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Abstract

Process supervision has played a crucial role in001
advancing the complex multi-step reasoning ca-002
pabilities of Large Language Models (LLMs).003
However, ensuring high-quality and efficient004
automatic process annotation remains a chal-005
lenge. To address this, we introduce Reference-006
Evaluated Process Annotation (REPA), a novel007
and structured framework that enables per-step008
annotation in a single stage. REPA evaluates009
each solution step by referencing one or multi-010
ple ground-truth steps with explicit reasoning011
for assessment. We show that reference-guided012
step-level evaluation effectively facilitates pro-013
cess supervision. Our results demonstrate that014
fine-tuning a base-instruct model and training015
a reward model using REPA annotations im-016
prove reasoning performance under both single-017
greedy decoding and ranking/aggregation of018
multiple LLM-generated outputs. Notably, we019
show improvements across four datasets span-020
ning three domains: mathematical reasoning,021
multi-hop compositional question answering,022
and spatial reasoning. Our work contributes023
to reference-guided automatic process supervi-024
sion which is underexplored and holds potential025
for enhancing LLM reasoning capabilities.1026

1 Introduction027

Large language models (LLMs), with large scale028

pre-training and instruction following, have demon-029

strated remarkable performance on various tasks030

including reasoning tasks (Wei et al., 2022a,b).031

However, complex multi-step reasoning still re-032

mains a challenge for LLMs even when they are033

trained and finetuned with ground-truth chains of034

thoughts (Azerbayev et al., 2024; Yu et al., 2024b).035

Simple answer consolidation strategies, such as036

self-consistency (Wang et al., 2023), can improve037

performance by count-based voting over multiple038

1Codebase provided along with the submission and will
be made public.

generations when the final answers are correct in 039

majority of them. To alleviate this, reranking of 040

generated outputs, with reward models trained to as- 041

sess an output’s correctness, has gained popularity. 042

These reward models primarily fall under two cate- 043

gories: Outcome Reward Models (ORMs) (Cobbe 044

et al., 2021; Yu et al., 2024a) are trained using 045

outcome supervision relying on the correctness of 046

the final answer, while Process Reward Models 047

(PRMs) (Uesato et al., 2022; Li et al., 2023; Khal- 048

ifa et al., 2023; Lightman et al., 2024) are trained 049

using process supervision i.e. relying on the cor- 050

rectness of individual reasoning steps. 051

While PRMs are better because of targeted step- 052

level feedback, they suffer from expensive and com- 053

plex annotation requirements. Human-supervised 054

PRMs (Uesato et al., 2022; Lightman et al., 2024) 055

are very demanding in terms of highly skilled hu- 056

man evaluators. This has led to efforts towards 057

automatic process annotations, including (i) Monte 058

Carlo Tree Search (MCTS) based step evalua- 059

tions (Wang et al., 2024a,c; Luo et al., 2024), 060

which are based on answer correctness from sev- 061

eral continuations and hence are computationally 062

expensive, (ii) adaptive models gauging intermedi- 063

ate steps, e.g., relative step confidence threshold- 064

ing (Lu et al., 2024), which are dependent on and 065

starts from an ORM, or (iii) all-to-all single-step 066

comparisons with reference reasoning traces (Li 067

et al., 2023; Khalifa et al., 2023) that suffer from 068

quadratic step comparisons and potentially erro- 069

neous evaluations that require step combinations. 070

Works related to (i) and (ii) disregard valuable step- 071

by-step information from ground-truth reasoning 072

traces that are available and utilized during super- 073

vised fine-tuning (SFT), while works pertaining 074

to (iii) utilizes the complete ground truth reason- 075

ing traces but in an inefficient, complicated, and 076

fragmented manner. 077

To address these gaps, we investigate and 078

propose Reference-Evaluated Process 079

1



System Prompt ( ):
You are a teacher grading a candidate's assignment .... 
Match the steps of Candidate Answer with that in Reference Answer and Context sentences.
Score the steps of Candidate Answer as below:

A step that matches or is factually consistent with one or more steps in the Reference Answer and / or Context sentences is labelled as correct (+1).
While matching steps, evaluate on the basis of topics, entities, variables ... Ta
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Context ( ):
[ ] What is the area, in square units, of a triangle with vertices at $(0,0)$, $(0,5)$, and $(7,12)$? Express your answer as a decimal to the nearest tenth.

Reference Answer ( ):
[ ] Let's think step by step.\nThe base of the triangle lies on the
$y$-axis, and is 5 units long.
[ ] The height of the triangle is the horizontal distance from the
point $(7,12)$ to the $y$-axis, and is 7 units long.
[ ] Thus, the area of the triangle is $\frac{5\cdot7}{2}=\boxed{17.5}$
square units.\nHence, the answer is 17.5.

Candidate Answer ( ):
[ ] Let's think step by step.\nTo calculate the area of this triangle, we simply
find the area of a rectangle containing the triangle and divide by $2$.
[ ] The area of this rectangle is\n\n\[(7)(5) = 35\]square units.
[ ] The rectangle that will encompass our triangle is half that size, so the area
of the triangle is\n\n$\boxed{17.5}$ square units.\nHence, the answer is 17.5.

Explicit Explanation + Multiple Step Alignment
Captures surface form

variation

No direct match for 
calculating area of rectangle in

 or .

Direct single step alignment
may not be possible with

surface form variations in terms
of approach,  equations etc.

Context, Reference
Answer and Candidate

Answer are delimited for
alignment

Crucial number but can't be
heuristically matched in  or

.

explanation: Based on previous step [ ], the candidate continues to calculate the area of rectangle that contains the
triangle with the sides 7 and 5 as 35 which is numerically correct. The steps [ ] and [ ] mention the sides of the triangle,
hence the rectangle as well, to be 5 and 7 respectively. Thus, this step correct.

label: +1

Evaluation exemplar
under  framework

Figure 1: Determining the correctness of a step in a candidate solution against a given context and reference
solution presents several challenges, including step alignment, surface-form variations, and heuristic limitations. To
address these issues, we propose a unified, single-stage framework: Reference-Evaluated Process Annotation (REPA:
(S, C,R,O) → E). REPA produces an explanation-based step-by-step evaluation E of a candidate model output O,
grounded to a given context C, ground-truth reasoning R, and system prompt S (Section 3.1).

Annotation (REPA), a framework (Figure 1)080

that effectively leverages the complete set of081

intermediate steps from the ground-truth reasoning082

traces (R) and question sentences (C) as references083

to evaluate the correctness of each model output084

(O) response step, enabling automatic process085

supervision. We devise a generic and structured086

evaluation scheme for each step of models’ output087

response O with a focus on (i) explicit reasoning088

for the evaluation, and (ii) multi-step comparisons089

between responses and references. The proposed090

scheme enables a single-stage evaluation that091

scales additively with the token length of both the092

response and the reference.093

We demonstrate the effectiveness of REPA anno-094

tations in two settings: (i) fine-tuning a model in095

an offline reinforcement learning (RL) setup that096

improves performance with greedy decoding, and097

(ii) training Reward Models (RMs) for ranking and098

aggregating multiple LLM generations. We con-099

duct extensive experiments on four datasets spread100

across three domains: two mathematical reason-101

ing datasets, namely, GSM8K (Cobbe et al., 2021)102

and MATH (Hendrycks et al., 2021); one multi-103

hop compositional question answering dataset,104

namely, � MuSiQue-Ans (Trivedi et al., 2022);105

and one spatial reasoning dataset, small SpaRP, i.e.,106

SpaRP-S (Rizvi et al., 2024), which in turn is a col-107

lection of four textual spatial reasoning dataset cov-108

ering various spatial characterizations of objects,109

relations, and contexts. Our approach outperforms110

strong baselines over majority of the datasets. In 111

summary, our key contributions include: 112

• We propose a generic, single-stage, and struc- 113

tured reference-guided evaluation framework 114

(REPA) with the focus on annotation reasoning 115

and multi-step alignment. Our framework utilizes 116

the entire ground-truth reasoning trace, generally 117

available for SFT which is often overlooked. 118

• We utilize REPA annotations to improve reason- 119

ing capabilities of LLMs under various scenarios 120

such as finetuning, reward model training, and 121

pairwise vs. pointwise training. 122

• We extensively evaluate our framework on two 123

mathematical datasets (GSM8K and MATH), a 124

question-answering dataset (� MuSiQue-Ans), 125

and a spatial reasoning dataset (SpaRP), demon- 126

strating improvements over the baselines. We 127

discuss key factors and insights of our methodol- 128

ogy. 129

2 Related Work 130

Reasoning abilities of LLMs. Reasoning re- 131

mains a challenging area for the Large Language 132

Models (LLMs). Various prompting techniques, 133

such as chain-of-thought, few-shot prompting and 134

their variants (Wei et al., 2022b; Kojima et al., 135

2022; Yao et al., 2023; Hao et al., 2023; Bi et al., 136

2024) elicited reasoning capabilities in LLMs. Im- 137

portance of individual steps while prompting (Fu 138

et al., 2023; Zhou et al., 2023) was soon found to 139

be crucial in successfully solving multi-step rea- 140
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soning problems. While prompt-only techniques141

show promising results, their performances are con-142

strained by and sensitive to prompt design and na-143

ture of tasks (Ye and Durrett, 2022). Consequently,144

explicitly finetuning with high-quality reasoning145

traces for improving LLM reasoning capabilities146

has become popular (Yu et al., 2024b; Luo et al.,147

2025).148

Outcome and Process Supervision. Supervised149

finetuning quickly results in saturation, leading to150

the search for other advanced techniques and better151

supervision signals. Outcome supervision (Cobbe152

et al., 2021; Yu et al., 2024a) relies on signal based153

on the final answer, and hence, is easier to ob-154

tain. Process supervision offers advantages in the155

form of fine-grained feedback from individual rea-156

soning steps, however, early work (Uesato et al.,157

2022; Pan et al., 2023; Lightman et al., 2024) re-158

lied on time-consuming and costly human annota-159

tion. To alleviate this problem, several recent ap-160

proaches have emerged for automating process su-161

pervision. Monte-Carlo Tree Search (MCTS) based162

approaches (Wang et al., 2024a,c; Luo et al., 2024;163

Zhang et al., 2024) target obtaining process anno-164

tation by several continuations from intermediate165

steps whose correctness are evaluated based on the166

final step. In parallel, work that focus on efficiency167

rely either on adapting outcome-supervision (Lu168

et al., 2024), or a pipelined multi-stage approach169

with quadratic step comparison but single step170

alignment between candidate and reference solu-171

tions (Li et al., 2023; Khalifa et al., 2023). Inspired172

by these approaches, our work introduces a unified,173

single-stage and structured evaluation scheme for174

automatic process annotation, with flexible align-175

ment and multi-step comparison with reference176

solution. We also explore its effectiveness under177

both finetuning and verification scenarios.178

3 Our Approach179

3.1 Reference-Evaluated Process Annotation180

(REPA)181

Consider a ground-truth reasoning path R =182

{r}mi=1 consisting of a sequence of m steps, a183

model generated output O = {o}ni=1 consisting184

of n steps, and a sequence of s sentences as context185

with question C = {c}si=1. An answer or outcome186

annotation y ∈ R is a score indicating a measure of187

correctness of the model’s output. Most commonly,188

y = I(on = rm); i.e., the output’s answer matches189

with the ground-truth reasoning answer. In con- 190

trast, a process annotation Y = {y | y ∈ R}ni=1 is 191

a sequence of scalar scores assigned to the corre- 192

sponding steps oi ∈ O. 193

We propose Reference-Evaluated Process 194

Annotation (REPA: (S, C,R,O) → E) as a uni- 195

fied, single-stage framework that generates a step- 196

by-step evaluation E = {ε}ni=1 of a model out- 197

put O with reference to a context C, a ground 198

truth reasoning R, and a system prompt S that 199

defines evaluation heuristics and guidelines. Each 200

step oi is evaluated in a structured format ε = 201

(e, c+, o+, r+, ϵ, yi), where e provides an explicit 202

explanation of the evaluation, ϵ is an optional list of 203

error categories, and yi ∈ {−1,+1} is the assigned 204

evaluation label. In addition to providing justifi- 205

cation for the evaluation, the explanation e aligns 206

the step oi with potentially multiple reference steps 207

(oi 7→ c+ ∪ o+ ∪ r+), where c+ ⊂ C represents a 208

subset of relevant context sentences, o+ ⊂ O\{oi} 209

includes other related output steps, and r+ ⊂ R 210

consists of selected ground-truth reasoning steps 211

used for evaluation. This evaluation scheme en- 212

ables efficient process annotation with an additive 213

token complexity of O(s + m + n), and allows 214

for multiple alignment possibilities, particularly in 215

cases where m ̸= n: 216

1. One-to-one – Most simple alignment where 217

one output step aligns directly and completely 218

with at most one step, making it sufficient for 219

evaluation. The alignment can take one of 220

the forms: (a) a single ground-truth reasoning 221

step (oi 7→ rj), (b) a single context sentence 222

(oi 7→ cj), (c) follows directly from or com- 223

plements another output step (oi 7→ ol), or (d) 224

no alignment at all (oi 7→ ∅). In this case, 225

|c+ ∪ o+ ∪ r+| ≤ 1. 226

2. One-to-many – An output step requires align- 227

ment with at least two steps for its evaluation. 228

Such an alignment is necessarily required: 229

i) When the model output step oi is a compos- 230

ite step, either omitting minor intermediary 231

steps or merging multiple steps into one. Its 232

correctness must be evaluated against mul- 233

tiple reference steps rj and ck. In this case, 234

o+ = ϕ and |c+ ∪ r+| > 1. This is likely 235

when n < m or n < (m+ s). 236

ii) When the model output step oi is a simple 237

atomic step while the ground-truth steps are 238

composite, its correctness must be evaluated 239

in conjunction with at least one other output 240
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step ol and at least one reference step rj or241

context sentence ck. In this case, |o+| ≥ 1242

and |c+ ∪ r+| ≥ 1. This is likely when n >243

m or n > (m+ s).244

In summary, our REPA framework defines step245

correctness based on its alignment with one or more246

ground-truth reasoning steps, other output steps or247

context sentences, assuming the ground-truth rea-248

soning guarantees at least one valid path to the final249

answer. The multi-step alignment, combined with250

explicit step evaluation and explanations, accom-251

modates surface form variations such as different252

topical approaches (Figure 1) and expression for-253

mats. This ensures that the steps are properly con-254

textualized within the broader reasoning structure,255

allowing for their more accurate evaluation.256

We implement REPA using LLM-based evalua-257

tion. Off-the-shelf LLMs can be directly employed258

with k-shot exemplars, where a small, manually259

annotated set of diverse examples captures key260

evaluation principles of REPA. To generate auto-261

matic annotations for model-produced reasoning262

traces, we use a model—typically from the previ-263

ous fine-tuning stage in an iterative setup—to gener-264

ate multiple solutions per problem via non-greedy,265

temperature-based decoding. Each solution is then266

decomposed into individual steps, typically delin-267

eated by newline characters. Our REPA framework268

subsequently evaluates the correctness of each step,269

enabling automatic process supervision.270

3.2 Training Approach271

3.2.1 REPA–based Finetuning (REPA–ORPO)272

We propose REPA-based fine-tuning of a model273

to enhance its reasoning capabilities. The step-274

by-step process annotations Y = {yi}ni=1, de-275

rived using the REPA framework, can be effec-276

tively integrated with both online and offline Rein-277

forcement Learning (RL). For ease of implemen-278

tation, training stability, and resource efficiency,279

we employ Odds Ratio Preference Optimization280

(ORPO) (Hong et al., 2024) for preference training281

over chosen and rejected pairs (Ow, Ol).282

In REPA-ORPO, we compute a mean aggrega-283

tion ȳ = 1
n

∑
yi of the reasoning step annotations284

to quantify reasoning trace correctness and com-285

bine this with the final answer correctness y. The286

tuple (y, ȳ) is used as the effective score for pref-287

erence pair identification, where yw = 1, yl = −1,288

and ȳw > ȳl. Thus REPA-ORPO employs a more289

comprehensive set of preference pairs, where the290

chosen solution demonstrates superiority over the 291

rejected solution with respect to both reasoning 292

quality and answer accuracy. In contrast, Outcome- 293

ORPO is trained using preference pairs (Ow, Ol) 294

that are determined solely by final answer accuracy, 295

i.e., yw = 1 and yl = −1. 296

3.2.2 REPA–based Reward Models 297

(REPA–RMs) 298

To enhance inference-time reasoning performance, 299

we propose training REPA-based Outcome and Pro- 300

cess Reward Models. 301

REPA–ORM. We propose training a REPA-based 302

Outcome Reward Model (REPA-ORM) under a pair- 303

wise optimization setting between two instances: 304

Lpairwise
ORM = − log

(
σ(rθ(C,Ow))− 305

σ(rθ(C,Ol))
)

(1) 306

where, σ is the sigmoid function, rθ is the reward 307

model that scores an output in reference to the 308

input, Ow and Ol constitute a paired output for a 309

given context-question C, with Ow representing the 310

chosen output, and Ol denoting the rejected out- 311

put. Following our methodology outlined in Sec- 312

tion 3.2.1, the REPA-ORM is trained on a superior 313

set of preference pairs. These pairs are identified 314

based on the effective score (y, ȳ) that combines 315

the final answer with the mean aggregation ȳ of the 316

REPA annotations, such that yw = 1, yl = −1, and 317

ȳw > ȳl. 318

We also train and compare a pairwise-ORM on 319

preference pairs identified solely based on final 320

answer accuracy, i.e., yw = 1 and yl = −1. Ad- 321

ditionally, we implement a pointwise-ORM under 322

classification setting using a cross-entropy loss: 323

Lpointwise
ORM = −

(
y log σ(rθ(C,O))+ 324

(1− y) log (1− σ(rθ(C,O)))
)

(2) 325

REPA–PRM. We utilize the step-level evaluations 326

yi obtained through REPA as direct reward signals 327

to train process reward models. The REPA-PRM is 328

trained in a stepwise classification setting, using 329

the following cross-entropy loss: 330

LPRM = −
n∑

i=1

(
yi log σ(rθ(C, o1:i))+ 331

(1− yi) log (1− σ(rθ(C, o1:i)))
)

(3) 332
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where o1:i is the sub-sequence of output O till the333

ith step. Unlike ORMs which predict a single so-334

lution score for O, PRMs generate a probability335

sequence P = {pi}ni=1 for each step oi ∈ O.336

These step-wise probabilities are aggregated into a337

final correctness score using functions such as min,338

prod (or equivalently sum_log)(Lightman et al.,339

2024; Wang et al., 2024a), last, and max(Wang340

et al., 2024c).341

Ranking and Aggregation. We use reward mod-342

els to score multiple generations during inference.343

We then either do rank-and-select (e.g. Best-of-N344

sampling) or weighted aggregation as:345

â = argmax
a

N∑
i=1

I(ai = a) · f(C,Oi) (4)346

where each final answer ai from Oi is grouped347

and weighted by a function f(·) over N solutions.348

In a simple strategy like self-consistency (Wang349

et al., 2023), the weighting function f accounts for350

the presence of an answer ai, meaning all occur-351

rences of an answer are given equal weight., i.e.,352

f(C,Oi) = 1. Alternatively, the probability scores353

from Reward Models are used as weights for aggre-354

gation, effectively enhancing reasoning accuracy355

by prioritizing solutions that exhibit both correct356

final answers and well-structured reasoning steps.357

4 Experiment Results358

4.1 Experimental Set-up359

Datasets. We conduct extensive experiments360

over a suite of reasoning datasets:361

• Mathematical Reasoning We use two mathe-362

matical datasets, GSM8K (Cobbe et al., 2021),363

which is a collection of grade school math word364

problems, and MATH (Hendrycks et al., 2021),365

which contains high school competition-level366

math problems across seven diverse topics. For367

development, we create a train-validation split368

by dividing the training set of both datasets in a369

90:10 ratio.370

• Question-Answering We use � MuSiQue-Ans371

dataset (Trivedi et al., 2022), a challenging multi-372

hop question-answering dataset constructed by373

composing six diverse reasoning graphs of sub-374

questions from five different sources. For de-375

velopment, we create a train-validation split by376

dividing the training set in an 80:20 ratio.377

• Spatial Reasoning We use the small 378

SpaRP (Rizvi et al., 2024), i.e., SpaRP-S 379

dataset, which comprises four textual spatial 380

reasoning sub-datasets covering various spatial 381

characterizations and including benchmarks such 382

as SpaRTUN (Mirzaee and Kordjamshidi, 2022) 383

and StepGame (Shi et al., 2022). The objective 384

in SpaRP is to infer the spatial relation between 385

two objects when their direct relation is not 386

provided in the text but can be deduced through 387

spatial relation composition. SpaRP has its own 388

validation set. 389

Models. We aim to demonstrate the use of a sin- 390

gle Large Language Model (LLM) throughout the 391

pipeline to improve itself. We, therefore, use the 392

Llama-3 8B Instruct Model (Grattafiori et al., 2024) 393

for all the three tasks: 394

i) As an Evaluator model for reference-guided 395

step-annotations within our REPA framework. 396

Depending on the problem diversity, we man- 397

ually create structured step-by-step example 398

evaluations per dataset, ranging from 6 for 399

SpaRP to 56 for MATH dataset with 7 topics. 400

Each dataset undergoes 5–shot evaluations using 401

dataset-specific evaluation guidelines as system 402

prompts. See Appendix A for details.2 403

ii) As a Base-Instruct model that is fine-tuned to 404

enhance its reasoning performance under greedy 405

decoding. While our framework supports multi- 406

ple iterations, we limit our study to the first two 407

due to resource constraints. The first iteration 408

involves standard single-epoch Supervised Fine- 409

Tuning (SFT) on the training split. In subse- 410

quent iterations, leveraging LLM-generated syn- 411

thetic data, we start by generating N = 20 solu- 412

tions per problem from the previous iteration’s 413

model with temperature 1. We annotate these 414

solutions using final answers, and potentially, 415

using REPA framework as well. Finally, we iden- 416

tify preference pairs for next-iteration training 417

under the ORPO setting. See Appendix B for 418

details. 419

iii) As Reward Models (RMs) used as verifiers for 420

ranking and weighted-aggregation during infer- 421

ence. Similar to model finetuning, we generate 422

N = 20 solutions per problem from the base- 423

instruct model with temperature 1. We annotate 424

2Our framework could benefit from specialized evaluator
models like Prometheus 2 (Kim et al., 2024), supporting fur-
ther development in this area. Alternatively, larger and more
capable models can also serve as evaluators.
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these solutions using final answers for ORM and,425

additionally, the REPA framework for PRM. We426

pose the PRM training as a standard-language427

modelling task, predicting two special tokens428

for correct and incorrect steps against a special429

end-of-step (EOS) token. We trained RMs for430

one epoch under both pointwise and pairwise431

loss setting with equivalent number of training432

examples, i.e., a collection of N positive and N433

negative examples can either be used as N pairs434

or 2N individual instances. See Appendix C for435

specific details. While RMs can be trained and436

updated using generations from each iteration of437

the fine-tuned base-instruct model, we limit our438

demonstration to the output of the first iteration439

due to resource constraints.440

While our experiments primarily utilize the441

Llama-3 8B Instruct model, our methodology is442

broadly applicable to other models. To demonstrate443

the generalizability of REPA-based process supervi-444

sion, we present Reward Model (RM) results using445

a different model family—Qwen 2.5—across two446

sizes: 3B and 32B.447

Metrics, Baselines and Experimental Setup.448

We report3 the accuracy for the GSM8K and449

MATH datasets, accuracy and F1 metric for the450

� MuSiQue-Ans dataset, and the macro-F1 for the451

SpaRP dataset.452

In the finetuning scenario, we evaluate our REPA-453

ORPO iteration trained on preference pairs formed454

using both outcome supervision and the mean rea-455

soning scores of the step-by-step annotations. we456

benchmark REPA-ORPO iteration against Outcome-457

ORPO (preference pairs formed only by outcome458

supervision) and Supervised Fine-Tuning (SFT) it-459

erations with an equivalent number of ground-truth460

reasoning traces.461

In the verification scenario, we train and evaluate462

– (a) pairwise REPA-ORMs, equivalent to the im-463

plicit reward model of the REPA-ORPO finetuning,464

with preference pairs formed using both outcome465

supervision and mean reasoning scores of the step-466

by-step annotations, and (b) REPA-PRMs trained467

under a pointwise classification setting at each EOS468

token. We benchmark these against the majority-469

voted self-consistency (Wang et al., 2023), pairwise470

3Exact Match as accuracy for GSM8K. competition_math
metric as implemented in the evaluate library for the MATH
dataset. Implementation from the source github repository for
the � MuSiQue-Ans dataset. The F1 metric implementation
in the scikit-learn library for the SpaRP dataset.

and pointwise ORMs. While pairwise RMs are bal- 471

anced with both positive and negative examples, 472

we randomly sample equal number of positive and 473

negative examples to train a balanced pointwise 474

RMs. The metrics for ORMs and PRMs are re- 475

ported under both the settings – (a) with weighted- 476

aggregation, i.e., RM-weighted self-consistency, 477

and (b) without aggregation, i.e., Best-of-N (BoN) 478

sampling with only the best scored solution consid- 479

ered for evaluation. 480

We report these RM-based evaluations on N = 481

20 solutions generated using a 1st iteration SFT 482

model. While prior work (Lightman et al., 2024; 483

Wang et al., 2024a; Luo et al., 2024) have shown 484

the min or prod aggregation to be the better per- 485

forming aggregation strategies, other work (Wang 486

et al., 2024c) have reported these to underperform 487

ORM when the annotation process differs. For their 488

annotation process, they reported last aggregation 489

strategy, among others, to outperform ORM. We 490

also found the min and prod aggregation strategies 491

underperforming the ORMs, while last aggregation 492

strategy performing the best. Hence, all the metrics 493

are reported using the last aggregation strategy for 494

PRMs. 495

4.2 Results and Discussion 496

REPA Helps Base Instruct Finetuning. We re- 497

port the performances of finetuning LLM followed 498

by greedy decoding in Table 1. REPA-ORPO is 499

shown to perform the best across three of the four 500

datasets, with an improvement of at least 0.26 501

points for MATH dataset and at most 1.21 points 502

for the SpaRP-S dataset, compared to the next 503

best Outcome-ORPO models. This underscores 504

the effectiveness of REPA in reasoning step annota- 505

tion and identifying superior preference pairs than 506

outcome-only preference pairs. Both these ORPO 507

models significantly outperform the SFT models 508

trained on ground-truth reasoning traces, except for 509

the GSM8K dataset. In the case of GSM8K, we ob- 510

serve a marginal performance decrease for both the 511

ORPO finetuned models and a performance stagna- 512

tion for the 2nd SFT iteration compared to the 1st 513

SFT iteration. This may indicate the base-instruct 514

Llama-3 8B model is saturated with the GSM8K 515

data and may require working with larger, extended 516

and augmented versions such as MetaMATH (Yu 517

et al., 2024b). 518

REPA Improves Reward Model Training. Ta- 519

ble 2 shows that REPA-PRM performs the best 520
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Training Method Mathematical Reasoning Question Answering Spatial Reasoning
GSM8K MATH � MuSiQue-Ans SpaRP-S

Acc. (↑) Acc. (↑) Acc. (↑) / F1 (↑) F1 (↑)

SFT 1st Iteration 70.43 21.22 23.58 / 32.53 35.00
SFT 2nd Iteration 70.43 22.08 26.31 / 35.12 47.13

SFT + Outcome-ORPO 69.07 23.16 38.15 / 49.85 49.75

SFT + REPA-ORPO 69.75 23.42 38.89 / 50.53 50.96

Table 1: Performance evaluations of Llama-3 8B Instruct model with greedy decoding under different training
methods. Best values in bold, second best in underline.

Aggregation / Ranking Mathematical Reasoning Question Answering Spatial Reasoning
Method GSM8K MATH-500 � MuSiQue-Ans SpaRP-S

Acc. (↑) Acc. (↑) Acc. (↑) / F1 (↑) F1 (↑)

Self-Consistency (SC) 74.91 23.40 19.74 / 25.18 34.37
pairwise-ORM 78.54 16.30 30.45 / 42.87 40.78

pairwise-ORM + SC 79.45 21.00 34.13 / 43.82 40.77
pointwise-ORM 79.76 20.20 33.43 / 45.42 49.79

pointwise-ORM + SC 79.83 23.80 34.80 / 44.45 49.78

REPA-ORM 79.15 19.00 34.67 / 45.11 41.95
REPA-ORM + SC 79.22 20.60 35.29 / 45.25 41.90

REPA-PRM 79.98 20.90 34.84 / 45.52 50.08
REPA-PRM + SC 80.29 24.10 32.11 / 40.43 46.92

Table 2: Performance evaluations of aggregators and RM verifiers on N = 20 sample output generations from
Llama-3 8B SFT 1st iteration. RM only entries indicate Best-of-N (BoN) sampling based results. Best values in
bold, second best in underline. Mean of metrics reported on 3 groups of sampling results.

across all four datasets, outperforming multiple521

variants of ORMs as well as majority-voted Self-522

Consistency (SC). More specifically, REPA-PRM523

with Best-of-N (BoN) sampling leads the per-524

formance on the � MuSiQue-Ans and SpaRP-S525

datasets, while REPA-PRM with SC leads the per-526

formance on the GSM8K and MATH datasets. In527

general, RMs with SC (i.e. aggregation) often leads528

to improved performance compared to RM with529

BoN sampling (i.e. ranking), except for a few530

cases (e.g. REPA-PRM) on the � MuSiQue-Ans531

and SpaRP-S dataset where the aggregation harms532

the sufficiently powerful reward model. MATH-533

SHEPHARD (Wang et al., 2024a) observed sim-534

ilar trend with their RMs evaluated on GSM8K535

dataset. In the pairwise preference optimization536

setting, REPA-ORM with pairs identified and priori-537

tized based on both final answers and aggregated538

reasoning scores, majorly outperforms its coun-539

terpart pairwise-ORM trained on pairs identified540

using only final answers. Both these showcase the541

effectiveness of our REPA framework for better re-542

ward modelling.543

REPA Can Adapt Between Surface Form Preci-544

sion and Flexibility. Since REPA evaluates multi-545

ple model outputs against a single ground-truth rea- 546

soning trace, there is a concern that it may overfit to 547

specific surface-form patterns rather than capturing 548

broader reasoning diversity. This concern is further 549

reinforced by empirical observation of REPA-PRM 550

with Best-of-N (BoN) sampling achieving the high- 551

est performance on datasets with limited surface 552

form diversity, such as � MuSiQue-Ans and SpaRP. 553

Self-consistency (SC) underperforms when used 554

with REPA-PRM on these datasets, whereas other 555

reward models show comparable or improved per- 556

formance. This suggests that REPA-PRM may strug- 557

gle when evaluating outputs with varied reasoning 558

expressions. 559

However, REPA’s design mitigates this limita- 560

tion through multi-step alignment and explicit ex- 561

planations, allowing it to generalize beyond exact 562

surface-form matches. In challenging datasets with 563

more diverse reasoning structures such as MATH- 564

500, REPA-PRM with aggregation-based methods 565

(e.g., self-consistency) outperform both Best-of-N 566

(BoN) sampling as well as other reward models. 567

Performance Scaling with the Number of Candi- 568

date Solutions. Table 3 shows consistent perfor- 569

mance improvements across three strategies—self- 570
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Agg./Rank. N=4 N=16 N=64 N=128 N=256

SC 11.36 17.08 17.83 18.20 18.16
point.-ORM 17.62 23.14 24.00 25.64 25.22
REPA-PRM 16.88 22.34 24.14 25.98 25.36

Table 3: Accuracy of Llama-3-8B verifiers using BoN
sampling across different no. of candidate solutions (N)
on MATH-500 test-set. Mean of accuracy reported on
10 groups of sampling results.

consistency, pointwise ORM, and REPA-PRM—as571

the number of candidates increases from 4 to 256572

on the MATH-500 test set. Notably, REPA-PRM573

emerges as the best performing strategy as the num-574

ber of generations increases. However, all strate-575

gies peak at N=128 generations, with a slight per-576

formance decline afterwards.577

Pointwise vs Pairwise RMs. While pairwise-578

loss RM training is generally considered more ef-579

fective than pointwise-loss RMs (Liu et al., 2025),580

empirical evidence remains divided. For instance,581

even accounting for differences in annotation guide-582

lines and human expectations, Liu et al.(2025)583

found pairwise RM training superior, whereas584

Wang et al.(2024b) reported better results with585

pointwise RM training. Our study adds to this586

debate with empirical evidence showing pointwise-587

ORM outperforming pairwise-ORM, significantly588

so on the MATH and SpaRP datasets. Both mod-589

els are trained on a balanced set of positive and590

negative instances based on final answer outcomes,591

with pairwise-ORM forming pairs in reference to592

given contexts. Furthermore, REPA-ORM also un-593

derperforms pointwise-ORM, despite incorporating594

superior pairs selected based on both outcome and595

mean aggregated reasoning scores.596

REPA-PRM Is Consistent Within Model Fam-597

ily. Table 4 reports performance on the Math-598

500 test set using two model sizes (3B and 32B)599

from the Qwen-2.5 family as candidate solu-600

tion generators. We also evaluate verifiers from601

two different families, Llama-3 8B and Qwen-602

2.5 3B. REPA-PRM consistently outperforms self-603

consistency and ORM when applied to the same604

base model. Verifier effectiveness is model-family605

dependent—a verifier trained within a model fam-606

ily tends to perform better on generations from607

that family. For example, Llama-3 8B PRM under-608

performs compared to Qwen-2.5 3B ORM when609

evaluating generations from Qwen-2.5 32B. This610

discrepancy may stem from differences in model611

Generator Verifier Agg./Rank. Math–500

Qwen-2.5-3B

– SC 31.4

Llama-3-8B REPA-PRM 32.2
REPA-PRM + SC 34.2

Qwen-2.5-3B

point.-ORM 33.4
point.-ORM + SC 33.8

REPA-PRM 32.2
REPA-PRM + SC 34.6

Qwen-2.5-32B

– SC 64.6

Llama-3-8B REPA-PRM 55.0
REPA-PRM + SC 65.4

Qwen-2.5-3B

point.-ORM 57.6
point.-ORM + SC 65.6

REPA-PRM 58.6
REPA-PRM + SC 66.0

Table 4: Accuracy of REPA-PRMs across model fami-
lies and sizes on MATH-500 test-set on 20 generations.
Mean accuracy reported on 3 groups of sampling re-
sults.

output distribution across families, suggesting that 612

reward models generalize best within their own 613

model lineage. These findings highlight the robust- 614

ness of REPA-PRM within the same model family 615

while also emphasizing the challenges of applying 616

verifiers across different architectures. 617

5 Conclusions 618

Achieving high-quality and efficient automatic pro- 619

cess supervision is crucial for enhancing the com- 620

plex multi-step reasoning abilities of Large Lan- 621

guage Models (LLMs). To this end, we propose 622

Reference-Evaluated Process Annotation (REPA), 623

a structured framework that enables per-step anno- 624

tation in a single stage by evaluating each solution 625

step against one or multiple ground-truth reference 626

steps with explicit reasoning. Our experimental 627

results demonstrate that fine-tuning a base-instruct 628

model and training a reward model with REPA lead 629

to improved reasoning performance under both sin- 630

gle greedy decoding and ranking/aggregation of 631

multiple solutions. Furthermore, we observe con- 632

sistent improvements across four datasets spanning 633

mathematical reasoning, multi-hop compositional 634

question answering, and spatial reasoning. We also 635

show that pointwise-ORMs still outperform REPA- 636

ORMs. These findings highlight the potential of 637

reference-guided automatic process supervision as 638

a promising approach for enhancing LLM reason- 639

ing capabilities. 640

8



Limitations641

REPA and its associated models depend on the642

availability of complete ground-truth reasoning643

chains to perform reference-guided step evalua-644

tions. While this reliance is a key limitation, we645

note that the ground-truth reasoning traces required646

by REPA are the same as those commonly used in647

Supervised Finetuning (SFT)—a foundational step648

in most finetuning methodologies. Thus, our ap-649

proach does not introduce an additional annotation650

burden beyond what is typically required for train-651

ing strong instruction-following models.652

We also note that REPA, like other LLM-based653

automatic processes, is susceptible to some degree654

of noise. Nevertheless, we find that the structured,655

reference-evaluated step annotations it provides are656

effective for training both Process Reward Mod-657

els (PRMs) and base-instruct models, leading to658

improved reasoning performance. Despite its lim-659

itations, REPA remains a practical and impactful660

approach for process supervision and model en-661

hancement.662
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A Evaluation Prompt878

An example system prompt with evaluation guide-879

lines for MuSiQue dataset is provided in Table 5.880

Similarly, other datasets have their own domain881

and subject specific evaluation heuristics included882

in the System Prompt.883

B Details of Finetuning884

We used the Huggingface’s TRL library and885

QLoRA for parameter efficient finetuning of vari-886

ous ORPO models with the values of parameters887

shown in Table 6.888

C Details of Reward Model (RM)889

Training890

We used ∼ 3× ≈ 20K of SFT training dataset size891

for mathematical datasets. This is still significantly892

smaller than other work (Lightman et al., 2024;893

Wang et al., 2024a) that are usually trained on >894

150K solutions. The number N of individual posi-895

tive and negative samples (i.e. N pairs) for Reward896

Model training are presented in Table 7.897

11

https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM


Role Content

System

You are a teacher grading a student’s assignment. You are given a ground-truth correct REFERENCE ANSWER and a
STUDENT’S ANSWER. You are asked to match the steps of STUDENT’S ANSWER with that in the REFERENCE ANSWER.
You are required to score the steps of STUDENT’S ANSWER as below:

A step in the STUDENT’S ANSWER that matches or is factually consistent with one or more steps in the REFER-
ENCE ANSWER is labelled as CORRECT. While matching steps, evaluate on the basis of:

(a) whether the document name matches or not
(b) whether the entities present in the steps match or not
(c) whether the numbers mentioned match or not, and finally
(d) whether the semantic relation between all these match or not.

A step in the STUDENT’S ANSWER that doesn’t match or is factually incorrect with respect to the provided REF-
ERENCE ANSWER is labelled as INCORRECT. Thus a step that may be factually correct but is not matched to one or more
steps in the REFERENCE ANSWER is also to be marked as INCORRECT.

You need to evaluate ALL the steps of the STUDENT’S ANSWER. Provide your evaluation ONLY and ONLY in
JSON format as a list of dictionaries whose keys and their intended purpose are:

“student_step”: The current step number of the STUDENT’S ANSWER.
“reasoning”: The reasoning expanding upon why or what part of the current `student_step` of the STUDENT’S ANSWER, either
DIRECTLY and ENTIRELY in itself or probably in combination with other steps in the STUDENT’S ANSWER, is correct or
incorrect in reference to one or more REFERENCE ANSWER steps.
“student_combining_steps”: A list of previous `student_step` that when combined with the current `student_step` will be part or
whole of one or more steps in the REFERENCE ANSWER. Leave it as an empty list if the current `student_step` DIRECTLY
and ENTIRELY matches with one or more steps in the REFERENCE ANSWER. If the number of steps in the STUDENT’S
ANSWER is more than that in the REFERENCE ANSWER, then a single step in REFERENCE ANSWER can correspond to
multiple steps in the STUDENT’S ANSWER and this list will be non-empty for some of the `student_step`.
“matching_reference_steps”: A list of steps in the REFERENCE ANSWER based on which the correctness or the incorrectness
of the current `student_step` is reasoned and arrived at. If the number of steps in the STUDENT’S ANSWER is less than that
in the REFERENCE ANSWER, then multiple steps in the REFERENCE ANSWER can correspond to a single step in the
STUDENT’S ANSWER.
“error_category”: A list of type of errors from “DOCUMENT NAME”, “ENTITY NAME”, “NUMERIC”, “INTENDED
CATEGORY”, “SEMANTIC RELATION” and “NO STEP MATCH” that caused the current `student_step` to be partially or
fully incorrect. Leave it as an empty list if the current `student_step` is completely correct.
“label”: binary score of the current `student_step` as either CORRECT or INCORRECT.

Table 5: An example system prompt with evaluation guidelines for MuSiQue dataset. Similarly, other datasets have
their own domain and subject specific evaluation heuristics included in the System Prompt.
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Parameter Name Value

QLoRA:

α 16
Dropout 0.1

r 64
bias None

task_type CAUSAL_LM

Training Arguments:

Effective Batch Size 32
lr 1.0e− 4

weight decay 0.001
max_grad_norm 0.3

warm up ratio 0.03
lr_scheduler cosine

Table 6: Values of the parameters and hyperparameters
used while ORPO finetuning.

Dataset N

GSM8K 20175
MATH 20,250

MuSiQue 5,000
SpaRP 8,000

Table 7: Training data sizes for Reward Models
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