
Under review as a conference paper at ICLR 2023

APLA: CLASS-IMBALANCED SEMI-SUPERVISED
LEARNING WITH ADAPTIVE PSEUDO-LABELING AND
LOSS ADJUSTMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Semi-supervised learning (SSL) can substantially improve the performance of
deep neural networks by utilizing unlabeled data when labeled data is scarce.
Existing SSL algorithms implicitly assume that the class distribution of labeled
datasets and unlabeled datasets are balanced, which means the different classes
have the same numbers of training samples. However, they can hardly per-
form well on minority classes(the classes with few training examples) when
the class distribution of training data is imbalanced, since the pseudo-labels
learned from unlabeled data tend to be biased toward majority classes(the classes
with a large number of training examples). To alleviate this issue, we pro-
pose a method called Adaptive Pseudo-labeling and Loss Adjustment (APLA) for
class-imbalanced semi-supervised learning (CISSL), which includes Class-Aware
Pseudo-label Thresholding (CAPT) that can utilize the imbalanced unlabeled data
by dynamically adjusting the threshold for selecting pseudo-labels, and Class-
Aware Loss Adjustment (CALA) that can mitigate the bias in both supervised loss
and unsupervised loss. According to the experiments, APLA can deliver much
higher accuracy than benchmark methods under various CISSL scenarios.

1 INTRODUCTION

Semi-supervised learning (SSL)(Chapelle et al., 2006) is a paradigm that can improve learning per-
formance with a few labeled data by using additional unlabeled examples as auxiliaries compared
to supervised learning. It provides a way to explore the latent patterns from extra unlabeled exam-
ples, alleviating the need for a large number of labels. The state-of-the-art (SOTA) SSL algorithms
(Berthelot et al., 2019; 2020; Sohn et al., 2020) often construct a model with a common assumption
that the class distribution of the training data is balanced, which means the different classes have the
same numbers of training samples. Imbalanced data, however, is widely existing in many realistic
scenarios, which leads to the poor performance of SSL algorithms. According to the recent research
(Yang & Xu, 2020), the model trained on imbalanced data are easily biased towards majority classes
which have a large number of training examples, and far away from minority classes which have
few training examples. Although there are several class-imbalanced learning (CIL) algorithms pro-
posed, they are designed for supervised learning and do not exploit unlabeled data, which means
that they can not be simply combined with SSL algorithms under class-imbalanced semi-supervised
learning (CISSL). There have been a few studies (Yang & Xu, 2020; Kim et al., 2020; Wei et al.,
2021; Lee et al., 2021; Hu et al., 2022) on CISSL, but the improvements are mainly at the cost of
additional computational overhead, and overfitting on minority-class data or losing information on
majority-class data due to the re-sampling of data. Thus, how to efficiently utilize the labeled data
and unlabeled data become the core challenge of CISSL.

The main idea of existing CISSL methods can be divided into two categories. One is to improve
the quality of pseudo-labels generated by the initial SSL models from SSL perspective. The other
is to mitigate the class-imbalanced loss by introducing an auxiliary balanced classifier from CIL
perspective. The former relies on that the unlabeled data are more balanced than labeled data,
while the latter is not capable of rebalancing the imbalanced bias caused by a large number of
pseudo-labels. Due to the imbalanced training data(see Fig. 1(a)), SSL algorithms have to face
great challenge to generalize the minority classes which has few training examples. Pseudo-labels,
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Figure 1: (a) Class distribution of labeled and unlabeled data on CIFAR-10-LT under the imbalance
ratio γl = γu = 50, where the most majority class has 50× more labeled and unlabeled training
samples than the most minority class. (b) Performance of tail-class (the three classes with least
training samples) accuracy(%) on CIFAR-10-LT dataset under class imbalance ratio 50, 100, and
150 with 10% of labels available. Our proposed method improves the tail-class accuracy. (c) The
number and average confidence of prediction on unlabeled data in SSL algorithm FixMatch (Sohn
et al., 2020). Only samples with larger confidence than fixed threshold (0.95) can be imputed.

generated by a model trained on labeled data, are commonly leveraged in SSL algorithms. Although
the large number of unlabeled data can help alleviate the degeneration caused by imbalanced data
(Yang & Xu, 2020), the pseudo-labels generated by an initial model trained with imbalanced data
tend to be biased toward majority classes and deteriorates the model quality. Most SSL methods,
i.e., MixMatch, ReMixMatch and FixMatch (Berthelot et al., 2019; 2020; Sohn et al., 2020) have
not been evaluated on imbalanced class distribution.

As shown in Fig .1(c), the pseudo-labels of FixMatch tend to have high confidence on majority
classes while having low confidence on minority classes. Due to the reason that FixMatch only
selects the samples with confidence larger than 0.95, it is obvious that the pseudo-labels are biased
toward majority classes and will degenerate the model performance.

According to the discovery that the confidence of pseudo labels varies according to the scenario
of different imbalance ratio of labeled data γl and that of unlabeled data γu, we propose a novel
CISSL algorithms called Adaptive Pseudo-labeling and Loss Adjustment (APLA) that can effec-
tively use unlabeled data. Fig.1(b) showcases the effectiveness of APLA in the tail-class. First, we
use Class-Aware Pseudo-label Thresholding (CAPT) to re-balance the biased pseudo-labels (Sec-
tion 4.1). CAPT can efficiently mitigates the imbalanced pseudo-labels by dynamically adjusting
the pseudo-label threshold, higher for majority classes and lower for minority classes. Further-
more, even if we can get unlabeled data with balanced pseudo-labels, the imbalance still exists in
labeled data. Thus, we compensate for the imbalanced loss of minority classes by introducing Class-
Aware Loss Adjustment (CALA), adjusting both supervised loss and unsupervised loss for per class
(Section 4.2). To further reduce the training cost, we incorporate CAPT and CALA with an extra
auxiliary balanced classifier followed by the success of Lee et al. (2021) (Section 4.3). Experiments
demonstrate that our work can deliver much higher accuracy than benchmark methods under various
CISSL scenarios. Our main contribution are summarized as follows:

• We proposed a new CISSL method called Adaptive Pseudo-labeling and Loss Adjustment
(APLA). It significantly improves the precision of pseudo-labels by Class-Aware Pseudo-
label Thresholding (CAPT), and remove the bias from both the supervised loss and unsu-
pervised loss by Class-Aware Loss Adjustment (CALA) .

• CAPT adapts the threshold for selecting pseudo-labels according to the class distribution
in CISSL.

• CALA adjusts the loss according to the distribution of labeled data and unlabeled data,
avoiding the learning performance degeneration when unlabeled data is much more bal-
anced than labeled data.
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2 RELATED WORK

This work is related to class-imbalanced learning and semi-supervised learning.

2.1 CLASS-IMBALANCED LEARNING

Datasets in real-world often exhibits class-imbalanced label distribution (Van Horn et al., 2018)
and make the standard learning models hard to generalize. Several Class-imbalanced learning(CIL)
methods (Cui et al., 2019; Huang et al., 2020; Liu et al., 2019; Cao et al., 2019; Ren et al., 2020; Zhou
et al., 2020; Menon et al., 2021) have been proposed to address this problem. Most of them (Cao
et al., 2019; Cui et al., 2019; Huang et al., 2020; Liu et al., 2019) handle with quantity imbalance,
where the distribution of training examples from different classes is imbalanced, such as the long-
tailed distribution (Van Horn et al., 2018; Gupta et al., 2019) and step imbalanced distribution (Buda
et al., 2018). The solution can be categorized as re-sampling (He & Garcia, 2009; Pouyanfar et al.,
2018; Xu et al., 2021), re-weighting (Buda et al., 2018; Byrd & Lipton, 2019; Cui et al., 2019; Park
et al., 2021; Huang et al., 2020; Cao et al., 2019; Menon et al., 2021), synthetic samples (Chou et al.,
2020; Chawla et al., 2002), meta learning (Ren et al., 2020; Shu et al., 2019), transfer learning (Liu
et al., 2019; Yin et al., 2019; Jamal et al., 2020) and decoupling representation and classifier (Zhou
et al., 2020; Kang et al., 2020; Zhong et al., 2021). They are designed for supervised learning and
do not exploit unlabeled data. Compared with these supervised methods, our method mitigate the
imbalance in labeled data by utilizing extra unlabeled data.

2.2 SEMI-SUPERVISED LEARNING

Several SSL methods have been proposed to utilizes unlabeled data in recent years. Entropy mini-
mization (Grandvalet & Bengio, 2005) is designed to make the prediction made by training models
have high confidence, and prevent the class distribution of predictive results from being too flat and
having no tendency. Consistency regularization (Sajjadi et al., 2017; Laine & Aila, 2017; Tarvainen
& Valpola, 2017; Miyato et al., 2019; Xie et al., 2020) are designed to make the predictive results
to have consistency under various disturbances, which improves the generalization of SSL algo-
rithms by using extra unlabeled data. Holistic methods (Berthelot et al., 2019; 2020; Sohn et al.,
2020; Zhang et al., 2021) gain large accuracy improvement in SSL algorithms by combining the
entropy minimization and the consistency regularization. But these methods use a fixed thresh-
old to select pseudo-labels and highly rely on the quality of pseudo-labels. When training data is
class-imbalanced, these methods lead to performance degradation as the model produces low quality
pseudo-labels. Our method uses CAPT to generate pseudo-labels with high accuracy by selecting
pseudo-labels with a dynamical threshold.

2.3 CLASS-IMBALANCED SEMI-SUPERVISED LEARNING

There have been a few studies on class-imbalanced semi-supervised learning (CISSL) (Yang & Xu,
2020; Kim et al., 2020; Wei et al., 2021; Lee et al., 2021; Hu et al., 2022). The representatives
are DARP (Kim et al., 2020), CReST (Wei et al., 2021),ABC (Lee et al., 2021) and CADR (Hu
et al., 2022). DARP refines biased pseudo-labels via a convex optimization. CReST, a self-training
(Rosenberg et al., 2005) technique, alleviates class imbalance by using pseudo-labeled unlabeled
data points classified as minority classes with a higher precision than those classified as majority
classes. These two pseudo-label based algorithms rely on getting a lot of pseudo-labels with high
confidence to mitigates the imbalance, which makes them inappropriate when unlabeled data is
more imbalanced than labeled data. ABC, a simple auxiliary balanced classifier, mitigates the bias
of the learning model caused by class imbalance using extra regularization term. But, ABC only
assumes that the class distributions between labeled data and unlabeled data are the same, which
is difficult to verify since we have no idea about the true class distribution of unlabeled data in
real-world scenarios. CADR dynamically decreases the pseudo-label thresholding for minority
classes and removes the bias from the supervised model training by using Class-Aware Propensity
(CAP). But the assumption of CADR is that the distribution of unlabeled data is balanced, which is
too restrictive to be adapted to a variety of class-imbalanced scenarios. Our method mitigates the
imbalance in both CIL perspective and SSL perspective, generating pseudo-labels with high quality

3



Under review as a conference paper at ICLR 2023

and training a more balanced classifier.

3 PRELIMINARY AND BACKGROUND

This section provides notations used in this paper and gives a brief review of SSL algorithms with a
fixed threshold.

3.1 PROBLEM SETTING

The training data of the CISSL task consists of n labeled examples Dl = {(x1, y1), · · · , (xn, yn)}
and m unlabeled examples Du = {xn+1, · · · , xn+m}. Generally, m >> n, x ∈ X ∈ RD, y ∈ Y =
{1, · · · , C} where D is the number of input dimension and C is the number of output classes in
training examples. We denote the number of data points in class C under Dl and Du as nc and mc,
respectively, i.e.,

∑C
c=1 nc = n and

∑C
c=1 mc = m. The ratio of the class imbalance of Dl and Du

are denoted as γl = n1

nc
and γu = m1

mc
. In class-imbalanced scenarios, γl ≫ 1, γu ≥ 1. In general,

we assume that Dl and Du have the same distribution, i.e., γl = γu. But there are some cases where
Dl and Du have different distributions, i.e., γl ̸= γu. The aim of the CISSL algorithms is to find
an appropriate learning model f(x; θ) : {X ; Θ} → Y parameterized by θ ∈ Θ from imbalanced
training data to mitigate the generalization risk.

The training loss of an SSL algorithm usually consists of supervised loss Ls and unsupervised loss
Lu with a weight parameter λ,i.e., Ls + λLu. Ls is calculated by Dl and Lu is calculated by Dl.
Typically, Ls can be written as follows:

Ls =
1

|Dl|
∑
x∈Dl

H(y, f(x; θ)) (1)

here H is the function of cross entropy loss and f(x; θ) is the predicted probabilities of input x
produced by the model f .

Different choices for the unsupervised loss Lu lead to different semi-supervised learning algorithms.
Typically, there are two ways to construct unsupervised loss. One is designed to optimize a regular-
ization that does not depend on labels, such as consistency regularization (Miyato et al., 2019; Xie
et al., 2020). The other one is designed to generate pseudo-labels with high confidence to formulate
a loss with unlabeled data (Lee, 2013; Berthelot et al., 2019; 2020; Sohn et al., 2020). Next, we
will introduce a recent SSL work (Sohn et al., 2020) to illustrate how to generate pseudo-labels and
construct unsupervised loss Lu.

3.2 FIXMATCH: AN SSL ALGORITHM WITH FIXED PSEUDO-LABEL THRESHOLD

Due to its great success in SSL field, we choose FixMatch as the backbone to make sure that our
proposed method can utilize the high-quality representations learned by the backbone. In order to
better illustrate our proposed approach, we briefly introduce FixMatch in this section.

FixMatch (Sohn et al., 2020) combines consistency regularization and pseudo-labeling with a simple
framework as well as using weak and strong augmentation for consistency regularization separately.
For supervised loss Ls, FixMatch computes standard cross-entropy loss on a weakly augmented ver-
sion of labeled examples Aw(x) from the labeled set Dl. For unsupervised loss Lu, FixMatch first
generates pseudo-labels using the model’s predictions on weakly augmented unlabeled examples.
The predicted label is only retained as pseudo-label if the highest class probability of model predic-
tion is greater than the threshold τ = 0.95. The model is then trained to predict the pseudo-label
when fed with the strongly augmented version As(x). The total loss can be written as follows:

Ls =
1

|Dl|
∑
x∈Dl

H(y, f(Aw(x); θ)) (2)

Lu =
1

|Du|
∑
x∈Du

1(max(f(Aw(x); θ) > τ))H(f(Aw(x); θ), f(As(x); θ)) (3)

L = Ls + λLu (4)
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As discussed in Section 1, the traditional SSL model trained with class-imbalanced data is biased
toward majority classes and far from minority classes. Unlabeled data predicted as majority classes
tend to have high confidence, and data predicted as minority classes tend to have low confidence.
Traditional SSL algorithms like FixMatch using a fixed threshold τ to select imputation samples,
which aims to select correct pseudo labels and discard noise ones. Samples predicted as minority
class tend to be eliminated while samples predicted as majority classes tend to be selected in Fig. 3
(Shown in Appendix B). According to Wei et al. (2021), the discarded samples that are predicted as
minority classes still hold high precision, while the retained samples that are predicted as majority
classes have low precision and many of them may have wrong pseudo-labels, which leads to the bias
in the calculation of Lu.

The standard cross entropy loss formulates as:

H(y, f(x; θ)) = − log
fy(x; θ)∑C
c=1 fc(x; θ)

(5)

As mentioned in Section 1, the learning classifier using standard cross entropy loss would be biased
towards the majority classes due to the reason that the distribution of training data is heavily class-
imbalanced. FixMatch suffers it in both the supervised and unsupervised loss terms, and causes
the degradation of learning performance with class-imbalanced training data. We propose Adaptive
Pseudo-labeling and Loss Adjustment (APLA) framework to mitigate the bias in both supervised
loss and unsupervised loss in the next section.

4 ADAPTIVE PSEUDO-LABELING AND LOSS ADJUSTMENT FRAMEWORK

The APLA framework can be decomposed into two parts: Class-Aware Pseudo-label Thresholding
(CAPT) for unsupervised loss and Class-aware Loss Adjustment (CALA) for both supervised loss
and unsupervised loss.

4.1 CLASS-AWARE PSEUDO-LABEL THRESHOLDING

To alleviate the imbalance of prediction and generate more correct pseudo-label, Class-Aware
Pseudo-label Thresholding (CAPT) utilizes the imbalanced unlabeled data by dynamical adjusting
the pseudo-label threshold. Let qm,t be the model’s predicted class distribution given a weakly-
augmented version of a unlabeled image m at time step t, σt(c) denotes the selected pseudo-label
of class c at time step t. We get a class-aware pseudo-label threshold Tt(c) for class c as:

σt(c) =

M∑
m=1

1(max(qm,t) > τc) · 1(argmax(qm,t) = c) (6)

tempc =
σt(c)

max{max
c

σt,M −
∑

c σt}
· γc (7)

Tt(c) = M(tempc) · τ. (8)

where γc is a hyperparameter for class c and M is a non-linear mapping function. According to
the Zhang et al. (2021), we set M(x) = x

2−x , making the samples predicted as minority classes
have lower pseudo-label threshold. We replace the fixed threshold τ in FixMatch with Tt(c) for
class c. Generally, our CAPT sets a higher threshold for majority classes and a lower threshold
for minority classes, encouraging the model using more unlabeled data with correct pseudo-labels
that are predicted as minority classes. By using CAPT, we rebalance the biased pseudo-labels and
mitigate the imbalance labels in training data.

4.2 CLASS-AWARE LOSS ADJUSTMENT

Although we use CAPT to rebalance the biased pseudo-labels, it still exists imbalance in both labeled
data and unlabeled data. Similar to (Ren et al., 2020; Menon et al., 2021), we choose Class-Aware
Loss Adjustment (CALA) to replace the standard cross entropy loss:

HCALA(y, f(x; θ)) = − log
fy(x; θ) + β log πy∑C
c=1 fc(x; θ) + β log πc

(9)
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where πy is the estimate of class prior P(y) and β > 0 is a tuning parameter to be chosen
based on holdout calibration. If the class distribution is balanced, πc = 1, c ∈ {1, · · · , C} and
HCALA(y, f(x; θ)) = H(y, f(x; θ)). Using this loss encourages large margins between the true
label and other negative labels.

Due to the reason that Dl and Du may not have the same class distribution, π for supervised loss
πl and unsupervised loss πu are computed separately. Due to the reason that only the distribution
of labeled data is already determined, we set P̂ (Yu) as the estimated class distribution of unlabeled
data at time step t and P (Yl) as the class distribution of labeled data. P (Yl) can be computed by the
class imbalance γl, and P̂t(Yu) is computed by the prediction of the training model, which means
the predicted distribution of unlabeled data at time step t. Then πl and πu

t can be computed as
follows:

πl = P (Yl), πu
t = P̂t(Yu) (10)

pt(c) =

M∑
m=1

1(argmax(qm,t) = c) (11)

P̂t(yu = c) =
pt(c)

pt(1)
, P (yl = c) =

nc

n1
(12)

where pt(c) reflects the number of unlabeled data to be predicted as class c at time step t. We
encourage the model to generate more balanced prediction on unlabeled data and compensate the
bias caused by the imbalance of labeled and unlabeled data by using CALA.

4.3 EXTRA AUXILIARY BALANCED CLASSIFIER

To further reduce the training cost, we incorporate CAPT and CALA with an extra auxiliary bal-
anced classifier inspired by the success of Zhou et al. (2020); Lee et al. (2021). As the work in
Lee et al. (2021), the extra auxiliary balanced classifier is trained simultaneously with the backbone
algorithms, so it can share high-quality representations learned from all data points with the back-
bone algorithms. Note that the classification loss for the extra auxiliary balanced classifier is also
adjusted by CAPT and CALA. We train the proposed algorithm with loss for the extra auxiliary bal-
anced classifier Leabc and the loss for the backbone Lback. The total loss function Lsum is expressed
as:

Ls =
1

|Dl|
∑
x∈Dl

HCALA(y, f(Aw(x); θ)) (13)

Lu =
1

|Du|
∑
x∈Du

1(max(f(Aw(x); θ) > Tt(c)))HCALA(f(Aw(x); θ), f(As(x); θ)) (14)

Lback = Ls + λLu (15)
Lsum = Leabc + Lback (16)

5 EXPERIMENTS

In this section, we evaluate various algorithms including SSL, CIL and CISSL under various scenar-
ios for class-imbalanced classification problems. We first provide description of our experimental
setups in Section 5.1. We then give empirical evaluations on our proposal and other compared meth-
ods under various scenarios in Section 5.2. Finally, we present ablation study to help understand the
superiority of our proposal in Section 5.3.

5.1 EXPERIMENTAL SETUP

We choose CIFAR-10 (Krizhevsky, 2009) and SHVN (Netzer et al., 2011) as the basic datasets to
create various class-imbalanced datasets with the class-imbalance ratio of labeled data γl and the
class-imbalanced ratio of unlabeled data γu. There are two types of class imbalance, the long-
tailed imbalance where the number of data points exponential decline from the largest class to the
smallest class, i.e. nk = n1 ∗ γ

1−k
L−1 , and the step imbalance (Buda et al., 2018) where the majority
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classes have same number of data points and the minority classes also have the same number of data
points. Two types of class imbalance for these datasets are illustrated in Appendix B. We choose
n1 = 500,m1 = 4500 for CIFAR-10-LT and n1 = 1000,m1 = 4000 for CIFAR-10-Step and
SHVN-Step.

Our method is compared with the performance of these algorithms, including:

• WRN-28-2 (Zagoruyko & Komodakis, 2016) (Vanilla algorithm): The basic Deep CNN is
trained on only labeled data with the simple cross-entropy loss.

• MiSLAS (Zhong et al., 2021) (CIL algorithm): The SOTA CIL algorithm uses MixUp
(Zhang et al., 2019) and label-aware smoothing to handle different degrees of overconfi-
dence for classes and reduce dataset bias by shift learning on the batch normalization layer
in the decoupling framework, without using extra unlabeled data.

• MixMatch (Berthelot et al., 2019), FixMatch (Sohn et al., 2020) (SSL algorithms):
The SOTA SSL algorithms combined consistency regularization and pseudo-labels have
achieved great success in SSL, without taking class imbalance into account.

• DARP (Kim et al., 2020) (CISSL algorithm): The algorithm uses DARP to refine the
pseudo-labels obtained by SSL algorithms, e.g. FixMatch .

• CReST (Wei et al., 2021) (CISSL algorithm): The algorithm alleviates the class imbalance
by selecting pseudo-labeled unlabeled instance classified as minority classes with a higher
confidence than those classified as majority classes.

• ABC (Lee et al., 2021) (CISSL algorithm): The algorithm provides auxiliary balanced
classifier to rebalance the biased model by introducing extra regularization terms.

• CADR (Hu et al., 2022)(CISSL algorithm): The algorithm removes the bias from both the
supervised model training end—by using Class-Aware Prospesity (CAP), and the unlabeled
data imputation end—by using Class-Aware Imputation (CAI).

All experiments are trained with batch size 64 for 250, 000 iterations. We use the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 0.002, and use Cutout (Devries & Taylor, 2017)
and RandomAugment (Cubuk et al., 2019) for strong data augmentation, following the approach
provided in Lee et al. (2021). As suggested by Berthelot et al. (2019), we evaluate the performance
of these algorithms using an exponential moving average of the parameters over iterations with
a decay rate of 0.999, instead of scheduling the learning rate. In Tables 1-2, we use the overall
accuracy and the accuracy only for tail class as performance measures in long-tailed setting. In
Table 3 we use the the overall accuracy and the accuracy only for minority classes as performance
measures in step-imbalanced setting. Each experiment is repeated five times with the long-tailed
imbalance setting and three times with the step-imbalance setting. We report the average and
standard deviation of the performance measures.

5.2 RESULTS

5.2.1 CIFAR-10-LT UNDER γl = γu

We first evaluate the algorithms with γl = γu, which is the most common scenarios that labeled and
unlabeled data are sampled from the same distribution. In order to produce convincing results, we
compare our work with the existing SSL, CIL and CISSL algorithms on CIFAR-10-LT with various
imbalance ratio. From the results in Table 1, we can observe that in most cases SSL methods per-
form better than class-imbalanced learning method by using extra unlabeled data. The other CISSL
methods achieve good performance among compared methods since they consider both unlabeled
data and imbalanced distribution. It is noticeable that our proposal consistently achieves the best
performance in all settings with various imbalance ratios of training examples. For example, our
APLA preforms 11.5% better in overall accuracy and 43.1% better in tail-class accuracy than Fix-
Match upon CIFAR-10-LT(γl = γu = 100). The improvement of APLA is more significant as the
imbalanced ratio increases.

7



Under review as a conference paper at ICLR 2023

Table 1: Overall accuracy/ tail-class (the three classes with least training samples) accuracy with
the long-tailed imbalanced setting. SSL denotes semi-supervised learning and CIL denotes class-
imbalanced learning.

CIFAR-10-LT(γl = γu)

Algorithm SSL CIL γl = 50 γl = 100 γl = 150

Vanilla - - 49.3±1.68 / 23.0±3.44 44.2±0.37 / 10.3±2.22 40.4±1.10 / 5.1±1.83

MiSLAS - ✓ 60.0±0.38 / 45.1±2.79 53.0±0.11 / 28.4±1.39 48.6±0.86 / 20.5±2.15

MixMatch ✓ - 62.5±1.46 / 22.1±3.80 56.7±1.05 / 7.6±2.56 52.2±2.07 / 7.9±3.21

FixMatch ✓ - 76.0±0.96 / 52.5±3.67 68.7±0.70 / 35.3±2.58 63.2±0.32 / 20.5±0.20

w/ CReST+ ✓ - 81.0±0.51 / 73.4±1.47 74.5±0.61 / 56.1±1.56 72.3±0.70 / 46.3±2.52

w/ DARP ✓ - 79.9±0.12 / 65.2±0.59 73.9±0.96 / 51.0±1.98 68.4±0.23 / 36.5±1.13

w/ ABC ✓ - 82.4±0.51 / 73.4±2.05 77.2±0.54 / 63.4±1.87 72.4±0.81 / 48.9±3.65

W/ CADR ✓ - 76.8±0.51 / 58.2±1.33 70.6±0.71 / 47.5±1.62 66.4±0.73 / 36.4±2.17

w/ Ours ✓ - 82.8±0.46 / 84.4±2.18 80.2±0.61 / 78.4±1.12 75.5±1.25 / 72.2±3.75

5.2.2 CIFAR-10-LT UNDER γl ̸= γu

We then evaluate the algorithms with γl ̸= γu, which is not unusual in realistic scenarios where
labeled and unlabeled data are sampled from the different distribution. In this case, it is also hard
to know the real distribution of unlabeled data. So, for the training model, the imbalance ratio
γu of unlabeled data is an unknown parameter. Generally, the performance is related to the class-
imbalanced ratio of all training data. The accuracy of the SSL model should increase as the γu
decreases, which means the overall distribution of training data becomes more balanced. But in
Table 2, an interesting observation is that for a fixed γl, MixMatch, FixMatch, FixMatch+CReST+
and FixMatch+ABC suffer a great performance degradation when γu = 1, which means the most
balanced unlabeled dataset. This is because that these algorithms does not take the distribution of
unlabeled data into consideration. As shown in Fig 3 (Shown in Appendix A), when unlabeled
data is balanced, these algorithms easily mistake a large number of unlabeled data from tail class as
data from head class, leading the performance degradation of tail class. The results in Table 2 also
show that our method performs better than FixMatch and other CISSL algorithms on all settings.
Especially in CIFAR-10-LT (γl = 100, γu = 1), our APLA is 19.7% better in overall accuracy and
60.1% better in tail class accuracy than FixMatch, and 10.7% better in overall accuracy and 28.7%
better in tail class accuracy than FixMatch+ABC.

Table 2: Overall accuracy/tail-class (the three classes with smallest training samples) accuracy under
the long-tailed setting(γl ̸= γu). SSL denotes semi-supervised learning and CIL denotes class-
imbalanced learning.

CIFAR-10-LT(γl = 100)

Algorithm SSL CIL γu = 1 γu = 50 γu = 150

Vanilla - - 44.2±0.37 / 10.3±2.22 44.2±0.37 / 10.3±2.22 44.2±0.37 / 10.3±2.22

MiSLAS - ✓ 53.0±0.11 / 28.4±1.39 53.0±0.11 / 28.4±1.39 53.0±0.11 / 28.4±1.39

MixMatch ✓ - 36.7±0.56 / 1.0±0.55 56.6±0.52 / 13.1±2.92 56.2±1.35 / 11.8±3.70

FixMatch ✓ - 65.7±0.52 / 23.1±0.24 71.8±1.12 / 41.2±3.42 67.7±0.77 / 33.3±2.62

w/ CReST+ ✓ - 76.1±1.62 / 62.1±3.01 79.4±1.48 / 68.6±0.95 72.1±2.36 / 46.2±4.37

w/ DARP ✓ - 76.7±0.13 / 65.5±0.41 74.3±0.29 / 63.4±0.39 71.1±0.13 / 48.1±0.39

w/ ABC ✓ - 74.7±0.75 / 54.5±2.52 79.2±0.46 / 65.3±1.92 74.7±0.27 / 65.1±1.77

w/ CADR ✓ - 82.9±1.57 / 71.3±1.36 76.0±1.08 / 58.4±0.95 68.9±1.61 / 42.7±1.69

w/ Ours ✓ - 85.4±0.94 / 83.2±2.94 81.8±0.47 / 81.8±1.56 76.9±0.60 / 73.3±2.47
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5.2.3 CIFAR-10-STEP AND SVHN-STEP UNDER γl = γu

We also evaluate the algorithms with the step imbalance setting, where the half of the classes have
few training data. This setting assumes a more severely imbalanced class distribution than the long-
tailed imbalance settings. We omit CADR since it can not be applied to this situation. The experi-
ment results of CIFAR-10-Step and SHVN-Step in Table 3 show that APLA outperforms other algo-
rithms in minority class accuracy, and the overall accuracy of APLA is a slightly lower than ABC in
SVHN-Step. This may be the reason that SVHN is an simple dataset and the adaptive threshold may
easily degenerate the majority classes accuracy in SVHN-Step. The more quantitative comparison
can be seen in Appendix C.

Table 3: Overall accuracy/Minority-class accuracy on CIFAR-10 and SVHN under step imbalanced
setting.

CIFAR-10-Step SVHN-Step

Algorithm γl = γu = 100 γl = γu = 100

FixMatch 54.0±0.84 / 11.8±1.71 79.8±1.34 / 61.5±2.76

w/ CReST+ 71.1±0.78 / 48.2±2.26 86.6±0.19 / 76.3±0.23

w/ DARP 67.9±1.98 / 43.0±2.12 85.3±0.19 / 67.9±0.40

w/ ABC 75.9±0.49 / 57.0±1.07 90.6±0.17 / 85.6±0.35

w/Ours 76.8±0.65 / 74.9±1.42 88.3±0.74 / 87.4±0.70

5.3 ABLATION STUDY

We also conduct an ablation study on CIFAR-10-LT in the main setting to investigate the effect of
each component of the proposed algorithm. The results for APLA are presented in Table 4, where
each row indicates the proposed algorithm with the described conditions in that row.

Table 4: Ablation study for APLA on CIFAR-10-LT, γl = γu = 100

Ablation study Overall Tail-class

APLA (proposed algorithm) 80.2 80.0
Without CAPT 78.5 76.3
Without CALA 76.2 60.2
Without extra auxiliary classifier 74.2 54.9

6 CONCLUSION

We introduced the Adaptive Pseudo-labeling and Loss Adjustment (APLA), a simple but effective
framework, which is attached to a state-of-the-art SSL algorithm, for CISSL. First, we proposed
Class-Aware Pseudo-label Thresholding (CAPT) to generate correct pseudo-labels by dynamically
adjust the pseudo-label threshold for different classes. We effectively mitigated the imbalance of the
pseudo-labels by CAPT. Then, we proposed Class-Aware Loss Adjustment (CALA) to compensate
the huge bias caused by imbalanced training data in both supervised loss and unsupervised loss.
Finally, we combined CAPT and CALA by using extra auxiliary balanced classifier. The exper-
imental results obtained under various setting demonstrate that our proposed method outperforms
other CISSL algorithms. We also conducted a qualitative analysis and an ablation study to verify the
contribution of each component of the proposed algorithm. How to full utilize unlabeled data with
SSL models in realistic scenarios has attracted great attention in recent years. CISSL is a representa-
tive problem that using unlabeled data with huge imbalance. Our work proposed a novel scheme for
the problem. One limitation of our scheme is that APLA may degrade the majority classes accuracy
in rare occasion. We will deal with these problem in future work. The code of this paper will be
released after the review process.
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datasets with label-distribution-aware margin loss. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 1565–1576, 2019.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Introduction to semi-supervised learn-
ing. In Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (eds.), Semi-Supervised Learn-
ing, pp. 1–12. The MIT Press, 2006.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. J. Artif. Intell. Res., 16:321–357, 2002.

Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng Juan. Remix: Rebal-
anced mixup. In Computer Vision - ECCV 2020 Workshops - Glasgow, UK, August 23-28, 2020,
Proceedings, Part VI, 2020.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical data
augmentation with no separate search. CoRR, abs/1909.13719, 2019.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. Class-balanced loss based
on effective number of samples. In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 9268–9277. Computer Vision
Foundation / IEEE, 2019.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. CoRR, abs/1708.04552, 2017.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Actes
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A THE IMBALANCE IN PSEUDO-LABELS

(a) γl = γu = 50 (b) γl = γu = 100 (c) γl = 100, γu = 1

Figure 2: The number of selected pseudo-labels for different classes in CIFAR-10-LT under different
imbalanced ratio.

Fig.2 presents the prediction of unlabeled data of FixMatch, FixMatch+ABC and FixMatch+APLA
trained on CIFAR-10-LT with different imbalanced ratio. The imbalance of pseudo-labels is more
imbalanced than the true distribution of unlabeled data in FixMatch and FixMatch+ABC. The im-
balanced ratio of pseudo-labels increases as the imbalance ratio increases in FixMatch and Fix-
Match+ABC. The huge mismatch between the distribution of unlabeled data and pseudo-labels
leading to the huge performance degeneration of FixMatch and FixMatch +ABC in Fig. 2(c).

(a)FixMatch (b)FixMatch+ABC (c) FixMatch + APLA

Figure 3: Confusion matrices of the selected pseudo-labels on the unlabeled data of CIFAR-10-LT
under imbalance ratio γl = 100, γu = 1 .

The results in Fig. 3 show that the pseudo-labels generated by FixMatch and FixMatch+ABC are
biased towards majority classes. For example, almost all the unlabeled data that belong to class 9 are
predicted wrongly as class 1 in FixMatch. Our APLA achieves a more unbiased confusion matrix
of selected pseudo-labels on the unlabeled data.

B TWO TYPES OF CLASS IMBALANCE FOR THE CONSIDERED DATASETS

Two types of class imbalance for the considered datasets are illustrated in Fig. 4. In Fig. 4(a), we set
γl = γu = 50, n1 = 500,m1 = 4500. In Fig. 4(b), we set γl = γu = 100, n1 = 1000,m1 = 4000.
We can aslo see that each minority class of step-imbalance setting has a very small amount of data
in Fig. 4(b). Existing SSL algorithms can be hardly perform well on minority class under step
imbalanced settings due to the scarce data in minority class.

C MORE QUANTITATIVE COMPARISON

Fig. 5 presents the confusion matrices of FixMatch, FixMatch+ABC, and FixMatch+APLA trained
on CIFAR-10-LT, γl = γu = 100, n1 = 500,m1 = 4500. FixMatch and FixMatch+ABC often
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(a) Long-tailed imbalance
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(b) Step imbalance

Figure 4: Long-tailed imbalance and step imbalance

misclassified test data points in the tail-classes as the data point in the head-classes (e.g., classes
8 and 9 into classes 0 and 1). In contrast, FixMatch+APLA classified the test data points in the
tail-class with higher accuracy, and produced a significantly more balanced class-distribution than
FixMatch and FixMatch+ABC. This phenomenon is even more significant in Fig. 6, when unlabeled
data is balanced and labeled data is imbalanced.

(a)FixMatch (b)FixMatch+ABC (c) FixMatch + APLA

Figure 5: Confusion matrices of the prediction on the test set of CIFAR-10-LT under imbalance ratio
γl = γu = 100 .

(a)FixMatch (b)FixMatch+ABC (c) FixMatch + APLA

Figure 6: Confusion matrices of the prediction on the test set of CIFAR-10-LT under imbalance ratio
γl = 100, γu = 1 .
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