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Fig. 1: ACE-F enables users to complete contact-rich tasks with force feedback in both simulator and real-world settings. It
excels at mopping, stacking, and dragging in simulation, and at mopping, stacking, and blind insertion tasks in real-world
scenarios.

Abstract—Teleoperation systems are essential for efficiently
collecting diverse and high-quality robot demonstration data,
especially for complex, contact-rich tasks. However, current
teleoperation platforms typically lack integrated force feedback,
cross-embodiment generalization, and portable, user-friendly
designs, limiting their practical deployment. To address these
limitations, we introduce ACE-F, a cross embodiment foldable
teleoperation system with integrated force feedback. Our ap-
proach leverages inverse kinematics combined with a carefully
designed human-robot interface (HRI), enabling users to capture
precise and high-quality demonstrations effortlessly. We further
propose a generalized soft-controller pipeline integrating PD
control and inverse dynamics to ensure robot safety and precise

motion control across diverse robotic embodiments. Critically,
to achieve cross-embodiment generalization of force feedback
without additional sensors, we innovatively interpret end-effector
positional deviations as virtual force signals, which enhance data
collection and enable applications in imitation learning. Exten-
sive teleoperation experiments confirm that ACE-F significantly
simplifies the control of various robot embodiments, making
dexterous manipulation tasks as intuitive as operating a computer
mouse.

I. INTRODUCTION

Teleoperation systems have shown great potential for col-
lecting high-quality, diverse demonstration data for complex,



contact-rich robotic tasks. However, existing platforms suffer
from three main limitations: (1) lack of integrated force
feedback—either providing no haptic cues or relying on
expensive, hard-to-integrate force/torque (FT) sensors [20,
34]; (2) poor cross-embodiment generalization—joint-copying
schemes must be redesigned for each new robot morphology
[33, 19]; and (3) bulky, non-portable hardware that hinders
rapid deployment in real-world scenarios [50, 19].

To address these challenges, we propose ACE-F, a cross-
embodiment foldable teleoperation system with integrated
force feedback. First, ACE-F infers real-time 3-DoF external
forces by monitoring end-effector (EE) trajectory deviations,
no additional sensors required, and applies active gravity and
friction compensation on the leader and follower arms to
deliver smooth, intuitive haptic cues [22, 34]. Second, we
combine inverse kinematics (IK)–based leader-arm control
with glove-based hand tracking to build a universal retargeting
algorithm that adapts to diverse robot platforms; a magnetic
quick-swap interface further enables future integration of tac-
tile gloves [46, 26, 49]. Finally, our soft-controller pipeline
fuses proportional-derivative (PD) control with custom inverse
dynamics (ID), ensuring stability, responsiveness, and safety
across embodiments, and allowing rapid deployment via minor
tuning of URDF parameters [46].

These innovations raise a critical question: How can we
obtain accurate hand poses and end-effector positions at low
cost to enable dexterous manipulation across a wide range of
robot platforms?

The answer lies in combining cross-platform primary-arm
control based on IK and ID with a lightweight, foldable
human–robot interface. Our ACE-F system not only achieves
high-precision demonstrations but also maintains affordability
and portability.

In this paper, we describe the hardware design and software
architecture of ACE-F, integrating real-time three-degree-of-
freedom (3-DoF) force estimation via EE trajectory devia-
tion, active gravity and friction compensation on the leader
arm, IK-driven Cartesian control with retargeting algorithms,
and a PD+ID soft-controller pipeline. Extensive experiments
demonstrate two key advantages of ACE-F: (1) users can
rapidly adapt and efficiently, accurately perform cross-platform
teleoperation tasks under varying precision and workspace
requirements; and (2) at a relatively low cost, ACE-F signifi-
cantly outperforms systems without force feedback in complex
contact-rich tasks.

II. RELATED WORK

Force Feedback Teleoperation. Force feedback has be-
come a widely recognized enabler for contact-rich teleoper-
ation, allowing operators to perceive interaction forces and
improve manipulation performance [35, 13, 10]. Although
many commercial robot arms incorporate built-in 6-DoF FT
sensors, their high cost and integration complexity make
them impractical for general deployment [37]. Furthermore,
the majority of low-cost teleoperation systems forgo force

feedback entirely, relying solely on position or joint com-
mands with no haptic cues [51, 45, 16, 46]. Traditional
force-feedback teleoperation implementations therefore de-
pend on external FT sensors mounted on the secondary device,
imposing hardware and calibration burdens [12, 1, 5, 31].
Virtual force feedback schemes approximate contact forces
via kinematic or impedance models, but cannot fully capture
true interaction dynamics [2]. Some teleoperation systems
have also attempted to convey force information through non-
haptic channels—e.g., visual overlays on the video stream,
audio alerts, or controller vibration cues—but these indirect
modalities often lack intuitiveness and can increase operator
cognitive load [13]. To overcome these limitations, ACE-
F infers real-time 3-DoF end-effector forces from trajectory
deviations and applies gravity and friction compensation on the
primary arm—providing sufficiently accurate force cues for
daily-life teleoperation tasks without any additional sensors.

Cross-Embodiment Teleoperation. Mapping human mo-
tions to robots with differing kinematic structures is necessary
for proper teleoperation [33]. Direct joint-copying approaches
build a small primary arm or mobile controller that mirrors
the target robot’s kinematics, providing intuitive, low-latency
mapping, but require rebuilding the hardware for each new
robot [51, 45, 16, 5, 31, 47]. In contrast, IK-based Cartesian
control naturally generalizes across embodiments, allowing a
single primary interface to drive robots of varied morphologies
without any hardware changes [39, 50, 46, 24, 38, 18, 3, 23].
IK-driven teleoperation systems typically use four main in-
terfaces to obtain wrist and hand pose: motion-capture de-
vices [44, 14, 41, 30, 8], cameras [39], VR equipment[17,
4, 24, 11, 9, 27, 32], or exoskeleton hardware [50, 46, 6,
15, 42, 21, 25, 7]. The first three approaches can capture
complete wrist and hand information to enable dexterous end-
effector control [40, 48, 36, 18, 39, 29, 28], but their interfaces
make integrating force feedback difficult. Exoskeleton-based
systems offer a direct way to add force feedback, yet their
bulky size and mechanical complexity significantly increase
torque requirements—raising motor costs and reducing wear-
ability. By contrast, ACE-F combines a compact, foldable 3-
DoF primary arm with glove-based hand tracking to achieve
precise, occlusion-free full-hand pose capture while minimiz-
ing device volume and torque demands—thereby lowering
motor performance requirements and overall system cost, and
enabling seamless integration of tactile gloves in the future.

III. SYSTEM DESIGN

Hardware Design. The ACE-F system, illustrated in Fig. 6,
is a robotic manipulator designed for precise 3-DoF force
feedback. It features three independent joints: a base joint for
foundational rotation and two perpendicular elbow joints for
compact and robust force rendering.

The manipulator employs DYNAMIXEL XM430-W350-T
motors with U2D2 controllers, ensuring precise and responsive
joint control. At its endpoint, a passive quick-release spherical
joint supports interchangeable end-effectors via a 3D-printed
ball-and-socket design embedded with neodymium magnets.



Fig. 2: Overview of the ACE-F system. Left: Annotated view of the ACE-F arm showing the base joint (1 DoF), perpendicular
elbow joints (2 DoF), and the magnetic spherical joint for interchangeable end-effectors. Right: Three representative end-
effector configurations are enabled by the spherical joint, using a bare setup, gripper attachment, or wearable glove.

An integrated elastic safety lock mechanism prevents unin-
tended detachment during operation.

We validated three end-effector configurations:
• Bare Configuration: General-purpose setup for force

feedback.
• Gripper Configuration: Designed for controlling single-

arm robots with grippers.
• Glove Configuration: Tailored for humanoid platforms

equipped with dexterous hands.
This modular design significantly enhances the system’s

flexibility and adaptability for diverse real-world applications.
End-Effector Control and Feedback. One of the core

challenges in teleoperation is achieving full 6-DoF control
(position and orientation) of the robot end-effector using
compact and low-DoF input devices. A 3-DoF arm alone
cannot simultaneously define both the position and orientation
of the end-effector in space. To address this limitation, ACE-F
decouples position and orientation control: the foldable 3-DoF
primary arm is used to determine the end-effector’s Cartesian
position, while a glove-based tracking module captures the
wrist and finger orientation in real time. By combining these
two streams, ACE-F reconstructs a complete 6-DoF in-hand
pose of the operator, which can then be retargeted to the robot.

This hybrid control design not only preserves portability
and affordability but also enables platform-agnostic retarget-
ing. The system uses inverse kinematics (IK) to convert the
desired position from the primary arm and the orientation
from the glove into robot-specific end-effector commands. As
a result, users can define both position and rotation of the
end-effector naturally within the workspace, enabling seamless
teleoperation across robots with different kinematic structures.

Additionally, ACE-F incorporates virtual force feedback
by interpreting trajectory deviations between the commanded
and actual end-effector positions as 3-DoF force signals.
These inferred forces are rendered on the primary arm via
active torque control with gravity and friction compensation,
providing intuitive haptic cues without requiring external sen-
sors. This sensorless feedback loop improves the precision
of manipulation and makes contact events such as collisions,

object slippage, or resistance perceptible to the operator.
This design not only preserves the flexibility of the original

ACE system, such as the ability to adapt to different workspace
scales through simple geometric transformations—but also
offers key advantages in force feedback implementation. By
reducing the degrees of freedom on the primary arm to 3-
DoF, ACE-F simplifies both mechanical design and real-time
torque control. This reduction makes it significantly easier
to implement reliable and low-latency force feedback, as the
system only needs to estimate and render 3D translational
forces rather than full 6D wrenches. At the same time,
the combination of glove-based orientation tracking and IK-
based position mapping ensures that the user can still define
arbitrary 6-DoF in-hand poses within the workspace. Together,
these properties enable intuitive and high-fidelity teleoperation
across diverse robotic platforms while maintaining portability,
low cost, and modular expandability.

Augmented Inverse Kinematics Solver. Unlike conven-
tional IK solvers that purely minimize end-effector position
and orientation errors, we propose an augmented IK approach
tailored to the unique teleoperation challenges of the Franka
arm. Our solver introduces two additional “tasks” to improve
robustness and avoid singularities:

First, we compute the projection angle of the end-effector
onto the base plane and match it to the first joint angle of the
robot. This ensures a natural alignment between the operator’s
intended direction and the robot’s base rotation.

Second, to prevent the Franka elbow from bending outward
when the end effector approaches the base, an action that can
lead to kinematic singularities, we introduce a soft constraint
on the fourth joint. Specifically, we assign it a higher target
value in the vertical (z) axis, encouraging a posture that avoids
such configurations.

These task-level modifications enhance the solver’s reliabil-
ity and stability, allowing intuitive and continuous teleopera-
tion even near the robot’s kinematic limits.

Force Feedback Calculation. Instead of relying on the
conventional Jacobian-based wrench-to-torque mapping for
force feedback calculation, we adopt a simpler, yet more



Fig. 3: Using a single ACE-F arm, we can control the Franka robot in simulated and real-world environments. When using
two ACE-F arms, we can control a bimanual robot, such as the Unitree G1 in simulation.

robust approach to maintain system stability. Specifically,
we compute the deviation between the secondary arm end-
effector’s target and actual positions:

∆ee = target− current

This deviation, ∆ee, serves as the core indicator of the
feedback force magnitude. Traditional wrench-to-torque map-
pings can be highly sensitive to transient forces, where even
short-duration impulses result in substantial torque spikes
that destabilize the primary arm. To circumvent this issue,
we introduce a virtual target pose for the primary arm. By
scaling ∆ee and applying it to the primary arm’s current end-
effector pose, the primary arm naturally “tries” to align with
the secondary’s pose via force feedback. Since the operator’s
hand firmly grips the end-effector, this alignment manifests as
tangible forces rather than significant positional displacements,
thereby avoiding large oscillations.

To further prevent destabilizing effects at high
speeds—where ∆ee may inflate due to dynamic motion
rather than contact—we modulate the feedback magnitude by
the secondary’s Cartesian velocity:

Force Feedback Factor =

√
α · ∥∆ee∥2

1 + ∥vcartesian∥2

This ensures that the feedback force remains negligible dur-
ing smooth or low-speed motions, only becoming significant
during actual contact interactions. Additionally, we apply this
feedback factor not only to generate the virtual target pose
but also to adaptively modulate the primary arm’s impedance
gains (Kp and Kd), implementing stable and intuitive haptic
feedback across tasks.

Algorithm 1 Force Feedback–Enhanced Teleoperation Loop
1: repeat
2: Primary Arm: Compute target eetarget based on oper-

ator’s 3-DoF arm pose and glove orientation
3: Primary Arm: Solve inverse kinematics (IK) for qtarget

of the secondary arm
4: Primary Arm: Send qtarget to secondary arm
5: Secondary Arm: Send current joint positions qcurrent to

primary
6: Secondary Arm: Receive qtarget and start moving to-

ward it
7: Primary Arm: Compute current secondary eecurrent

using forward kinematics (FK) from qcurrent
8: Primary Arm: Compute deviation ∆ee = eetarget −

eecurrent
9: Primary Arm: Compute force feedback factor:

Factor =

√
α · ∥∆ee∥2

1 + ∥vcartesian∥2

10: Primary Arm: Update virtual target pose and
impedance gains Kp, Kd using the force feedback
factor

11: until task complete

IV. EXPERIMENTS

A. Experiment Design.

ACE-F was evaluated according to its performance control-
ling a Franka Emika Panda robot arm in both virtual and real-
world experiments, and a Unitree G1 robot was controlled in
simulation to demonstrate ACE-F’s cross-platform capabilities.
We aimed to answer the following questions through these



Fig. 4: Overview of the six tasks in the evaluation suite: real-world mopping, real-world can stacking, real-world blind can
insertion, simulated table mopping (left-right and forward-backward), simulated box stacking, and simulated box dragging.

trials:
1. How well does ACE-F perform compared to joint-

copy methods, like Gello, in both simulation and real-world
environments?

2. How effective is the sensor-less force feedback in im-
proving task performance and operator awareness?

3. How well does ACE-F perform under real-world physical
constraints, when compared to its simulation?

1) Ablation Study.: Before performing the simulated and
real world experiments, we conducted an ablation study to
explore how different substitutions of the velocity term in
the feedback compensation formula impact system stability
and user experience. Specifically, we tested four variations:
absolute value |v|, squared velocity v2, exponential exp(v),
and hyperbolic tangent tanh(v). Table I shows that |v| pro-
duced the lowest high frequency energy ratio (0.123), lowest
maximum local jerk (0.00064), and highest feedback cor-
relation (0.758), indicating it provides the most stable and
precise force feedback. In contrast, exp(v) introduced the
highest high frequency energy ratio (0.211) and jerk anomalies
(4.59%), suggesting a more aggressive but potentially destabi-
lizing feedback response. tanh(v) and v2 offered intermediate
results, with tanh(v) achieving a feedback correlation of 0.662
and relatively low jerk anomalies (0.81%). These findings
demonstrate the trade-offs between stability, responsiveness,
and user sensitivity across different velocity formulations in
the feedback term.

2) Simulated Experiments: First, we compared ACE-F and
Gello on three contact-rich simulations built in MuJoCo – Box
Stacking, Box Dragging, and Table Mopping. Each task in-
volved varying levels of physical interaction, visual reasoning,
and force modulation, which we could use to measure the two
platforms. Four test users with varying levels of experience on
both systems were selected and placed into one of two groups,
A and B. The groups began each task using a different system
and switched platforms halfway through the task. Additionally,
users were allowed up to five minutes of practice every time
they switched platform. Practice sessions were conducted in
a task neutral practice arena, which contained elements from
each of the three actual experiments. Users were provided with
a description of their goal before each task and loaded into the
practice scene. Once they reached the end of their practice time
or self-determined that they were ready to begin, they were
given control of a Franka Emika Panda robotic arm within the
scene. A description of all three of these simulated tasks is
provided below:

a) Simulated Box Stacking.: This scene consisted of a
fixed camera overlooking a stationary raised platform and
a Franka Emika Panda robot. Four weighted blocks and a
balance scale were placed on the table within the arm’s reach,
and users were asked to determine the relative weight of each
block before stacking them from heaviest to lightest. The users
were allowed to use any combination of force feedback, visual
cues, and tools available in the simulation and were graded on



TABLE I: Teleoperation Stability Metrics for Different Velocity Transformations

Feedback Param High Freq. Energy Ratio Max Local Jerk Primary-only Jerk Anomaly (%) Feedback Correlation

|v| 0.123 0.00064 0.00 0.758
v2 0.132 0.00219 0.39 0.521
exp(v) 0.211 0.00273 4.59 0.686
tanh(v) 0.131 0.00139 0.81 0.662

four metrics: speed, number of scale uses, number of times
they knocked one or more blocks off their tower, and whether
or not they were successful in stacking all four blocks in
the correct order. Each user performed this experiment three
times on each system, and the order of the block weights was
randomly selected from a pre-generated set of configurations
before each attempt. This test should clearly demonstrate one
of ACE-F’s major advantages over Gello – it gives the user
force feedback proportional to the weight of the block in the
gripper, possibly allowing users to forgo using the scale to
compare block weights and thus accelerating the task.

b) Simulated Box Dragging.: This scene consisted of a
fixed camera overlooking a stationary raised platform and a
Franka Emika Panda robot. A singular weighted block attached
to a handle was placed within the arm’s reach, and users were
asked to use the handle to drag the block from one end of the
table to the other as quickly as possible. Somewhere along
the way, they would encounter an invisible obstacle, and they
should try to stop the block as soon as they found it, without
crossing over it. They were allowed to use any combination
of force feedback and visual cues available in the simulation
and were graded on three metrics: speed, distance from the
obstacle, and whether or not they were successful in stopping
the box before it crossed the line. Each user performed this
experiment three times on each system as above, and an
additional three times on ACE-F with their vision disabled
after they gripped onto the block’s handle. The location of
the hidden obstacle was changed between each experiment
by randomly selecting the scene from a pre-generated set of
configurations. ACE-F allows users to feel the friction of the
table and the sudden force imposed on the robotic arm when
the box collides with the hidden obstacle, which should give
them the ability to detect the ledge more confidently with
and without visual cues. This is not possible under Gello’s
framework.

c) Simulated Table Mopping.: This scene consisted of a
fixed camera overlooking a stationary raised platform and a
Franka Emika Panda robot. Users performed this experiment
three times per robotic platform on two different table con-
figurations. The table in configuration one was marked with a
strip of green from left to right and the table in configuration
two was marked from the closest edge to the farthest edge.
Users were instructed to drag the robot’s end-effector back
and forth along the line from one edge of the table to the
other twice per table configuration, while trying to maintain
steady speed and pressure on the table. They were allowed
to use any force feedback and visual cues available to them
and were graded on their speed and force consistency, defined

as the variation of the normal forces experienced by the table
in the simulation. Since this task does not benefit from prior
knowledge, this experiment did not require a randomized scene
structure. ACE-F should demonstrate a clear advantage over
Gello because the user is able to ”feel” the table to provide a
more consistent force input to the system.

3) Real-World Experiments: Next, we compared ACE-F
and Gello in the real-world on the following tasks: Can
Stacking, Marker Erasing, and Hidden Insertion. Once again,
these tasks involve physical interactions, visual reasoning, and
force modulation. Due to the limited availability of testing
equipment and concerns regarding the safety of inexperienced
volunteers, only two testers were selected from the previous
group of four. Users were once again allowed up to five
minutes of practice every time they switched platform, and
practice sessions were conducted in the same environment
where the tests took place. Once users reached the end of
their practice time or self-determined that they were ready to
begin, they were recorded attempting the task three times. A
description of all three real tasks is provided below:

a) Real Can Stacking.: Similar to the simulated stacking
scene, this experiment consisted of three weighted cans and a
digital balance scale. Users were instructed to determine the
relative weight of each can before stacking them from heaviest
to lightest. The users were allowed to use any combination of
force feedback, visual cues, and tools available to them and
were graded on four metrics: speed, number of scale uses,
number of times they knocked one or more cans off their
tower, and whether or not they were successful in stacking
all three cans in the correct order. Each user performed this
experiment three times on each system, and the order of
the block weights was scrambled by a helper between each
attempt. ACE-F should be able to stack the blocks more
confidently and quickly, since the users can detect the cans’
weight differences without using the scale.

b) Real Marker Erasing.: Similar to the simulated mop-
ping scene, this experiment consisted of a raised platform
holding a textured ceramic dish with a 2-inch by 2-inch
square of dry-erase marker. Users were instructed to use a
whiteboard eraser, which would start clamped between the
robot’s grippers, to remove the visible markings from the
plate. Testers were allowed to use any combination of force
feedback, visual cues, and tools available. They were graded
on three metrics: speed, the number of times they triggered
Franka’s built-in safety features, and whether or not they were
successful in removing all of the marker from the plate. Each
user performed this experiment three times on each system.
This task demonstrates ACE-F’s ability to generate consistent



TABLE II: Aggregate simulation performance across three
teleoperation tasks. ACE-F demonstrates advantages over
Gello in every task.

Virtual Stacking Task

Method Avg. Time (s) Avg. Scale Uses Success Rate (%)
ACE 102.1 ± 27.2 0.7 ± 0.5 90.0
Gello 187.0 ± 121.2 2.3 ± 0.7 70.0

Virtual Box Dragging Task

Method Avg. Time (s) Light Status Success Rate (%)
ACE 16.7 ± 2.5 On 100
ACE 16.4 ± 2.5 Off 94.4
Gello 21.9 ± 4.8 On 75.0

Virtual Mopping Task: Left-Right

Method Normal Force Max/Avg. Force Ratio
ACE 196.8 ± 55.9 4.59
Gello 231.9 ± 69.6 7.19

Virtual Mopping Task: Forward-Backward

Method Normal Force Max/Avg. Force Ratio
ACE 229.0 ± 146.8 7.19
Gello 251.7 ± 183.1 9.73

forces for precision tasks.
c) Real Blind Can Insertion.: This task was performed

exclusively in the real-world and made use of a rectangular
box with interchangeable blocks that could be oriented so there
was only one can-sized hole at the top of the box. It was placed
behind a cardboard screen that blocked the robot operator from
being able to see where the hole was located. Users were
instructed to pick up a can from the visible portion of the
table and move it behind the screen, where they needed to
place the can into the open slot. They were allowed to use
visual cues to grab and move the can to behind the screen,
however due to their severely limited vision of the task itself,
they mostly had to rely on force feedback when their device
provided it. Each user performed this experiment three times
on each system and was graded on their speed, the number
of times they triggered Franka’s built-in safety features, and
whether or not they were successful in placing the can into the
hole. ACE-F’s force feedback gives users an additional sense,
which is incredibly useful for blind tasks. It should allow users
to find the correct location for the can more quickly and release
it with a higher degree of confidence, since Gello can only
operate by visuals.

B. Experimental Results.

1) Simulated Experiments:
a) Simulated Box Stacking.: When we evaluated both

platforms on their speed, number of scale uses, number of
tower topples (labeled as blunders in Table II), and success
rate, ACE-F demonstrated a clear advantage over Gello in all
categories. Not only were ACE-F testers able to complete the
stacking task 54.62% faster than Gello users, they were also
able to do so far more consistently (a quarter the standard
deviation). Additionally, ACE-F users were 28.57% more
successful, despite using the scale less than half as much as

TABLE III: Aggregate real-world performance across three
teleoperation tasks. ACE-F consistently outperforms the joint-
copy Gello method in success rate and stability, while reducing
reliance on external tools like scales.

Real Stacking Task

Method Avg. Time (s) Avg. Scale Uses Success Rate (%)
ACE 90.81 ± 17.97 0.0 ± 0.00 83.3
Gello 88.36 ± 23.46 2.0 ± 0.63 66.7

Real Erasing Task

Method Avg. Time (s) # Safety Warnings Success Rate (%)
ACE 26.54 ± 7.89 0 100.0
Gello 22.13 ± 4.30 1 100.0

Real Blind Can Insertion Task

Method Avg. Time (s) Success Rate (%)
ACE 43.26 ± 20.87 100.0
Gello 34.42 ± 12.30 50.0

Gello users. Since ACE-F allows users to feel the weight of the
cube without having to rely on the scale, users spent less time
testing each block. This also means ACE-F users could limit
their motions to a smaller area of the task space, which con-
tributed to the large time difference. The reduced motion and
ACE-F’s high-precision, gravity compensated control could
also explain why ACE-F users made fewer blunders during
stacking, since they had to do less work controlling the arm
configuration and could use a softer touch.

b) Simulated Box Dragging.: ACE-F performed signif-
icantly better than Gello in the box dragging task, where it
was consistently 23.72% faster than the same tests performed
on Gello, even without vision for the latter half of the task. It
was also far more successful, only failing the task in 5.6% of
the blind tasks, compared to Gello’s 25% failure rate with the
lights on. This test in particular demonstrates the advantages
of ACE-F in tasks where tactile feedback is more useful than
visual cues alone.

c) Simulated Table Mopping.: ACE-F outperformed
Gello in both configurations of the mopping task, as well. By
providing the user with an even force when the arm collides
with the table, the user is able to sense how much force they
are applying and more easily regulate their downward pressure.
This is clearly indicated by a 36.16% smaller maximum force
to average normal force ratio in the left-right configuration
and a 41.86% smaller ratio in the forward-backward test.

2) Real-World Experiments:
a) Real Can Stacking.: Gello performed the can stacking

task faster on average, however it had a larger standard devia-
tion in completion times and a lower success rate. This can be
attributed to two things: the platform’s unstable configuration
and the increased movements associated with moving cans to
the scale. ACE-F did not have to use the scale in any of its
tests since the user could test each can’s weight purely through
force feedback, so it avoided making large movements which
could shake the can loose from its gripper. Similarly, Gello’s
structure makes it difficult for the user to keep the gripper
perfectly upright, which contributed to the cans falling from



its grasp more frequently. If the can landed in an awkward
orientation, it could roll outside of the robot’s work space,
causing it to immediately fail. Sometimes, this happened early
on in the task, which also explains Gello’s faster task average
completion time.

b) Real Marker Erasing.: Both ACE-F and Gello had
a 100% success rate in this task, however Gello performed
16.62% faster than ACE-F on average and had a smaller
standard deviation in its times. Compared to the previous
task, where its easy rotations were a disadvantage, Gello users
could rotate the whiteboard eraser so that it was better able
to conform to the textured surface of the plate and remove
the hard-to-reach marks more quickly. Gello users could also
move the arm more quickly since there was zero resistance to
their movements. This accelerated their performance but also
triggered a warning in Franka’s safety system during one of
the tasks.

c) Real Blind Can Insertion.: ACE-F performed signifi-
cantly better than Gello in this task because the force feedback
allowed users to compensate for their poor vision by feeling
around inside the box. Gello users generally completed this
task faster, however they were only successful 50% of the
time, while ACE-F users correctly identified the can’s target
location 100% of the time. This is likely because ACE-F users
could modulate how much force they applied when inserting
the can, which prevented them from pressing too hard and
losing their grasp on the can.

V. DISCUSSION AND CONCLUSION

ACE-F displayed clear advantages over joint-copy methods,
like Gello, when compared in virtual and real-world environ-
ments. It was capable of performing at least as well as Gello, if
not better in every task because its inverse-kinematic controller
removes the burden of monitoring the robot’s configuration
from the operator and the force-feedback from the inverse-
dynamics controller gives the user an extra sense, which
improves environmental awareness. Additionally, by reducing
the complexity of the overall system, ACE-F remains very
compact and portable compared to other teleoperation systems,
which is beneficial when the user wants to operate a mobile
robot, like the Unitree G1. The sensor-less force feedback also
enables users to complete tasks in an entirely new domain –
one where the user has limited vision of their workspace – as
demonstrated by the virtual box dragging task and the real-
world hidden can insertion task. This solves one of the major
drawbacks of joint-copy methods and results in a surprise
benefit by limiting user speed through resistance forces, which
reduces the likelihood of the user triggering speed-based
warnings. Lastly, ACE-F was able to perform at a similar level
both in and out of simulation, which is beneficial for training
new models through imitation learning. This reliability was
demonstrated by the consistency of its friction and gravity
compensation models in both environments. ACE-F comes
with its own drawbacks, however. The XM430-W350 motors
can only generate up to 46 rpm under no load, which is
relatively slow for most robot systems. Fortunately, this is

sufficient for most tasks because the motors rarely need to
move on their own. Instead, we use the motors to apply
impedance to the user’s motion, which provides two main
benefits: the motor does not need to generate high speeds
and is usually operating in a stalled state, so it can apply
up to its stalled torque (4.1 Nm). Nevertheless, better motors
could supply stronger feedback to the user, as long as potential
safety concerns are addressed. Also, this project prioritizes
low-cost teleoperation over full 6-DoF force feedback, since
cartesian forces are generally considered sufficient for most
tasks [43]. That leaves a gap in the scope of our project,
which can be improved in future releases. Additionally, initial
implementations using the rotation glove were spotty due
to poor calibration, requiring more attention. Future works
should focus on improving the implementation of the gloves,
replacing current hardware with more precise devices, and
incorporating torque feedback for the user in addition to the
cartesian forces currently provided as force feedback.
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Fig. 5: Real Can Stacking task setup: Users stack three weighted cans in descending order, leveraging available force feedback,
visual cues, and tools. Performance is measured by stacking speed, number of scale uses, stability, and stacking accuracy.
ACE-F can detect the weight differences – it does not need extra tools so it saves more time.

Fig. 6: Real Blind Can Insertion task: Users must insert a can into a concealed hole behind a screen, primarily relying on
force feedback for accurate alignment and insertion.
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