
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOREGRESSIVE PRETRAINING WITH MAMBA IN VI-
SION

Anonymous authors
Paper under double-blind review

ABSTRACT

The vision community has started to build with the recently developed state space
model, Mamba, as the new backbone for a range of tasks. This paper shows that
Mamba’s visual capability can be significantly enhanced through autoregressive
pretraining, a direction not previously explored. Efficiency-wise, the autoregres-
sive nature can well capitalize on the Mamba’s unidirectional recurrent structure,
enabling faster overall training speed compared to other training strategies like
mask modeling. Performance-wise, autoregressive pretraining equips the Mamba
architecture with markedly higher accuracy over its supervised-trained counterparts
and, more importantly, successfully unlocks its scaling potential to large and even
huge model sizes. For example, with autoregressive pretraining, a base-size Mamba
attains 83.2% ImageNet accuracy, outperforming its supervised counterpart by
2.0%; our huge-size Mamba, the largest Vision Mamba to date, attains 85.0% Ima-
geNet accuracy (85.5% when finetuned with 384× 384 inputs), notably surpassing
all other Mamba variants in vision. The code will be available soon.

1 INTRODUCTION

In natural language processing (NLP), state space models (SSMs) Gu et al. (2021a;b); Mehta et al.
(2022); Gu et al. (2022) demonstrate strong potential for modeling long sequences with linear
complexity. Among these, a recent variant, Mamba Gu & Dao (2023), has substantially advanced
beyond traditional SSMs by synthesizing the best attributes of selective scanning. This innovation
has also catalyzed its rapid adoption within the vision community, leading to its application across
diverse visual tasks. These include the design of novel architectures Liu et al. (2024b); Zhu et al.
(2024); Huang et al. (2024); Pei et al. (2024); Wang et al. (2024a), applications to segmentation Liu
et al. (2024a); Wang et al. (2024b); Xing et al. (2024) and image synthesis Guo et al. (2024).

However, these prior studies are mostly in the setting of supervised visual representation learning.
While such trained models exhibit promising results in different visual tasks, they generally suffer
from limited transferability and encounter notable difficulties in scaling He et al. (2022); Bao et al.
(2022); He et al. (2020); Chen et al. (2020b). For example, as illustrated in Figure 1, attempts to scale
the Vision Mamba (Vim) under supervised conditions often lead to either performance plateauing
or even training collapse when pushed to very large sizes. These issues, therefore, motivate us to
alternatively explore self-supervised visual representation learning with Mamba architectures, a
method that has demonstrated notable successes in helping models secure strong and scalable visual
representations He et al. (2022); Bao et al. (2022); He et al. (2020); Chen et al. (2020b).

In this paper, we primarily focus on the autoregressive pretraining paradigm for self-supervised visual
representation learning, which predicts the next token unidirectionally and autoregressively from
the start to the end of the input sequence. This focus is driven by two reasons. First, autoregressive
pretraining has already established itself as the de-facto standard in training large language models,
with successful applications in various architectures including Transformers and Mamba Dosovitskiy
et al. (2020); Radford & Narasimhan (2018); Gu & Dao (2023). The recent literature has also success-
fully, albeit preliminarily, confirmed its efficacy in the computer vision domain, e.g., helping Vision
Transformer (ViT) develop strong and scalable feature representations El-Nouby et al. (2024); Ren
et al. (2023a). Secondly, Mamba architectures are inherently well-suited for autoregressive modeling
due to their uniquely designed linear attention nature, which methodically constructs token-wise
relationships in a strictly progressive and unidirectional manner. This configuration ensures that each

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

84

Model Size

Top-1 Accuracy on ImageNet

82

80
Small Base Large

Vim

ARM

Huge

Collapse

ARM-B

ARM-L

ARM-H

Vim-S

Vim-B
Vim-L

Vim-H

Figure 1: Compared to Vim, our ARM considerably boosts the ImageNet accuracy and, more
critically, offers a stronger pathway for scaling up.

token can only attend to its preceding tokens, aligning perfectly with the underlying principles of
autoregressive modeling. Additionally, this synergy practically leads to higher overall training effi-
ciency. For example, under the setting of training the base-size Mamba for 300 epochs, autoregressive
training requires only ∼34 hours (measured by 8×A5000), a ∼2× to ∼10× improvement in training
speed compared to other pretraining strategies (see Table 8 in Sec. 4.4).

Importantly, to further unleash the power of autoregressive visual representation learning with Mamba
architectures, we highlight two key recipes for forming input sequences. First, instead of naively
taking 16× 16 patches as basic units of prediction, we opt for a more strategic approach by grouping
spatially neighboring patches to form larger clusters; empirically, we find the cluster size of 64× 64
reaches the best performance. Secondly, in our ablation of mapping 2D images into 1D visual
sentences with various orderings, we note that vanilla ordering, which simply orders clusters with the
row-by-row and forward scan approach, is already an effective choice. We term this method ARM.

Extensive results are provided showing our proposed ARM achieves substantially stronger perfor-
mance. As shown in Figure 1, ARM helps our base-size model attain 83.2% ImageNet accuracy,
outperforming the supervised counterpart by 2.0% and achieves 85.2% Top-1 accuracy with the input
resolution of 448×448. Moreover, ARM enables the training of the first successful huge-size model
(ARM-H), marking it as the largest vision Mamba model to date. Specifically, ARM-H achieves
an impressive 85.0% ImageNet accuracy, significantly outperforming all previous Mamba variants.
Additionally, ARM also improves the performance on out-of-domain datasets by a large margin:
ARM-B outperforms supervised Vim-B by 4.4% on ImageNet-A, 2.9% on ImageNet-R, and 3.3% on
ImageNet-S.

2 RELATED WORK

State space model. The state space model (SSM) Gu et al. (2021a) stands as a novel alterna-
tive to Transformers for long-range dependency modeling with linear complexity. Linear atten-
tion Katharopoulos et al. (2020); Choromanski et al. (2020); Peng et al. (2021) recurrently approxi-
mates self-attention via a softmax-free attention matrix with linear complexity, which can be viewed
as a degenerate linear SSM. The Structured State-Space Sequence (S4) model Gu et al. (2021a)
computes more efficiently than prior approaches while preserving their theoretical strengths based
on a new parameterization. S5 Smith et al. (2022) extends S4 by adding multi-input multi-output
(MIMO) SSM and efficient parallel scan. RWKV Peng et al. (2023) is a recent RNN with its key

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

“WKV” components that operate similarly to a system with two SSMs. Its updated version Peng
et al. (2024) incorporates state expansion and input-dependent gating for more flexible sequence
modeling. Following this, Mamba Gu & Dao (2023) proposes a data-dependent SSM layer with
hidden state expansion and builds a generic language model backbone, which performs comparably
to transformers at various sizes and enjoys linear scaling in sequence length. This work focuses on
Mamba in vision, aiming to enhance it via autoregressive visual pretraining.

Mamba in vision. The successful application of Mamba in NLP has inspired its adoption in vision
applications. Vision Mamba (Vim) Zhu et al. (2024) utilizes Vim blocks composed of pure Mamba
layers: each Vim block leverages both forward and backward scans to model bidirectional represen-
tations and mitigate the direction-sensitive problem in Mamba. Alternatively, Vmamba Liu et al.
(2024b) employs Visual State Space (VSS) blocks that integrate both Mamba and 2D convolution
layers, supported by a pyramid architecture akin to the Swin Transformer Liu et al. (2021): each
VSS block first models 2D local information via 2D depth-wise convolution as the token mixer,
followed by a CrossScan Module that processes 2D global information both horizontally and ver-
tically. Mamba-ND Li et al. (2024) further expands Mamba’s capabilities to multi-dimensional
data, including images and videos. LocalMamba Huang et al. (2024) splits the input image into
several local windows and performs SSM in various directions within these windows, enhancing
local processing. EfficientVMamba Pei et al. (2024) introduces an efficient 2D scanning technique
using atrous sampling on feature map patches to reduce computational demands. Compared to these
newly designed Mamba architectures, ours is less novel, which closely follows the design of ViT,
but substituting the self-attention with the Mamba module. With this naive Mamba architecture, our
main focus is to show autoregressive pretraining can enhance its visual capabilities.

Self-supervised visual representation learning. Self-supervised visual representation learning aims
to learn strong and transferable representations without labels, including contrastive learning Chen
et al. (2020c); He et al. (2020); Chen et al. (2021; 2020b), position prediction Zhai et al. (2022),
masked image modeling He et al. (2022); Bao et al. (2022); Ren et al. (2023b), etc. This paper focuses
on autoregressive pretraining, which is highly successful in NLP but still less explored in computer
vision. iGPT Chen et al. (2020a) is the first work to introduce Generative Pretrained Transformer to
vision and highlights the potential of autoregressive pretraining as a general self-supervised visual
representation learning strategy. SAIM Qi et al. (2023) and RandSAC Hua et al. (2022) further
enhance autoregressive pretraining, achieving performance on par with MAE He et al. (2022) by
utilizing the ViT architecture and a stochastic sequence permutation strategy. D-iGPT Ren et al.
(2023a) slightly modifies the learning objective to predict not only the next token but also visible
tokens. AIM El-Nouby et al. (2024) demonstrates that, with autoregressive pretraining, ViT scales
effectively with increased model capacity and data quantity. Different from these prior works, which
focus on Transformer architecture, we provide the first study of exploring autoregressive visual
pretraining with Mamba architectures.

3 METHOD

3.1 MAMBA PRELIMINARIES

The Mamba architecture inherits from state space sequence models Gu et al. (2021a), which models
a 1-D function or sequence x(t) ∈ R → y(t) ∈ R at time t via expanded hidden states ht ∈ RN .
The hidden state is evolved through time driven by parameters A,B,C following linear ordinary
differential equations (ODEs):

h′(t) = Ah(t) + Bx(t),
y(t) = Ch(t).

(1)

To discretize parameters in this continuous system, a common solution is to introduce a time
scale parameter ∆ to transform continuous A,B to discrete A,B using zero-order hold (ZOH)
model Oppenheim et al. (1997):

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B.
(2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(b) Pixel-based (c) Patch-based (d) Cluster-based(a) Input Image

Figure 2: Different prediction units in the autoregressive modeling.

By applying such transformation, we can rewrite Eq. 1 as:

h′(t) = Aht−1 + Bxt,

yt = Cht.
(3)

We then employ a matrix K for fast computation:

K = (CB,CAB, ...,CAkB, ...),
y = x ∗ K,

(4)

where k ∈ [0, L) and L is the input sequence length. We also have y = {y1, ..., yL}, x = {x1, ..., xL},
while K ∈ RL can be regarded as the convolutional kernel. Note this computing structure allows
Mamba to model the input sequence that perfectly matches the unidirectional, next-word prediction
in autoregressive modeling.

3.2 AUTOREGRESSIVE PRETRAINING

We first briefly revisit autoregressive pretraining in NLP. Then, we shift our attention to autoregressive
pretraining with mamba in vision, including the prediction unit and prediction order design. Lastly,
we present the model variants.

3.2.1 AUTOREGRESSIVE PRETRAINING IN NLP

Autoregressive pretraining models the probability of the next word one by one given a corpus
U = {u1, ..., un}. This can be formulated as:

p(u) =

n∏
i=1

p(ui|u1, ..., ui−1,Θ) (5)

Here, autoregressive pertaining computes the likelihood of each word ui based on the context of all
preceding words from u1 to ui−1 and minimizes the negative log-likelihood:

L = −log p(u) (6)
This strategy plays a fundamental role in training large language models like ChatGPT Brown et al.
(2020) and GPT-4 OpenAI (2023) in NLP.

3.2.2 AUTOREGRESSIVE PRETRAINING WITH MAMBA IN VISION

Prediction unit. Transitioning from 1D sentences to 2D images introduces the challenge of defining
a suitable autoregressive prediction unit. We start with the vanilla strategy presented in iGPT Chen
et al. (2020a) which considers each individual pixel as the prediction unit, as illustrated in Figure
2(b). For an image X = {p1, ..., pn}, our objective is to minimize the loss function:

L =

n−1∑
i=1

l(f([p1, ..., pi]), pi+1),

l(ŷ, y) = |ŷ − y|2.

(7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(b) Column-first and Forward (d) Column-first and Backward

(e) Random

(a) Row-first and Forward (c) Row-first and backward

Figure 3: Different prediction orderings of a visual sentence.

Here f(·) denotes the Mamba model, and pi represents the ith pixel of the image. This pixel-based
approach, while straightforward, imposes significant computational demands, particularly for high-
resolution images. Therefore, as shown in the original iGPT paper Chen et al. (2020a), this constraint
necessitates the use of low-resolution images for computationally feasible autoregressive pretraining.

Patchifying Dosovitskiy et al. (2020) images into non-overlapped regions and then mapping them into
visual tokens can address this computation challenge. For example, with an image size of 224×224,
the sequence length would reduce significantly from 50,176 in the iGPT framework to just 196
patches with the 16× 16 patchifying operation. Intuitively, shifting the prediction unit from pixels
Chen et al. (2020a) to patches Dosovitskiy et al. (2020); Zhu et al. (2024); El-Nouby et al. (2024), as
shown in Figure 2(c), adjusts the autoregressive input to X = {P1, ..., Pn}:

L =

n−1∑
i=1

l(f([P1, ..., Pi]), Pi+1),

l(ŷ, y) = |ŷ − y|2.

(8)

Here Pi ∈ R16×16 is the ith patch. Moreover, to encapsulate the 2D spatial information at the token
level, we propose grouping spatially adjacent patches into larger clusters to serve as the prediction
unit, illustrated in Figure 2(d). The clustered input X = {c1, ..., cn} aims to be optimized by:

LARM =

n−1∑
i=1

l(f([c1, ..., ci]), ci+1),

l(ŷ, y) = |ŷ − y|2.

(9)

Here, each ci ∈ RHc×Wc is a cluster formed by grouping Hc

16 × Wc

16 patches. Our ablation studies
(Section 4.4, Table 4) show that using clusters as prediction targets significantly enhances performance
compared to the use of individual pixels or patches. Next, we explore the strategies for sequencing
these clusters into a coherent visual sentence.

Prediction order. Unlike the 1D sentences in NLP, which inherently have a clear sequence order
for autoregressive modeling, we hereby explore four different prediction orders when projecting 2D
images into 1D visual sentences, e.g., how these clusters should be arranged given a cluster size of
s, with W

s clusters per row and H
s clusters per column. We hereby explore four primary prediction

orders: 1) Row-first and forward orders the clusters row by row, processing from the first to the
last cluster within each row sequentially, as depicted in Figure 3(a). 2) Row-first and backward
similarly orders the clusters row by row but inverts the processing direction, starting with the last

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

× 24 × 12 × 12

Norm

Activation

Scan 1

Expand=1

Scan 2

Expand=1
Scan 3

Expand=1

Scan 4

Expand=1

(c) MambaMLP-finetuning

SwiGLU

Norm

Activation
Scan 1

Expand=1

(b) MambaMLP-pretraining

Norm

Activation

Scan 1

Expand=2

Scan 2

Expand=2

(a) Vim

SwiGLU

Figure 4: The comparison of block architectures between Vim, and MambaMLP in pretraining and in
finetuning.

cluster and moving to the first within each row, illustrated in Figure 3(b). 3) Column-first and forward
organizes the clusters column by column, processing sequentially within each column from top to
bottom, shown in Figure 3(c). 4) Column-first and backward similarly sequences the clusters column
by column but starts with the bottom-most cluster, moving upwards, as seen in Figure 3(c). To
consider an approach free from pre-defined sequential biases, we also experimented with a Random
permutation Yang et al. (2019) of cluster order, visualized in Figure 3(e).

Detailed empirical comparisons of these four predefined orders alongside the random order are
presented in Section 4.4. Our findings reveal that while the predefined orders exhibit minimal
differences in performance, employing a random order leads to severe performance degradation.
Consequently, the straightforward and effective row-first and forward order (Figure 3(a)) is adopted
as our standard ordering strategy for autoregressive modeling.

3.3 MAMBAMLP

We hereby introduce our newly developed MambaMLP blocks. Specifically, our MambaMLP block
uses Mamba as the token mixer and the multi-layer perceptron (MLP) as the channel mixer, drawing
inspiration from the self-attention block in Transformer Dosovitskiy et al. (2020); Vaswani et al.
(2017). Note that the configuration of the MambaMLP block varies between pretraining and fine-
tuning phases to cater to their different requirements. During pretraining, as illustrated in Figure
4(b), the MambaMLP block contains the Mamba layer with only 1 scan Liu et al. (2024b) to match
the uni-directional modeling manner in autoregressive pertaining; while in finetuning (displayed
in Figure 4(c)), the block is then adapted to contains the Mamba layer with 4 scans, thus enabling
bi-directional modeling of global information analogous to that in Vmamba Liu et al. (2024b). The
other architectural components in the pretraining and the finetuning stay the same: the block utilizes
SwiGLU Touvron et al. (2023) as the MLP layer, and the expand is set to 1 to enhance scanning
efficiency. Additionally, we provide a visual comparison between our MambaMLP block and the
Vim block in Figure 4. We can see that the Vim block contains Mamba layers with 2 scans Liu et al.
(2024b) for bi-directional global information processing and has no MLP layer, and the expand of
each scan is set to 2. Practically, this larger expand in each scan results in higher performance but
slower inference speeds.

By stacking multiple MambaMLP blocks and training with our autoregressive strategy developed
in Section 3.2.2, we name the resulting model ARM. As detailed in Table 1, ARM is designed to
match the depth and width of ViT in its base and large configurations. For the huge model size, ARM
adopts the structure of AIM-600M El-Nouby et al. (2024), which is wider but less deep compared to
ViT-H, balancing performance and computational efficiency. In the next section, we will extensively
validate the efficacy of ARM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The configuration of different architecture variants.
Model Block Width Depth Param.(M)

ViT-B (Attention+MLP) 768 12 86
Vim-B Mamba 768 24 98

ARM-B (Mamba+MLP) 768 12 85
ViT-L (Attention+MLP) 1024 24 307
Vim-L Mamba 1024 48 340

ARM-L (Mamba+MLP) 1024 24 297
ViT-H (Attention+MLP) 1280 32 632
Vim-H Mamba 1536 48 755

ARM-H (Mamba+MLP) 1536 24 662

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Pretraining. We pretrain ARM using the ImageNet-1K dataset Deng et al. (2009). Specifically,
ARM-B and ARM-L are pre-trained for 1600 epochs, and ARM-H is pre-trained for 800 epochs.
We use a batch size of 2048/1024/512 for ARM-B/L/H, respectively, and a learning rate of lr =
1.5e-4×batchsize

256 . We adopt a cosine decay schedule with a warm-up for 5 epochs. We adopt the
AdamW Loshchilov & Hutter (2019) optimizer with a weight decay of 0.05. We use random resized
cropping and random horizontal flipping. The pretraining input size is set to 192× 192.

Finetuning. Following pretraining, we finetune the ARM models on the ImageNet classification
task. Specifically, we finetune all models for 100 epochs with a batch size of 1024, with the input size
set at 224× 224. We use the same data augmentation as MAE He et al. (2022). We adopt AdamW
as an optimizer, and the peak learning rate is lr=5e-4×batchsize

256 with a cosine decay schedule and a
warm-up for 5 epochs. Additionally, we employ the exponential moving average (EMA) Izmailov
et al. (2018) for stronger performance.

Further, we evaluate model robustness on various out-of-domain ImageNet variants, including natural
adversarial examples (ImageNet-A Hendrycks et al. (2021b)), semantic shifts (ImageNet-R Hendrycks
et al. (2021a)), image sketches (ImageNet-S Wang et al. (2019)), ImageNet-V2 Recht et al. (2019),
and ImageNet-Real Beyer et al. (2020).

4.2 MAIN RESULTS

In Table 2, we compare our ARM with convolution-based RegNet Radosavovic et al. (2020), Attention-
based ViT, and different Mamba architectures in vision. For the base-size model, our ARM achieves
83.2% accuracy, making a substantial 2.0% improvement over its supervised MambaMLP counterpart.
Additionally, we note that ARM outperforms Vim by 2.0%, and is the only Mamba architecture
that attains stronger performance than convolution-based RegNetY-16G (i.e., by 0.3%). Further
enhancements are observed when ARM-B is finetuned with increased input sizes of 384×384 and
448×448 with the patchify stride of 8, where performance improves to 84.2% and 85.2%, respectively.
We also report the comparison to VMamba-B, which takes a hybrid architecture: When configured
with inputs of 224×224, ARM-B slightly underperforms VMamba-B by 0.7% but enjoys a much
faster throughput, i.e., ∼4× faster; ARM-B with the inputs of 384×384 outperforms Vmamba-B by
0.3% and still maintains a faster throughput, i.e., 440 imgs/s vs. 315 imgs/s.

Next, we scale the Mamba architectures to much larger model sizes. First, we observe that Mamba-
based Vim sees a performance dip with the large size and fails to train stably at the huge size. This
observation suggests that these prior Mamba-based architectures grapple with scaling challenges.
Contrarily, ARM models excel in scalability — ARM-L achieves an accuracy of 84.5%, marking a
3.5% improvement over Vim-L, and ARM-H sets a new benchmark for the largest Mamba architecture
in vision to date by reaching 85.0% accuracy. Moreover, by tuning ARM at a larger resolution of
384×384, further leveraging the model’s capacity to handle long sequences at a linear complexity, we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison on ImageNet-1K. Throughputs are measured with an A5000 GPU.
† denotes we extend the training of Vim to the large-size model, using its original GitHub repo. †
indicates the stride is 8. Hybrid architectures are in Gray.

Model Token Mixer Image Size Param. Throughputs Top-1
(M) (imgs/s) (%)

Base-size models
RegNetY-16G 2D Conv. 2242 84 870 82.9
DeiT-B Attention 2242 21 1073 81.2
Vim-B† Mamba 2242 98 890 81.2
MambaMLP-B Mamba 2242 85 1301 81.2
VMamba-B Mamba+2D Conv. 2242 89 315 83.9
ARM-B Mamba 2242 85 1301 83.2
ARM-B Mamba 3842 85 440 84.2
ARM-B ‡ Mamba 4482 85 86 85.2

Large-size models
Vim-L† Mamba 2242 340 345 81.0
MambaMLP Mamba 2242 297 445 81.4
ARM-L Mamba 2242 297 445 84.5
ARM-L Mamba 3842 297 154 85.1

Huge-size models
Vim-H† Mamba 2242 755 211 collapsed
ARM-H Mamba 2242 662 275 85.0
ARM-H Mamba 3842 662 94 85.5

Table 3: Robustness and Generalization evaluation on out-of-domain datasets.
Method IN-1K ↑ IN-V2 ↑ IN-Real ↑ IN-Adv.↑ IN-Ren.↑ IN-Ske.↑
Vim-S Zhu et al. (2024) 80.6 69.4 86.0 20.3 45.8 33.4
Vim-B Zhu et al. (2024) 81.2 70.0 86.2 27.5 46.0 33.9
ARM-B 83.2 72.3 88.0 31.9 48.9 37.2
Vim-L Zhu et al. (2024) 81.0 69.8 86.0 27.9 44.7 31.8
ARM-L 84.5 74.0 88.6 41.4 52.1 39.2
ARM-H 85.0 75.6 89.2 42.3 53.2 40.5

observe additional gains: a 0.6% increase with ARM-L and a 0.5% increase with ARM-H. Notably,
ARM-H attains the best Mamba accuracy of 85.5% on ImageNet classification.

4.3 ROBUSTNESS AND GENERALIZATION

We report the robustness evaluation of Mamba architectures in Table 3. We can observe that ARM
consistently shows much stronger robustness than the supervised Vim by, e.g., ARM-B exhibits
improvements ranging from 1.8% to 4.4% over supervised Vim-B across these robustness benchmarks.
More impressively, ARM-L extends these gains even further, showing enhancements ranging between
2.6% and 7.4% when compared to supervised Vim-L. In addition, ARM-H, our largest model variant,
not only continues this trend but also shows an average performance superiority of 1.1% over ARM-L,
reaffirming the efficacy of scaling up the model size on enhancing robustness.

4.4 ABLATION STUDY

This section provides different ablations on ARM. Unless otherwise specified, all ablation studies are
performed on ARM-B under 300 epochs pretraining.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation on the number of predictions units.
Num of Prediction unit Cluster size Top-1 (%)

0 (Supervised) N/A 81.2
144 (iGPT) 1× 1 (Pixel) 79.8

4 96×96 82.0
9 64×64 82.5

16 48×48 82.2
36 32×32 81.9

144 16×16 81.7

Table 5: Ablation on prediction orders.
Order Direction Top-1 (%)

Row-first Forward 82.5
Row-first Backward 82.3

Column-first Forward 82.5
Column-first Backward 82.4

Random Random 81.5

4.4.1 NUMBER OF PREDICTION UNITS.

Table 4 reports the ablation on the number of prediction units. We start from the cluster size equal to
the patch size (i.e., each cluster contains only one patch), resulting in a total of 144 prediction units.
We note that, even with this vanilla setup, autoregressive pretraining successfully helps MambaMLP
improve performance from 81.2% (via supervised training) to 81.7%. Then, we gradually group
multiple patches into one cluster, thereby reducing the total number of prediction units. We note that
the performance first increases and then decreases — the best performance is achieved when the
number of the prediction units is set to 9, corresponding to a cluster size of 64×64. Specifically, this
setup provides a performance improvement of 1.3% over the supervised counterpart and 0.8% over
the vanilla autoregressive pretrained counterpart (i.e., with a cluster size of 144). We also report the
comparison to MambaMLP trained under the iGPT-style autoregressive pretraining — with the input
image size at 144× 144 and setting per pixel as the prediction unit, it underperforms our best setup
by 2.7% (i.e., 79.8% vs. 82.5%).

4.4.2 PREDICTION ORDER.
As shown in Table 5, we find different pre-defined orders only lead to minor performance variances.
For example, both row-first and column-first forward prediction orders achieve an identical perfor-
mance of 82.5%; even the least favorable case, where the prediction order was row-first and backward,
only underperforms the best case by 0.2%. Nonetheless, interestingly, if we do not predefine the
prediction order and pick a random permutation, the performance significantly drops to 81.5%.

4.4.3 DECODER DESIGN.
Our exploration into decoder design is summarized in Table 6. We first focus on the design of decoder
depth, finding that increasing the depth up to 4 progressively enhanced performance up to 82.5%;
further increasing the decoder depth to 8 sees a performance saturation. With this 4-layer decoder
setup, we next study the width of the decoder. By ablating these three options {384, 512, 1024}, we
empirically observe that setting the decoder depth to 512 yields optimal accuracy.

4.4.4 PREDICTION TARGETS.

We hereby explore different prediction targets for our ARM. By default, we use per-patch normalized
pixels with mean square error (MSE) loss. For comparison, we ablate it against two setups: 1)
unnormed pixels with MSE loss, and 2) discretized tokens of the patches derived from dVAE Bao
et al. (2022) with cross-entropy loss. The results, presented in Table 7, show that employing
normalized pixels as the target with MSE loss yields the best performance, achieving an accuracy of
82.5%. Comparatively, this configuration outperforms the model using discrete tokens from dVAE by
0.3% and the model leveraging unnormed pixels which trailed by 0.6%.

4.4.5 PRETRAINING PARADIGM.

As shown in Table 8, we evaluate different pretraining paradigms, including contrastive learning Chen
et al. (2021), MAE He et al. (2022), and our ARM. Firstly, we note that all pretraining methods
result in performance gains over the supervised counterpart, demonstrating the benefits of self-
supervised visual pretraining on Mamba architectures. However, using MAE or contrastive learning,
the performance is only moderately improved by 0.4% and 0.2%, respectively, over the supervised

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Ablation on decoder designs.
Dec. Depth Dec. Width Top-1 (%)

1 512 82.1
2 512 82.4
4 512 82.5
8 512 82.5

4 384 82.3
4 512 82.5
4 1024 82.2

Table 7: Ablation on prediction targets.
Targets Top-1 (%)

dVAE Bao et al. (2022) 82.2
Pixel He et al. (2022) 81.9

Normed Pixel 82.5

Table 8: Comparison of architecture and pretraining paradigms. FPS represents the inference speed
after supervised finetuning of the model. The † symbol indicates that Vim, when subjected to
contrastive learning, experiences poor performance, potentially due to mode collapse.

Architecture Pretraining paradigm Training Cost (h) ↓ FPS (imgs/s) ↑ Top-1 (%)

MambaMLP Supervised 110 1330 81.2
MambaMLP Contrastive 330 1330 81.4
MambaMLP MAE 70 1330 81.6
MambaMLP ARM 34 1330 82.5

Vim Supervised 165 923 81.2
Vim Contrastive 510 923 80.2†
Vim MAE 106 923 81.4
Vim ARM 57 923 82.2

baseline. In contrast, our ARM achieves significant improvements of 1.3% over the supervised
baseline, as well as achieves higher accuracy than both contrastive learning and MAE. Additionally,
in terms of efficiency, ARM requires just 34 hours of pretraining, cutting the training duration in half
compared to MAE, which is already noted for its relatively low pretraining demands.

4.4.6 ARCHITECTURE DESIGN.

Exploring further into architectural impacts, Table 8 (from the 5th row to the 8th row) presents
our investigation into whether Vim, another variant within the Mamba architecture, benefits from
autoregressive pretraining. Results indicate a positive response as ARM-trained Vim reaches an
82.2% accuracy on ImageNet, marking a 1.0% improvement over its supervised-only counterpart.
Contrastingly, other pretraining paradigms did not fare as well for Vim: when subjected to contrastive
learning, Vim experiences training instability, falling below the supervised baseline; MAE pretraining
on Vim only slightly improved over the supervised method, with a marginal gain of 0.2%. These
results further support the effectiveness of ARM in pretraining Mamba in Vision.

As a side note, it is important to highlight that although Vim’s performance improves with ARM
pretraining, it operates ∼45% slower during inference compared to MambaMLP. Additionally,
MambaMLP incurs only ∼66% of the training cost required for pretraining Vim under the ARM
framework. These points underscore the superior efficiency of our default ARM framework.

5 CONCLUSION

In this study, we introduced a novel autoregressive visual pretraining strategy tailored for Mamba
architectures, known as ARM. This approach enhances pretraining efficiency and effectiveness by
strategically treating groups of spatially neighboring image patches as prediction units. Through our
method, we have significantly improved the scalability and benchmark performance of Mamba-based
models, setting new standards in their operational functionality. We hope this work can lay a strong
foundation for future explorations and potential expansions in the usage of autoregressive pretraining
strategies for Mamba architectures within the vision community.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers.
In International Conference on Learning Representations, 2022.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICLR, 2020b.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. preprint arXiv:2003.04297, 2020c.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. ArXiv, abs/2104.02057, 2021.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev,
Vaishaal Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large autore-
gressive image models. arXiv preprint arXiv:2401.08541, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your hippo:
State space models with generalized orthogonal basis projections. In ICLR, 2022.

Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
baseline for image restoration with state-space model. arXiv preprint arXiv:2402.15648, 2024.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. CVPR, 2021b.

Tianyu Hua, Yonglong Tian, Sucheng Ren, Michalis Raptis, Hang Zhao, and Leonid Sigal. Self-
supervision through random segments with autoregressive coding (randsac). In ICLR, 2022.

Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
state space model with windowed selective scan. arXiv preprint arXiv:2403.09338, 2024.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In ICML, 2020.

Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
multi-dimensional data. arXiv preprint arXiv:2402.05892, 2024.

Jiarun Liu, Hao Yang, Hong-Yu Zhou, Yan Xi, Lequan Yu, Yizhou Yu, Yong Liang, Guangming Shi,
Shaoting Zhang, Hairong Zheng, et al. Swin-umamba: Mamba-based unet with imagenet-based
pretraining. arXiv preprint arXiv:2402.03302, 2024a.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling
via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

Alan V Oppenheim, Alan S Willsky, Syed Hamid Nawab, and Jian-Jiun Ding. Signals and systems.
Prentice hall Upper Saddle River, NJ, 1997.

Xiaohuan Pei, Tao Huang, and Chang Xu. Efficientvmamba: Atrous selective scan for light weight
visual mamba. arXiv preprint arXiv:2403.09977, 2024.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. Rwkv: Reinventing
rnns for the transformer era. In EMNLP, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Yu Qi, Fan Yang, Yousong Zhu, Yufei Liu, Liwei Wu, Rui Zhao, and Wei Li. Exploring stochastic
autoregressive image modeling for visual representation. In AAAI, 2023.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018.

12

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In CVPR, 2020.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In ICML, 2019.

Sucheng Ren, Zeyu Wang, Hongru Zhu, Junfei Xiao, Alan Yuille, and Cihang Xie. Rejuvenating
image-gpt as strong visual representation learners. arXiv preprint arXiv:2312.02147, 2023a.

Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. Tinymim: An empirical study of distilling
mim pre-trained models. In CVPR, 2023b.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou, Alan Yuille,
and Cihang Xie. Mamba-r: Vision mamba also needs registers. arXiv preprint arXiv:2405.14858,
2024a.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. In NeurIPS, 2019.

Ziyang Wang, Jian-Qing Zheng, Yichi Zhang, Ge Cui, and Lei Li. Mamba-unet: Unet-like pure
visual mamba for medical image segmentation. arXiv preprint arXiv:2402.05079, 2024b.

Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. Segmamba: Long-range sequential
modeling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560, 2024.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
XLNet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019.

Shuangfei Zhai, Navdeep Jaitly, Jason Ramapuram, Dan Busbridge, Tatiana Likhomanenko,
Joseph Yitan Cheng, Walter Talbott, Chen Huang, Hanlin Goh, and Joshua Susskind. Position
prediction as an effective pretraining strategy. arXiv preprint arXiv:2207.07611, 2022.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

13

	Introduction
	Related Work
	Method
	Mamba Preliminaries
	Autoregressive pretraining
	Autoregressive Pretraining in NLP
	Autoregressive Pretraining with Mamba in Vision

	MambaMLP

	Experiment
	Implementation Details
	Main Results
	Robustness and Generalization
	Ablation Study
	Number of prediction units.
	Prediction Order.
	Decoder Design.
	Prediction targets.
	Pretraining paradigm.
	Architecture design.

	Conclusion

