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Abstract

We study the probabilistic behaviors of stochastic gradient descent with random
reshuffling (RR) on nonconvex problems. We prove that the same complexity
(except for a logrithmic term) as that of in expectation case also holds with high
probability, which characterizes the performance of RR for a single run instead of
averaging infinitly many realizations. Our analysis does not impose any additional
assumptions on the stochastic gradient errors, which admits heavy tails. This is in
contrast to high probabiltiy analyses of SGD that rely on sub-Gaussian stochastic
gradient errors or tricks like clipping, momentum, etc. Furthermore, leveraging the
established high probability error bounds, we propose a simple stopping criterion
for RR that introduces few computational costs. We prove that the function value
strictly decreases with high probability before the stopping criterion is triggered,
ensuring that the criterion will indeed be activated. Finally, a “last iterate” result
is built for the iteration returned with this stopping criterion. We believe that our
new developments for RR serve as a stepping stone towards enabling more refined
analyses for characterizing its performance.

1 Introduction

In this work, we focus on the finite-sum optimization problem defined as follows:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where each component function fi is continuously differentiable but not necessarily convex. Such
problems arise in various engineering fields, including machine learning and signal processing [1]. In
many modern applications, the number of component functions n is so large that applying stochastic
optimization methods is necessary. In this work, we will study the stochastic gradient descent with
random reshuffling (RR) for solving problem (1), which is a stochastic variant of the classical
gradient descent method.

At iteration t, RR first samples a permutation πt of {1, . . . , n} uniformly at random. Then, it starts
with an initial inner iterate x0

t = xt and updates xt to xt+1 by consecutively applying the gradient
descent type steps as

xi
t = xi−1

t − α∇fπi
t
(xi−1

t ) (2)
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for i = 1, . . . , n, resulting in xn
t = xt+1. We display the pseudocode of RR in Algorithm 1.

Despite its widespread practical usage, the theoretical understanding of RR has been mainly limited
to complexity bounds in expectation and almost sure asymptotic convergence results. In this study,
our objective is to provide a complexity guarantee for RR with high probability, and further based on
it develop a stopping criterion to obtain the “last iterate” result.

Algorithm 1: RR: Random Reshuffling

Input: Initial point x0 ∈ Rd and number of epoches T ;
for t = 0, . . . , T − 1 do

Sample a permutation πt = {π1
t , . . . , π

n
t } of {1, . . . , n};

Update the step size αt;
Set x0

t = xt;
for i = 1, . . . , n do

xi
t = xi−1

t − α∇fπi
t

(
xi−1
t

)
; /* update */

end
Set xt+1 = xn

t ;
end

1.1 Related Works and Motivations

Finite-time complexity bounds in expectation. Various works have focused on deriving complexity
bounds for RR, see, e.g., [12, 3, 7, 8, 11, 10, 13]. For instance, the work [7] establishes an O(

√
n/ε)

iteration complexity under the assumptions that the objective function f is strongly convex and each
fi has Lipschitz continuous gradient. When f is nonconvex and each fi is Lipschitz smooth, it was
shown in [7, 8] that RR has an iteration complexity of O(

√
nε−3). It is worth mentioning that all

these complexity results for RR hold in the sense of expectation, characterizing the performance of
the algorithm by averaging infinitely many runs.

Asymptotic convergence. For strongly convex functions with component-wise Lipschitz continuous
Hessian, Gürbüzbalaban et al. demonstrated that iterate converges to the optimal solution at a rate of
O(1/t2) with high probability [2]. In the smooth nonconvex scenario, the asymptotic convergence
of the gradient norm was derived using the unified convergence framework established in [5].
Furthermore, [6] provided rate results for this convergence. However, while these results offer
significant theoretical assurances, they have some limitations in explaining the algorithm’s practical
performances, as they primarily offer insights into the long-term behavior of the algorithm when
t→∞.

Motivations. The current complexity results in expectation may not effectively explain the perfor-
mance of a single run of RR, and the almost sure asymptotic convergence results only characterize
long-term behaviors. This observation motivates us to derive high probabiltiy finite-time guarantees
for RR, without assuming strict restrictions on the stochastic gradient errors. Moreover, complexity
results for nonconvex RR apply to the minimal expected gradient norm, i.e., min0≤t≤T E∥∇f(xt)∥2.
While this measure provides certain insights, it is not computable furthermore used to determine which
iterate to return. For nonconvex SGD-type methods, several stopping criteria have been proposed,
see, e.g., [14, 9]. They either discuss statistical stationarity or propose asymptotic gradient-based
stopping measure. However, as far as we know, a stopping criterion for RR remains unexplored,
prompting our investigation.

1.2 Main contributions

Throughout this paper, we only make the assumption that each component function fi is L-smooth
and lower bounded, as specified in Assumption 2.1. Our main contributions are summarized below.

High probability sample complexity. We first enhance the analysis of RR by demonstrating that, with
probability at least 1−δ, it can identify an ε-stationary point using at most Õ

(
max

{
nε−2,

√
nε−3

})
stochastic gradient evaluations, where Õ conceals a logarithmic term. It is worth mentioning that
our high probability sample complexity matches the existing complexity in expectation [7, 8] up to a
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logarithmic term. In addition, our analysis does not impose any additional assumptions regarding
the stochastic gradient errors. Technically speaking, the classical analysis of RR decomposes
the stochastic gradient error into deterministically bounded terms and a term determined by the
randomness of RR. Our main step lies in identifying that the latter term possesses a concentration
property by applying the Bernstein’s inequality over the random reshuffling sampling scheme of RR.
This allows us to establish a standard approximate descent property that holds with high probability
rather than in expectation, leading to the aforementioned complexity result.

Stopping Criterion. In the second part, we further leverage the concentration property of the
stochastic gradient errors to design a new random reshuffling method with stopping criterion (RR-sc).
This criterion terminates the algorithm and returns the starting inner iterate when the accumulated
stochastic gradients in one epoch satisfy a preset tolerance γε, where γ > 0 is some constant. RR-sc
introduces few additional computation loads compared to vanilla RR. We prove that the stopping
criterion must be activated within Õ

(√
nε−3

)
stochastic gradient evaluations with probability at

least 1− δ, which matches our previous complexity bound. The key step in establishing this result
involve showing that RR-sc exhibits the so-called sufficient decrease property before the stopping
criterion is triggered, closely resembling the deterministic gradient descent method. Furthermore, we
establish the "last iterate" result, indicating that once the algorithm is terminated, the returned iterate
xτ satisfies ∥∇f(xτ )∥ ≤ Θ(ε).

2 High Probability First-order Sample Complexity Guarantees

In this section, we establish high probability sample complexity guarantees for RR. We impose the
following standard smoothness assumption on the component functions throughout this section.
Assumption 2.1. For all i ∈ [n], fi in (1) is bounded from below by f̄i and its gradient ∇fi is
Lipschitz continuous with parameter L ≥ 0.

Let f̄ be a lower bound of f in (1). It was established in [4, Proposition 3] that the following
variance-type bound is true once Assumption 2.1 holds:

1

n

∑n

i=1
∥∇fi(x)−∇f(x)∥2 ≤ A(f(x)− f̄) + B, (3)

where A = 2L ≥ 0 and B = A
n

∑n
i=1(f̄ − f̄i) ≥ 0. The bound (3) plays a crucial role in our later

analysis.
Lemma 2.2. Suppose that Assumption 2.1 is valid and the step size αt = α,∀0 ≤ t ≤ T − 1 satisfies

α ≤ min

{
1

4nL
,

1

(C1n2T )1/3

}
. (4)

Then, with probability at least 1− δ, it holds that for all 0 ≤ t ≤ T − 1,

f(xt+1) ≤ f(xt)−
αtn

8
∥∇f(xt)∥2 −

αtn

2
∥gt∥2 + α3

tn
2G. (5)

Here, C1 = 32L2A log2
(
8nT
δ

)
≥ 0 and G = C1F + C2 ≥ 0 with F = 3(f(x0) − f̄) + 3B/A ≥ 0

and C2 = 32L2B log2
(
8nT
δ

)
≥ 0.

With this high probability approximate descent, we are now ready to establish the following complex-
ity (without taking expectation) of RR for finding a stationary point of problem (1).
Theorem 2.3. Under the setting of Lemma 2.2, with probability at least 1− δ, we have

1

T

∑T−1

t=0
∥∇f(xt)∥2 ≤ O

(
max

{
1

T
,
log2/3(8nT/δ)

n1/3T 2/3

})
, (6)

where the “O" hides constants that are independent of n, T , and δ. Consequently, to achieve∑T−1
t=0 ∥∇f(xt)∥2/T ≤ ε2, RR needs at most

nT = Õ
(
max

{
nε−2,

√
nε−3

})
(7)

stochastic gradient evaluations, where the “Õ" hides an additional log(
√
nε−3/δ) in the term√

nε−3.
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Algorithm 2: RR-sc: RR with Stopping Criterion

Input: Initial point x0 ∈ Rd, constant tolerance γ, target accuracy ε;
while true do

Set gt = 0;
Update the step size αt;
Sample a permutation πt = {π1

t , . . . , π
n
t } of {1, . . . , n};

Set x0
t = xt;

for i← 1 to n do
xi
t = xi−1

t − αt∇fπi
t

(
xi−1
t

)
; /* update */

gt = gt +∇fπi
t

(
xi−1
t

)
/n ; /* accumulate stochastic gradients */

end
if ∥gt∥ ≤ γε then /* check stopping criterion */

Set τ = t;
return xτ ;

else
Set xt+1 = xn

t ;
end
Set t = t+ 1;

end

Remark

• The obtained high probabiltiy complexity bound is the same as that of in expectation case,
with the only exception of dependence on a logrithmic term. We note that this logarithmic
dependence is not intrinsic, but rather a result of our proof technique, which applies the
union bound across epochs. Eliminating this reliance on the union-bound argument is one
of the directions we plan to explore.

• Our proof techniques can be similarly applied to obtain high probabiltiy guarantees for RR
for strongly convex and convex problems.

3 Stopping Criterion

Stopping criterion is often an important ingredient in algorithm design such as the gradient norm
in deterministic gradient descent. However, computing the full gradient function for monitoring
stationarity is not feasible in RR. Thus, it requires constructing certain new estimated stopping
criterion for RR, which is the main topic of this section.

3.1 Random Reshuffling with Stopping Criterion

We observe that the accumulation of the stochastic gradients gt plays almost the same role for
descent as that of the true gradient. This motivates us to monitor gt in the algorithmic procedure as a
stopping criterion. It is worth noting that gt is computable and increases almost no computational
load compared to the base RR.

We design RR with stopping criterion (hereafter “RR-sc") in Algorithm 2. In this algorithm, we
compute the accumulation of the stochastic gradients used in the update and stack it in gt. After each
epoch, we check the stopping criterion

∥gt∥ ≤ γε (8)

for some target accuracy level ε and some constant tolerance γ. Once this criterion is triggered, we
stop the algorithm and return the last iterate xτ that achieves it. In this subsection, we show that the
stopping criterion must be triggered, and hence RR-sc is guaranteed to stop after a certain number of
iterations. Now we define the maximum possible number of iterations T1 through

nT1 = 6F(γε)−2 max

{
nL, 2

√
nAFL(γε)−1 log

(
8nT1

δ

)}
∼ Õ(max{

√
nε−3, nε−2}). (9)
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Proposition 3.1. With probability at least 1− δ, RR-sc terminates within T1 number of iterations,
i.e., in Algorithm 2 we have τ ≤ T1.

3.2 The Last Iterate Result

The fact that RR-sc must stop within T1 number of iterations does not necessarily imply that the
underlying stopping criterion ∥∇f(xτ )∥ ≤ ε holds true. We further show when the estimated
stopping criterion ∥gt∥ ≤ γϵ triggers, we also have ∥∇f(xτ )∥ ≤ Θ(ε), as stated in the following
theorem.
Theorem 3.1. With probability at least 1 − δ, RR-sc terminates at iteration τ satisfying τ ≤ T1.
Furthermore, we have ∥∇f(xτ )∥ ≤ Θ(ε).

We comment here on the number of iterations needed to stop the algorithm. The stopping criterion
is indeed not a bad estimation. Namely, we will not have the case where the underlying criterion
∥∇f(xt)∥ = Θ(ε) is already satisfied, but the stopping criterion is triggered much later. We can see
this conclusion by repeating our arguments when approximating ∥∇f(xt)∥ with ∥gt∥ to similarly
bound ∥gt∥ by ∥∇f(xt)∥.
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