REPA-PRM: Reference-Evaluated Process Annotation for Process
Supervision and Reward Modelling

Anonymous ACL submission

Abstract

Process supervision has played a crucial role in
advancing the complex multi-step reasoning ca-
pabilities of Large Language Models (LLMs).
However, ensuring high-quality and efficient
automatic process annotation remains a chal-
lenge. To address this, we introduce Reference-
Evaluated Process Annotation (REPA), a novel
and structured framework that enables per-step
annotation in a single stage. REPA evaluates
each solution step by referencing one or multi-
ple ground-truth steps with explicit reasoning
for assessment. We show that reference-guided
step-level evaluation effectively facilitates pro-
cess supervision. Our results demonstrate that
fine-tuning a base-instruct model and training
a reward model using REPA annotations im-
prove reasoning performance under both single-
greedy decoding and ranking/aggregation of
multiple LLM-generated outputs. Notably, we
show improvements across four datasets span-
ning three domains: mathematical reasoning,
multi-hop compositional question answering,
and spatial reasoning. Our work contributes
to reference-guided automatic process supervi-
sion which is underexplored and holds potential
for enhancing LLM reasoning capabilities.'

1 Introduction

Large language models (LLMs), with large scale
pre-training and instruction following, have demon-
strated remarkable performance on various tasks
including reasoning tasks (Wei et al., 2022a,b).
However, complex multi-step reasoning still re-
mains a challenge for LLMs even when they are
trained and finetuned with ground-truth chains of
thoughts (Azerbayev et al., 2024; Yu et al., 2024b).
Simple answer consolidation strategies, such as
self-consistency (Wang et al., 2023), can improve
performance by count-based voting over multiple

!Codebase provided along with the submission and will
be made public.

generations when the final answers are correct in
majority of them. To alleviate this, reranking of
generated outputs, with reward models trained to as-
sess an output’s correctness, has gained popularity.
These reward models primarily fall under two cate-
gories: Outcome Reward Models (ORMs) (Cobbe
et al., 2021; Yu et al., 2024a) are trained using
outcome supervision relying on the correctness of
the final answer, while Process Reward Models
(PRMs) (Uesato et al., 2022; Li et al., 2023; Khal-
ifa et al., 2023; Lightman et al., 2024) are trained
using process supervision i.e. relying on the cor-
rectness of individual reasoning steps.

While PRMs are better because of targeted step-
level feedback, they suffer from expensive and com-
plex annotation requirements. Human-supervised
PRMs (Uesato et al., 2022; Lightman et al., 2024)
are very demanding in terms of highly skilled hu-
man evaluators. This has led to efforts towards
automatic process annotations, including (i) Monte
Carlo Tree Search (MCTS) based step evalua-
tions (Wang et al., 2024a,c; Luo et al., 2024),
which are based on answer correctness from sev-
eral continuations and hence are computationally
expensive, (ii) adaptive models gauging intermedi-
ate steps, e.g., relative step confidence threshold-
ing (Lu et al., 2024), which are dependent on and
starts from an ORM, or (iii) all-to-all single-step
comparisons with reference reasoning traces (Li
et al., 2023; Khalifa et al., 2023) that suffer from
quadratic step comparisons and potentially erro-
neous evaluations that require step combinations.
Works related to (i) and (ii) disregard valuable step-
by-step information from ground-truth reasoning
traces that are available and utilized during super-
vised fine-tuning (SFT), while works pertaining
to (iii) utilizes the complete ground truth reason-
ing traces but in an inefficient, complicated, and
fragmented manner.

To address these gaps, we investigate and
propose  Reference-Evaluated Process



System Prompt (S):
You are a teacher grading a candidate’s assignment
Match the steps of Candidate Answer with that in Reference Answer and Context sentences.
Score the steps of Candidate Answer as below:

« Astep that matches or is factually consistent with one or more steps in the Reference Answer and / or Context sentences is labelled as correct (+1).
- While matching steps, evaluate on the basis of topics, entities, variables ...

Context (C):
- l [c1] What is the area, in square units, of a triangle with vertices at $(0,0)$, $(0,5)$, and $(7,12)$? Express your answer as a decimal to the nearest tenth.

Reference Answer (R):

I~ = =[r1] Let's think step by step.\nThe base of the triangle lies on the
$y$-axis, and is 5 units long.

=~ «[ra] The height of the triangle is the horizontal distance from the
point $(7,12)$ to the $y$-axis, and is 7 units long.

- = [r3] Thus, the area of the triangle is $\frac{5\cdot7}{2}=\boxed{17.5}$

square units.\nHence, the answer is 17.5.

Candidate Answer (O):

[01] Let's think step by step.\nTo calculate the area of this triangle, we simply
find the area of a rectangle containing the triangle and divide by $2§.

[02] The area of this rectangle is\n\n\[(7)(5) ﬁg}square units.

[03] The rectangle that will encompass our trtarfgle is half that size, so the area
of the triangle is\n\n$\boxed{17.5}$ square units.\nHence, the answer is 17.5.

Context, Reference

Answer and Candidate No direct match for o, Direct single step alignment
Answer are delimited for | |calculating area of rectangle in| may not be possible wi
lsurface form variations in terms|
alignment RorC.
of approach, equations etc.

Based on previous step [01], the candidate continues to calculate the area of rectangle that contains the
Evaluation exemplar
lunder REPA framework|
label: +1

triangle with the sides 7 and 5 as 35 thh is numerically correct. The steps [r;] and [r2] mention the sides of the triangle,
Captures surface form
variation

hence the rectangle as well, to be 5 and § respectively. Thus, this step correct.
Figure 1: Determining the correctness of a step in a candidate solution against a given context and reference
solution presents several challenges, including step alignment, surface-form variations, and heuristic limitations. To
address these issues, we propose a unified, single-stage framework: Reference-Evaluated Process Annotation (REPA:
(§,C,R,0) — &). REPA produces an explanation-based step-by-step evaluation £ of a candidate model output O,

Crucial number but can't be
heuristically matched in . or
C.

Explicit Explanation + Multiple Step Alignment }

grounded to a given context C, ground-truth reasoning R, and system prompt S (Section 3.1).

Annotation (REPA), a framework (Figure 1)
that effectively leverages the complete set of
intermediate steps from the ground-truth reasoning
traces (R) and question sentences (C) as references
to evaluate the correctness of each model output
(O) response step, enabling automatic process
supervision. We devise a generic and structured
evaluation scheme for each step of models’ output
response O with a focus on (i) explicit reasoning
for the evaluation, and (ii) multi-step comparisons
between responses and references. The proposed
scheme enables a single-stage evaluation that
scales additively with the token length of both the
response and the reference.

We demonstrate the effectiveness of REPA anno-
tations in two settings: (i) fine-tuning a model in
an offline reinforcement learning (RL) setup that
improves performance with greedy decoding, and
(ii) training Reward Models (RMs) for ranking and
aggregating multiple LLM generations. We con-
duct extensive experiments on four datasets spread
across three domains: two mathematical reason-
ing datasets, namely, GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021); one multi-
hop compositional question answering dataset,
namely, 43 MuSiQue-Ans (Trivedi et al., 2022);
and one spatial reasoning dataset, small SpaRP, i.e.,
SpaRP-S (Rizvi et al., 2024), which in turn is a col-
lection of four textual spatial reasoning dataset cov-
ering various spatial characterizations of objects,
relations, and contexts. Our approach outperforms

strong baselines over majority of the datasets. In

summary, our key contributions include:

* We propose a generic, single-stage, and struc-
tured reference-guided evaluation framework
(REPA) with the focus on annotation reasoning
and multi-step alignment. Our framework utilizes
the entire ground-truth reasoning trace, generally
available for SFT which is often overlooked.

* We utilize REPA annotations to improve reason-
ing capabilities of LLMs under various scenarios
such as finetuning, reward model training, and
pairwise vs. pointwise training.

* We extensively evaluate our framework on two
mathematical datasets (GSM8K and MATH), a
question-answering dataset (<2 MuSiQue-Ans),
and a spatial reasoning dataset (SpaRP), demon-
strating improvements over the baselines. We
discuss key factors and insights of our methodol-

Ogy
2 Related Work

Reasoning abilities of LLMs. Reasoning re-
mains a challenging area for the Large Language
Models (LLMs). Various prompting techniques,
such as chain-of-thought, few-shot prompting and
their variants (Wei et al., 2022b; Kojima et al.,
2022; Yao et al., 2023; Hao et al., 2023; Bi et al.,
2024) elicited reasoning capabilities in LLMs. Im-
portance of individual steps while prompting (Fu
et al., 2023; Zhou et al., 2023) was soon found to
be crucial in successfully solving multi-step rea-



soning problems. While prompt-only techniques
show promising results, their performances are con-
strained by and sensitive to prompt design and na-
ture of tasks (Ye and Durrett, 2022). Consequently,
explicitly finetuning with high-quality reasoning
traces for improving LLM reasoning capabilities
has become popular (Yu et al., 2024b; Luo et al.,
2025).

Outcome and Process Supervision. Supervised
finetuning quickly results in saturation, leading to
the search for other advanced techniques and better
supervision signals. Outcome supervision (Cobbe
etal., 2021; Yu et al., 2024a) relies on signal based
on the final answer, and hence, is easier to ob-
tain. Process supervision offers advantages in the
form of fine-grained feedback from individual rea-
soning steps, however, early work (Uesato et al.,
2022; Pan et al., 2023; Lightman et al., 2024) re-
lied on time-consuming and costly human annota-
tion. To alleviate this problem, several recent ap-
proaches have emerged for automating process su-
pervision. Monte-Carlo Tree Search (MCTS) based
approaches (Wang et al., 2024a,c; Luo et al., 2024;
Zhang et al., 2024) target obtaining process anno-
tation by several continuations from intermediate
steps whose correctness are evaluated based on the
final step. In parallel, work that focus on efficiency
rely either on adapting outcome-supervision (Lu
et al., 2024), or a pipelined multi-stage approach
with quadratic step comparison but single step
alignment between candidate and reference solu-
tions (Li et al., 2023; Khalifa et al., 2023). Inspired
by these approaches, our work introduces a unified,
single-stage and structured evaluation scheme for
automatic process annotation, with flexible align-
ment and multi-step comparison with reference
solution. We also explore its effectiveness under
both finetuning and verification scenarios.

3 Our Approach

3.1 Reference-Evaluated Process Annotation
(REPA)

Consider a ground-truth reasoning path R =
{r};*, consisting of a sequence of m steps, a
model generated output O = {o};" , consisting
of n steps, and a sequence of s sentences as context
with question C = {c};_,. An answer or outcome
annotation y € R is a score indicating a measure of
correctness of the model’s output. Most commonly,
y = I(on, = r,); i.e., the output’s answer matches

with the ground-truth reasoning answer. In con-
trast, a process annotation ) = {y | y € R}.", is
a sequence of scalar scores assigned to the corre-
sponding steps o; € O.

We propose Reference-Evaluated Process
Annotation (REPA: (S,C,R,0) — &) as a uni-
fied, single-stage framework that generates a step-
by-step evaluation & = {e};_; of a model out-
put O with reference to a context C, a ground
truth reasoning R, and a system prompt S that
defines evaluation heuristics and guidelines. Each
step o; is evaluated in a structured format ¢ =
(e,c™, 0", 1" €, 9;), where e provides an explicit
explanation of the evaluation, € is an optional list of
error categories, and y; € {—1, +1} is the assigned
evaluation label. In addition to providing justifi-
cation for the evaluation, the explanation e aligns
the step o; with potentially multiple reference steps
(0; = cT Uot Ur™), where ¢t C C represents a
subset of relevant context sentences, o™ C O\ {o;}
includes other related output steps, and r+ C R
consists of selected ground-truth reasoning steps
used for evaluation. This evaluation scheme en-
ables efficient process annotation with an additive
token complexity of O(s + m + n), and allows
for multiple alignment possibilities, particularly in
cases where m # n:

1. One-to-one — Most simple alignment where
one output step aligns directly and completely
with at most one step, making it sufficient for
evaluation. The alignment can take one of
the forms: (a) a single ground-truth reasoning
step (0; — 1), (b) a single context sentence
(0; = ¢j), (c) follows directly from or com-
plements another output step (o; — o), or (d)
no alignment at all (o; — ). In this case,
et Uot urt| <1.

2. One-to-many — An output step requires align-
ment with at least two steps for its evaluation.
Such an alignment is necessarily required:

i) When the model output step o; is a compos-
ite step, either omitting minor intermediary
steps or merging multiple steps into one. Its
correctness must be evaluated against mul-
tiple reference steps r; and cy. In this case,
ot = ¢ and |ct Urt| > 1. This is likely
whenn < morn < (m+s).

ii) When the model output step o; is a simple
atomic step while the ground-truth steps are
composite, its correctness must be evaluated
in conjunction with at least one other output



step o; and at least one reference step r; or
context sentence . In this case, [oT| > 1
and |c™ Ur™| > 1. This is likely when n >
morn > (m+s).

In summary, our REPA framework defines step
correctness based on its alignment with one or more
ground-truth reasoning steps, other output steps or
context sentences, assuming the ground-truth rea-
soning guarantees at least one valid path to the final
answer. The multi-step alignment, combined with
explicit step evaluation and explanations, accom-
modates surface form variations such as different
topical approaches (Figure 1) and expression for-
mats. This ensures that the steps are properly con-
textualized within the broader reasoning structure,
allowing for their more accurate evaluation.

We implement REPA using LL.M-based evalua-
tion. Off-the-shelf LLMs can be directly employed
with k-shot exemplars, where a small, manually
annotated set of diverse examples captures key
evaluation principles of REPA. To generate auto-
matic annotations for model-produced reasoning
traces, we use a model—typically from the previ-
ous fine-tuning stage in an iterative setup—to gener-
ate multiple solutions per problem via non-greedy,
temperature-based decoding. Each solution is then
decomposed into individual steps, typically delin-
eated by newline characters. Our REPA framework
subsequently evaluates the correctness of each step,
enabling automatic process supervision.

3.2 Training Approach
3.2.1 REPA-based Finetuning (REPA-ORPO)

We propose REPA-based fine-tuning of a model
to enhance its reasoning capabilities. The step-
by-step process annotations )V = {y;}I",, de-
rived using the REPA framework, can be effec-
tively integrated with both online and offline Rein-
forcement Learning (RL). For ease of implemen-
tation, training stability, and resource efficiency,
we employ Odds Ratio Preference Optimization
(ORPO) (Hong et al., 2024) for preference training
over chosen and rejected pairs (O, O).

In REPA-ORPO, we compute a mean aggrega-
tion § = % > y; of the reasoning step annotations
to quantify reasoning trace correctness and com-
bine this with the final answer correctness y. The
tuple (y, ¥) is used as the effective score for pref-
erence pair identification, where y,, = 1, y; = —1,
and ¥, > ¥;. Thus REPA-ORPO employs a more
comprehensive set of preference pairs, where the

chosen solution demonstrates superiority over the
rejected solution with respect to both reasoning
quality and answer accuracy. In contrast, Outcome-
ORPO is trained using preference pairs (O, O;)
that are determined solely by final answer accuracy,
ie., yp = land y; = —1.

3.2.2 REPA-based Reward Models
(REPA-RM5s)

To enhance inference-time reasoning performance,
we propose training REPA-based Outcome and Pro-
cess Reward Models.

REPA-ORM. We propose training a REPA-based
Outcome Reward Model (REPA-ORM) under a pair-
wise optimization setting between two instances:

Lo = —log(o(re(C, 0)) -
o(re(C, 1)) ()

where, o is the sigmoid function, 7y is the reward
model that scores an output in reference to the
input, O,, and O; constitute a paired output for a
given context-question C, with O,, representing the
chosen output, and O; denoting the rejected out-
put. Following our methodology outlined in Sec-
tion 3.2.1, the REPA-ORM is trained on a superior
set of preference pairs. These pairs are identified
based on the effective score (y, ) that combines
the final answer with the mean aggregation ¥ of the
REPA annotations, such that y,, = 1, y; = —1, and
Yw > Y-

We also train and compare a pairwise-ORM on
preference pairs identified solely based on final
answer accuracy, i.e., ¥, = 1 and y; = —1. Ad-
ditionally, we implement a pointwise-ORM under
classification setting using a cross-entropy loss:

Egoé%mse = —(y log a(rg(C,0))+
(1) log (1= o(ra(C.0)))) @

REPA-PRM. We utilize the step-level evaluations
1; obtained through REPA as direct reward signals
to train process reward models. The REPA-PRM is
trained in a stepwise classification setting, using
the following cross-entropy loss:

n

Lprym = — Z(yz log o(re(C,01:4))+

i=1

(1 —y;) log (1 —o(rg(C, ol;i)))> 3)



where 01.; is the sub-sequence of output O till the
it" step. Unlike ORMs which predict a single so-
lution score for O, PRMs generate a probability
sequence P = {p;}I*, for each step o; € O.
These step-wise probabilities are aggregated into a
final correctness score using functions such as min,
prod (or equivalently sum_log)(Lightman et al.,
2024; Wang et al., 2024a), last, and max(Wang
et al., 2024c).

Ranking and Aggregation. We use reward mod-
els to score multiple generations during inference.
We then either do rank-and-select (e.g. Best-of-N
sampling) or weighted aggregation as:

d:

N
argmaxZH(ai = a)- f(C,0;) 4
a i=1

where each final answer a; from O; is grouped
and weighted by a function f(-) over N solutions.
In a simple strategy like self-consistency (Wang
et al., 2023), the weighting function f accounts for
the presence of an answer a;, meaning all occur-
rences of an answer are given equal weight., i.e.,
f(C,0;) = 1. Alternatively, the probability scores
from Reward Models are used as weights for aggre-
gation, effectively enhancing reasoning accuracy
by prioritizing solutions that exhibit both correct
final answers and well-structured reasoning steps.

4 Experiment Results

4.1 Experimental Set-up

Datasets. We conduct extensive experiments
over a suite of reasoning datasets:

* Mathematical Reasoning We use two mathe-
matical datasets, GSM8K (Cobbe et al., 2021),
which is a collection of grade school math word
problems, and MATH (Hendrycks et al., 2021),
which contains high school competition-level
math problems across seven diverse topics. For
development, we create a train-validation split
by dividing the training set of both datasets in a
90:10 ratio.

* Question-Answering We use -7 MuSiQue-Ans
dataset (Trivedi et al., 2022), a challenging multi-
hop question-answering dataset constructed by
composing six diverse reasoning graphs of sub-
questions from five different sources. For de-
velopment, we create a train-validation split by
dividing the training set in an 80:20 ratio.

* Spatial Reasoning We use the small
SpaRP (Rizvi et al., 2024), i.e., SpaRP-S
dataset, which comprises four textual spatial
reasoning sub-datasets covering various spatial
characterizations and including benchmarks such
as SpaRTUN (Mirzaee and Kordjamshidi, 2022)
and StepGame (Shi et al., 2022). The objective
in SpaRP is to infer the spatial relation between
two objects when their direct relation is not
provided in the text but can be deduced through
spatial relation composition. SpaRP has its own
validation set.

Models. We aim to demonstrate the use of a sin-
gle Large Language Model (LLM) throughout the
pipeline to improve itself. We, therefore, use the
Llama-3 8B Instruct Model (Grattafiori et al., 2024)
for all the three tasks:

i) As an Evaluator model for reference-guided
step-annotations within our REPA framework.
Depending on the problem diversity, we man-
ually create structured step-by-step example
evaluations per dataset, ranging from 6 for
SpaRP to 56 for MATH dataset with 7 topics.
Each dataset undergoes 5—shot evaluations using
dataset-specific evaluation guidelines as system
prompts. See Appendix A for details.?

ii) As a Base-Instruct model that is fine-tuned to
enhance its reasoning performance under greedy
decoding. While our framework supports multi-
ple iterations, we limit our study to the first two
due to resource constraints. The first iteration
involves standard single-epoch Supervised Fine-
Tuning (SFT) on the training split. In subse-
quent iterations, leveraging LLM-generated syn-
thetic data, we start by generating N = 20 solu-
tions per problem from the previous iteration’s
model with temperature 1. We annotate these
solutions using final answers, and potentially,
using REPA framework as well. Finally, we iden-
tify preference pairs for next-iteration training
under the ORPO setting. See Appendix B for
details.

iii) As Reward Models (RMs) used as verifiers for
ranking and weighted-aggregation during infer-
ence. Similar to model finetuning, we generate
N = 20 solutions per problem from the base-
instruct model with temperature 1. We annotate
2Qur framework could benefit from specialized evaluator

models like Prometheus 2 (Kim et al., 2024), supporting fur-

ther development in this area. Alternatively, larger and more
capable models can also serve as evaluators.



these solutions using final answers for ORM and,
additionally, the REPA framework for PRM. We
pose the PRM training as a standard-language
modelling task, predicting two special tokens
for correct and incorrect steps against a special
end-of-step (EQS) token. We trained RMs for
one epoch under both pointwise and pairwise
loss setting with equivalent number of training
examples, i.e., a collection of NV positive and N
negative examples can either be used as /V pairs
or 2N individual instances. See Appendix C for
specific details. While RMs can be trained and
updated using generations from each iteration of
the fine-tuned base-instruct model, we limit our
demonstration to the output of the first iteration
due to resource constraints.

While our experiments primarily utilize the
Llama-3 8B Instruct model, our methodology is
broadly applicable to other models. To demonstrate
the generalizability of REPA-based process supervi-
sion, we present Reward Model (RM) results using
a different model family—Qwen 2.5—across two
sizes: 3B and 32B.

Metrics, Baselines and Experimental Setup.
We report® the accuracy for the GSM8K and
MATH datasets, accuracy and F1 metric for the

MuSiQue-Ans dataset, and the macro-F1 for the
SpaRP dataset.

In the finetuning scenario, we evaluate our REPA-
ORPO iteration trained on preference pairs formed
using both outcome supervision and the mean rea-
soning scores of the step-by-step annotations. we
benchmark REPA-ORPO iteration against Outcome-
ORPO (preference pairs formed only by outcome
supervision) and Supervised Fine-Tuning (SFT) it-
erations with an equivalent number of ground-truth
reasoning traces.

In the verification scenario, we train and evaluate
— (a) pairwise REPA-ORMs, equivalent to the im-
plicit reward model of the REPA-ORPO finetuning,
with preference pairs formed using both outcome
supervision and mean reasoning scores of the step-
by-step annotations, and (b) REPA-PRMs trained
under a pointwise classification setting at each EQS
token. We benchmark these against the majority-
voted self-consistency (Wang et al., 2023), pairwise

3Exact Match as accuracy for GSM8K. competition_math
metric as implemented in the # evaluate library for the MATH
dataset. Implementation from the source github repository for
the /2 MuSiQue-Ans dataset. The F1 metric implementation
in the scikit-learn library for the SpaRP dataset.

and pointwise ORMs. While pairwise RMs are bal-
anced with both positive and negative examples,
we randomly sample equal number of positive and
negative examples to train a balanced pointwise
RMs. The metrics for ORMs and PRMs are re-
ported under both the settings — (a) with weighted-
aggregation, i.e., RM-weighted self-consistency,
and (b) without aggregation, i.e., Best-of-N (BoN)
sampling with only the best scored solution consid-
ered for evaluation.

We report these RM-based evaluations on N =
20 solutions generated using a 1% iteration SFT
model. While prior work (Lightman et al., 2024;
Wang et al., 2024a; Luo et al., 2024) have shown
the min or prod aggregation to be the better per-
forming aggregation strategies, other work (Wang
et al., 2024c) have reported these to underperform
ORM when the annotation process differs. For their
annotation process, they reported last aggregation
strategy, among others, to outperform ORM. We
also found the min and prod aggregation strategies
underperforming the ORMs, while last aggregation
strategy performing the best. Hence, all the metrics
are reported using the last aggregation strategy for
PRM:s.

4.2 Results and Discussion

REPA Helps Base Instruct Finetuning. We re-
port the performances of finetuning LLM followed
by greedy decoding in Table 1. REPA-ORPO is
shown to perform the best across three of the four
datasets, with an improvement of at least 0.26
points for MATH dataset and at most 1.21 points
for the SpaRP-S dataset, compared to the next
best Outcome-ORPO models. This underscores
the effectiveness of REPA in reasoning step annota-
tion and identifying superior preference pairs than
outcome-only preference pairs. Both these ORPO
models significantly outperform the SFT models
trained on ground-truth reasoning traces, except for
the GSMS8K dataset. In the case of GSM8K, we ob-
serve a marginal performance decrease for both the
ORPO finetuned models and a performance stagna-
tion for the 2"? SFT iteration compared to the 1
SFT iteration. This may indicate the base-instruct
Llama-3 8B model is saturated with the GSM8K
data and may require working with larger, extended
and augmented versions such as MetaMATH (Yu
et al., 2024b).

REPA Improves Reward Model Training. Ta-
ble 2 shows that REPA-PRM performs the best


https://pypi.org/project/evaluate/
https://github.com/StonyBrookNLP/musique/tree/main/metrics
https://pypi.org/project/scikit-learn/

Training Method Mathematical Reasoning | Question Answering | Spatial Reasoning
GSM8K MATH MuSiQue-Ans SpaRP-S
| Acc. (1) Acc. (1) |  Acc. ()/F1(1) | F1 (1)
SFT 1°* Iteration 70.43 21.22 23.58/32.53 35.00
SFT 2" Iteration 70.43 22.08 26.31/35.12 47.13
SFT + Outcome-ORPO 69.07 23.16 38.15/49.85 49.75
SFT +REPA-ORPO | 69.75 23.42 | 38.89/50.53 | 50.96

Table 1: Performance evaluations of Llama-3 8B Instruct model with greedy decoding under different training

methods. Best values in bold, second best in underline.

Aggregation / Ranking | Mathematical Reasoning | Question Answering | Spatial Reasoning
Method GSM8K MATH-500 MuSiQue-Ans SpaRP-S

| Acc. (1) Acc. (1) |  Acc. (1)/F1(1) | F1 (1)
Self-Consistency (SC) 74.91 23.40 19.74/25.18 34.37
pairwise-ORM 78.54 16.30 30.45/42.87 40.78
pairwise-ORM + SC 79.45 21.00 34.13/43.82 40.77
pointwise-ORM 79.76 20.20 33.43/45.42 49.79
pointwise-ORM + SC 79.83 23.80 34.80/44.45 49.78
REPA-ORM 79.15 19.00 34.67/45.11 41.95
REPA-ORM + SC 79.22 20.60 35.29/45.25 41.90
REPA-PRM 79.98 20.90 34.84/45.52 50.08
REPA-PRM + SC 80.29 24.10 32.11/40.43 46.92

Table 2: Performance evaluations of aggregators and RM verifiers on N = 20 sample output generations from
Llama-3 8B SFT 1% iteration. RM only entries indicate Best-of-N (BoN) sampling based results. Best values in
bold, second best in underline. Mean of metrics reported on 3 groups of sampling results.

across all four datasets, outperforming multiple
variants of ORMs as well as majority-voted Self-
Consistency (SC). More specifically, REPA-PRM
with Best-of-N (BoN) sampling leads the per-
formance on the MuSiQue-Ans and SpaRP-S
datasets, while REPA-PRM with SC leads the per-
formance on the GSM8K and MATH datasets. In
general, RMs with SC (i.e. aggregation) often leads
to improved performance compared to RM with
BoN sampling (i.e. ranking), except for a few
cases (e.g. REPA-PRM) on the MuSiQue-Ans
and SpaRP-S dataset where the aggregation harms
the sufficiently powerful reward model. MATH-
SHEPHARD (Wang et al., 2024a) observed sim-
ilar trend with their RMs evaluated on GSM8K
dataset. In the pairwise preference optimization
setting, REPA-ORM with pairs identified and priori-
tized based on both final answers and aggregated
reasoning scores, majorly outperforms its coun-
terpart pairwise-ORM trained on pairs identified
using only final answers. Both these showcase the
effectiveness of our REPA framework for better re-
ward modelling.

REPA Can Adapt Between Surface Form Preci-
sion and Flexibility. Since REPA evaluates multi-

ple model outputs against a single ground-truth rea-
soning trace, there is a concern that it may overfit to
specific surface-form patterns rather than capturing
broader reasoning diversity. This concern is further
reinforced by empirical observation of REPA-PRM
with Best-of-N (BoN) sampling achieving the high-
est performance on datasets with limited surface
form diversity, such as <2 MuSiQue-Ans and SpaRP.
Self-consistency (SC) underperforms when used
with REPA-PRM on these datasets, whereas other
reward models show comparable or improved per-
formance. This suggests that REPA-PRM may strug-
gle when evaluating outputs with varied reasoning
expressions.

However, REPA’s design mitigates this limita-
tion through multi-step alignment and explicit ex-
planations, allowing it to generalize beyond exact
surface-form matches. In challenging datasets with
more diverse reasoning structures such as MATH-
500, REPA-PRM with aggregation-based methods
(e.g., self-consistency) outperform both Best-of-N
(BoN) sampling as well as other reward models.

Performance Scaling with the Number of Candi-
date Solutions. Table 3 shows consistent perfor-
mance improvements across three strategies—self-



Agg/Rank. N=4 N=16 N=64 N=128 N=256
SC 1136 17.08 17.83  18.20 18.16
point.-ORM  17.62 23.14 24.00 25.64 25.22
REPA-PRM  16.88 22.34 24.14  25.98 25.36

Table 3: Accuracy of Llama-3-8B verifiers using BoN
sampling across different no. of candidate solutions (N)
on MATH-500 test-set. Mean of accuracy reported on
10 groups of sampling results.

consistency, pointwise ORM, and REPA-PRM—as
the number of candidates increases from 4 to 256
on the MATH-500 test set. Notably, REPA-PRM
emerges as the best performing strategy as the num-
ber of generations increases. However, all strate-
gies peak at N=128 generations, with a slight per-
formance decline afterwards.

Pointwise vs Pairwise RMs. While pairwise-
loss RM training is generally considered more ef-
fective than pointwise-loss RMs (Liu et al., 2025),
empirical evidence remains divided. For instance,
even accounting for differences in annotation guide-
lines and human expectations, Liu et al.(2025)
found pairwise RM training superior, whereas
Wang et al.(2024b) reported better results with
pointwise RM training. Our study adds to this
debate with empirical evidence showing pointwise-
ORM outperforming pairwise-ORM, significantly
so on the MATH and SpaRP datasets. Both mod-
els are trained on a balanced set of positive and
negative instances based on final answer outcomes,
with pairwise-ORM forming pairs in reference to
given contexts. Furthermore, REPA-ORM also un-
derperforms pointwise-ORM, despite incorporating
superior pairs selected based on both outcome and
mean aggregated reasoning scores.

REPA-PRM Is Consistent Within Model Fam-
ily. Table 4 reports performance on the Math-
500 test set using two model sizes (3B and 32B)
from the Qwen-2.5 family as candidate solu-
tion generators. We also evaluate verifiers from
two different families, Llama-3 8B and Qwen-
2.5 3B. REPA-PRM consistently outperforms self-
consistency and ORM when applied to the same
base model. Verifier effectiveness is model-family
dependent—a verifier trained within a model fam-
ily tends to perform better on generations from
that family. For example, Llama-3 8B PRM under-
performs compared to Qwen-2.5 3B ORM when
evaluating generations from Qwen-2.5 32B. This
discrepancy may stem from differences in model

Generator Verifier Agg./Rank. Math-500
- SC 314
REPA-PRM 322
Qwen-2.5.3B Llama-3-8B  cepp pRM + SC 34.2
point.-ORM 33.4
point.-ORM + SC 33.8
Quwen-2.5-38 REPA-PRM 322
REPA-PRM + SC 34.6
~ SC 64.6
REPA-PRM 55.0
Qwen-2.5-32B Llama-3-8B  gepp pRM + SC 65.4
point.-ORM 57.6
s point.-ORM + SC 65.6
Qwen-2.5-3B REPA_PRM Y
REPA-PRM + SC 66.0

Table 4: Accuracy of REPA-PRMs across model fami-
lies and sizes on MATH-500 test-set on 20 generations.
Mean accuracy reported on 3 groups of sampling re-
sults.

output distribution across families, suggesting that
reward models generalize best within their own
model lineage. These findings highlight the robust-
ness of REPA-PRM within the same model family
while also emphasizing the challenges of applying
verifiers across different architectures.

5 Conclusions

Achieving high-quality and efficient automatic pro-
cess supervision is crucial for enhancing the com-
plex multi-step reasoning abilities of Large Lan-
guage Models (LLMs). To this end, we propose
Reference-Evaluated Process Annotation (REPA),
a structured framework that enables per-step anno-
tation in a single stage by evaluating each solution
step against one or multiple ground-truth reference
steps with explicit reasoning. Our experimental
results demonstrate that fine-tuning a base-instruct
model and training a reward model with REPA lead
to improved reasoning performance under both sin-
gle greedy decoding and ranking/aggregation of
multiple solutions. Furthermore, we observe con-
sistent improvements across four datasets spanning
mathematical reasoning, multi-hop compositional
question answering, and spatial reasoning. We also
show that pointwise-ORMs still outperform REPA-
ORMs. These findings highlight the potential of
reference-guided automatic process supervision as
a promising approach for enhancing LLM reason-
ing capabilities.



Limitations

REPA and its associated models depend on the
availability of complete ground-truth reasoning
chains to perform reference-guided step evalua-
tions. While this reliance is a key limitation, we
note that the ground-truth reasoning traces required
by REPA are the same as those commonly used in
Supervised Finetuning (SFT)—a foundational step
in most finetuning methodologies. Thus, our ap-
proach does not introduce an additional annotation
burden beyond what is typically required for train-
ing strong instruction-following models.

We also note that REPA, like other LLM-based
automatic processes, is susceptible to some degree
of noise. Nevertheless, we find that the structured,
reference-evaluated step annotations it provides are
effective for training both Process Reward Mod-
els (PRMs) and base-instruct models, leading to
improved reasoning performance. Despite its lim-
itations, REPA remains a practical and impactful
approach for process supervision and model en-
hancement.
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A Evaluation Prompt

An example system prompt with evaluation guide-
lines for MuSiQue dataset is provided in Table 5.
Similarly, other datasets have their own domain
and subject specific evaluation heuristics included
in the System Prompt.

B Details of Finetuning

We used the Huggingface’s TRL library and
QLoRA for parameter efficient finetuning of vari-
ous ORPO models with the values of parameters
shown in Table 6.

C Details of Reward Model (RM)
Training

We used ~ 3x ~ 20K of SFT training dataset size
for mathematical datasets. This is still significantly
smaller than other work (Lightman et al., 2024;
Wang et al., 2024a) that are usually trained on >
150K solutions. The number N of individual posi-
tive and negative samples (i.e. N pairs) for Reward
Model training are presented in Table 7.
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Role Content

You are a teacher grading a student’s assignment. You are given a ground-truth correct REFERENCE ANSWER and a
STUDENT’S ANSWER. You are asked to match the steps of STUDENT’S ANSWER with that in the REFERENCE ANSWER.
You are required to score the steps of STUDENT’S ANSWER as below:

A step in the STUDENT’S ANSWER that matches or is factually consistent with one or more steps in the REFER-
ENCE ANSWER is labelled as CORRECT. While matching steps, evaluate on the basis of:

(a) whether the document name matches or not

(b) whether the entities present in the steps match or not

(c) whether the numbers mentioned match or not, and finally

(d) whether the semantic relation between all these match or not.

A step in the STUDENT’S ANSWER that doesn’t match or is factually incorrect with respect to the provided REF-
ERENCE ANSWER is labelled as INCORRECT. Thus a step that may be factually correct but is not matched to one or more
steps in the REFERENCE ANSWER is also to be marked as INCORRECT.

You need to evaluate ALL the steps of the STUDENT’S ANSWER. Provide your evaluation ONLY and ONLY in
System JSON format as a list of dictionaries whose keys and their intended purpose are:
“student_step”: The current step number of the STUDENT’S ANSWER.
“reasoning”: The reasoning expanding upon why or what part of the current “student_step™ of the STUDENT’S ANSWER, either
DIRECTLY and ENTIRELY in itself or probably in combination with other steps in the STUDENT’S ANSWER, is correct or
incorrect in reference to one or more REFERENCE ANSWER steps.
“student_combining_steps™: A list of previous “student_step" that when combined with the current “student_step” will be part or
whole of one or more steps in the REFERENCE ANSWER. Leave it as an empty list if the current “student_step” DIRECTLY
and ENTIRELY matches with one or more steps in the REFERENCE ANSWER. If the number of steps in the STUDENT’S
ANSWER is more than that in the REFERENCE ANSWER, then a single step in REFERENCE ANSWER can correspond to
multiple steps in the STUDENT’S ANSWER and this list will be non-empty for some of the “student_step".
“matching_reference_steps”: A list of steps in the REFERENCE ANSWER based on which the correctness or the incorrectness
of the current “student_step" is reasoned and arrived at. If the number of steps in the STUDENT’S ANSWER is less than that
in the REFERENCE ANSWER, then multiple steps in the REFERENCE ANSWER can correspond to a single step in the
STUDENT’S ANSWER.
“error_category”: A list of type of errors from “DOCUMENT NAME”, “ENTITY NAME”, “NUMERIC”, “INTENDED
CATEGORY”, “SEMANTIC RELATION” and “NO STEP MATCH?” that caused the current “student_step" to be partially or
fully incorrect. Leave it as an empty list if the current “student_step" is completely correct.
“label”: binary score of the current “student_step” as either CORRECT or INCORRECT.

Table 5: An example system prompt with evaluation guidelines for MuSiQue dataset. Similarly, other datasets have
their own domain and subject specific evaluation heuristics included in the System Prompt.
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Parameter Name Value

QLoRA:
o 16
Dropout 0.1
r 64
bias None
task_type CAUSAL LM
Training Arguments:
Effective Batch Size 32
Ir 1.0e — 4
weight decay 0.001
max_grad_norm 0.3
warm up ratio 0.03
Ir_scheduler cosine

Table 6: Values of the parameters and hyperparameters
used while ORPO finetuning.

Dataset N

GSM8K 20175
MATH 20,250
MuSiQue 5,000
SpaRP 8,000

Table 7: Training data sizes for Reward Models
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