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ABSTRACT

In this work, we present Lexical Unit Analysis (LUA), a framework for general
sequence segmentation tasks. Given a natural language sentence, LUA scores all
the valid segmentation candidates and utilizes dynamic programming (DP) to ex-
tract the maximum scoring one. LUA enjoys a number of appealing properties
such as inherently guaranteeing the predicted segmentation to be valid and facil-
itating globally optimal training and inference. Besides, the practical time com-
plexity of LUA can be reduced to linear time, which is very efficient. We have
conducted extensive experiments on 5 tasks, including syntactic chunking, named
entity recognition (NER), slot filling, Chinese word segmentation, and Chinese
part-of-speech (POS) tagging, across 15 datasets. Our models have achieved the
state-of-the-art performances on 13 of them. The results also show that the F1
score of identifying long-length segments is notably improved.

1 INTRODUCTION

Sequence segmentation is essentially the process of partitioning a sequence of fine-grained lexical
units into a sequence of coarse-grained ones. In some scenarios, each composed unit is assigned a
categorical label. For example, Chinese word segmentation splits a character sequence into a word
sequence (Xue, 2003). Syntactic chunking segments a word sequence into a sequence of labeled
groups of words (i.e., constituents) (Sang & Buchholz, 2000).

There are currently two mainstream approaches to sequence segmentation. The most common is
to regard it as a sequence labeling problem by using IOB tagging scheme (Mesnil et al., 2014; Ma
& Hovy, 2016; Liu et al., 2019b; Chen et al., 2019a; Luo et al., 2020). A representative work is
Bidirectional LSTM-CRF (Huang et al., 2015), which adopts LSTM (Hochreiter & Schmidhuber,
1997) to read an input sentence and CRF (Lafferty et al., 2001) to decode the label sequence. This
type of method is very effective, providing tons of state-of-the-art performances. However, it is
vulnerable to producing invalid labels, for instance, “O, I-tag, I-tag”. This problem is very severe
in low resource settings (Peng et al., 2017). In experiments (see section 4.6), we also find that it
performs poorly in recognizing long-length segments.

Recently, there is a growing interest in span-based models (Zhai et al., 2017; Li et al., 2019; Yu
et al., 2020). They treat a span rather than a token as the basic unit for labeling. Li et al. (2019) cast
named entity recognition (NER) to a machine reading comprehension (MRC) task, where entities
are extracted as retrieving answer spans. Yu et al. (2020) rank all the spans in terms of the scores
predicted by a bi-affine model (Dozat & Manning, 2016). In NER, span-based models have signif-
icantly outperformed their sequence labeling based counterparts. While these methods circumvent
the use of IOB tagging scheme, they still rely on post-processing rules to guarantee the extracted
span set to be valid. Moreover, since span-based models are locally normalized at span level, they
potentially suffer from the label bias problem (Lafferty et al., 2001).

This paper seeks to provide a new framework which infers the segmentation of a unit sequence by
directly selecting from all valid segmentation candidates, instead of manipulating tokens or spans.
To this end, we propose Lexical Unit Analysis (LUA) in this paper. LUA assigns a score to every
valid segmentation candidate and leverages dynamic programming (DP) (Bellman, 1966) to search
for the maximum scoring one. The score of a segmentation is computed by using the scores of
its all segments. Besides, we adopt neural networks to score every segment of the input sentence.
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Figure 1: A toy example to show LUA and how it differs from prior methods. The items in blue and
red respectively denote valid and invalid predictions.

The purpose of using DP is to solve the intractability of extracting the maximum scoring segmen-
tation candidate by brute-force search. The time complexity of LUA is quadratic time, yet it can
be optimized to linear time in practice by performing parallel matrix computations. For training
criterion, we incur a hinge loss between the ground truth and the predictions. We also extend LUA
to unlabeled segmentation and capturing label correlations.

Figure 1 illustrates the comparison between previous methods and the proposed LUA. Prior mod-
els at token level and span level are vulnerable to generating invalid predictions, and hence rely on
heuristic rules to fix them. For example, in the middle part of Figure 1, the spans of two inferred
named entities, [Word Cup|y; s and [Cup]yqe, conflicts, which is mitigated by comparing the
predicted scores. LUA scores all possible segmentation candidates and uses DP to extract the max-
imum scoring one. In this way, our models guarantee the predictions to be valid. Moreover, the
globality of DP addresses the label bias problem.

Extensive experiments are conducted on syntactic chunking, NER, slot filling, Chinese word seg-
mentation, and Chinese part-of-speech (POS) tagging across 15 tasks. We have obtained new state-
of-the-art results on 13 of them and performed competitively on the others. In particular, we observe
that LUA is expert at identifying long-length segments.

2 METHODOLOGY

We denote an input sequence (i.e., fine-grained lexical units) as x = [x1,za, - ,z,], where n is
the sequence length. An output sequence (i.e., coarse-grained lexical units) is represented as the
segmentation y = [y1, %2, - , Ym] With each segment y;, being a triple (ix, jk, tx). m denotes its
length. (ix, ji) specifies a span that corresponds to the phrase x;, j, = [Ti,, Tip41," -, Tj ). tk
is a label from the label space £. We define a valid segmentation candidate as its segments are
non-overlapping and fully cover the input sequence.

A case extracted from CoNLL-2003 dataset (Sang & De Meulder, 2003):

x = [[SOS], Sangthai, Glory, 22/11/96, 3000, Singapore]
y = [(17 1’ O)’ (2’ 37 MISC)7 (47 47 0)7 (5’ 57 O)’ (67 67 LOC)] '

Start-of-sentence symbol [SOS] is added in the pre-processing stage.
2.1 MODEL: SCORING SEGMENTATION CANDIDATES

We denote Y as the universal set that contains all valid segmentation candidates. Given one of its
members y € ), we compute the score f(y) as

T = > (s6+she); ()

(i,5,t) €y
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Algorithm 1: Inference via Dynamic Programming (DP)

Input: Composition score s; ; and label score sﬁ ;. for every possible segment (i,7,1).

Output: The maximum segmentation scoring candidate ¥ and its score f(y).
Set two n. X n shaped matrices, ¢t and be, for computing maximum scoring labels.

Set two n-length vectors, g and b¥, for computing maximum scoring segmentation.
for1 <i<j<ndo
Compute the maximum label score for each span (i, j): s7; = max,c. s, ;.
| Record the backtracking index: bf ; = arg max, ¢, sﬁ it
Initialize the value of the base case x1 1: g1 = s, + 51L,1~
fori € [2,3,--- ,n|do
Compute the value of the prefix x1 ;: g; = maxi<j<i—1 (gi—j + (85114 + 51 j11.4))-
| Record the backtracking index: b = argmax;;<; 1 (9i—j + (85414t siL_jH,i)).

Get the maximum scoring candidate y by back tracing the tables b? and b°.
Get the maximum segmentation score: f(¥) = gy.

where s7 ; is the composition score to estimate the feasibility of merging several fine-grained units

[®i, Ziy1, -, x;] into a coarse-grained unit and séﬁ ;¢ 18 the label score to measure how likely the
label of this segment is ¢. Both scores are obtained by a scoring model.

Scoring Model. a scoring model scores all possible segments (i, j,¢) for an input sentence X.
Firstly, we get the representation for each fine-grained unit. Following prior works (Li et al., 2019;
Luo et al., 2020; Yu et al., 2020), we adopt BERT (Devlin et al., 2018), a powerful pre-trained
language model, as the sentence encoder. Specifically, we have

Then, we compute the representation for a coarse-grained unit x; ;,1 <7 < j < nas
hf’j =hY'® h}*’ @ (hy — h;“) @ (h¥ o h}”), 3)
where & is vector concatenation and © is element-wise product.

Eventually, we employ two non-linear feedforward networks to score a segment (3, j, t):

s¢ ;= (v¥)" tanh(W°R? ), s, = (v})" tanh(W'R?)), @)
where v¢, W€, vff,t e £, and W' are all learnable parameters. Besides, the scoring model used
here can be flexibly replaced by any regression method.

2.2 INFERENCE VIA DYNAMIC PROGRAMMING
The prediction of the maximum scoring segmentation candidate can be formulated as

¥ = arg max f(y). 5)
yey
Because the size of search space |)| increases exponentially with respect to the sequence length n,

brute-force search to solve Equation 5 is computationally infeasible. LUA uses DP to address this
issue, which is facilitated by the decomposable nature of Equation 1.

DP is a well-known optimization method which solves a complicated problem by breaking it down
into simpler sub-problems in a recursive manner. The relation between the value of the larger prob-
lem and the values of its sub-problems is called the Bellman equation.

Sub-problem. In the context of LUA, the sub-problem of segmenting an input unit sequence X is
segmenting its prefixes x1 ;,1 < % < n. We define g; as the maximum segmentation score of the
prefix x; ;. Under this scheme, we have maxycy f(y) = gn.
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The Bellman Equation. The relatinship between segmenting a sequence X1 ;,% > 1 and segment-
ing its prefixes 1 ,,—;,1 < j <4 — 1 is built by the last segments (i — j + 1,4,¢):

= !
9i = 1< < (gl it (8 +I?Ea£(8ifj+1,i,t))' (6)

In practice, to reduce the time complexity of above equation, the last term is computed beforehand

as sf = maXicr s7 it 1 <4 < j < n. Hence, Equation 6 is reformulated as

L
gi = ax (gi- + (5{ji + 80 j00)- -

The base case is the first token x1 ; = [[SOS]]. We get its score g1 as s§ | + s{ ;.

Algorithm 1 shows how DP is applied in inference. Firstly, we set two matrices and two vectors to
store the solutions to the sub-problems (1-st to 2-nd lines). Secondly, we get the maximum label
scores for all the spans (3-rd to 5-th lines). Then, we initialize the trivial case g; and recursively
calculate the values for prefixes x1 ;,¢ > 1 (6-th to 9-th lines). Finally, we get the predicted seg-
mentation y and its score f(y) (10-th to 11-th lines).

The time complexity of Algorithm 1 is O(n?). By performing the max operation of Equation 7
in parallel on GPU, it can be optimized to only O(n), which is highly efficient. Besides, DP, as
the backbone of the proposed model, is non-parametric. The trainable parameters only exist in the
scoring model part. These show LUA is a very light-weight algorithm.

2.3 TRAINING CRITERION

We adopt max-margin penalty as the loss function for training. Given the predicted segmentation ¥
and the ground truth segmentation y*, we have

J =max (0,1 — f(y*) + f(¥))- (8)

3 EXTENSIONS OF LUA
We propose two extensions of LUA for generalizing it to different scenarios.

Unlabeled Segmentation. In some tasks (e.g., Chinese word segmentation), the segments are
unlabeled. Under this scheme, the Equation 1 and Equation 7 are reformulated as

S osts gi= max (gioj+ s i) ©)

= 1<j<i—1
(i,9)€y

Capturing Label Correlations. In some tasks (e.g., syntactic chunking), the labels of segments
are strongly correlated. To incorporate this information, we redefine f(y) as

d
f(y) = Z ( ik Jk + Slk WJks tk) + Z Stk—q+1;tk—q+2;"‘ N (10)

1<k<m 1<k<m

Score S?quﬁ,tk er2e e models the label ('iependencies among q successive segments, yk_q+1'7 k-
In practice, we find ¢ = 2 balances the efficiency and the effectiveness well, and thus parameterize
a learnable matrix W¢ € RIVIXIVI to implement it.

The corresponding Bellman equation to above scoring function is

l

gir = X (max(gl g 8h )+ (SE g+ S ge)s (11
where g; ; is the maximum score of labeling the last segment of the prefix x; ; with ¢. For initial-
ization, we set the value of g¢ ‘o as 0 and the others as —co. By performing the inner loops of two
max operations in parallel, the practical time complexity for computing git,1 <1 <nteLis
also O(n). Ultimately, the segmentation score f(y) is obtained by maxic s gn ¢-

This extension further improves the results on syntactic chunking and Chinese POS tagging, as both
tasks have rich sequential features among the labels of segments.
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Model AS MSR CITYU PKU CTB6
Rich Pretraining (Yang et al., 2017) 95.7 975 96.9 96.3 96.2
Bi-LSTM (Ma et al., 2018) 96.2 98.1 97.2 96.1 96.7
Multi-Criteria Learning + BERT (Huang et al., 2019) | 96.6  97.9 97.6 96.6 97.6
T BERT (Mengetal,,2019) ~ ~ ~ ~ ~ ~ [ 965 981 ~ 976 ~ 965 -
Glyce + BERT (Meng et al., 2019) 96.7 983 979 96.7 -
Unlabeled LUA 96.94 98.27 98.21 96.88 98.13

Table 1: Experiment results on Chinese word segmentation.

Model CTB5 CTB6 CTB9 UDI
Bi-RNN + CRF (Single) (Shao et al., 2017) 94.07 90.81 91.89  89.41
Bi-RNN + CRF (Ensemble) (Shao et al., 2017) | 94.38 - 92.34  89.75

~ " Lattice-LSTM (Meng et al., 2019) ~ | 95.14 91.43  92.13° 90.09
Glyce + Lattice-LSTM (Meng et al., 2019) 95.61 91.92 92.38  90.87
BERT (Meng et al., 2019) 96.06 94.77  92.29  94.79
Glyce + BERT (Meng et al., 2019) 96.61 95.41 93.15 96.14
LUA 96.79 9539 93.22  96.01

This Work

LUA w/ Label Correlations 97.96 96.63 93.95 97.08

Table 2: Experiment results on the four datasets of Chinese POS tagging.

4 EXPERIMENTS

We have conducted extensive studies on 5 tasks, including Chinese word segmentation, Chinese
POS tagging, syntactic chunking, NER, and slot filling, across 15 datasets. Firstly, Our models have
achieved new state-of-the-art performances on 13 of them. Secondly, the results demonstrate that
the F1 score of identifying long-length segments has been notably improved. Lastly, we show that
LUA is a very efficient algorithm concerning the running time.

4.1 SETTINGS

We use the same configurations for all 15 datasets. L2 regularization and dropout ratio are respec-
tively set as 1 x 10~% and 0.2 for reducing overfit. We use Adam (Kingma & Ba, 2014) to optimize
our model. Following prior works, BERTpasE is adopted as the sentence encoder. We use uncased
BERTgasE for slot filling, Chinese BERTpagg for Chinese tasks (e.g., Chinese POS tagging), and
cased BERTgagg for others (e.g., syntactic chunking). In addition, the improvements of our model
over baselines are statistically significant with p < 0.05 under t-test.

4.2 CHINESE WORD SEGMENTATION

Chinese word segmentation splits a Chinese character sequence into a sequence of Chinese words.
We use SIGHAN 2005 bake-off (Emerson, 2005) and Chinese Treebank 6.0 (CTB6) (Xue et al.,
2005). SIGHAN 2005 back-off consists of 5 datasets, namely AS, MSR, CITYU, and PKU. Fol-
lowing Ma et al. (2018), we randomly select 10% training data as development set. We convert all
digits, punctuation, and Latin letters to half-width for handling full/half-width mismatch between
training and test set. We also convert AS and CITYU to simplified Chinese. For CTB6, we follow
the same format and partition as in Yang et al. (2017); Ma et al. (2018).

Table 1 depicts the experiment results. All the results of baselines are from Yang et al. (2017);
Ma et al. (2018); Huang et al. (2019); Meng et al. (2019). We have achieved new state-of-the-art
performance on all datasets except MSR. Our model improves the F1 score by 0.25% on AS, 0.32%
on CITYU, 0.19% on PKU, and 0.54% on CTB6. Note that our model doesn’t use any external
resources, such as glyph information (Meng et al., 2019) or POS tags (Yang et al., 2017). Despite
this, our model is still competitive with Glyce + BERT on MSR.

4.3 CHINESE POS TAGGING

Chinese POS tagging jointly segments a Chinese character sequence and assigns a POS tag to each
segmented unit. We use Chinese Treebank 5.0 (CTBS), CTB6, Chinese Treebank 9.0 (CTB9) (Xue
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Model Chunking NER
CoNLL-2000 | CoNLL-2003 OntoNotes 5.0
Bi-LSTM + CRF (Huang et al., 2015) 94.46 90.10 -
Flair Embeddings (Akbik et al., 2018) 96.72 93.09 89.3
GCDT w/ BERT (Liu et al., 2019b) 96.81 93.23 -
BERT-MRC (Li et al., 2019) - 93.04 91.11
HCR w/ BERT (Luo et al., 2020) - 93.37 90.30
BERT-Biaffine Model (Yu et al., 2020) - 93.5 91.3
This Work LUA . 96.95 93.46 92.09
LUA w/ Label Correlations 97.23 - -

Table 3: Experiment results on syntactic chunking and NER.

et al., 2005), and the Chinese section of Universal Dependencies 1.4 (UD1) (Nivre et al., 2016).
CTBS is comprised of newswire data. CTB9 consists of source texts in various genres, which cover
CTBS. we convert the texts in UD1 from traditional Chinese into simplified Chinese. We follow the
same train/dev/test split for above datasets as in Shao et al. (2017).

Table 2 shows the experiment results. The performances of all baselines are reported from Meng
et al. (2019). Our model LUA w/ Label Correlations has yielded new state-of-the-art results on all
the datasets: it improves the F1 scores by 1.35% on CTBS, 1.22% on CTB6, 0.8% on CTB9, and
0.94% on UDI. Moreover, the basic LUA without capturing the label correlations also outperforms
the strongest baseline, Glyce + BERT, by 0.18% on CTB5 and 0.07% on CTB9. All these facts
further verify the effectiveness of LUA and its extension.

4.4 SYNTACTIC CHUNKING AND NER

Syntactic chunking aims to find phrases related to syntatic category for a sentence. We use CoNLL-
2000 dataset (Sang & Buchholz, 2000), which defines 11 syntactic chunk types (NP, VP, PP, etc.) and
follow the standard splittings of training and test datasets as previous work. NER locates the named
entities mentioned in unstructured text and meanwhile classifies them into predefined categories.
We use CoNLL-2003 dataset (Sang & De Meulder, 2003) and OntoNotes 5.0 dataset (Pradhan et al.,
2013). CoNLL-2003 dataset consists of 22137 sentences totally and is split into 14987, 3466, and
3684 sentences for the training set, development set, and test set, respectively. It is tagged with four
linguistic entity types (PER, LOC, ORG, MISC). OntoNotes 5.0 dataset contains 76714 sentences
from a wide variety of sources (e.g., magazine and newswire). It includes 18 types of named entity,
which consists of 11 types (Person, Organization, etc.) and 7 values (Date, Percent, etc.). We follow
the same format and partition as in Li et al. (2019); Luo et al. (2020); Yu et al. (2020). In order to
fairly compare with previous reported results, we convert the predicted segments into IOB format
and utilize conlleval script! to compute the F1 score at test time.

Table 3 shows the results. Most of baselines are directly taken from Akbik et al. (2018); Li et al.
(2019); Luo et al. (2020); Yu et al. (2020). Besides, following Luo et al. (2020), we rerun the source
code? of GCDT and report its result on CoNLL-2000 with standard evaluation method. Generally,
our proposed models LUA w/o Label Correlations yield competitive performance over state-of-the-
art models on both Chunking and NER tasks. Specifically, regarding to the NER task, on CoNLL-
2003 dataset our model LUA outperforms several strong baselines including Flair Embedding, and it
is comparable to the state-of-the-art model (i.e., BERT-Biaffine Model). In particular, on OntoNotes
dataset, LUA outperforms it by 0.79% points and establishes a new state-of-the-art result. Regarding
to the Chunking task, LUA advances the best model (GCDT) and the improvements are further
enlarged to 0.42% points by LUA w/ Label Correlations.

4.5 SLoT FILLING

Slot filling, as an important task in spoken language understanding (SLU), extracts semantic con-
stituents from an utterance. We use ATIS dataset (Hemphill et al., 1990), SNIPS dataset (Coucke
etal., 2018), and MTOD dataset (Schuster et al., 2018). ATIS dataset consists of audio recordings of

"https://www.clips.uantwerpen.be/conl12000/chunking/conlleval.txt.
Zhttps://github.com/Adaxry/GCDT.
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Model ATIS  SNIPS MTOD

Slot-Gated SLU (Goo et al., 2018) 95.20 88.30 95.12
Bi-LSTM + EMLo (Siddhant et al., 2019) | 95.42 93.90 -

Joint BERT (Chen et al., 2019b) 96.10 97.00 96.48
CM-Net (Liu et al., 2019¢) 96.20 97.15 -

This Work LUA . 96.15 97.10 97.53

LUA w/ Intent Detection 96.27 97.20 97.55

Table 4: Experiment results on the three datasets of slot filling.

Model 1—-3(8695) 4—7(2380) 8—11(151) 12— 24 (31) | Overall

HCR w/ BERT 91.15 85.22 50.43 20.67 90.27
BERT-Biaffine Model 91.67 87.23 70.24 40.55 91.26
LUA 92.31 88.52 77.34 57.27 92.09

Table 5: The F1 scores for NER models on different segment lengths. A — B(N) denotes that there
are N entities whose span lengths are between A and B.

people making flight reservations. The training set contains 4478 utterances and the test set contains
893 utterances. SNIPS dataset is collected by Snips personal voice assistant. The training set con-
tains 13084 utterances and the test set contains 700 utterances. MTOD dataset has three domains,
including Alarm, Reminder, and Weather. We use the English part of MTOD dataset, where training
set, dev set, and test set respectively contain 30521, 4181, and 8621 utterances. We follow the same
partition of above datasets as in Goo et al. (2018); Schuster et al. (2018).

Table 4 summarizes the experiment results for slot filling. On ATIS and SNIPS, we take the results
of all baselines as reported in Liu et al. (2019c) for comparison. On MTOD, we rerun the open
source toolkits, Slot-gated SLU® and Joint BERT*. As all previous approaches jointly model slot
filling and intent detection (a classification task in SLU), we follow them to augment LUA with
intent detection for a fair comparison. As shown in Table 4, the augmented LUA has surpassed all
baselines and obtained state-of-the-art results on the three datasets: it increases the F1 scores by
around 0.05% on ATIS and SNIPS, and delivers a substantial gain of 1.11% on MTOD. It’s worth
mentioning that LUA even outperforms the strong baseline Joint BERT with a margin of 0.18% and
0.21% on ATIS and SNIPS without modeling intent detection.

4.6 LONG-LENGTH SEGMENT IDENTIFICATION

Since LUA doesn’t resort to IOB tagging scheme, it should be more accurate in recognizing long-
length segments than prior methods. To verify this intuition, we evaluate different models on the
segments of different lengths. This study is investigated on OntoNotes 5.0 dataset. Two strong
models are adopted as the baselines: one is the best sequence labeling model (i.e., HCR) and the
other is the best span-based model (i.e., BERT-Biaffine Model). Both baselines are reproduced by
rerunning their open source codes, biaffine-ner’ and Hire-NER®.

The results are shown in Table 5. On the one hand, both LUA and Biaffine Model obtain much
higher scores of extracting long-length entities than HCR. For example, LUA outperforms HCR w/
BERT by almost twofold on range 12 — 24. On the other hand, LUA achieves even better results
than BERT-Biaffine Model. For instance, the F1 score improvements of LUA over it are 10.11% on
range 8 — 11 and 41.23% on range 12 — 24.

4.7 RUNNING TIME ANALYSIS

Table 6 shows the running time comparison among different models. The middle two columns are
the time complexity of decoding a label sequence. The last column is the time cost of one epoch
in training. We set the batch size as 16 and run all the models on 1 GPU. The results indicate that

3https://github.com/MiuLab/SlotGated-SLU.
*https://github.com/monologg/JointBERT.
Shttps://github.com/juntaoy/biaffine-ner.
Shttps://github.com/cslydia/Hire-NER.
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Model Theoretical Complexity | Practical Complexity | Running Time
BERT O(n) o) Smlls
BERT + CRF O(n|L]?) O(n) 7m33s
LUA O(n?) O(n) 6m25s
LUA w/ Label Correlations On?|L|?) O(n) 7m09s

Table 6: Running time comparison on the syntactic chunking dataset.

the success of our models in performances does not lead to serious side-effects on efficiency. For
example, with the same practical time complexity, BERT + CREF is slower than the proposed LUA
by 15.01% and LUA w/ Label Correlations by 5.30%.

5 RELATED WORK

Sequence segmentation aims to partition a fine-grained unit sequence into multiple labeled coarse-
grained units. Traditionally, there are two types of methods. The most common is to cast it into
a sequence labeling task (Mesnil et al., 2014; Ma & Hovy, 2016; Chen et al., 2019a) by using
IOB tagging scheme. This method is simple and effective, providing a number of state-of-the-art
results. Akbik et al. (2018) present Flair Embeddings that pretrain character embedding in a large
corpus and directly use it, instead of word representation, to encode a sentence. Liu et al. (2019b)
introduce GCDT that deepens the state transition path at each position in a sentence, and further
assigns each word with global representation. Luo et al. (2020) use hierarchical contextualized
representations to incorporate both sentence-level and document-level information. Nevertheless,
these models are vulnerable to producing invalid labels and perform poorly in identifying long-
length segments. This problem is very severe in low-resource setting. Ye & Ling (2018); Liu
et al. (2019a) adopt Semi-Markov CRF (Sarawagi & Cohen, 2005) that improves CRF at phrase
level. However, the computation of CRF loss is costly in practice and the potential to model the
label dependencies among segments is limited. An alternative approach that is less studied uses a
transition-based system to incrementally segment and label an input sequence (Zhang et al., 2016;
Lample et al., 2016). For instance, Qian et al. (2015) present a transition-based model for joint
word segmentation, POS tagging, and text normalization. Wang et al. (2017) employ a transition-
based model to disfluency detection task, which helps capture non-local chunk-level features. These
models have many advantages like theoretically lower time complexity and labeling the extracted
mentions at span level. However, to our best knowledge, no recent transition-based models surpass
their sequence labeling based counterparts.

More recently, there is a surge of interests in span-based models. They treat a segment, instead
of a fine-grained token, as the basic unit for labeling. For example, Li et al. (2019) regard NER
as a MRC task, where entities are recognized as retrieving answer spans. Since these methods are
locally normalized at span level rather than sequence level, they potentially suffer from the label
bias problem. Additionally, they rely on rules to ensure the extracted span set to be valid. Span-
based methods also emerge in other fields of NLP. In dependency parsing, Wang & Chang (2016)
propose a LSTM-based sentence segment embedding method named LSTM-Minus. Stern et al.
(2017) integrate LSTM-minus feature into constituent parsing models. In coreference resolution,
Lee et al. (2018) consider all spans in a document as the potential mentions and learn distributions
over all the possible antecedents for each other.

6 CONCLUSION

This work proposes a novel LUA for general sequence segmentation tasks. LUA directly scores all
the valid segmentation candidates and uses dynamic programming to extract the maximum scoring
one. Compared with previous models, LUA naturally guarantees the predicted segmentation to be
valid and circumvents the label bias problem. Extensive studies are conducted on 5 tasks across 15
datasets. We have achieved the state-of-the-art performances on 13 of them. Importantly, the F1
score of identifying long-length segments is significantly improved.
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