnitude (|411)

(a) Conventional ADC (b) DC4GS

Figure 3: Comparison of the conventional ADC scheme (e.g., 3DGS [14], AbsGS [38]], and Pixel-
GS [44]) and our DCAGS. (a) Gaussian primitives are selected using the positional gradient magnitude-
based criterion, and the new Gaussians are randomly spawned within the pre-split Gaussian. (b)
Our DC-based split Criterion (DCC) further integrates the DC (the circular mean of the positional
gradients) into the previous ADC criterion. Also, our DC-guided Split (DCS) better places the new
sub-primitives so that their DCs are best distinguished.

Polynomial

Sapeling regression

Split

where v denotes the number of views in which a Gaussian ¢ is observed, and L, is the loss for the
view v. When V /L of a Gaussian exceeds a threshold 7, and its maximum scale ||.S;|| surpasses g,
the Gaussian ¢ is spht and produces N sub-primitives (/N =2 by default) by randomly sampling new
centers within its coverage. If the gradient exceeds 7,, but ||5;|| is below Tg, the Gaussian is cloned
in place. Gaussians with opacity below a given threshold are pruned out for efficiency.

We can extend not only the ADC criterion of the 3DGS in Eq. (), but also the recent criteria still
based on the gradient magnitude [38| |44]], by incorporating DC into them. These extended criteria
guide both the split decisions and sub-primitive placements. The details of how to define and apply
our DC into the ADC are presented in Sec. 4]

4 DC4GS: Directional consistency-driven adaptive density control for 3DGS

The key idea of DC4GS is to quantify the directional coherence of positional gradients within a
Gaussian primitive, which thereby enhances the gradient magnitude-based ADC schemes. The DC
serves as an effective cue for assessing how homogeneous the region represented by a primitive is.
We incorporate the DC into ADC to facilitate two key operations: 1) deciding whether a primitive
should be split; 2) determining where to place sub-primitives when splitting is required.

To this end, we extend the existing densification criterion (Eq. (I))) by weighting it with the DC, which
we refer to as the DC-weighted split Criterion (DCC). When a DCC value is high, a single Gaussian
primitive is likely to cover a heterogeneous region, which cannot adequately capture the region; this
suggests refinement through splitting. Once a primitive is determined to be split, we also improve
the placement of the newly spawned primitives; the conventional scheme places them randomly. We
evaluate multiple candidate split locations within it and select the one that minimizes a DC-based
cost. This divides a heterogeneous region into distinct sub-regions that are internally homogeneous.
We referred this scheme as the DC-guided Split (DCS).

Fig. [3|illustrates the differences between the conventional ADC and our DC4GS. Our DC4GS is
readily compatible with the existing 3DGS-based pipelines, and thereby, can be easily plugged into
their pipelines.

4.1 Directional consistency

The DC is computed from the positional gradients within a Gaussian, derived from reconstruction
loss. Since the positional gradient magnitude also reflects how sensitive the loss is to positional
changes, combining them together allows the 3DGS to better understand whether each primitive
represents the regions well or not.

To quantify the DC within a Gaussian, we first assess the directional coherence of its positional
gradients using a circular mean (or negative circular variance) [23] that is a statistical measure of
angular dispersion of a set of unit vectors. Given a set of IV unit vectors u;, its circular mean is

defined as C' = + Zivzl uj, and its L2 norm ||C|| reflects directional alignment. ||C|| ~ 1 implies

Selected by AbsGS criterion & Selected by DCC Difference

Count: 90,073 Count: 69,821 Count: 20,252

Figure 4: Comparison of split candidates selected by the criterion of AbsGS and DCC from the
identical training states. After 14,900 training steps on the Stump scene using the 3DGS, Gaussians
selected for splitting are visualized in yellow (AbsGS) and red (DCC). The difference (green) shows
(potentially redundant) 20,252 Gaussians are not split by the DCC. Most of these differences are
already of tiny sizes, suggesting limited structural gain from further splitting.

the vectors are aligned, and ||C|| = 0 implies angularly dispersed vectors. On the other hand, the
circular variance is given by V =1 — ||C|| € [0, 1], and represents directional inconsistency.

In our case, given a Gaussian ¢, we define its directional consistency k; = ||C;]|. In the context
of 3DGS, we evaluate the circular mean with respect to its positional gradients. For each pixel j
influenced by the Gaussian ¢, let g; ; = 9Li/a,/, be the positional gradient and u; ; = 9i.i/|l¢; ;|| be
its unit vector. The circular mean C; of the positional gradients is computed as:

1 N
— . 2
Ci_NE u; ; € R2.)

j=1

4.2 Directional consistency-weighted split criterion

Our DC can guide whether a Gaussian should be split. To this end, we introduce DC-guided split
Criterion (DCC), which integrates the DC with the positional gradient magnitude. It identifies
primitives that have a higher impact on the reconstruction and cover regions that cannot be well
modeled by a single Gaussian.

To utilize DCC, we first aggregate the positional gradient magnitudes at pixels affected by Gaussian ¢
asg; =y, j |gi,5], following the homodirectional positional gradients accumulation in AbsGS [38]].

We use this formulation by default, but §; can be replaced with other alternatives, such as that used in
3DGS (Eq.) or Pixel-GS [44]; we demonstrate their integrations in Sec. @

Then, the DCC for Gaussian ¢ can be defined as:

174

1 A
VirL==3 (1= i) gl 3)

v=1

where v is the number of views in which the Gaussian is visible, and «; ,, denotes the DC evaluated
for view v. We follow the per-view averaging scheme of the 3DGS [14]], but augment the positional
gradient magnitude with the complement of the DC, 1 — &, ,,, as a weighting factor. The Gaussian ¢
is selected for splitting, if its DCC, Vg,ci L, exceeds the gradient threshold 7, and its maximum scale

||S;|| is smaller than the scale threshold 7g. Gaussians with high DC values, typically corresponding
to homogeneous regions, are thus excluded from splitting.

As shown in Fig. f] DCC well filters out refined primitives that are unlikely to benefit from a
succeeding subdivision, and thereby, reduces the effective number of primitives selected for splitting
compared to the gradient magnitude-based criterion.

4.3 Directional consistency-guided split

Our DCS improves the previous random sub-primitive placement by selecting split locations so
that each sub-primitive is assigned to a distinct, locally homogeneous region. Since a single-peaked
Gaussian is inherently suited for homogeneous regions, we guide the placement by evaluating the
DC-based cost over candidate split locations, leading to sub-primitives being placed in regions with
high DC.

Directional consistency-guided split 1.00) %
Uniform sampling Projection Principal-axis split DCS
v 4 T Mean: 0.979
0.90
x z Ground truth Gaussian intensity ~ 0.80) °
Directional-consistency Polynomial regression Split Random split
| ' .
NENZERY 1 Mean: 0.812
. o—s ‘ °
| ol . X
Nz NI | Local DCS Random split SSIM boxplot
e 1) Fape (SSIM: 0.994) (SSIM: 0.849) (10,000 samples)
(a) Overview of DCS (b) Comparison of DCS and random split in 2D

Figure 5: Overview and examples of the DCS. (a) Candidate points are uniformly sampled along the
principal axis and projected onto the image plane. The split cost J(z) = J;(x) + J-(2) is computed
using the directional consistency and gradient magnitudes, and the polynomial regression is used to
find the optimal split position Zp from the limited set of discrete samples. (b) In a 2D experimental
example, our DCS well aligns the split along the regions structural change occurs, resulting in faithful
reconstruction. The plot demonstrates quality statistics in over 10,000 randomized samples.

We constrain candidate split locations to lie along the principal axis of the Gaussian, defined as an
axis having the largest scale in the anisotropic matrix S. This axXis, pjoca, 1S transformed to world
coordinates as p = R - Piocal, Using the rotation matrix R of the Gaussian. The split is then performed
orthogonally to this axis. Since the principal axis often spans multiple structures, a single elongated
primitive exhibits large spatial variance, which increases blur and causes fine details to be smoothed
out in structurally distinct regions. This axis-aligned sub-primitive placement mitigates such issues by
reducing spatial spread and avoiding the overlaps commonly introduced by random placement, which
could otherwise lead to structural discontinuities and incomplete coverage of the pre-split primitives.

To determine the optimal split location, we evaluate the DC-based cost over /N candidate locations,
placed symmetrically along p relative to the Gaussian center. At each candidate position x, a split line
orthogonal to the projected 2D principal axis divides the primitive into left and right sub-regions. For
each sub-region, we compute the DC, x(x), and the homodirectional gradient magnitude ||g(z)||. The
sub-region costs are defined as J;(z) = (1 — s;(z)) - ||Gi(2)| and J-(z) = (1 — Kr(2)) - ||Gr (z)]],
respectively. The total split cost J(z) is: J(z) = Ji(z) + J-(z).

Minimizing the DC-based cost facilitates splitting at a point that divides a heterogeneous region into
more homogeneous sub-regions, preventing reconstruction sensitivity from being concentrated in a
single sub-primitive. Continuously evaluating .J () is costly in terms of computation and storage, and
hence, we employ discrete sampling for efficiency. The overall procedure is illustrated in Fig.[5fa). In
our implementation, we empirically set the samples of N=5. Finding the best candidates among the
discrete samples can be straightforward, but may require too many samples for a complex junction.
To improve this without dense sampling, we polynomially regress the samples [11]]. This allows us to
efficiently estimate the optimal split location 2, with a minimal number of per-primitive samples;
see Appendix [A2]for details.

Notably, the DC-based cost aligns with our DCC in Eq. (3), reinforcing consistent reasoning in the
decision to split and the placement of sub-primitives. Although the cost is evaluated before the actual
split, minimizing it implicitly guides the sub-primitives toward homogeneous regions, which are less
likely to require further splitting.

To validate the effectiveness of DCS, we compare it against random placement using 2D toy exam-
ples (see Fig.[5(b)). Here, DCS produces splits that more closely align with the ground truth, and
demonstrates more consistent and accurate results over 10,000 randomly generated examples. Its
practical effectiveness is demonstrated in Sec. [

Algorithm 1 Optimization and Densification
|IS]|: maximum Gaussian scale, 7, Ts: thresholds for Vﬁ),CL and ||.S||, N: number of split candidates

M, S, R,C, A + InitAttributes() > Positions, Scales, Rotations, Colors, Opacities
VE,CL —0,k+ 0,v+< 0 > DC-weighted split criterion, iteration counter, visibility counter
while not converged do

V, I+ SampleTrainingView() > view-projection camera matrix, ground truth
I« Rasterize(M S,R,C,A V)
L + Loss(I, I) aL «~ VL > backpropagation
for all Gaussians G visible in V' do > 4: index of a Gaussian
v; < v; + 1, p; < M;
Kj — EvalDlrect10nalC0n51stency(B) > Algo.

gi <25 | J -, ViOL VDS L+ (1 - /11) |||l > 7: pixel position influenced by G;
J; — J; +EvaISphtCosts(,ul, S;,R;,V,N, 2 o Ly > Algo.

if IsRefinementlteration(k) then
for all Gaussians GG; do
VDCL — (V“/ L)/U,
1fV5CL > 7, and ||S;|| > 75 then
Zopt < PolynomialRegression(J;, IV)

SplitGaussian(Zopt, p;, S;, Ri, Ci, Ay) > Algo. 3]
V3¢L<—O,Ji<—0,z/ieo
M,S,R,C, A+ Adam(VL), k< k+1 > update parameters and increment iteration

5 Implementation details

Our DC4GS can be integrated seamlessly into the existing 3DGS pipelines. We implemented ours on
top of the 3DGS [[14], as well as its recent extensions: Pixel-GS [44] and AbsGS [38]. Algorithm|T]
summarizes the procedure, where yellow-highlighted lines indicate the modifications to the previous
ADC schemes. Clone and prune operations are identical to the baselines and thus omitted here.

For each visible Gaussian 4, we evaluate its DC &;, accumulate its DCC VD CL and estimate its
DC-based split cost J; over N candidate split location samples along the pr1nc1pa1 axis. The primitive
is selected for splitting if its DCC exceeds the gradient threshold 7, and its maximum scale ||.S;||
is smaller than the scale threshold 7. Once selected for splitting, the optimal split location o is
determined via the polynomial regression over .J;. Additional details are provided in Appendix[A.T]

6 Experiments

6.1 Experimental details

Datasets and metrics. We evaluate our DC4GS on the three standard datasets: Mip-NeRF 360 [2]]
(five outdoor and four indoor scenes), and two scenes each from Tanks and Temples [[L6] and Deep
Blending [12], following the 3DGS [14]]. Every 8th frame is used for test. Rendering quality is
evaluated by PSNR, SSIM [335]], and LPIPS [43]]. We also report memory requirements for 3DGS
parameters and the number of primitives to assess storage efficiency.

Experimental setup. To ensure a fair comparison with the baselines [[14, 38|, 144]], we adopt their
training schedules, loss functions, and all hyperparameters, including the gradient threshold 7, and
the scale threshold 75. As with the baselines, we halt the densification after 15K iterations. All the
experiments are conducted on a single NVIDIA A6000 GPU with 48GB of memory.

6.2 Comparison with 3DGS-based methods

We compare our DC4GS with the aforementioned baselines by integrating it into their ADCs. Our
comparisons with the baselines also include non-3DGS novel-view synthesis methods, including

Table 1: Quantitative comparison of the 3DGS, Pixel-GS, and AbsGS on real-world datasets without
and with integrating DC4GS. The results denoted by ‘*’ were excerpted from the 3DGS paper. The

rest were obtained through our in-house experiments. The ' top score , second-highest score , and

third-highest score are color-coded in red, orange, and yellow, respectively.

Method | Mip-NeRF360 | Tanks& Temples | Deep Blending

‘ PSNRT SSIMT LPIPS | Prim. Mem. ‘ PSNRT SSIM7T LPIPS | Prim. Mem. ‘ PSNRT SSIMT LPIPS | Prim. Mem.

Plenoxels * 8 23.080 0.626 0.463 - 2.1GB 21.080 0.719 0.379 - 2.3GB 23.060 0.795 0.510 - 2.7GB

iNGP-big * [25 25.590 0.699 0.331 - 48MB 21.920 0.745 0.305 - 48MB 24.960 0.817 0.390 - 48MB
Mip-NeRF360 * [2 27.690 0.792 0.237 - 8.6MB 22.220 0.759 0.257 - 8.6MB 29.400 0.901 0.245 - 8.6MB
3DGS (14 27.414 0.812 0.218 3350K 792MB 23.655 0.844 0.179 1893K 447TMB 29.394 0.898 0.248 2833K 670MB

Scaffold-GS [22 27651 0810 0226 S460K 164MB | 24.018 0851 0.074 2470K 74MB | [30252] 0904 0255 1710K SIMB
GES [10 27.040 0.796 0.248 1543K 365MB 23.640 0.842 0.191 930K 220MB 29.562 0.903 0.249 1606K 380MB
LPM (37 27.589 0.820 0.212 3426K 810MB 23.878 0.847 0.183 1824K 431MB 29.483 0.901 0.245 2525K 597MB
Pixel-GS [44. 27.537 0.822 0.190 5622K 1329MB | 23.759 0.853 0.151 4598K 1087MB | 28.812 0.891 0.252 4623K 1093MB
AbsGS [38 27.504 0.818 0.191 3149K 744MB 23.636 0.852 0.162 1332K 315MB 29.500 0.900 0.237 1961K 463MB
AbsGS (60K iter.) 27.539 0.817 0.189 3162K 748MB 24.039 0.855 0.156 1313k 311MB 29.275 0.895 0.240 1962K 464MB
3DGS+DC4GS 27.486 0.814 0.217 2968K 701MB 23.786 0.845 0.179 1703K 402MB 29.565 0.901 0.245 2644K 625MB

Scaffold-GS+DC4GS | 27.653 0.810 0.225 4790K 144MB 24.016 0.849 0.177 2080K 62MB 30.063 0.903 0.257 1350K 40MB
GES+DC4GS 27000 0797 0248 [1323K 313MB | 23515 0841 0194 (816Kl 193MB | 29.632 0904 0248 1487K 352MB
LPM+DC4GS 27.556 0.819 0.218 2712K 641MB 23.892 0.846 0.186 1502K 355MB 29.584 0.903 0.244 2350K 555MB
Pixel-GS+DC4GS 27.620 0.824 0.191 5009K 1184MB | 23.930 0.855 0.150 4106K 971MB 29.181 0.896 0.246 4284K 1013MB
AbsGS+DC4GS 27.625 0.826 0.188 2615K 618MB | 24.121 0.859 0.159 1093K 258MB 29.654 0.905 0.235 1499K 354MB

Mip-NeRF360 [2], iNGP-big [25]], and Plenoxels [8]. All the baselines are either re-run using their
official implementations with default settings, or taken directly from published results for fairness.

6.2.1 Quantitative comparison

Table [T shows a quantitative analysis for the three datasets. Overall, when DC4GS is integrated into
the baselines [[14} 38}, 144} 22, |10} 137]], it consistently improves them to competitive or superior quality.
For Scaffold-GS [22]], which does not involve any explicit primitive splitting logic, we only apply
our DC-weighted Split Criterion (DCC) and omit the DC-guided Split (DCS). In addition to the
quality improvement, DC4GS significantly reduces the number of primitives and memory usage
for 3DGS parameters; the largest reduction (on average 20%) is observed in combining our density
control with AbsGS, and consistent savings for the other baselines are observed as well. Notably,
the combination of DC4GS with AbsGS also yields the greatest improvement in reconstruction
quality. DC4GS also achieves up to 11.5% fewer primitives with 3DGS, 11% with Pixel-GS, and
12-18% with Scaffold-GS, GES, and LPM, improving quality metrics. In contrast, simply extending
AbsGS training to 60K iterations yields only marginal or even negative gains, indicating that the
improvements of DC4GS stem from structural complexity-aware splitting rather than brute-force
optimization or longer training (see Table[T).

6.2.2 Training and rendering efficiency comparison

Table [2] compares the training and per-frame rendering times between the baselines and their DC4GS-
integrated models. Here, the rendering time is measured by averaging the time taken to render all
test-set images for each dataset. The integration of the DC4GS introduces moderate training overhead
due to the additional computation of the DC and DC-based cost evaluation. However, this additional
cost is confined to training only. At inference time, DC4GS improves rendering efficiency by reducing
the number of Gaussian primitives. The consistent speedups in rendering align with the reduced
primitive counts, demonstrating the practical scalability of our DC4GS.

6.2.3 Qualitative comparison

Fig.[6] visually compares the improvements achieved by DC4GS. Compared to 3DGS and AbsGS, our
DCA4GS more faithfully preserves fine structures, such as the window frames, railings, and rods in the
figure, where both the baselines often exhibit objectionable discontinuities. It also better maintains
object boundaries (the third and last rows), which tend to be oversmoothed in the baselines. While
AbsGS generally achieves high visual quality, it is likely to over-split already fine textures, such as
the leaves in front of the windows or the grass near rocks (the fourth row), which can result in visual
occlusions and structural artifacts. These observations indicate that DC4GS better preserves connected
structures such as window frames and railings, which often appear fragmented or discontinuous in
the baseline results. It also retains fine details in high-frequency textures, like the leaves or grass,
without being occluded by background objects, which is frequently observed in the baselines.

Table 2: Comparison of training time and per-frame rendering time (ms) for the baselines and
DC4GS-integrated models on the Mip-NeRF360, Tanks& Temples, and Deep Blending datasets.

Method \ Mip-NeRF360 \ Tanks& Temples \ Deep Blending
| Training Rendering (ms) | Training Rendering (ms) | Training Rendering (ms)

3DGS 34m 10.472 19m 7.87 30m 9.646
3DGS+DC4GS 49m 9.836 27m 7.518 47m 9.023
Scaffold-GS 1h 1m 9.705 29m 7.015 42m 6.298
Scaffold-GS+DC4GS | 1h1m 9.563 3Im 6.933 44m 5.748
GES 32m 6.981 18m 5.593 40m 6.835
GES+DC4GS 42m 6.698 22m 5.441 45m 6.571
LPM 38m 10.702 18m 7.143 30m 9.090
LPM+DC4GS 54m 9.462 27m 6.370 49m 8.512
Pixel-GS 49m 17.163 35m 15.212 41m 14.271

Pixel-GS+DC4GS 1h 6m 16.211 45m 14.450 1h Im 13.469
AbsGS 37m 9.975 17m 6.175 27m 7.353
AbsGS (60K iter.) 1h 19m 10.247 38m 6.690 57m 7.549
AbsGS+DC4GS 51m 9.191 23m 5.778 40m 6.378

Ground truth 3DGS 3DGS+DC4GS AbsGS AbsGS+DC4GS

1 o acatere'y | T i

Figure 6: Qualitative comparison of the baseline methods (3DGS and AbsGS) without and with the
integration of our DC4GS. The scenes, from top to bottom, are: Garden, Treehill, Room, Stump, and
Bonsai from the Mip-NeRF360 dataset, Truck from the Tanks& Temples, and Playroom from Deep
blending dataset.

Table 3: Ablation study evaluating DCC (Sec. @[) and DCS (Sec. on the Mip-NeRF360,
Tanks&Temples, and Deep Blending dataset. The AbsGS [38] is selected as the baseline.

Mip-NeRF360 | Tanks& Temples | Deep Blending
Baseline DCC DCS ‘ PSNRT SSIMT LPIPS| Prim.| Mem. ‘ PSNR*1 SSIMT LPIPS| Prim.| Mem. ‘ PSNRt SSIMt LPIPS| Prim.| Mem.
' 27.504 0.818 0.191 3149K 744MB | 23.636 0.852 0.162 1332K 315MB | 29.500 0.900 0.237 1961K 463MB
' v 27.507 0.819 0.191 2861K 676MB | 23.661 0.852 0.164 1197K 283MB | 29.567 0.901 0.237 1799K 425MB
v v 27.587 0.826 0.187 2877K 680MB | 24.018 0.857 0.158 1198K 283MB | 29.591 0.905 0.235 1609K 380MB
v v v 27.625 0.826 0.188 2615K 618MB | 24.121 0.859 0.159 1093K 258MB | 29.654 0.905 0.235 1499K 354MB

Prims.: 3700k [0 Prims. 3414K prims.: 3619K [Prims.; 3300K
PSNR: 27.570 PSNR: 27.578 PSNR: 27.705 . PSNR: 27.735
s]

iy Prims.: 5037K R Prims.: 4800K Ly Prims.: 4907K 2 Prims.: 4432K
L PSNR: 21.973 - | PSNR: 21.889 PSNR: 22.084 PSNR: 22.071

Reference image und i Baseline+DC4GS

Figure 7: Qualitative visual comparison of our ablation study on the Garden and Treehill scenes from
the Mip-NeRF360 dataset.

6.3 Ablation study

To assess the effectiveness of each component, we conduct an ablation study based on the AbsGS
baseline [38]]. The results are summarized in Table 3]

Directional Consistency-weighted split Criterion (DCC). The effect of applying the DCC (Sec[4.2)
is shown in the second row of Table 3] The main effect of DCC is the reduction of the primitive
counts. Here, it achieves up to a 24% reduction (Room scene). Notably, it still maintains improved or
comparable quality on datasets compared to the baseline.

Directional Consistency-guided Split (DCS). The effect of the DCS (Sec[4.3) appears in the third
row of Table[3] Its main effect is the improvement of qualities. Compared to the baseline, the DCS
achieves consistently better quality even with fewer primitives.

Combination of DCC and DCS. Combining DCC and DCS is synergistic, which produces the
most pronounced improvements. DCC and DCS individually reduce primitives and improve quality,
but their integration achieves the fewest primitives and the highest fidelity. In Fig. [7] while each
component alleviates artifacts such as occluded or broken cages and railings, their combination better
reconstructs fine structures faithfully even with fewer primitives.

7 Conclusion

We introduced DC4GS, a directional consistency-driven density control for 3DGS, which selectively
refines primitives by analyzing the angular coherence of positional gradients. Our density control
employs directional consistency as a structural cue for both split selection and sub-primitive placement,
effectively densifying primitives to align with local structural complexities. We demonstrated that our
method can be integrated into the existing 3DGS pipelines and greatly enhances novel-view synthesis
quality in diverse scenes with fewer primitives.

Acknowledgement

This work was supported in part by the Mid-career Research Program and CRC Program through
the NRF Grants (Nos. RS-2024-00339681 and RS-2023-00221186), and IITP grants (No. RS-2024-
00454666), funded by the Korea government (MSIT). Correspondence concerning this article can be
addressed to Sungkil Lee.

10

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In CVPR, pages
5855-5864, 2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In CVPR, pages 5470-5479, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In ICCV, pages 19697-19705, 2023.

Nicolas Brosse, Alain Durmus, and Eric Moulines. The promises and pitfalls of stochastic gradient langevin
dynamics. In NeurIPS, volume 31, 2018.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
ECCYV, pages 333-350, 2022.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting the
polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In CVPR, 2023.

Ben Fei, Jingyi Xu, Rui Zhang, Qingyuan Zhou, Weidong Yang, and Ying He. 3d gaussian splatting as
new era: A survey. IEEE Transactions on Visualization and Computer Graphics, 2024.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In CVPR, pages 5501-5510, 2022.

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. Fastnerf:
High-fidelity neural rendering at 200fps. In ICCV, pages 14346-14355, 2021.

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl Vondrick, Bernard
Ghanem, and Andrea Vedaldi. Ges: Generalized exponential splatting for efficient radiance field rendering.
In CVPR, pages 19812-19822, 2024.

Trevor Hastie. The elements of statistical learning: data mining, inference, and prediction. Springer, 2009.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow. Deep
blending for free-viewpoint image-based rendering. ACM TOG, 37(6):1-15, 2018.

Letian Huang, Jiayang Bai, Jie Guo, Yuangi Li, and Yanwen Guo. On the error analysis of 3d gaussian
splatting and an optimal projection strategy. In ECCV, pages 247-263. Springer, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM TOG, 42(4):1-14, 2023.

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng, Hossam Isack,
Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain monte
carlo. In NeurIPS, 2024. Spotlight Presentation.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM TOG, 36(4):1-13, 2017.

Byeonghyeon Lee, Howoong Lee, Usman Ali, and Eunbyung Park. Sharp-nerf: Grid-based fast deblurring
neural radiance fields using sharpness prior. In IEEE/CVF WACV, pages 3709-3718, 2024.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In CVPR, pages 21719-21728, 2024.

Jiameng Li, Yue Shi, Jiezhang Cao, Bingbing Ni, Wenjun Zhang, Kai Zhang, and Luc Van Gool.
Mipmap-gs: Let gaussians deform with scale-specific mipmap for anti-aliasing rendering. arXiv preprint
arXiv:2408.06286, 2024.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim, Tanner
Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video synthesis from
multi-view video. In CVPR, pages 5521-5531, 2022.

Zhihao Liang, Qi Zhang, Wenbo Hu, Lei Zhu, Ying Feng, and Kui Jia. Analytic-splatting: Anti-aliased 3d
gaussian splatting via analytic integration. In ECCV, pages 281-297. Springer, 2024.

11

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]
(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(391

[40]

(41]

[42]

[43]

[44]

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In CVPR, pages 20654-20664, 2024.

Kanti V Mardia and Peter E Jupp. Directional statistics. John Wiley & Sons, 2009.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, pages 405421,
2020.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM TOG, 41(4):1-15, 2022.

Cheng Peng, Yutao Tang, Yifan Zhou, Nengyu Wang, Xijun Liu, Deming Li, and Rama Chellappa. Bags:
Blur agnostic gaussian splatting through multi-scale kernel modeling. In ECCV, pages 293-310. Springer,
2024.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural radiance
fields for dynamic scenes. In CVPR, pages 10318-10327, 2021.

Fernando Rivas-Manzaneque, Jorge Sierra-Acosta, Adrian Penate-Sanchez, Francesc Moreno-Noguer, and
Angela Ribeiro. Nerflight: Fast and light neural radiance fields using a shared feature grid. In CVPR, pages
12417-12427, 2023.

Samuel Rota Buld, Lorenzo Porzi, and Peter Kontschieder. Revising densification in gaussian splatting. In
ECCV, pages 347-362. Springer, 2024.

Johannes Lutz Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR, 2016.

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
selection for unstructured multi-view stereo. In ECCV, 2016.

Xiaowei Song, Jv Zheng, Shiran Yuan, Huan-ang Gao, Jingwei Zhao, Xiang He, Weihao Gu, and Hao Zhao.
Sa-gs: Scale-adaptive gaussian splatting for training-free anti-aliasing. arXiv preprint arXiv:2403.19615,
2024.

Haithem Turki, Vasu Agrawal, Samuel Rota Bulo, Lorenzo Porzi, Peter Kontschieder, Deva Ramanan,
Michael Zollhofer, and Christian Richardt. Hybridnerf: Efficient neural rendering via adaptive volumetric
surfaces. In CVPR, pages 19647-19656, 2024.

Yuehao Wang, Chaoyi Wang, Bingchen Gong, and Tianfan Xue. Bilateral guided radiance field processing.
ACM TOG, 43(4):1-13, 2024.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. /EEE TIP, 13(4):600-612, 2004.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In CVPR, pages
20310-20320, June 2024.

Haosen Yang, Chenhao Zhang, Wenqging Wang, Marco Volino, Adrian Hilton, Li Zhang, and Xiatian Zhu.
Improving gaussian splatting with localized points management. In CVPR, pages 21696-21705, 2025.

Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and Yong Dou. Absgs: Recovering fine details in 3d
gaussian splatting. In ACM MM, pages 1053-1061, 2024.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for real-time
rendering of neural radiance fields. In ICCV, pages 5752-5761, 2021.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free 3d
gaussian splatting. In CVPR, pages 19447-19456, 2024.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
reconstruction in unbounded scenes. ACM TOG, 43(6):1-13, 2024.

Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and Eric Xing. Fregs: 3d gaussian splatting with
progressive frequency regularization. In CVPR, pages 21424-21433, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, pages 586595, 2018.

Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. Pixel-gs: Density control with
pixel-aware gradient for 3d gaussian splatting. In ECCV, pages 326—342. Springer, 2024.

12

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction both provide a thorough explanation of our
claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA|

13

Justification: This paper focuses on empirical findings rather than theoretical analysis; hence,
no formal theorems or proofs are included.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in Sec.[5]and Appendix[A.1] and include
the implementation code in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The datasets we use are publicly available, and we plan to release our code as
well.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We report the detailed training and test details in Sec. [6.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide boxplots in Fig.[5(b) and Fig. [8] summarizing the distribution of
performance over 10,000 samples. However, we do not perform multiple training runs of
3DGS-based methods due to limited computational resources.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
¢ The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: Please refer to Sec. [6.1] Table[T} and Appendix [6.2.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research in this paper conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Although our work primarily addresses foundational methods for 3D recon-
struction, we briefly discuss potential societal impacts in Appendix[A.3]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks, as it does not involve any models or data
associated with privacy concerns.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Appendix [A.6]
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

17

13.

14.

15.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

« For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: We do not provide new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing or studies involving human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not conduct any user studies or involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: LLMs were not used in the core methodology; any usage was limited to minor
writing assistance without affecting the technical content.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Appendix

A.1 Additional implementation details

This section provides detailed implementation components that support the overall optimization and
densification process summarized in Algo. [T]of Sec.[5] Specifically, we describe the key modules in
DC4GS: the evaluation of the directional consistency (DC), DC-based split costs, and the generation
of sub-primitives. Each corresponds to a modified line in Algo. [T} and is detailed in the following
subsections with standalone pseudocode for clarity and reproducibility.

A.1.1 Directional consistency

Algorithm 2 Directional consistency (DC) from positional gradients
g f, : positional gradients w.r.t. projected Gaussian center p’

function EvalDirectionalConsistency(glf,

N <0)
forall g € glf, do
N«+N+1

U+ u+ H;%H > accumulate unit vector of positional gradient

C+ tu > circular mean
return ||C| >DC
end function

Algo. 2] presents the implementation of the DC defined in Section[4.1I] Given a set of 2D positional
gradients ng” where each gradient corresponds to a pixel affected by the Gaussian, we first normalize

each gradient to obtain a unit vector indicating its direction. These unit vectors are accumulated and
averaged to form the circular mean C'. The directional consistency « is then computed as the L2 norm
||C|| of this mean vector.

A.1.2 DC-based split cost

Algorithm 3 DC-based split costs for N (odd) candidates along the principal axis.
1, S, R: Gaussian center, scale, rotation; V': view-projection matrix

function EvalSplitCosts(, S, R, V, N, ng,)

a < argMaX;c(y. y, -} S() > select principal axis
Dlocal <— €(a) > basis vector along axis a
p < R proca > axis in world space
d<«6-5(a) > diameter of a gaussian
g & p+0.5d - p > end point of the principal axis
228« Project2D(x35, V)

d«—d/(N+1) > sampling interval

J <+ 0,K + |N/2|
fori = —-K to+K do
3P p+i- 8- p, a2’ + Project2D(z3P, V)

J = JUCostA(x?P 228, 0% > Alg.@

return J
end function

Algo. [3]and] implement the DC-based cost evaluation process for the directional consistency-guided
split (DCS), as described in Sec.

Algo.[3]samples N candidate split points symmetrically along the principal axis of a Gaussian, defined
as the direction of maximal scale in the anisotropic matrix S and transformed to world coordinates
via the rotation matrix R. Each 3D candidate point 23" is projected into image space using the

20

Algorithm 4 DC-based cost for a candidate split
x: split point, xenq: principal axis endpoint, (z, g): pixel position and gradient

function CostAt(xy, Zend, %’)
Vaxis €~ Tend — Tk > 2D principal axis direction
,Pl(i[]a ,PT’(*Ha g0, g-+0
for all (z,9) € gf, do

Vpix < T — T, d < Vaxis * Vpix > dot product to determine side of split
if d < 0 then > left of split line
PrPrU{g} g < g+ 9l
else > right of split line
Pr <+ PrU{g}, gr < gr + 19|
K <— EvalDirectionalConsistency(P;), , <— EvalDirectionalConsistency(P,) > Alg.[2]

Ji = A= r) - Naulls Jr <= (1= £) - [|gr |l
return J; + J,
end function

view-projection matrix V, and the corresponding DC-based cost is computed at each 22” using
Algo.f]

Algo. computes the cost for a single split point z, (i.e., z2P from Algo. . A split line orthogonal
to the projected principal axis divides the affected pixels into left and right subsets. For each subset,
the DC k is evaluated using Algo.[2] and the gradients |g| are accumulated. The cost for each side is
computed as (1 — k) - ||§]|, and the final cost is the sum of both sides.

A.1.3 Sub-primitive generation in DCS

Algorithm 5 Splits a Gaussian into sub-primitives at op
u, S, R, c, o,: center, scale, rotation, color, and opacity of a Gaussian

function SplitGaussian(zep, i, S, R, ¢, 0)

a 4 argmax;e sy} S(i) > select principal axis
Plocal < €(a), p < R - Piocal > axis in world space
d < 6-s(a) > diameter of a gaussian

di = d- (1 —Zop), dy = d - Top

p = = (di/2) - p, pir < p+(dr/2) - p

Sl «~ S, Sl(a) — Sl(a) * Topt

Sy S, Sp(a) = Sp(a) - (1 — zop)

01 <= 0 Top, 0 — 0 (1 — Topy)

G| « Gaussain(uy, Sy, R, ¢, 01), Gy + Gaussain(p,., Sy, R, ¢, 0;)

G+ GU(GUG,) > add sub-primitives to the Gaussian set
end function

Algo. E] implements the sub-primitive generation step after determining the optimal split position .
This operation spawns two new Gaussians by dividing the original one along its principal axis.

To perform this split, the function computes the left and right extents from the center based on the
optimal split position xy, using the principal axis direction defined during cost evaluation (see
Algo.[3). The new centers ; and p, are offset from the original center p, and the corresponding
scales along the principal axis are proportionally adjusted to Zqp and 1 — xop. Opacity values are also
redistributed in the same ratio to avoid unintentionally increasing or decreasing the overall density
of the original Gaussian. Each resulting sub-primitive retains the original rotation and color and is
subsequently added to the primitive set.

A.1.4 Training-time overhead analysis

In practice, DC4GS reduces the number of primitives, which accelerates the rendering time. To
quantify the computational trade-offs, we provide a breakdown of DC-related overhead in Table

21

Table 4: Breakdown of per-iteration training-time overhead introduced by DC4GS, measured on the
bicycle scene of Mip-NeRF360 dataset.

Module | Time (ms)
Directional Consistency (DC) evaluation 0.010
DC-based split cost computation 31.020
Sub-primitive generation 16913
Total Additional Overhead \ 47.943
:I l)| == == Dense argmin (N=60)
N :l { ~— @ Polynomial regression (N=5)
NN { = a= Argmin (N=5)
] A T
- - N I
Dense argmin Polynomial regression Argmin SN rosos 7
(SSIM:0.985) (SSIM: 0.981) (SSIM: 0.946) SR s o . »
(a) Inferred split results (1 sample) Ground truth - %.‘:: JI PR
R I | v -~ - =
—|_ o [|
v YN % -
44
- 7y }: ‘I’ y o LR NN
Avg.: 0.983 Avg:0979 |9 ” j’ R A Lo
Avg.: 0.977 S A B ST R NN
Z 7/ 4 @0 L .« .
Gaussian intensity Gradient Field
(b) SSIM boxplot (10,000 samples) (c) Gradient Field

Figure 8: Comparison of split location selection strategies in our consistency-guided split using
synthetic toy examples. (a) On a synthetic sample, we compare three strategies: dense argmin (N=60),
polynomial regression (N=5), and argmin (N=5). Dense and regression methods yield sub-primitives
well-aligned with the ground truth and capture structural boundaries where gradient directions conflict
(see gradient field), while argmin slightly overextends the left side. (b) SSIM boxplots over 10,000
samples. Regression achieves near-equal accuracy to dense argmin. It outperforms argmin in accuracy
and stability (tighter IQR), demonstrating robust performance under limited sampling.

These results are based on the Mip-NeRF360 bicycle scene with 44,206 primitives. This breakdown
clarifies that most of the overhead arises from atomic operations in DC-based splitting.

A.2 Effect of sampling resolution and selection method

We evaluate how the accuracy of split estimation is affected by the sampling resolution /V and the
choice of selection method in our DCS. We compare three settings: 1) dense argmin (N=60), 2)
polynomial regression [11]] over N=5 candidates, and 3) sparse argmin (N=5).

Fig.[8a) shows a synthetic example where both the dense argmin and regression identify the structural
boundary well, while the sparse argmin misplaces the split, slightly overextending to the left. As
shown in Fig. [§[c), this boundary aligns with a region where gradient directions conflict. The
regression successfully detects this transition, preserving the underlying structure.

Fig. [8[b) shows SSIM boxplots over 10,000 samples. Dense argmin achieves the highest average
(0.983), followed by the regression (0.979) and sparse argmin (0.977). The regression also exhibits the
tightest distribution (median=0.987, IQR (InterQuartile Range)=0.0136), outperforming the sparse
argmin (median=0.983, IQR=0.0194). These results confirm that the regression provides accurate
and stable split estimation, even under limited sampling.

22

Table 5: Quantitative comparison for the Mip-NeRF360 scenes. From the top row to the bottom row,
the results indicate PSNR, SSIM, LPIPS, and the number of primitives, respectively.

Model bicycle bonsai counter flowers garden kitchen room stump treehill
3DGS [14] 25.1331 32.1688 29.0042 21.4235 27.2435 31.3263 31.3873 26.5487 22.4933
3DGS+DC4GS 25.1866 32.1594 289499 21.5535 27.3492 31.4530 31.6532 26.6118 22.4582
Pixel-GS [44] 252318 32,5194 29.1654 21.5205 27.3366 31.6594 31.4681 26.8150 22.1198
Pixel-GS+DC4GS 25.3140 32.4600 29.1790 21.7308 27.4599 31.6957 31.5255 26.8978 22.3223
AbsGS [38] 25.2407 32.3531 29.1104 21.1861 27.5704 31.8096 31.6676 26.6322 21.9733

AbsGS+DC4GS 25.5344 322905 29.0290 21.5621 27.7356 31.7880 31.6649 26.9562 22.0716

Model bicycle bonsai counter flowers garden Kkitchen room stump treehill
3DGS 0.7602 0.9400 0.9061 0.6019 0.8619 09259 0.9178 0.7691 0.6307
3DGS+DC4GS 0.7655 0.9399 0.9060 0.6059 0.8638 0.9261 0.9188 0.7743 0.6331
Pixel-GS 0.7757 09445 09121 0.6337 0.8661 0.9292 0.9206 0.7836 0.6316
Pixel-GS+DC4GS 0.7798 0.9442 09122 0.6403 0.8680 0.9293 0.9212 0.7876 0.6375
AbsGS 0.7800 0.9453 09120 0.6174 0.8713 09297 0.9253 0.7753 0.6133

AbsGS+DC4GS 0.7925 09445 09113 0.6348 0.8741 0.9300 0.9252 0.7924 0.6287

Model bicycle bonsai counter flowers garden kitchen room stump treehill
3DGS 0.2159 0.2050 0.2019 0.3411 0.1092 0.1265 0.2197 0.2186 0.3292
3DGS+DC4GS 0.2104 0.2058 02026 0.3366 0.1083 0.1267 0.2189 0.2142 0.3310
Pixel-GS 0.1818 0.1934 0.1844 0.2617 0.1003 0.1195 0.2110 0.1868 0.2787
Pixel-GS+DC4GS 0.1793 0.1938 0.1857 0.2654 0.0996 0.1199 0.2105 0.1858 0.2848
AbsGS 0.1729 0.1894 0.1874 02713 0.0992 0.1206 0.1999 0.1979 0.2801

AbsGS+DC4GS 0.1663 0.1907 0.1892 0.2684 0.0977 0.1211 0.2018 0.1884 0.2733

Model bicycle bonsai counter flowers garden Kkitchen room stump treehill
3DGS 6056K 1285K 1226K 3618K 5694K 1839K 1592K 4895K 3944K
3DGS+DC4GS 5299K 1124K 1112K 3389K 5269K 1677K 1419K 3980K 3438K
Pixel-GS 9028K 2102K 2603K 7517K 8574K 3180K 2588K 6610K 8396K
Pixel-GS+DC4GS 8047K 1860K 2378K 6966K 7914K 2945K 2332K 5730K 6906K
AbsGS 6051K 1045K 970K 3886K 3790K 1243K 1471K 4845K 5037K

AbsGS+DC4GS 5021K 830K 754K 3330K 3300K 930K 1036K 3898K 4432K

Table 6: Quantitative comparison for the Tanks&Temples scenes. From the top row to the bottom
row, the results indicate PSNR, SSIM, LPIPS, and the number of primitives (Prim.), respectively.

Method | Train | Truck
| PSNRT SSIM?T LPIPS| Prim. | PSNRT SSIMT LPIPS | Prim.

3DGS 21.8415 0.8103 0.2103 1099K | 254690 0.8777 0.1486 2687K
3DGS+DC4GS 219974 0.8116 0.2112 1048K | 25.5747 0.8801 0.1469 2358K
Pixel-GS 21.9925 0.8236 0.1804 3857K | 255262 0.8828 0.1216 5338K
Pixel-GS+DC4GS | 22.2010 0.8260 0.1799 3561K | 25.6590 0.8856 0.1213 4650K
AbsGS 21.5800 0.8178 0.1927 1008K | 25.6926 0.8869 0.1322 1657K
AbsGS+DC4GS 223767 0.8291 0.1871 787K | 25.8666 0.8894 0.1317 1399K

Table 7: Quantitative comparison for the Deep Blending scenes. From the top row to the bottom row,
the results indicate PSNR, SSIM, LPIPS, and the number of primitives (Prim.), respectively.

Method | Dr Johnson | Playroom
| PSNRT SSIM{T LPIPS| Prim. | PSNRT SSIMT LPIPS| Prim.
3DGS 29.0423 0.8977 0.2471 3321K | 29.7464 0.8997 0.2490 2345K
3DGS+DC4GS 29.1892 0.9000 0.2455 3158K | 29.9417 0.9021 0.2459 2131K
Pixel-GS 279112 0.8843 02602 5491K | 29.7131 0.8989 0.2446 3754K
Pixel-GS+DC4GS | 28.5347 0.8914 0.2500 5203K | 29.8276 0.9010 0.2429 3365K
AbsGS 29.0475 0.8956 0.2420 2455K | 29.9527 0.9049 0.2330 1467K
AbsGS+DC4GS 29.2328 0.9027 0.2370 1905K | 30.0759 0.9087 0.2331 1093K

23

A.3 Additional experimental results

A.3.1 Per-scene quantitative results

Tables [5H7 report detailed per-scene metrics, including PSNR, SSIM, LPIPS, and the number of
primitives, for all datasets. The results show that DC4GS consistently reduces the number of primitives
and maintains or improves reconstruction quality compared to each baseline method.

In the stump scene, applying DC4GS to 3DGS results in up to a 19% reduction in primitives. With
Pixel-GS [44], DC4GS achieves up to an 18% reduction in the treehill scene. The largest reduction is
observed with AbsGS [38]], where DC4GS reduces the number of primitives by up to 30% in the room
scene. In all cases, PSNR, SSIM, and LPIPS metrics remain superior or comparable to each baseline,
demonstrating that DC4GS enhances both compactness and reconstruction fidelity in 3DGS-based
pipelines.

A.3.2 Additional qualitative comparisons

Fig. [PHII] provide additional qualitative comparisons between the baselines (Pixel-GS [44],
3DGS [14], and AbsGS [38]) and their DC4GS-integrated models.

Comparisons with Pixel-GS As shown in Fig.[9] DC4GS more effectively preserves linear bound-
aries, such as door panel patterns, counter edges, window frames, and lane markings. It also improves
contrast in fine details and maintains distinct separation between adjacent regions, mitigating over-
shooting and bleeding artifacts.

Comparisons with 3DGS Fig.[10|shows that DC4GS improves the sharpness of architectural lines
and geometric boundaries. It more accurately reconstructs fine structures like door panels, counter
surfaces, window outlines, and wall trims. Straight edges and corners appear cleaner and less distorted,
with reduced blending between adjacent objects and surfaces.

Comparisons with AbsGS In Fig. [T DC4GS more reliably recovers structures such as window
frames, rods, and wall seams, and reduces floating artifacts and blending at region boundaries (e.g.,
between sky, trees, and train). It suppresses redundant splits and improves local separation, resulting
in clearer reconstructions with sharper object boundaries and fewer visual artifacts.

DC4GS consistently improves the reconstruction of fine structures and local detail, enhancing the
separation between distinct objects and surfaces. This leads to reduced structural blending and clearer
geometry in various scenes.

24

Pixel-GS+DC4GS

Figure 9: Qualitative visual comparisons between PixelGS and PixelGS integrated with DC4GS. The
scenes, from top to bottom, are: Bonsai, Counter, Garden, Kitchen from the Mip-NeRF360 dataset,
Truck from the Tanks&Temples dataset, and Dr Johnson from the Deep Blending dataset.

25

Ground truth 3DGS 3DGS+DC4GS

Figure 10: Qualitative visual comparisons between 3DGS and 3DGS integrated with DC4GS. The
scenes, from top to bottom, are: Bonsai, Counter, Garden, Kitchen, Room from the Mip-NeRF360
dataset, and Dr Johnson from the Deep Blending dataset.

26

Ground truth

Figure 11: Qualitative visual comparisons between AbsGS and AbsGS integrated with DC4GS. The
scenes, from top to bottom, are: Bicycle, Bonsai, Stump from the Mip-NeRF360 dataset, Train, Truck
from the Tanks&Temples dataset, and Dr Johnson from the Deep Blending dataset.

27

AbsGS AbsGS+DC4GS AbsGS AbsGS+DC4GS
rendered RGB rendered RGB rendered depth rendered depth

rEr FEe

Ground truth

Figure 12: Qualitative depth visualization comparison between AbsGS and AbsGS integrated with
DC4GS. The scenes, from top to bottom, are: Bicycle from the Mip-NeRF360 dataset, and Truck
from the Tanks&Temples dataset.

Ground truth

Figure 13: Qualitative comparisons on challenging cases between AbsGS and AbsGS integrated with
DCA4GS. The scenes, from top to bottom, are: Truck from the Tanks&Temples dataset (transparent
objects), and Dr Johnson from the Deep Blending dataset (strong textures).

Table 8: Quantitative comparison between AbsGS and AbsGS integrated with DC4GS on challenging
cases: transparency (Truck in Tanks&Temples) and strong textures (Dr. Johnson in Deep Blending).

Scene | Region | Method | PSNRT SSIMT LPIPS |

Truck Transparent object | AbsGS 20.875 0.621 0.333
AbsGS + DC4GS | 21.098 0.642 0.301

Dr. Johnson | Strong texture AbsGS 25.741 0.717 0.334
AbsGS + DC4GS | 26462 0.761 0.294

A.3.3 Depth visualization comparison

We qualitatively assess geometric fidelity through depth map visualizations. To obtain depth maps,
we adapt the original 3DGS rendering equation by replacing the RGB color contribution with
per-Gaussian depth values d;:

i—1
D=3 Ti-ai-dy Ti=][[(1-qy), @)
i j=1
where «; is the alpha and Tj; is the transmittance value of the ¢-th Gaussian primitive.

As shown in Fig. The baseline produces noisy depth maps. This noise mainly stems from the
presence of numerous false-positive primitives that persist without proper density control. Such

28

Table 9: Quantitative comparison of 4DGS and 4DGS with DC4GS on D-NeRF and DyNeRF datasets,
reporting quality metrics (PSNR, SSIM, LPIPS) and efficiency metrics (number of primitives, memory,
training time, and rendering time in ms).

Dataset Method PSNR1T SSIM{ LPIPS| Prim.|] Mem.| Training] Rendering|

D-NeRF [27] 4DGS [36] 34.063 0.978 0.026 45K 10MB 9m 15.233ms
4DGS + DC4GS 34.124 0.978 0.026 40K 9MB 11m 14.531ms

DyNeRF [20] 4DGS 30.736 0.933 0.059 123K 59MB 50m 32.537ms

4DGS + DC4GS 31.092 0.936 0.056 119K 56MB 1h 13m 32.259ms

primitives contribute spurious depth values, leading to fragmented and unstable geometry. In contrast,
DCA4GS effectively suppresses false-positive primitives, yielding cleaner and more coherent depth
reconstructions. This suggests that the benefits of DC4GS extend beyond RGB fidelity to improved
structural consistency.

A.3.4 Applicability to challenging scenarios

To evaluate DC4GS under challenging conditions, we perform region-specific comparisons on
transparency and strong textures. Quantitative results, measured on the masked inset regions in
Fig. are reported in Table [8] and the corresponding qualitative comparisons are also shown in
Fig.[13]

For the transparent objects (4th test image of the Truck scene in Tanks & Temples), the baseline
fails to reconstruct the internal features behind the glass (e.g., steering wheel), whereas DC4GS
successfully preserves these structures. For strong high-frequency textures (9th test image of the
Dr. Johnson scene in Deep Blending), such as carpet patterns and wood scratches, DC4GS achieves
superior metrics over the baseline, showing its ability to capture fine details. These results suggest
that DC4GS can better handle transparent and high-frequency regions that are challenging for the
baseline.

A.3.5 Applicability to dynamic scenes

We further evaluate DC4GS on dynamic scenes by integrating it into 4DGS [36] and testing on
D-NeRF [27] and DyNeRF [20]. As shown in Table E], DCAGS yields consistent improvements in
reconstruction quality, while reducing the number of primitives and memory usage, which also leads
to faster rendering. Qualitative comparisons in Fig. [14|show that DC4GS produces sharper geometry
and more temporally stable appearance, whereas 4DGS often exhibits blurred details and temporal
artifacts. Despite the increased training time, these results suggest that DC4GS remains effective and
robust in dynamic scenarios.

A.4 Limitations and future work

DC4GS enables high-quality reconstruction with substantially fewer primitives, resulting in faster
rendering and reduced memory consumption for 3DGS models. Although the method introduces addi-
tional training overhead due to directional consistency evaluation and candidate split cost estimation,
this overhead is confined to the training phase and can be entirely removed once the densification
stage is complete (typically after 15,000 iterations). Future work will focus on optimizing the DC
computation and split estimation pipeline, particularly the cost evaluation and polynomial regression,
to further reduce training time without compromising reconstruction quality.

A.5 Broader impact

DC4GS improves the efficiency of 3DGS by reducing primitive count without compromising quality.
This leads to lower memory usage for 3DGS parameters and faster rendering, making high-quality 3D
reconstruction more accessible for real-time and resource-constrained applications such as AR/VR
and mobile platforms.

As with other 3D reconstruction techniques, there is potential for misuse (e.g., unauthorized du-
plication of real-world scenes). Responsible use and ethical considerations remain important in
downstream applications.

29

Ground truth 4DGS 4DGS+DC4GS

Figure 14: Qualitative comparisons on dynamic scenes between 4DGS and 4DGS with DC4GS. The
scenes, from top to bottom, are: Bouncing balls and Hell warrior from the D-NeRF dataset, and
Coffee martini and Flame steak from the DyNeRF dataset.

A.6 Dataset licenses
We use the following datasets in our experiments:

e Mip-NeRF360 [2]: no explicit license terms provided. Available at
https://jonbarron.info/mipnerf360/.

* Tanks and Temples [16]]: released under the Creative Commons Attribution 4.0 International
(CC BY 4.0). Available at https://www.tanksandtemples.org/license/.

e Deep Blending [12]: no explicit license terms provided. Available at
http://visual.cs.ucl.ac.uk/pubs/deepblending/.

31

	Introduction
	Related work
	3D Gaussian splatting
	Adaptive density control for 3D Gaussian splatting

	Preliminary: adaptive density control in 3D Gaussian splatting
	DC4GS: Directional consistency-driven adaptive density control for 3DGS
	Directional consistency
	Directional consistency-weighted split criterion
	Directional consistency-guided split

	Implementation details
	Experiments
	Experimental details
	Comparison with 3DGS-based methods
	Quantitative comparison
	Training and rendering efficiency comparison
	Qualitative comparison

	Ablation study

	Conclusion
	Appendix
	Additional implementation details
	Directional consistency
	DC-based split cost
	Sub-primitive generation in DCS
	Training-time overhead analysis

	Effect of sampling resolution and selection method
	Additional experimental results
	Per-scene quantitative results
	Additional qualitative comparisons
	Depth visualization comparison
	Applicability to challenging scenarios
	Applicability to dynamic scenes

	Limitations and future work
	Broader impact
	Dataset licenses

