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ABSTRACT

First-order optimization methods often perform poorly on non-Lipschitz smooth
and ill-conditioned problems. Recent work introduced the dual preconditioned
gradient descent algorithm, which applies nonlinear preconditioning to the gradi-
ent map to improve performance on convex functions satisfying relative smooth-
ness — a generalized version of Lipschitz gradient smoothness. In this paper, we
significantly extend this prior work by providing a convergence analysis of this
algorithm for non-Lipschitz smooth nonconvex problems. To this end, we ex-
ploit recent connections with generalized versions of convexity and smoothness,
such as anisotropic convexity and smoothness, which guarantee convergence to
a first-order stationary point. Further, we show that some recently proposed pre-
conditioners based on power functions or relativistic dynamics are well-suited for
a broad class of objectives. Our experiments demonstrate improved performance
using these preconditioners on a variety of non-Lipschitz smooth, nonconvex op-
timization objectives, including large-scale deep learning tasks.

1 INTRODUCTION

Decades of research have resulted in a rich theory of first-order methods in optimization. Un-
derpinned by this theory, first-order algorithms like gradient descent (GD), classical momentum
(Polyak} |1964), and Adam (Kingma & Ba,|2014) have proven practical and effective on a wide va-
riety of optimization tasks, including deep learning. However, standard convergence results require
global Lipschitz smoothness, which is often violated in real-world problems. Fast optimization on
functions with high and varying curvature has motivated work on momentum-based methods and
algorithms with adaptive stepsizes. These methods often improve empirical performance and some-
times enjoy faster theoretical rates, but they still lack convergence guarantees on problems that do
not satisfy global Lipschitz smoothness.

A recent body of work (Bauschke et al.l 2017} [Lu et al., |2018}; Bolte et al., [2018; Maddison et al.,
20182021} proposes the use of nonlinear preconditioning to extend convergence guarantees beyond
this set of Lipschitz smooth functions. When solving ill-conditioned linear systems Ax = b, it is
common to apply a positive definite preconditioning matrix P to reduce the condition number and
speed up convergence of first-order algorithms. Similarly, nonlinear preconditioning methods apply
a convex nonlinear map that complements the underlying geometry of the optimization problem,
where the quality of this match determines the convergence properties of the algorithm.

The most well known nonlinear preconditioning method is Mirror Descent (MD), which can be
interpreted as applying a nonlinear preconditioning map to the iterates before taking the gradient
(Nemirovskij & Yudin, {1983 Beck & Teboulle) [2003). Unfortunately, the practicality of Mirror
Descent has been limited by the difficulty of finding the appropriate preconditioning function. Re-
cently,[Maddison et al.|(2021]) proposed Dual Preconditioned Gradient Descent (DPGD), where the
nonlinear map is applied after taking the gradient, which lives in the dual space. For many common
optimization objectives, the relationship between the gradient V f(x) and the local curvature of f(z)
is simpler than for the iterates z[1]

'A key example throughout this paper: for objectives behaving like polynomials of high degree, large
gradients mean we are in the tails, where there is high curvature. However, inferring whether we are in the tails
from iterates alone requires knowledge of where the minimum z, is.
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The existing analysis of DPGD from [Maddison et al.| (2021) establishes convergence guarantees
for convex functions under dual relative smoothness and dual relative strong convexity, which are
generalizations of Lipschitz smoothness and strong convexity. However, it lacks non-convex guar-
antees and focuses on simple objectives, not addressing many of the objective functions that arise in
real-world applications such as deep learning tasks.

Contributions. In this paper, we aim to provide deeper theoretical insight into DPGD, particu-
larly in the non-convex case. In addition, we focus on questions relevant to practitioners, such as
(1) on which problems DPGD may improve performance? and (2) how to choose the appropriate
preconditioner for a given problem? Concretely, we provide:

* A non-convex convergence analysis for DPGD based on notions of anisotropic smoothness and
convexity recently proposed by |Laude et al.| (2021).

» Suggested preconditioners for common classes of objective functions. In particular, we show that
power preconditioners and the relativistic preconditioner of [Franca et al.|(2020) are more robust
and performant on functions with fast-growing (super-quadratic) tails, which are ubiquitous in
optimization and machine learning.

* Numerical experiments on standard optimization benchmarks as well as large-scale deep learn-
ing tasks that support our theoretical findings and demonstrate improved performance of our
suggested preconditioners.

2 BACKGROUND

In this section, we review background material that will be needed for our analysis of DPGD, in-
cluding various properties such as relative smoothness and relative strong convexity. We will focus
on the problem of unconstrained minimization of a differentiable function

min f(x). ()

z€ER?
We will refer to any x, € argmin, . f(x) as a solution to equation

Definition 2.1 (Bregman Divergence). The Bregman divergence of f for points z,y € X is the
difference between the value of f at point y and its first order Taylor series approximation at a point
€,

Dy(y,x) = f(y) — f(x) = (Vf(2),y —x). 2
2.1 DUAL PRECONDITIONED GRADIENT DESCENT

Algorithm Let the preconditioner k : R? — R* be a Legendr convex function that is minimized
at 0, i.e. Vk(0) = 0 and k(0) = 0. The DPGD update for a differentiable function f : R? — R is
given by:

1
Tip1 = T — EVk(Vf(xi)), 3)
where i > 0, 2o € R%, and L* > 0.

Note that we choose k(p) = 1||p||?, we obtain the Gradient Descent (GD) update.

Maddison et al.|(2021)) propose two interpretations of DPGD. The first is as a generalization of left
linear preconditioning of gradient descent in which the gradient V f is preconditioned by the gradi-
ent map Vk. The second interpretation is as a Mirror Descent step in the dual space of gradients,
minimizing the objective k(V f(z)) and using f* (the convex conjugate of f) as the preconditioner.
Based on this observation, Maddison et al.|(2021) develop a dual theory of convergence for DPGD,
borrowing ideas from recent works on MD by Bolte et al.| (2018); Bauschke et al.| (2017); |Lu et al.
(2018). In particular, these prior works generalized the notions of smoothness and strong convexity
to be defined relative to the preconditioner and showed that the rates of convergence of mirror de-
scent are preserved under these generalized conditions. They referred to these conditions as relative
smoothness and relative strong convexity, which are defined as follows.

*k : R? — Ris Legendre convex if it is differentiable, strictly convex, and has lim| || o0 || VE(2)|| — o0.
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Definition 2.2 (Relative smoothness and relative strong convexity (Bauschke et al.,|2017; [Lu et al.,
2018)). Let f, h be differentiable convex functions defined on R¢ and 0 < p < L,

1. fis L-smooth relative to h on R? if Lh — f is convex, or equivalently, for any z,y € R9,

2. fis p-strongly convex relative to h on R? if f — ph is convex, or equivalently, for any z,y € R?,

uDp(y,z) < Dy(y, x). 5
If h(x) = ||z||?, we recover classical Lipschitz-smoothness and strong convexity,

By — =l < 1) - f(@) = (Vf(@)y - S Sy -2l VoyeRL  ©

These relative conditions are also referred to as primal relative smoothness and primal relative strong
convexity, in constrast with dual relative smoothness and dual relative strong convexity introduced
by Maddison et al.|(2021).

Definition 2.3 (Dual relative smoothness and dual relative strong convexity Maddison et al.| (2021)).
Let f, k : R? — R be differentiable, k be convex, and f be strongly convex with convex conjugate
f*. We say that

1. kis L*-smooth relative to f* on R if for any z,y € RY,

Di(Vf(y),Vf(x)) < L*Ds-(Vf(y), V(). @)

2. kis p*-strongly convex relative to f* on R? if for any =,y € R?,
w D= (Vf(y), V() < De(Vf(y), Vi(z)) (8)

Convergence rates for DPGD on convex functions. Maddison et al.| (2021) provided convergence
rates for DPGD on differentiable convex functions f with minimum x,. Under L*-smoothness
relative to k, they proved that for all ¢ > 0, the iterates of DPGD satisfy

L*
K(Vf(@i)) < —=(f(wo) = f(z.)). )
If additionally f is Legendreﬂ and p*-strongly convex relative to k, then the iterates satisfy
fla) = fla) < (L= 2 (F (o) = f(a)), (10)

Unfortunately, the above conditions and convergence results rely heavily on the strict convexity of f,
which allows for transformations between inequalities on f* (dual relative conditions) to inequalities
on f (convergence bounds). For a non-convex analysis of DPGD, we seek dual relative smoothness
inequalities that upper bound f rather than f*.

2.2 ANISOTROPIC SMOOTHNESS AND ANISOTROPIC CONVEXITY

In the Euclidean case, there is a duality between Lipschitz smoothness and strong convexity in
the sense that if f is Lipschitz smooth, then f* is strongly convex and vice versa. While relative
smoothness and relative strong convexity generalize Lipschitz smoothness and strong convexity to
Bregman divergences, they do not preserve the property that if f is smooth relative to h then f*
is strongly convex relative to h*. |Laude et al.| (2021)) address this issue by introducing notions of
anisotropic strong convexity and smoothness as the respective dual counterparts of relative smooth-
ness and strong convexity, leveraging rich ideas from generalized convexity (Dolecki & Kurcyusz,
1978 Rockafellar & Wets| 2009).

In this section, we restate some of the key results and definitions that will be necessary to establish
our convergence results and refer the reader to|Laude et al.|(2021) for details. Note that the terminol-
ogy a-weak/a-strong convexity and a-smoothness is used as a shorthand for anisotropic weak/strong
convexity and anisotropic smoothness.
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Definition 2.4. (Laude et al.[{(2021), Definition 3.6) Let ¢ : R™ — R be continuously differentiable,
coercive, and strictly convex. And let f : R™ — R be continuously differentiable.

1. fis a-weakly convex with respect to ¢ if for any z,y € R¢

f) = f(@) = oy =2+ Vo™ (=V[(2)) + (Vo' (=V [(2)). (1D

2. fis a-strongly convex with respect to ¢ if for any z,y € R?
fy) =2 f(x) + oy —z+ Vo' (Vf(2)) — o(Ve' (Vf(x)). (12)

3. f satisfies the anisotropic descent lemma if — f is a-weakly convex, or equivalently if for
every x € R"™ it holds that

fly) < f@) + oy =2+ Vo' (Vf(z) - o(Ve" (Vf(2))) Yy eR"  (13)

4. f is a-smooth if f is continuously differentiable and both f and — f are a-weakly convex.

Remark 2.5. For convex functions, a-smoothness is equivalent to the anisotropic descent lemma.

Remark 2.6. For strictly convex functions, dual relative smoothness defined by Maddison et al.
(2021)) is equivalent to the a-weak convexity of — f or to the anisotropic descent lemma. Anisotropic
smoothness can thus be seen as a generalization of dual relative smoothness.

3 CONVERGENCE OF DPGD ON NONCONVEX FUNCTIONS

In this section, we use the anisotropic descent lemma to establish a convergence rate for DPGD on
nonconvex functions. First, recall that the gradient descent update can be rewritten as follows

1
+ oz lle =@l (14)

which can be interpreted as a minimization of the quadratic upper bound derived from Lipschitz
smoothness in equation [§]

xip1 = argmin f(xz;) + Vf(z;)(z — x;)

f@iv1) < f(xs) + V(@) (@i —x;) + i”%’-ﬂ - $z||2 (15)

Similarly, we consider the nonlinear upper bound provided by the anisotropic descent lemma and
define the following update where we have chosen ¢(p) = 4-k*(L*p)

iy = argmin f () + oK (L@ — a1 + T VK(V@) = 2k (TR(TS @), (10

The RHS is minimized when its gradient vanishes: V&*(L* (211 — @; + 7= VE(V f(2;)))) = 0,
and by composition with the invertible map V&, it is equivalent to

1 1
Ti4+1 — T4 + FVk<Vf((L‘Z)) = FVI{)(O) (17)

Thus allowing us to recover the DPGD update ;11 = ; — 2 Vk(V f(2;)) since V&(0) = 0. This
shows that the anisotropic descent lemma generalizes the classical descent lemma used to establish
convergence rates for GD. Further, we know that we can guarantee a sufficient decrease at each

iteration as long as
Flainn) < F@) + 2ok (L @i — @i+ 2 VRV @) — 20K (TR(V i) (8)

which is equivalent to
f(@ig1) — fla) < %k*(O) - %k*(Vk(Vf(xl))) = —%k*(Vk(Vf(xi))) <0. (19

Clearly, if f satisfies the anisotropic descent lemma with respect to the preconditioner, then condi-
tionholds not only for convex functions but for nonconvex functions as well. Moreover, the last
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inequality can be interpreted as a generalization of the descent condition used to prove the conver-
gence of Gradient Descent on Lipschitz smooth functions, which is given by

Flainn) = ) < —5 VTP Viz0, (20)

where L is the Lipschitz constant for the gradient of f. It also generalizes the descent condition for
the Rescaled Gradient Descent algorithm of order M introduced by [Wilson et al.| (2019), which is
itself a special case of DPGD,

F@igr) = fz) < —nl|Vf(z)]| 7T Vi>o. @1
where 1 > 0.

We formalize this assumption in the following definition.

Definition 3.1. Let f, k : R? — R with k Legendre convex and minimized at k(0) = 0. Then DPGD
is said to satisfy the generalized descent condition for the pair ( f, k) if there exists a constant > 0
such that for all iterates z; € R? we have

f(@iv1) = f(zi) < —nk™(VE(V f(2:))). (22)

Note that k*(Vk(V f(z;))) = Dx(0,V f(z;)) where Dy, is the Bregman divergence of k and the
RHS of the generalized descent condition can thus be interpreted as a measure of the distance be-
tween V f(z;) and 0. This drives the convergence of the sequence of iterates x; as the gradient gets
close to 0, i.e. as we approach a first order stationary point. Based on this observation, we can obtain
a convergence rate for nonconvex functions.

Theorem 3.2. Let f,k : R™ — R with k Legendre convex and minimized at k(0) = 0. If the pair
(f, k) satisfies the generalized descent condition, then DPGD converges to a first-order stationary

point with the rate
fzo) — f(=,)

n(T+1) (3

omin Dy (0,Vf(x:)) <
The proof of Theorem [3.2]is in Appendix [A.1]
Remark 3.3. Theorem only assumes the generalized descent condition and not the anisotropic
descent lemma because the latter is a consequence of the former. In fact, one can see that the
anisotropic descent lemma is a global condition that must be satisfied for any two points z,y € R",
whereas the generalized descent condition only constrains consecutive iterates.

Remark 3.4. The convergence guarantee provided in Theorem 3.2]is for the quantity Dy (0, V f (x;))
whereas a common quantity of interest is ||V f(z;)|| in the nonconvex case. This rate can be recov-

ered if k(p) = g(||p||) is a function of the norm, as is the case for the preconditioners we consider
in Section 4| For example, for Gradient descent, the preconditioner map is k(p) = 3|[p||?, so
equation [23[yields the familiar rate of non-convex convergence

2L(f (o) — f(24))
(T+1) '

Similarly, the Rescaled Gradient Descent algorithm of order M introduced by Wilson et al. (2019)
corresponds to k(p) = ||p|| W1, Its convergence rate can also be recovered from equation

in, [5Gl < (LD =Ly -

0<i<T 24

min ||V f(z)|| < \/

4  PAIRING PRECONDITIONERS AND OBJECTIVE FUNCTIONS

The choice of the preconditioner k£ in DPGD is critical to its success: the more accurately k reflects
the dual-space geometry of f, the better DPGD performs. The theory of convex duality says that if
f is a Legendre convex function, then V f () is an invertible map relating coordinates in the primal
and dual spaces with the special property that V f* = (V f)~!. Leveraging this idea, we obtain that
the ideal preconditioner is f; where f, is the centered version of f defined by

fe(z) = fle+24) — f(zs), Vz€ R, (26)
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In this case, we have VX (Vf(x)) = Vf*(Vf(z)) — v, = x — 4. Thus, DPGD with k = f7
and L* = 1 converges in one iteration. However, in general, computing the convex conjugate of f.
is as difficult as minimizing f, so we must relax the condition k& = f. by considering functions that
approximately match the dual-space geometry of f, based on our prior knowledge. This approximate
matching is formalized in the condition of anisotropic smoothness/the anisotropic descent lemma.

4.1 POLYNOMIALS AND POWER PRECONDITIONERS

We wish to choose models for f that well-approximate its geometry but also have an easy-to-
compute convex conjugate k. One such powerful group of geometric models is the class of power
functions f(z) = 7;||z||™ for z € R? and M > 1. This is due to the fact that the Fenchel dual

of f. can be expressed analytically as f¥(p) = 21| |p\|% for p € R?. Note that the Rescaled

M pl| %=1 and is thus

Gradient Descent algorithm implicitly uses the preconditioner k(p) =
well suited for functions that behave like power functions of order M.

Maddison et al.| (2018) extend this idea to convex functions with distinct growth behaviours near
the minimum (body) and far from the minimum (tail). For example, a function may grow like
||z — 2,||° near its minimum and ||z — x,||? at the tail with b # B. In this case, one can consider
any preconditioner that interpolates between the functions ||p||* for p near 0 and ||p||* away from
0, where a = bfbl and A = %. We will use this concept of power growth and interpolating
preconditioners to build towards an analysis of general nonconvex functions. In particular, distinct
growth behaviors in the body and tail is a property of polynomial objectives, which encompass or
resemble a wide variety of optimization objectives (from toy to deep learning objectives). The next
result provides a matching preconditioner for the family of univariate polynomial functions.

Theorem 4.1. Consider a polynomial f(z) = Y"1, a;x", withn > 2. Then DPGD with

10,12 :
k(p){glpl i iflpl <1, o

1| ~=1 1 _ 1 i
NI T4 -3 otherwise,

where N > n, satisfies the generalized descent condition.

The proof of this result is in Appendix This result holds for any Legendre preconditioner & such
that k(p) ~ $|p|*> when [p| < 1 and k(p) ~ %|p|% when |p| > 1. Without prior knowledge
about the degree of f, Theorem[d.T|suggests that one should choose NN to be as large as possible and
ideally consider N — co. One way to achieve this interpolation is with a relativistic preconditioner
k(p) = +/IIp||> + 1 — 1. More generally, and borrowing from Maddison et al. (2018), we can define
a class of preconditioners that interpolates between the functions ||p||* for p near 0 and ||p||* away
from O as follows

A
a

) (28)

o |

K(p) = S @llpll* + 1)

where a, A > 1 and § > 0. We refer to DPGD with this class of preconditioners as Power Descent
(PD). The relativistic preconditioner is thus one particular case where a = 2 and A = 1. We refer
to DPGD with relativistic preconditioner as Relativistic Gradient Descent (RGD).

In general, PD and RGD seek to better approximate the dual space geometry of the function, and
thus may only satisfy the generalized descent condition locally. However, for functions with roughly
polynomial growth, we can expect the generalized descent condition for PD and RGD to be satisfied
in a significantly larger region of the parameter space than for GD. For example, consider the simple
overparametrized function f(z,y) = %(xy)>. For a given step size 7 and points (z,y), we can
check whether the generalized descent condition starting from (z, y) is satisfied or not for different
preconditioners (see Figure|l).
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Figure 1: Characterization of the regions where the descent condition is satisfied for GD, PD and RGD on the
4th degree polynomial f(z,y) = 5 (zy)® with step size = 0.25. The yellow regions indicate where the descent
lemma is satisfied and the purple regions indicate where it is not. Note the phase transition at A = 4/3, the
conjugate power to a 4-th order power function. GD only satisfies the descent condition (and therefore only has
convergence guarantees) on small initializations near the origin, while PD and RGD converge over nearly all
the parameter space.

Figure[T]shows that as the value of A decreases from 2 to 1, the size of the region where we can guar-
antee a sufficient decrease increases significantly. One might argue that we should always choose
A = 1 since the relativistic preconditioner maximizes the desired region of descent. However, it is
important to note that by doing so, we sacrifice the faster convergence rate guaranteed by PD (see
[23). RGD performs a conservative update, which is always smaller than that of PD or GD. So while
it is more robust to the choice of step size or initialization, other methods like PD may achieve faster
convergence, especially when one can match the power behavior of the function f.

Another class of functions that highlights the benefits of using PD over GD is the class of positively
homogeneous functions. Consider a function f : R™ — R that is positively homogeneous of degree
i. We thus have f(cz) = ¢ f(z) and V f(cz) = ¢~V f(z) for all z € R™. We assume that i > 2
and we define the generalized descent function at a point z € R" with step size > 0:

g(z,n) = f(z —nVE(Vf(z))) = f(2) + nDr(0, Vf(z)) (29)
If g(z,n) < 0, then the generalized descent condition is satisfied between consecutive iterates = and
x —nVEk(V f(x). And we observe the following:

* For GD, we have for all ¢ > 0, g(cz,n) = g(z,nc'~2). Therefore, increasing the scaling
factor ¢ significantly increases the effective step size or local Lipschitz constant of the
function.

* Using the preconditioner k& from theorem with N=i, we have for all ¢ > 0, g(cz,n) =
g(x,n) when [|[Vf(x)|| > 1 (recall that the algorithm behaves exactly like GD when
[IVf(2z)|| < 1). This suggests that when we are far from the minimum (large gradients),
a power preconditioner is not only faster than GD but is also more robust to the scale of
the parameters. This can explain for example the behaviour observed in the deep matrix
regression experiment in the next section. GD diverges when the scale of the initialization
is large, whereas PD and RGD are able to converge.

5 EXPERIMENTS

To empirically justify our findings and evaluate the practical performance gains of various precondi-
tioners, we conduct numerical experiments on a set of standard deterministic optimization objectives
as well as on large-scale deep learning problems. We consider the gradient descent (GD), power
descent (PD), and relativistic gradient descent (RGD) algorithms, their variants with momentum
(parameter p), and the popular adaptive gradient optimizer Adam. We also consider the special case
of RGD with momentum discretized by the second order integrator from Franca et al.| (2020), which
introduces an additional parameter « € [0, 1] that interpolates between a Nesterov-style integrator
at « = 0 and a symplectic leapfrog integrator at « = 1. As supported by our theory, we find that
RGD exhibits strong performance across a wide range of problems, including deep learning tasks.

5.1 DETERMINISTIC FUNCTIONS

We begin with a set of convex and nonconvex deterministic problems. All hyperparameters were
systematically optimized across hundreds of trials using the popular HyperOpt package (Bergstra
et al.,|2013). By studying the distribution of selected hyperparameters, we can gain an understanding
of the sensitivity of each method and determine good cross-task prior values for practitioners.
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Figure 2: Zakharov @ Top shows objective value vs iteration for the best hyperparameter setting discovered.
Bottom shows the histogram of hyperparameters chosen by Bayesian optimization. RGD and PD are able to
minimize this function at a linear rate while GD fails to converge in 200 iterations. Deep Linear Regression
with a 6-layer linear network f(W7, ..., We) = 1||Ws...W1.X — y||*. Gradient descent quickly diverges,
RGD and PD are both able to minimize this nonconvex function. Rosenbrock@ GD, RGD, and PD fail to
minimize this function after 2000 iterations. Bottom shows a trajectory plot where the black dot is zo and the
red star is the optimum «,. The addition of momentum is crucial - by reducing oscillations in the narrow valley,
all momentum-based algorithms converge linearly, although RGD + Momentum and PD + Momentum do so
significantly faster.

Zakharov Function. First we consider the convex Zakharov function f(z) = S0 22 +

(3527 yiws)? + (3 320, iay)%, a 4th order polynomial in 5 dimensions (Figure . Since f(z) is
a sum of monomials of degrees 2-4, it has distinct growth behaviors: It behaves like z* in the tail
and z” near the minimum. Thus, we set A =4/(4 —1) = 3,a = 2/(2 — 1) = 2 for PD. Both RGD
and PD approximate these growth behaviors and converge linearly, while GD does not and fails to

converge.

Deep Linear Regression. For a non-convex problem in higher dimensions, we consider MSE
regression with a K-layer deep linear network f(Wi,...,Wg) = %HWK...WlX — y||?, where
K = 6. This nonconvex, 600-dimensional, overparametrized problem is intended to reflect features
of optimization in deep learning. We initialize y as in the ¢4 regression problem and initialize
X, W1,...,Wg € R9%10 from iid. standard Gaussians. This objective is a 2K = 12th degree
polynomial, informing our choice of A = 12/(12 — 1) for the PD algorithm.

Note in Figure [2b] that gradient descent rapidly diverges with our i.i.d. standard Gaussian initializa-
tion for Wy, ..., W;. We found that this no longer occurred if we scaled the standard deviation by
a factor of 1/+/10, recovering the popular Xavier initialization used in deep learning Glorot & Ben-
gi0|(2010). Traditional motivations for such initializations cited issues with “exploding gradients”.
We explain the effectiveness of these initialization strategies as picking a starting point for gradient
descent in the “body” of the loss function, where the objective behaves roughly quadratically.

Rosenbrock Function. Lastly, we consider the 2-D Rosenbrock function f(z,y) = (1 — )% +
100(3/—91:2)2 (Rosenbrock,|1960), a difficult nonconvex benchmark problem with a long, narrow, flat
valley leading to the minimum (Figure. This function has a single global minimum at z, = (1, 1)
with f(x,) = 0. We initialize at zo = (—2, 2) as in Franca et al.|(2020). Finding the narrow valley
is easy, but convergence to the minimum is challenging. Given that the function is a polynomial of
degrees 2-4, weset A =4/(4—1),a =2/(2 — 1) = 2 for the PD algorithm.

5.2 DEEP LEARNING EXPERIMENTS

In all experiments, we compared GD + Momentum, RGD + Momentum, RGD + Momentum
Leapfrog from |Franca et al.| (2020), and Adam. While our theoretical results only analyze algo-
rithms without momentum, we find that in stochastic optimization problems, some form of gradient
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averaging is crucial in order to obtain low variance estimators of the gradient. This is a common
practice — using the bare gradient leads to poor performance.

We tuned hyperparameters with 24 trials of ran- Resetsd CrossEntropy Tron Loss Restetsd Valdaton Accuracy
dom search. For existing algorithms, we used '
hyperparameter search spaces informed by sim- ~ **| |

ilar tasks from [Schmidt et al] (2021) and [Choi || W o W
et al| (2019). For the new «a,§ parameters LW y |
in RGD, we set a single reasonable common ¥ r’r
search space across all experiments (Appendix TR Mg m o gL
[B). For each task, we show the value of the GO+ Momentum  — Adam — RGD + Momentum 160 + Homentum Lesprg
training objective next to the standard valida-

tion metric of interest. In each plot, the solid Figure 3: ResNet-34 on CIFAR-100 - Image Classifica-
line represents the best run (as measured by the 100

validation metric) for that algorithm across all . o S ey
trials. The shaded region represents the tra- '*] |

1.40 \ 0.600

jectory of the top 10% of all trials, provid- =
ing a measure of the sensitivity of the algo- 7

134
0585

rithm. We test performance on three prob- :»
lems, image classification on CIFAR100 with ... - osns
a ResNet-34 (He et al.| [2016)), language model-
ing on the text of Leo Tolstoy’s War and Peace G0 Momerlum | Adam RGO Momerium— GD + Hanertun esieg
with a character-level LSTM from (Schneider

et al., [2019), and image generation on CelebA

Figure 4: CharLSTM on Tolstoy’s War and Peace - Lan-

Faces with a Convolutional VAE (Subrama- guage MOdveA:ng‘ngms vt ey
nian, 2020)). o o
We find DPGD with a relativistic precondi-

tioner to be a competitive optimizer on a vari- ,

ety of deep learning tasks. In particular, it out- g g
performed Adam on both supervised learning
problems and demonstrated improved or equal
performance to SGD + Momentum on all tasks,
which it recovers as a special case as § — 0.
In particular, it exhibits strong performance on
the deepest network in our set of tasks — a 32-
layer ResNet. Deeper networks tend to be more susceptible to gradient vanishing and explosion,
although this has largely been solved through a combination of careful initialization strategies and
architectural tricks like residual connections and LSTM gates (He et al., [2016)). This suggests that
DPGD with the appropriate preconditioner (such as the relativistic preconditioner, which allows for
a maximum stepsize of 17v/8) may allow for a wider range of initializations for deep networks and
that it may be stable and effective on problems where the issue of exploding gradients remain, such
as in meta-learning or reinforcement learning (Wang et al., [2021)). In cases where large gradients
are not an issue or have been mitigated through other tricks, we expect algorithms like RGD to be-
have similarly to gradient descent, as seen in the LSTM and VAE experiments. We leave further
exploration of these hypotheses to future work.

0 5 10 15 20 25 30 35 40 0o 5 10 15 20 25 30 35 40
Epochs Epochs

GD + Momentum  —— Adam RGD + Momentum RGD + Momentum Leapfrog

Figure 5: Convolutional VAE on CelebA Faces - Image
Generation

6 CONCLUSION

In this paper, we study the recently proposed dual preconditioned gradient descent algorithm in the
nonconvex setting, deriving a natural descent condition that guarantees convergence to a first order
stationary point. Leveraging this, we obtain analytical convergence rates across a larger class of
non-convex functions than gradient descent. Moreover, we address the issue of matching objective
functions with the appropriate preconditioners for provable convergence. In particular, we study
preconditioners with power behavior of different orders in the body and tail and demonstrate both
theoretically and empirically that they are effective on a wide variety of functions, such as polyno-
mials, deep linear regression, and deep neural networks.
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A APPENDIX

A.1 PROOF OF THEOREM [3.2]

Theorem 3.2. Let f,k : R™ — R with k Legendre convex and minimized at k(0) = 0. If the pair
(f, k) satisfies the generalized descent condition, then DPGD converges to a first-order stationary

point with the rate
min_ De(0,V f(z:)) < 20— 1)

0<i<T n(T+1) (23)

Proof. First, we restate the generalized descent condition

f(@iv1) = fzi) < —nk™(VE(V f(2:)) (30)
Summing up over iterations in the usual fashion, we obtain

T T
> fwin) = fla) <D —nk" (VE(Vf (@), (31
T

= f(zr1) = f(xo) < =) “(VE(Vf(x:)), (32)

k=0

T
— f(z0) = floria) = > k" (VE(V f(x)), (33)
k=0

—> f(w0) = f(.) 2 0(T +1) min k" (VK(VS () (34)

f(x ) - f(l‘*) . *
W > min K (VE(Vf(@:))- (35)

And we conclude by noting that

K (VE(V f(2i)) = (VE(V f(2:)), V(@) = k(V f () (36)
= k(0) = k(Vf(zi)) = (VE(V f(2i)),0 = Vf(2i)) (37
= Dy(0, V f(z:)). (38)
[

A.2 PROOF OF THEOREM [4.1]

Theorem 4.1. Consider a polynomial f(z) = > a;x’, withn > 2. Then DPGD with

1ip2 i
k() = {2|p| iFlpl < 1. o

N-1| |77 o 1 _ 1 ;
Nl T4+ 5 -3 otherwise,

where N > n, satisfies the generalized descent condition.

Proof. First, note that since f is a polynomial of degree n then for all m = 1,...,n, the m-th
derivative f(™) is a polynomial of degree n — m. In particular, f(™) is a constant function and is
everywhere equal to a,,n!, and for all j > n the j-th derivative is the zero function.

We will prove that the generalized descent condition is satisfied at any point z; by considering the
two cases | f'(x;)| < 1and |f'(x;)| > 1 separately.

Consider the set A = {z € R; f'(x) = £1}. We know that A is finite because the polynomials
f'(z) — 1 and f'(x) + 1 each have a maximum of n — 1 roots. Therefore, A has at most 2(n — 1)
elements. We can thus write A = {z1,... 2k} suchthat z; < --- < g and K = card(A). Since
|f/(x)| — 11is continuous, it cannot change signs on any interval A; where

[, 41] ifi=1,...K —1,
Aj = (7007'1:1] lf] = 07 (39)
[N, +00) ifj = K.
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Note that since f’(x) is a polynomial, we must have |f/(z)| > 1 on Aj and Ax. And we can write
R = ( Ujes Bj> u ( Uje B;) where (B;) e (resp. (B})jej/) are the intervals on which we
have |f/(z)| > 1 (resp. |f'(z)| < 1).

We start by considering the case: |f’(x;)| > 1. Recall the descent condition

f(@it1) — f(zi) < —nk*(VE(V f(;)) (40)
or equivalently,
F(VR(Vf() _ 1 _
P~ ) S0 " @b

On any interval B; = [z;,2;41] where j € {1,..., K — 1}, the function g(z;) = W
is continuous and thus bounded by a constant «;. Moreover, note that z; 11 = ¢(z;) = z; —

= f’(xz-)|ﬁ ~ x; when z; — £oo. Therefore f(x;11) — f(z;) ~ az} and similarly, we have
k*(VE(V f(x;)) ~ bz "'. And since N > n, g(z;) must also be bounded on the intervals A
and A by some constants oy and «g respectively. If we let o = maxi{% (Om.i) oI }, then we
obtain the desired inequality with y = a.

Now consider the case |f/(z;)| > 1. In this case, the algorithm behaves like gradient descent. And
since |f/(z)| > 1 is satisfied on a finite number of intervals, we can find local Lipschitz constants
for f in each of those intervals. DPGD behaves like GD in this case and the local lipchitz property
guarantees the descent condition holds in each interval with some constant 5; > 0.

Finally, we conclude our proof by taking ¢ = max(«, 51, ..., k).

B DEEP LEARNING EXPERIMENTS

Here we provide the hyperparameter tuning spaces for each of our deep learning experiments. Note
that we for each task, we fix the same search space for parameters of the same name within different
algorithms. For example, all algorithms on the same task use the same search space for the learning
rate parameter.

B.1 RESNET-34 ON CIFAR-100 - IMAGE CLASSIFICATION

For each algorithm on this task, we tune hyperparameters using 24 trials of random search.

B.2 CHARLSTM ON TOLSTOY’S WAR AND PEACE - LANGUAGE MODELING WITH
RECURRENT ARCHITECTURE

For each algorithm on this task, we tune hyperparameters using 100 trials of random search.

13
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OPTIMIZER PARAMETERS  TUNING DISTRIBUTION
GD + MOMENTUM n LOGUNIFORM(1072, 1)
1—p LOGUNIFORM(1074, 1)
RGD + MOMENTUM n LOGUNIFORM(1072, 1)
1—p LOGUNIFORM(107%, 1)

1) UNIFORM(0, 30)
RGD + MOMENTUM LEAPFROG n LOGUNIFORM(1072, 1)
1—p LOGUNIFORM(1074, 1)

«a UNIFORM(O0, 1)

1) UNIFORM(0, 30)
e ADAM n LOGUNIFORM(1072, 1)
1-75 LOGUNIFORM(1073, 0.6)
1 — By LOGUNIFORM(1073, 0.4)
OPTIMIZER PARAMETERS  TUNING DISTRIBUTION
GD + MOMENTUM n LOGUNIFORM(107%, 1)
1—p LOGUNIFORM(107%, 0.3)
RGD + MOMENTUM n LOGUNIFORM(1074, 1)
1—p LOGUNIFORM(107%, 0.3)

1) UNIFORM(0, 30)
RGD + MOMENTUM LEAPFROG n LOGUNIFORM(107%, 1)
1—p LOGUNIFORM(107%, 0.3)

« UNIFORM(O, 1)

1) UNIFORM(0, 30)
e ADAM n LOGUNIFORM(107%, 1)
1-75 LOGUNIFORM(1073, 0.3)
1— 3 LOoGUNIFORM(1073, 0.2)

B.3 CONVOLUTIONAL VAE ON CELEBA FACES - IMAGE GENERATION

For each algorithm on this task, we tune hyperparameters using 24 trials of random search.
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OPTIMIZER PARAMETERS  TUNING DISTRIBUTION
GD + MOMENTUM n LOGUNIFORM(107%, 10~2)
1—p LOGUNIFORM(107%, 10~ 1)
RGD + MOMENTUM n LOGUNIFORM(107%, 10~2)
1—p LOGUNIFORM(1074, 10~ 1)
) UNIFORM(0, 30)
RGD + MOMENTUM LEAPFROG n LOoGUNIFORM(107%, 10~2)
1—p LOGUNIFORM(107%, 10~ 1)
a UNIFORM(O, 1)
) UNIFORM(0, 30)
e ADAM n LOGUNIFORM(1074, 1072)
1-75 LOGUNIFORM(1073, 0.6)
1— By LOGUNIFORM(1073, 0.4)
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