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ABSTRACT

The vision community has started to build with the recently developed state space
model, Mamba, as the new backbone for a range of tasks. This paper shows that
Mamba’s visual capability can be significantly enhanced through autoregressive
pretraining, a direction not previously explored. Efficiency-wise, the autoregres-
sive nature can well capitalize on the Mamba’s unidirectional recurrent structure,
enabling faster overall training speed compared to other training strategies like
mask modeling. Performance-wise, autoregressive pretraining equips the Mamba
architecture with markedly higher accuracy over its supervised-trained counterparts
and, more importantly, successfully unlocks its scaling potential to large and even
huge model sizes. For example, with autoregressive pretraining, a base-size Mamba
attains 83.2% ImageNet accuracy, outperforming its supervised counterpart by
2.0%; our huge-size Mamba, the largest Vision Mamba to date, attains 85.0% Ima-
geNet accuracy (85.5% when finetuned with 384× 384 inputs), notably surpassing
all other Mamba variants in vision. The code will be available soon.

1 INTRODUCTION

In natural language processing (NLP), state space models (SSMs) Gu et al. (2021a;b); Mehta et al.
(2022); Gu et al. (2022) demonstrate strong potential for modeling long sequences with linear
complexity. Among these, a recent variant, Mamba Gu & Dao (2023), has substantially advanced
beyond traditional SSMs by synthesizing the best attributes of selective scanning. This innovation
has also catalyzed its rapid adoption within the vision community, leading to its application across
diverse visual tasks. These include the design of novel architectures Liu et al. (2024b); Zhu et al.
(2024); Huang et al. (2024); Pei et al. (2024); Wang et al. (2024a), applications to segmentation Liu
et al. (2024a); Wang et al. (2024b); Xing et al. (2024) and image synthesis Guo et al. (2024).

However, these prior studies are mostly in the setting of supervised visual representation learning.
While such trained models exhibit promising results in different visual tasks, they generally suffer
from limited transferability and encounter notable difficulties in scaling He et al. (2022); Bao et al.
(2022); He et al. (2020); Chen et al. (2020b). For example, as illustrated in Figure 1, attempts to scale
the Vision Mamba (Vim) under supervised conditions often lead to either performance plateauing
or even training collapse when pushed to very large sizes. These issues, therefore, motivate us to
alternatively explore self-supervised visual representation learning with Mamba architectures, a
method that has demonstrated notable successes in helping models secure strong and scalable visual
representations He et al. (2022); Bao et al. (2022); He et al. (2020); Chen et al. (2020b).

In this paper, we primarily focus on the autoregressive pretraining paradigm for self-supervised visual
representation learning, which predicts the next token unidirectionally and autoregressively from
the start to the end of the input sequence. This focus is driven by two reasons. First, autoregressive
pretraining has already established itself as the de-facto standard in training large language models,
with successful applications in various architectures including Transformers and Mamba Dosovitskiy
et al. (2020); Radford & Narasimhan (2018); Gu & Dao (2023). The recent literature has also success-
fully, albeit preliminarily, confirmed its efficacy in the computer vision domain, e.g., helping Vision
Transformer (ViT) develop strong and scalable feature representations El-Nouby et al. (2024); Ren
et al. (2023a). Secondly, Mamba architectures are inherently well-suited for autoregressive modeling
due to their uniquely designed linear attention nature, which methodically constructs token-wise
relationships in a strictly progressive and unidirectional manner. This configuration ensures that each
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Figure 1: Compared to Vim, our ARM considerably boosts the ImageNet accuracy and, more
critically, offers a stronger pathway for scaling up.

token can only attend to its preceding tokens, aligning perfectly with the underlying principles of
autoregressive modeling. Additionally, this synergy practically leads to higher overall training effi-
ciency. For example, under the setting of training the base-size Mamba for 300 epochs, autoregressive
training requires only ∼34 hours (measured by 8×A5000), a ∼2× to ∼10× improvement in training
speed compared to other pretraining strategies (see Table 8 in Sec. 4.4).

Importantly, to further unleash the power of autoregressive visual representation learning with Mamba
architectures, we highlight two key recipes for forming input sequences. First, instead of naively
taking 16× 16 patches as basic units of prediction, we opt for a more strategic approach by grouping
spatially neighboring patches to form larger clusters; empirically, we find the cluster size of 64× 64
reaches the best performance. Secondly, in our ablation of mapping 2D images into 1D visual
sentences with various orderings, we note that vanilla ordering, which simply orders clusters with the
row-by-row and forward scan approach, is already an effective choice. We term this method ARM.

Extensive results are provided showing our proposed ARM achieves substantially stronger perfor-
mance. As shown in Figure 1, ARM helps our base-size model attain 83.2% ImageNet accuracy,
outperforming the supervised counterpart by 2.0% and achieves 85.2% Top-1 accuracy with the input
resolution of 448×448. Moreover, ARM enables the training of the first successful huge-size model
(ARM-H), marking it as the largest vision Mamba model to date. Specifically, ARM-H achieves
an impressive 85.0% ImageNet accuracy, significantly outperforming all previous Mamba variants.
Additionally, ARM also improves the performance on out-of-domain datasets by a large margin:
ARM-B outperforms supervised Vim-B by 4.4% on ImageNet-A, 2.9% on ImageNet-R, and 3.3% on
ImageNet-S.

2 RELATED WORK

State space model. The state space model (SSM) Gu et al. (2021a) stands as a novel alterna-
tive to Transformers for long-range dependency modeling with linear complexity. Linear atten-
tion Katharopoulos et al. (2020); Choromanski et al. (2020); Peng et al. (2021) recurrently approxi-
mates self-attention via a softmax-free attention matrix with linear complexity, which can be viewed
as a degenerate linear SSM. The Structured State-Space Sequence (S4) model Gu et al. (2021a)
computes more efficiently than prior approaches while preserving their theoretical strengths based
on a new parameterization. S5 Smith et al. (2022) extends S4 by adding multi-input multi-output
(MIMO) SSM and efficient parallel scan. RWKV Peng et al. (2023) is a recent RNN with its key
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“WKV” components that operate similarly to a system with two SSMs. Its updated version Peng
et al. (2024) incorporates state expansion and input-dependent gating for more flexible sequence
modeling. Following this, Mamba Gu & Dao (2023) proposes a data-dependent SSM layer with
hidden state expansion and builds a generic language model backbone, which performs comparably
to transformers at various sizes and enjoys linear scaling in sequence length. This work focuses on
Mamba in vision, aiming to enhance it via autoregressive visual pretraining.

Mamba in vision. The successful application of Mamba in NLP has inspired its adoption in vision
applications. Vision Mamba (Vim) Zhu et al. (2024) utilizes Vim blocks composed of pure Mamba
layers: each Vim block leverages both forward and backward scans to model bidirectional represen-
tations and mitigate the direction-sensitive problem in Mamba. Alternatively, Vmamba Liu et al.
(2024b) employs Visual State Space (VSS) blocks that integrate both Mamba and 2D convolution
layers, supported by a pyramid architecture akin to the Swin Transformer Liu et al. (2021): each
VSS block first models 2D local information via 2D depth-wise convolution as the token mixer,
followed by a CrossScan Module that processes 2D global information both horizontally and ver-
tically. Mamba-ND Li et al. (2024) further expands Mamba’s capabilities to multi-dimensional
data, including images and videos. LocalMamba Huang et al. (2024) splits the input image into
several local windows and performs SSM in various directions within these windows, enhancing
local processing. EfficientVMamba Pei et al. (2024) introduces an efficient 2D scanning technique
using atrous sampling on feature map patches to reduce computational demands. Compared to these
newly designed Mamba architectures, ours is less novel, which closely follows the design of ViT,
but substituting the self-attention with the Mamba module. With this naive Mamba architecture, our
main focus is to show autoregressive pretraining can enhance its visual capabilities.

Self-supervised visual representation learning. Self-supervised visual representation learning aims
to learn strong and transferable representations without labels, including contrastive learning Chen
et al. (2020c); He et al. (2020); Chen et al. (2021; 2020b), position prediction Zhai et al. (2022),
masked image modeling He et al. (2022); Bao et al. (2022); Ren et al. (2023b), etc. This paper focuses
on autoregressive pretraining, which is highly successful in NLP but still less explored in computer
vision. iGPT Chen et al. (2020a) is the first work to introduce Generative Pretrained Transformer to
vision and highlights the potential of autoregressive pretraining as a general self-supervised visual
representation learning strategy. SAIM Qi et al. (2023) and RandSAC Hua et al. (2022) further
enhance autoregressive pretraining, achieving performance on par with MAE He et al. (2022) by
utilizing the ViT architecture and a stochastic sequence permutation strategy. D-iGPT Ren et al.
(2023a) slightly modifies the learning objective to predict not only the next token but also visible
tokens. AIM El-Nouby et al. (2024) demonstrates that, with autoregressive pretraining, ViT scales
effectively with increased model capacity and data quantity. Different from these prior works, which
focus on Transformer architecture, we provide the first study of exploring autoregressive visual
pretraining with Mamba architectures.

3 METHOD

3.1 MAMBA PRELIMINARIES

The Mamba architecture inherits from state space sequence models Gu et al. (2021a), which models
a 1-D function or sequence x(t) ∈ R → y(t) ∈ R at time t via expanded hidden states ht ∈ RN .
The hidden state is evolved through time driven by parameters A,B,C following linear ordinary
differential equations (ODEs):

h′(t) = Ah(t) + Bx(t),
y(t) = Ch(t).

(1)

To discretize parameters in this continuous system, a common solution is to introduce a time
scale parameter ∆ to transform continuous A,B to discrete A,B using zero-order hold (ZOH)
model Oppenheim et al. (1997):

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B.
(2)

3
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(b) Pixel-based (c) Patch-based (d) Cluster-based(a) Input Image

Figure 2: Different prediction units in the autoregressive modeling.

By applying such transformation, we can rewrite Eq. 1 as:

h′(t) = Aht−1 + Bxt,

yt = Cht.
(3)

We then employ a matrix K for fast computation:

K = (CB,CAB, ...,CAkB, ...),
y = x ∗ K,

(4)

where k ∈ [0, L) and L is the input sequence length. We also have y = {y1, ..., yL}, x = {x1, ..., xL},
while K ∈ RL can be regarded as the convolutional kernel. Note this computing structure allows
Mamba to model the input sequence that perfectly matches the unidirectional, next-word prediction
in autoregressive modeling.

3.2 AUTOREGRESSIVE PRETRAINING

We first briefly revisit autoregressive pretraining in NLP. Then, we shift our attention to autoregressive
pretraining with mamba in vision, including the prediction unit and prediction order design. Lastly,
we present the model variants.

3.2.1 AUTOREGRESSIVE PRETRAINING IN NLP

Autoregressive pretraining models the probability of the next word one by one given a corpus
U = {u1, ..., un}. This can be formulated as:

p(u) =

n∏
i=1

p(ui|u1, ..., ui−1,Θ) (5)

Here, autoregressive pertaining computes the likelihood of each word ui based on the context of all
preceding words from u1 to ui−1 and minimizes the negative log-likelihood:

L = −log p(u) (6)
This strategy plays a fundamental role in training large language models like ChatGPT Brown et al.
(2020) and GPT-4 OpenAI (2023) in NLP.

3.2.2 AUTOREGRESSIVE PRETRAINING WITH MAMBA IN VISION

Prediction unit. Transitioning from 1D sentences to 2D images introduces the challenge of defining
a suitable autoregressive prediction unit. We start with the vanilla strategy presented in iGPT Chen
et al. (2020a) which considers each individual pixel as the prediction unit, as illustrated in Figure
2(b). For an image X = {p1, ..., pn}, our objective is to minimize the loss function:

L =

n−1∑
i=1

l(f([p1, ..., pi]), pi+1),

l(ŷ, y) = |ŷ − y|2.

(7)

4
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(b) Column-first and Forward (d) Column-first and Backward

(e) Random

(a) Row-first and Forward (c) Row-first and backward

Figure 3: Different prediction orderings of a visual sentence.

Here f(·) denotes the Mamba model, and pi represents the ith pixel of the image. This pixel-based
approach, while straightforward, imposes significant computational demands, particularly for high-
resolution images. Therefore, as shown in the original iGPT paper Chen et al. (2020a), this constraint
necessitates the use of low-resolution images for computationally feasible autoregressive pretraining.

Patchifying Dosovitskiy et al. (2020) images into non-overlapped regions and then mapping them into
visual tokens can address this computation challenge. For example, with an image size of 224×224,
the sequence length would reduce significantly from 50,176 in the iGPT framework to just 196
patches with the 16× 16 patchifying operation. Intuitively, shifting the prediction unit from pixels
Chen et al. (2020a) to patches Dosovitskiy et al. (2020); Zhu et al. (2024); El-Nouby et al. (2024), as
shown in Figure 2(c), adjusts the autoregressive input to X = {P1, ..., Pn}:

L =

n−1∑
i=1

l(f([P1, ..., Pi]), Pi+1),

l(ŷ, y) = |ŷ − y|2.

(8)

Here Pi ∈ R16×16 is the ith patch. Moreover, to encapsulate the 2D spatial information at the token
level, we propose grouping spatially adjacent patches into larger clusters to serve as the prediction
unit, illustrated in Figure 2(d). The clustered input X = {c1, ..., cn} aims to be optimized by:

LARM =

n−1∑
i=1

l(f([c1, ..., ci]), ci+1),

l(ŷ, y) = |ŷ − y|2.

(9)

Here, each ci ∈ RHc×Wc is a cluster formed by grouping Hc

16 × Wc

16 patches. Our ablation studies
(Section 4.4, Table 4) show that using clusters as prediction targets significantly enhances performance
compared to the use of individual pixels or patches. Next, we explore the strategies for sequencing
these clusters into a coherent visual sentence.

Prediction order. Unlike the 1D sentences in NLP, which inherently have a clear sequence order
for autoregressive modeling, we hereby explore four different prediction orders when projecting 2D
images into 1D visual sentences, e.g., how these clusters should be arranged given a cluster size of
s, with W

s clusters per row and H
s clusters per column. We hereby explore four primary prediction

orders: 1) Row-first and forward orders the clusters row by row, processing from the first to the
last cluster within each row sequentially, as depicted in Figure 3(a). 2) Row-first and backward
similarly orders the clusters row by row but inverts the processing direction, starting with the last

5
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Figure 4: The comparison of block architectures between Vim, and MambaMLP in pretraining and in
finetuning.

cluster and moving to the first within each row, illustrated in Figure 3(b). 3) Column-first and forward
organizes the clusters column by column, processing sequentially within each column from top to
bottom, shown in Figure 3(c). 4) Column-first and backward similarly sequences the clusters column
by column but starts with the bottom-most cluster, moving upwards, as seen in Figure 3(c). To
consider an approach free from pre-defined sequential biases, we also experimented with a Random
permutation Yang et al. (2019) of cluster order, visualized in Figure 3(e).

Detailed empirical comparisons of these four predefined orders alongside the random order are
presented in Section 4.4. Our findings reveal that while the predefined orders exhibit minimal
differences in performance, employing a random order leads to severe performance degradation.
Consequently, the straightforward and effective row-first and forward order (Figure 3(a)) is adopted
as our standard ordering strategy for autoregressive modeling.

3.3 MAMBAMLP

We hereby introduce our newly developed MambaMLP blocks. Specifically, our MambaMLP block
uses Mamba as the token mixer and the multi-layer perceptron (MLP) as the channel mixer, drawing
inspiration from the self-attention block in Transformer Dosovitskiy et al. (2020); Vaswani et al.
(2017). Note that the configuration of the MambaMLP block varies between pretraining and fine-
tuning phases to cater to their different requirements. During pretraining, as illustrated in Figure
4(b), the MambaMLP block contains the Mamba layer with only 1 scan Liu et al. (2024b) to match
the uni-directional modeling manner in autoregressive pertaining; while in finetuning (displayed
in Figure 4(c)), the block is then adapted to contains the Mamba layer with 4 scans, thus enabling
bi-directional modeling of global information analogous to that in Vmamba Liu et al. (2024b). The
other architectural components in the pretraining and the finetuning stay the same: the block utilizes
SwiGLU Touvron et al. (2023) as the MLP layer, and the expand is set to 1 to enhance scanning
efficiency. Additionally, we provide a visual comparison between our MambaMLP block and the
Vim block in Figure 4. We can see that the Vim block contains Mamba layers with 2 scans Liu et al.
(2024b) for bi-directional global information processing and has no MLP layer, and the expand of
each scan is set to 2. Practically, this larger expand in each scan results in higher performance but
slower inference speeds.

By stacking multiple MambaMLP blocks and training with our autoregressive strategy developed
in Section 3.2.2, we name the resulting model ARM. As detailed in Table 1, ARM is designed to
match the depth and width of ViT in its base and large configurations. For the huge model size, ARM
adopts the structure of AIM-600M El-Nouby et al. (2024), which is wider but less deep compared to
ViT-H, balancing performance and computational efficiency. In the next section, we will extensively
validate the efficacy of ARM.

6
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Table 1: The configuration of different architecture variants.
Model Block Width Depth Param.(M)

ViT-B (Attention+MLP) 768 12 86
Vim-B Mamba 768 24 98

ARM-B (Mamba+MLP) 768 12 85
ViT-L (Attention+MLP) 1024 24 307
Vim-L Mamba 1024 48 340

ARM-L (Mamba+MLP) 1024 24 297
ViT-H (Attention+MLP) 1280 32 632
Vim-H Mamba 1536 48 755

ARM-H (Mamba+MLP) 1536 24 662

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Pretraining. We pretrain ARM using the ImageNet-1K dataset Deng et al. (2009). Specifically,
ARM-B and ARM-L are pre-trained for 1600 epochs, and ARM-H is pre-trained for 800 epochs.
We use a batch size of 2048/1024/512 for ARM-B/L/H, respectively, and a learning rate of lr =
1.5e-4×batchsize

256 . We adopt a cosine decay schedule with a warm-up for 5 epochs. We adopt the
AdamW Loshchilov & Hutter (2019) optimizer with a weight decay of 0.05. We use random resized
cropping and random horizontal flipping. The pretraining input size is set to 192× 192.

Finetuning. Following pretraining, we finetune the ARM models on the ImageNet classification
task. Specifically, we finetune all models for 100 epochs with a batch size of 1024, with the input size
set at 224× 224. We use the same data augmentation as MAE He et al. (2022). We adopt AdamW
as an optimizer, and the peak learning rate is lr=5e-4×batchsize

256 with a cosine decay schedule and a
warm-up for 5 epochs. Additionally, we employ the exponential moving average (EMA) Izmailov
et al. (2018) for stronger performance.

Further, we evaluate model robustness on various out-of-domain ImageNet variants, including natural
adversarial examples (ImageNet-A Hendrycks et al. (2021b)), semantic shifts (ImageNet-R Hendrycks
et al. (2021a)), image sketches (ImageNet-S Wang et al. (2019)), ImageNet-V2 Recht et al. (2019),
and ImageNet-Real Beyer et al. (2020).

4.2 MAIN RESULTS

In Table 2, we compare our ARM with convolution-based RegNet Radosavovic et al. (2020), Attention-
based ViT, and different Mamba architectures in vision. For the base-size model, our ARM achieves
83.2% accuracy, making a substantial 2.0% improvement over its supervised MambaMLP counterpart.
Additionally, we note that ARM outperforms Vim by 2.0%, and is the only Mamba architecture
that attains stronger performance than convolution-based RegNetY-16G (i.e., by 0.3%). Further
enhancements are observed when ARM-B is finetuned with increased input sizes of 384×384 and
448×448 with the patchify stride of 8, where performance improves to 84.2% and 85.2%, respectively.
We also report the comparison to VMamba-B, which takes a hybrid architecture: When configured
with inputs of 224×224, ARM-B slightly underperforms VMamba-B by 0.7% but enjoys a much
faster throughput, i.e., ∼4× faster; ARM-B with the inputs of 384×384 outperforms Vmamba-B by
0.3% and still maintains a faster throughput, i.e., 440 imgs/s vs. 315 imgs/s.

Next, we scale the Mamba architectures to much larger model sizes. First, we observe that Mamba-
based Vim sees a performance dip with the large size and fails to train stably at the huge size. This
observation suggests that these prior Mamba-based architectures grapple with scaling challenges.
Contrarily, ARM models excel in scalability — ARM-L achieves an accuracy of 84.5%, marking a
3.5% improvement over Vim-L, and ARM-H sets a new benchmark for the largest Mamba architecture
in vision to date by reaching 85.0% accuracy. Moreover, by tuning ARM at a larger resolution of
384×384, further leveraging the model’s capacity to handle long sequences at a linear complexity, we

7
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Table 2: Performance comparison on ImageNet-1K. Throughputs are measured with an A5000 GPU.
† denotes we extend the training of Vim to the large-size model, using its original GitHub repo. †
indicates the stride is 8. Hybrid architectures are in Gray.

Model Token Mixer Image Size Param. Throughputs Top-1
(M) (imgs/s) (%)

Base-size models
RegNetY-16G 2D Conv. 2242 84 870 82.9
DeiT-B Attention 2242 21 1073 81.2
Vim-B† Mamba 2242 98 890 81.2
MambaMLP-B Mamba 2242 85 1301 81.2
VMamba-B Mamba+2D Conv. 2242 89 315 83.9
ARM-B Mamba 2242 85 1301 83.2
ARM-B Mamba 3842 85 440 84.2
ARM-B ‡ Mamba 4482 85 86 85.2

Large-size models
Vim-L† Mamba 2242 340 345 81.0
MambaMLP Mamba 2242 297 445 81.4
ARM-L Mamba 2242 297 445 84.5
ARM-L Mamba 3842 297 154 85.1

Huge-size models
Vim-H† Mamba 2242 755 211 collapsed
ARM-H Mamba 2242 662 275 85.0
ARM-H Mamba 3842 662 94 85.5

Table 3: Robustness and Generalization evaluation on out-of-domain datasets.
Method IN-1K ↑ IN-V2 ↑ IN-Real ↑ IN-Adv.↑ IN-Ren.↑ IN-Ske.↑
Vim-S Zhu et al. (2024) 80.6 69.4 86.0 20.3 45.8 33.4
Vim-B Zhu et al. (2024) 81.2 70.0 86.2 27.5 46.0 33.9
ARM-B 83.2 72.3 88.0 31.9 48.9 37.2
Vim-L Zhu et al. (2024) 81.0 69.8 86.0 27.9 44.7 31.8
ARM-L 84.5 74.0 88.6 41.4 52.1 39.2
ARM-H 85.0 75.6 89.2 42.3 53.2 40.5

observe additional gains: a 0.6% increase with ARM-L and a 0.5% increase with ARM-H. Notably,
ARM-H attains the best Mamba accuracy of 85.5% on ImageNet classification.

4.3 ROBUSTNESS AND GENERALIZATION

We report the robustness evaluation of Mamba architectures in Table 3. We can observe that ARM
consistently shows much stronger robustness than the supervised Vim by, e.g., ARM-B exhibits
improvements ranging from 1.8% to 4.4% over supervised Vim-B across these robustness benchmarks.
More impressively, ARM-L extends these gains even further, showing enhancements ranging between
2.6% and 7.4% when compared to supervised Vim-L. In addition, ARM-H, our largest model variant,
not only continues this trend but also shows an average performance superiority of 1.1% over ARM-L,
reaffirming the efficacy of scaling up the model size on enhancing robustness.

4.4 ABLATION STUDY

This section provides different ablations on ARM. Unless otherwise specified, all ablation studies are
performed on ARM-B under 300 epochs pretraining.

8
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Table 4: Ablation on the number of predictions units.
Num of Prediction unit Cluster size Top-1 (%)

0 (Supervised) N/A 81.2
144 (iGPT) 1× 1 (Pixel) 79.8

4 96×96 82.0
9 64×64 82.5

16 48×48 82.2
36 32×32 81.9

144 16×16 81.7

Table 5: Ablation on prediction orders.
Order Direction Top-1 (%)

Row-first Forward 82.5
Row-first Backward 82.3

Column-first Forward 82.5
Column-first Backward 82.4

Random Random 81.5

4.4.1 NUMBER OF PREDICTION UNITS.

Table 4 reports the ablation on the number of prediction units. We start from the cluster size equal to
the patch size (i.e., each cluster contains only one patch), resulting in a total of 144 prediction units.
We note that, even with this vanilla setup, autoregressive pretraining successfully helps MambaMLP
improve performance from 81.2% (via supervised training) to 81.7%. Then, we gradually group
multiple patches into one cluster, thereby reducing the total number of prediction units. We note that
the performance first increases and then decreases — the best performance is achieved when the
number of the prediction units is set to 9, corresponding to a cluster size of 64×64. Specifically, this
setup provides a performance improvement of 1.3% over the supervised counterpart and 0.8% over
the vanilla autoregressive pretrained counterpart (i.e., with a cluster size of 144). We also report the
comparison to MambaMLP trained under the iGPT-style autoregressive pretraining — with the input
image size at 144× 144 and setting per pixel as the prediction unit, it underperforms our best setup
by 2.7% (i.e., 79.8% vs. 82.5%).

4.4.2 PREDICTION ORDER.
As shown in Table 5, we find different pre-defined orders only lead to minor performance variances.
For example, both row-first and column-first forward prediction orders achieve an identical perfor-
mance of 82.5%; even the least favorable case, where the prediction order was row-first and backward,
only underperforms the best case by 0.2%. Nonetheless, interestingly, if we do not predefine the
prediction order and pick a random permutation, the performance significantly drops to 81.5%.

4.4.3 DECODER DESIGN.
Our exploration into decoder design is summarized in Table 6. We first focus on the design of decoder
depth, finding that increasing the depth up to 4 progressively enhanced performance up to 82.5%;
further increasing the decoder depth to 8 sees a performance saturation. With this 4-layer decoder
setup, we next study the width of the decoder. By ablating these three options {384, 512, 1024}, we
empirically observe that setting the decoder depth to 512 yields optimal accuracy.

4.4.4 PREDICTION TARGETS.

We hereby explore different prediction targets for our ARM. By default, we use per-patch normalized
pixels with mean square error (MSE) loss. For comparison, we ablate it against two setups: 1)
unnormed pixels with MSE loss, and 2) discretized tokens of the patches derived from dVAE Bao
et al. (2022) with cross-entropy loss. The results, presented in Table 7, show that employing
normalized pixels as the target with MSE loss yields the best performance, achieving an accuracy of
82.5%. Comparatively, this configuration outperforms the model using discrete tokens from dVAE by
0.3% and the model leveraging unnormed pixels which trailed by 0.6%.

4.4.5 PRETRAINING PARADIGM.

As shown in Table 8, we evaluate different pretraining paradigms, including contrastive learning Chen
et al. (2021), MAE He et al. (2022), and our ARM. Firstly, we note that all pretraining methods
result in performance gains over the supervised counterpart, demonstrating the benefits of self-
supervised visual pretraining on Mamba architectures. However, using MAE or contrastive learning,
the performance is only moderately improved by 0.4% and 0.2%, respectively, over the supervised
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Table 6: Ablation on decoder designs.
Dec. Depth Dec. Width Top-1 (%)

1 512 82.1
2 512 82.4
4 512 82.5
8 512 82.5

4 384 82.3
4 512 82.5
4 1024 82.2

Table 7: Ablation on prediction targets.
Targets Top-1 (%)

dVAE Bao et al. (2022) 82.2
Pixel He et al. (2022) 81.9

Normed Pixel 82.5

Table 8: Comparison of architecture and pretraining paradigms. FPS represents the inference speed
after supervised finetuning of the model. The † symbol indicates that Vim, when subjected to
contrastive learning, experiences poor performance, potentially due to mode collapse.

Architecture Pretraining paradigm Training Cost (h) ↓ FPS (imgs/s) ↑ Top-1 (%)

MambaMLP Supervised 110 1330 81.2
MambaMLP Contrastive 330 1330 81.4
MambaMLP MAE 70 1330 81.6
MambaMLP ARM 34 1330 82.5

Vim Supervised 165 923 81.2
Vim Contrastive 510 923 80.2†
Vim MAE 106 923 81.4
Vim ARM 57 923 82.2

baseline. In contrast, our ARM achieves significant improvements of 1.3% over the supervised
baseline, as well as achieves higher accuracy than both contrastive learning and MAE. Additionally,
in terms of efficiency, ARM requires just 34 hours of pretraining, cutting the training duration in half
compared to MAE, which is already noted for its relatively low pretraining demands.

4.4.6 ARCHITECTURE DESIGN.

Exploring further into architectural impacts, Table 8 (from the 5th row to the 8th row) presents
our investigation into whether Vim, another variant within the Mamba architecture, benefits from
autoregressive pretraining. Results indicate a positive response as ARM-trained Vim reaches an
82.2% accuracy on ImageNet, marking a 1.0% improvement over its supervised-only counterpart.
Contrastingly, other pretraining paradigms did not fare as well for Vim: when subjected to contrastive
learning, Vim experiences training instability, falling below the supervised baseline; MAE pretraining
on Vim only slightly improved over the supervised method, with a marginal gain of 0.2%. These
results further support the effectiveness of ARM in pretraining Mamba in Vision.

As a side note, it is important to highlight that although Vim’s performance improves with ARM
pretraining, it operates ∼45% slower during inference compared to MambaMLP. Additionally,
MambaMLP incurs only ∼66% of the training cost required for pretraining Vim under the ARM
framework. These points underscore the superior efficiency of our default ARM framework.

5 CONCLUSION

In this study, we introduced a novel autoregressive visual pretraining strategy tailored for Mamba
architectures, known as ARM. This approach enhances pretraining efficiency and effectiveness by
strategically treating groups of spatially neighboring image patches as prediction units. Through our
method, we have significantly improved the scalability and benchmark performance of Mamba-based
models, setting new standards in their operational functionality. We hope this work can lay a strong
foundation for future explorations and potential expansions in the usage of autoregressive pretraining
strategies for Mamba architectures within the vision community.
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