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Abstract

Evaluating the causal event extraction task
is challenging because the boundaries of the
cause and effect clauses can be ambiguous.
We find that traditional metrics like Exact
Match and BertScore are not representa-
tive of model performance, so we trained
models, GPT-3.5 and GPT-4 for evalua-
tion. Contrary to previous findings, GPT-4
is not a suitable replacement for human
evaluation. Our trained evaluators are bet-
ter at identifying ambiguous but valid cases
but tend to misclassify invalid extractions.
We also propose a Reinforcement Learn-
ing (RL) framework to improve the model’s
capacity to capture the semantic meaning
rather than replicating the provided annota-
tions. Our RL framework outperforms the
other approaches in terms of causal relation
classification but still falls short of the su-
pervised fine-tuned model for causal event
extraction. Still, our exploration sheds light
on the complex nature of the causal event
extraction task.!

1 Introduction

Fine-grained causal extraction is the task of
identifying the cause and effect clauses of an
event and the relation between them. This is
the case of the Fine-grained Causal Reasoning
(FCR) (Yang et al., 2022) dataset, where the
cause and effect clauses are extracted from a
context, and the relation between the clauses is
further identified. Each cause and effect clause
may comprise multiple spans of text. FCR is
written in the English language.

Unlike other causal datasets that only con-
sider a single causal relation, such as Fin-
Causal (Mariko et al., 2020), CausalBank (Li
et al., 2020) and COPA (Roemmele et al., 2011),
FCR’s relations are fine-grained. They can be
of three types: (1) cause, where the cause is
required for the effect to happen; (2) enable,

1Our code is available at https://github.com/...

where the cause can create the effect but isn’t
necessary for it to happen; and (3) prevent,
which is the opposite of cause. Figure 1 shows
an example from the dataset, and Section A
(Appendix) shows statistics.

The firm’s gross margin is set to stabilize as Harley refo-
cuses its efforts on more profitable markets, and our base

case assumes that it stabilizes around 32% in 2029, helped
by a more measured approach to entering new markets.

Cause: Harley refocuses its efforts on more profitable mar-
kets

Effect: The firm’s gross margin is set to stabilize
Relation: cause

Figure 1: Example instance from the Fine-grained
Causal Reasoning (FCR) dataset.

We approach the extraction problem using
the T5 and GPT-3.5 models. Our main chal-
lenge is evaluating the results. The main metric
used is Exact Match, which requires the pre-
diction to match the annotation exactly. How-
ever, it overlooks cases where the prediction
differs, but the meaning is maintained. Human
evaluation can recognise these cases, but it is
expensive and time-consuming.

Our investigations show that it is challenging
to construct an effective evaluator for the task
of causal event extraction. In this task, the
exact boundaries of causal (or effect) clauses
are frequently ambiguous since there can be
multiple possible correct annotations, includ-
ing the omission or inclusion of certain words.
We have used existing metrics, trained our own
and applied GPT-3.5 and GPT-4? as evaluators
to find a metric that is compatible with human
evaluation. We discovered that unlike previ-
ous works (Zheng et al., 2023) suggest, GPT-4
isn’t a good replacement for human evaluation.
Our trained evaluators are better at detect-
ing correct cause or effect text segments that
do not precisely align with human annotations

2We used  the gpt-3.5-turbo-0613 and
gpt-4-turbo-1106-preview models.



but misclassify some false extractions as valid
results.

Due to the inherent ambiguity entailed in
the task of causal event extraction, we explore
an alternative training framework built on Re-
inforcement Learning (RL). It is designed to
enhance the model’s capacity for capturing se-
mantic meaning instead of replicating the pro-
vided annotations. The RL framework uses
our trained evaluators as reward functions to
guide the causal event extraction model. Our
RL framework outperforms other approaches
for causal relation classification, though it still
falls short of the supervised fine-tuned model
for causal event extraction. Our insights are
valuable for future exploration in this avenue.

2 Methodology

There are past works on this problem. Some
used sequence labelling, where each token is
labelled as being the beginning or inside a
clause (Saha et al., 2022) (cause or effect). Oth-
ers used span extraction, where they predict
two pairs of indices, (start,end), indicating
where the cause and effect clauses are. Neither
of these encodes the type of relation, so they
require a second step to classify the relation.

Generative T5 Approach To avoid the
pipeline approach, we resort to a generative
method, where the model generates a com-
prehensive text-based structured output where
causes, effects, and relation are delimited by
tags. This allows us to obtain both extrac-
tion and classification jointly. Figure 2 shows
an example of the structured output of this
method.

(a) [Cause] Harley refocuses its efforts on more
profitable markets [Relation] cause [Effect]
The firm’s gross margin is set to stabilize

Figure 2: Structured representation for the instance
in Figure 1

We fine-tuned a T5-base (Raffel et al., 2020)
model on this task using supervised learning.
We find that the fine-tuned model accurately
learns the task specification and can correctly
extract only spans of the context instead of the
arbitrary text that could be possible from a
generative approach. It’s also able to predict
only the correct relation types.

The hyperparameters used for this T5-base
fine-tuning were a batch size of 32, learning

rate 5e-4, 20 epochs and a maximum sequence
length of 250.

GPT-3.5 We also applied GPT-3.5 (OpenAl,
2023b) with in-context learning. We hand-
picked ten examples covering all relation classes
and used them as in-context examples in the
prompt?. We used a natural language format
rather than the structured output of the T5H
because we found that GPT couldn’t follow
the structured format. Another problem with
GPT is the relation classification. GPT hallu-
cinated invalid relation types, including entire
sentences. We consider invalid relations as the
cause type when calculating metrics.

3 Evaluation Metric Design

Beyond extracting the events, we also face an-
other critical problem: evaluating the results.
The metric originally used for FCR is Exact
Match, where we expect the model prediction
to match the annotation exactly. However, the
prediction may differ in some cases while the
meaning remains the same. These would be
counted as wrong matches, which is an inaccu-
rate assessment of the model. Table 1 lists some
example cases where model-extracted cause and
effect text subspans differ from the annotated
ones. In the ‘Valid substring’ case — where the
predicted extraction is a substring of the origi-
nal annotation — the missing words do not alter
the overall meaning, rendering the predicted
extraction equivalent to the annotation.

An alternative solution is human evalua-
tion. However, it is costly, time-consuming,
and can’t realistically be done for every model
and dataset combination. It’s also challenging
in terms of result reproducibility, as different
evaluators may have varying opinions, leading
to diverging outcomes.

3.1 Building Evaluators from LMs

We want to create an automated evalua-
tion process that is compatible with hu-
man evaluation results but is easier, cheaper
and faster to perform. Some general met-
rics attempt to do this. For example,
ROUGE-L (Lin, 2004), BLEU (Papineni et al.,
2001), BertScore (Zhang et al., 2020) and
BLEURT (Sellam et al., 2020) all attempt to
evaluate text generation with more than ex-
act matches or token frequencies. However, we

3The prompt used is shown in Figure Al and the
examples in Listing 1, in the Appendix.



Category  Annotation Prediction Comments

Valid BB&T and SunTrust have BB&T and SunTrust have ‘which we believe’ is

substring completed their merger, form- completed their merger, form- an extra substring that
ing Truist, which we believe ing Truist, which we believe doesn’t change the
will drive the next step up in  will drive the next step up in  meaning of the clause.
profitability for the franchises. profitability for the franchises.

Invalid Despite Telus’ best in class net-  Despite Telus’ best in class net- The cause clause is a sub-

substring work, we think it will have work, we think it will have string of the annotation,
to adapt to Shaw, which will to adapt to Shaw, which will but the overall meaning
likely mean reduced pricing likely mean reduced pricing is different.
power and margins. power and margins.

Non- Steadily rising Internet access Steadily rising Internet access The predicted cause

substring pricing is a key element of pricing is a key element of clause is a completely

our belief that Altice USA can
maintain revenue per customer
and cash flow as fewer cus-
tomers take television and tele-
phone services.

our belief that Altice USA can
maintain revenue per customer
and cash flow as fewer cus-
tomers take television and tele-
phone services.

different span from the
annotation.

Table 1: Example cases where model predictions are different from human annotations in the FCR dataset.
Words highlighted in the teal colour are extracted as Cause, while those in purple are identified as Effect.

find that none of them are good enough for our
case. e turned to language models as automatic
evaluators and trained some variations.

ENTAILMENT We use a classifier that takes
the context and the structured extraction as
inputs and decides whether the extraction en-
tails the context, contradicts it, or is neutral.
The metric here is the percentage of entailment.
We used a DeBERTa-v3-base (He et al., 2022)
fine-tuned on data synthesised from the FCR

dataset to create samples for all three classes.*
NLI We use DeBERTa-MNLI-base (He
et al., 2021). pre-trained on the MNLI

dataset (Williams et al., 2018) without further
training. We use a template to rewrite the
extraction as a natural language sentence and
feed that to the model, along with the context.
Figure A3 (Appendix) shows an example of
structured to natural language transformation.
This again outputs the entailment, neutral and
contradiction classes. We use the percentage
of entailment as the metric.

VALID We train a binary classifier that de-
cides whether the input pair of context and
structured extraction is valid. This is trained
on the output of our original T'5 model, human-
evaluated to decide which outputs are valid.
The metric is the percentage of valid cases.
The base model is DeBERTa-v3-base (He et al.,

4See Appendix C for more details about the synthetic
data creation.

2022). We call this approach the VALID model.’

3.2 GPT-3.5 and GPT-4 as Evaluators

We also applied GPT-3.5 and GPT-4 (OpenAl,
2023a) as evaluators. The prompt is shown
in Figure A2 (Appendix). This prompt uses
in-context learning, contrastive examples (Chia
et al., 2023) and some characteristics inspired
by the RAGAS projectS. We instructed the
model to produce a rationale for its decisions
and predict a numeric rating (1-5) instead of
a valid binary label. These attributes were
determined empirically to outperform simpler
versions. The metric is the percentage of in-
stances with a rating of 5.

3.3 Agreement with Human
Evaluation Results

Following Zheng et al. (2023), we evaluate the
agreement between our evaluation models and
the human evaluation on the two causal event
extraction models, TH and GPT-3.5. Table 2
shows the agreement percentages.

However, contrary to the previous find-
ings (Zheng et al., 2023) that LLM judges such
as GPT-4 align well with human preferences
in assessing multi-turn questions, the GPT-
based evaluators performed poorly in our task.
Compared to the trained evaluators, the GPT
versions display a strong tendency to misclas-
sify anything that is a substring of the context

5The hyperparameters for both ENTAILMENT and
VALID were a batch size of 32, a learning rate of 2e-5
and 3 epochs. NLI isn’t fine-tuned.

Shttps://github.com/explodinggradients /ragas



Evaluator model ~T5  GPT-3.5 (10-shot)

ENTAILMENT 65.67 46.41
NLI 36.78 39.65
VALID 68.09 63.58
GPT-3.5 64.85 35.88
GPT-4 64.89 45.64

Table 2: Evaluation agreement (%) between LM
evaluators and human evaluation.

as valid, which is not always correct.

Our trained evaluators ENTAILMENT and
VALID are the most aligned with the human
evaluation, with both GPT models falling be-
hind. VALID, in particular, has the highest
agreement in both T5 and GPT-3.5 cases, sug-
gesting it is the best evaluator for our case.

4 Experiments

Table 3 shows the causal event extraction re-
sults of the TH5 and GPT-3.5 models on the
FCR dataset according to the human, exact
match, other traditional text generation evalua-
tion metrics, and LM metrics.” Full evaluation
details can be found in Appendix F.

Results As expected, the human evaluation
values are higher than exact matches, as it
is more lenient about extra or missing words.
However, none of our trained evaluators match
it. Exact match underrates both models, and
the rest overrates them. This can be due to the
difficulty of determining when the extracted
text subspan is valid, as all extractions are
substrings of the context. This is particularly
notable in the ENTAILMENT and GPT-3.5 eval-
uators.

Metric T5  GPT-3.5 (10-shot)
Human 64.38 35.13
Exact Match 52.28 30.05
ROUGE-L 77.18 64.33
BLEU 75.83 61.76
BLEURT 75.30 63.09
BertScore 95.52 89.84
ENTAILMENT 98.27 94.84
VALID 87.47 84.85
GPT-3.5 98.55 99.15
GPT-4 84.87 85.71

Table 3: Causal event extraction results (%) for T5
and GPT-3.5 on the FCR dataset.

"We don’t consider NLI because of its low agreement
with human evaluation.

Discussion When manually evaluating the
results, we found that the ENTAILMENT and
VALID evaluators are better at detecting
the ‘valid substring’ cases, where the model-
extracted cause and effect clauses did not pre-
cisely align with the human annotations but
conveyed similar meaning. However, these eval-
uators also made mistakes by classifying false
extractions as valid ones. This shows the chal-
lenge of developing an effective evaluator for
the task of causal event extraction, where the
precise boundary of cause or effect clauses is
often ambiguous, resulting in numerous accept-
able alternatives.

Given the inherent ambiguity associated with
the task of extracting causal events, we aim to
investigate an alternative training framework
to enhance the model’s ability to capture the
correct semantic meaning rather than merely
replicating the provided annotations. In tra-
ditional supervised learning, cross-entropy is
commonly used as the loss function, directing
the model to produce tokens that match the an-
notated ones. However, as previously discussed,
in causal event extraction, there can be multi-
ple possible annotations for causal and effect
clauses, such as variations with the omission
or inclusion of certain words. To address this
challenge, we propose utilising our suggested
evaluators as reward functions and implement
a reinforcement learning (RL) approach with
Proximal Policy Optimisation (PPO) (Schul-
man et al., 2017) for causal event extraction.
We use the supervised T model as our base
model. Our RL framework improves upon su-
pervised T5 by nearly 2% for causal relation
classification, though it did not show improve-
ment for causal event extraction, possibly due
to the use of imperfect evaluators as the reward
functions®. Nevertheless, we believe this is a
promising direction worth further exploration.

5 Conclusion

We have explored several evaluation approaches
to address the inherent ambiguity of the causal
event extraction task. Our findings demon-
strate the difficulty in finding a viable replace-
ment for human evaluators while also highlight-
ing the potential promise of utilising reinforce-
ment learning with the evaluator as the reward
function for future research exploration.

8Details of RL implementation and results are shown
in Appendix E.



Limitations

Our trained metrics do not perform similarly to
the human evaluation as we intended. We at-
tempted to use reinforcement learning to train
better models but only observed better perfor-
mance for causal relation extraction and yet no
improvement for causal event extraction.

We applied GPT-3.5 and GPT-4 as evalu-
ators, and our result goes against established
precedent in that they performed worse than
our purposely trained evaluators. This could
be because we didn’t explore the best tech-
niques to prompt the models to their full
potential. We experimented with Chain of
Thought (CoT) (Wei et al., 2022) as a prompt-
ing technique, but it did not improve the results
over the approach we used. As future work, we
could employ other techniques to improve CoT,
such as Contrastive CoT prompting (Chia et al.,
2023) and Self Consistency (Wang et al., 2022b).
We leave these possibilities as future work.

Another limitation is that we used a sin-
gle dataset, FCR. We used it because it rep-
resented an interesting instance of the causal
event extraction problem, as it had both multi-
ple spans per clause and fine-grained relation
types. To the best of our knowledge, it was
the only dataset to have both. There are other
datasets, such as MAVEN-ERE (Wang et al.,
2022a) and TellMeWhy (Lal et al., 2021) that
could benefit from a similar approach.
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A FCR Dataset Statistics

Table A1 shows statistics on the Fine-grained
Causal Reasoning (FCR) (Yang et al., 2022)
dataset regarding extraction and Table A2 re-
gards classification.

Split  # Examples # Relations # Causes # Effects

Dev 2482 3224 3224 3238
Train 19892 25938 26174 26121
Test 2433 3045 3065 3062

Table Al: FCR dataset: extraction statistics.

Split  # Relations % Cause % Prevent % Enable

Dev 3224 63.78 5.40 30.82
Train 25938 63.05 5.90 31.05
Test 3045 64.00 5.38 30.62

Table A2: FCR dataset: classification statistics.

B GPT Prompts

Figure A1l shows the prompt used when employ-
ing GPT-3.5 and GPT-4 as extraction models.
Figure A2 shows the prompt for evaluation.

What are the causes, effects and
relation in the following text? The
relation must be one of "cause”,
"enable”, or "prevent”. The causes
and effects must be spans of the text.
There is only one relation.

The response should be formatted as
this:

Cause: <text>

Effect: <text>

Relation: <text>

When there are multiple causes or
effects, separate themby " | ". Don’t
add quotes around the extractions.

Figure A1l: GPT extraction prompt.

C Synthetic Data for Training the
ENTAILMENT Evaluator

To train the ENTAILMENT evaluation model
(Section 3.1), we need examples from all three
classes: entailment, contradiction and neutral.
The original dataset does not contain contra-
diction and neutral sentences, so we have to
create synthetic data for these two classes. We
compile a list of all pairs of text passages and
their spans.

Given the context, how valid is
the extraction? The extraction is
composed of a cause and effect. The
cause and effect are spans of the
context.

Evaluate the extraction based on the
following criteria:

1. Read the extraction and compare
it to the context. Check if the
extraction contains the cause and
effect mentioned in the context.

2. Make sure that the extraction
clauses only contain the necessary
information.

3. Penalize extractions that are too
long or too short.

4. Penalize extractions that include
more information than necessary for
the clause.

5. Assign a score for validity on a
scale from 1 to 5, where 1 is the
lowest and 5 is the highest based on
the Evaluation Criteria.

Respond with the following format:
Explanation: <text explaining the
score>

Score: <score from 1 to 5>

Figure A2: GPT evaluation prompt.

The final data consists of pairs of text pas-
sages and hypotheses. These hypotheses belong
to three classes: entailment, neutral and con-
tradiction. Each class is produced differently:

e Entailment: the hypothesis belongs to the

same example as the passage

Neutral: the hypothesis belongs to a dif-
ferent example from the passage

Contradiction: the hypothesis belongs to
the same example as the passage. This
time, we flip the cause and effect to get a
contradiction. This is done by parsing the
original structured relation and swapping
the cause and event components.

Since the entailment and neutral cases can
be sentence fragments, we use GPT-3.5 to
produce complete sentences from them. The
contradiction cases are structured text, so we



use GPT-3.5 to reconstruct these sentences
as natural text. We use the system mes-
sage ‘You are a helpful assistant that
generates sentences from causes, effects
and relations’ and the prompt ‘Given the
following causes and effects, generate a
sentence:’. Table A3 shows statistics of our
created synthetic dataset.

Split  # Examples
Dev 7441
Train 59580
Test 7286

Table A3: The statistics of the synthetic dataset
created for training the ENTAILMENT evaluator. For
each split, we have the balanced distribution of the
three classes, entailment, contradiction and neutral.

D Rewriting Structured Text to
Natural Language for the NLI
Evaluator

Figure A3 shows an example of rewriting the
structured output of the T5 model to a natural
language sentence to use with the NLI evalua-
tion model.

(a) [Cause] its business was barely breaking
$100 million in revenue-and have steadily
grown with its top line and margin expansion
[Relation] prevent [Effect] MPS’ returns
on invested capital | dipped below 20%

(b) Its business was barely breaking $100 million
in revenue-and have steadily grown with its
top line and margin expansion prevents MPS’

returns on invested capital, and dipped below 20%

Figure A3: Rewriting structured output to natural
language: (a) original (b) rewritten.

E Reinforcement Learning

Cross-entropy is the conventional supervised
learning loss for text generation, which directs
the model to generate tokens identical to the
annotated ones. However, we have discovered
that this is not always the most effective, so
we seek another way of training our generative
model.

Our goal is to improve the model’s capa-
bility to capture the correct meaning rather
than merely replicating the annotated text. To
achieve this, we apply reinforcement learning
(RL) with the Proximal Policy Optimisation
(PPO) algorithm (Schulman et al., 2017) to

Input

N -
Extraction Structured
model Output

H Update
g PPO
|

©, Evaluation
' Model

Figure A4: Architecture of the Reinforcement
Learning (RL) framework.

move the model in that direction, using the
supervised T5 model as the starting point. To
determine the rewards for RL, we use the evalu-
ation models we have trained, namely, ENTAIL-
MENT and VALID. The reward signal passed
to the RL trainer is the logit for the true class
from each of these models. We use the TRL
library” to train transformers!’-based models.

However, there were some issues. The eval-
uation models are imperfect metrics, so the
rewards they generate cannot be guaranteed to
steer the model in the desired direction. Cou-
pled with the complexities and instabilities as-
sociated with RL as a learning process, we fell
short of achieving the desired level of perfor-
mance.

We introduced certain strategies to improve
the training process, including implementing
L2 regularisation in the PPO loss and skipping
batches that exhibited excessively high KL di-
vergence. In our experiments, these particular
batches often caused the model to deteriorate,
prompting us to set a maximum KL divergence
threshold of 2. If a batch trajectory’s KL di-
vergence exceeded this threshold, we opted not
to apply the PPO update from that trajectory.

We also applied human evaluation to the RL
models and found them to be of similar qual-
ity to the supervised TH model, albeit slightly
inferior. This suggests that the models did not
deviate significantly from the original model,
but the introduced changes did not yield an
improvement.

https://github.com /huggingface/trl
Ohttps: //github.com /huggingface/transformers



F  Full Evaluation Results

Table A4 shows the performance of the T5,
GPT-3.5 and RL models on the extraction met-
rics. Table A5 shows the classification metrics.

On causal event extraction, ROUGE-L,
BLEU, BLEURT and BertScore are all incom-
patible with the human evaluation, especially
when evaluating the GPT-3.5 model. The LM
evaluators are not much better, with GPT-3.5
being the worst of them, classifying almost all
examples as valid.

On causal relation classification, T5 exhibits
superior performance in terms of accuracy and
precision compared to the other models. RL
with VALID achieves the best recall and F1
scores among all the evaluated models.

. GPT-3.5 RL with RL with

Metric T5

(10-shot) ENTAILMENT  VALID
Human 64.38 35.13 59.23 60.48
Exact Match 52.28 30.05 47.06 50.02
ROUGE-L 77.18 64.33 73.08 75.47
BLEU 75.83 61.76 73.42 75.31
BLEURT 75.30 63.09 71.61 73.71
BertScore 95.52 89.84 94.84 95.25
ENTAILMENT  98.27 94.84 98.83 98.23
VALID 87.47 84.85 80.38 84.33
GPT-3.5 98.55 99.15 - -
GPT-4 84.87 85.71 - -

Table A4: Causal event extraction results (%) for
T5, GPT-3.5 and the RL models on the FCR
dataset.!?

. GPT-3.5 RL with RL with
Metric T5
(10-shot) ENTAILMENT  VALID
Accuracy 70.37 61.57 67.77 67.89
Precision 57.91 46.56 55.62 55.90
Recall 51.90 47.51 54.71 55.31
F1 53.85 46.93 55.11 55.58

Table A5: Causal relation classification results (%)
for T, GPT-3.5, and the RL models on the FCR
dataset.

G Information on Computational
Experiments

We used a single NVIDIA A100 GPU (40 GB)
for all of our experiments. Training the T5-
Base model (220M parameters) took about
6 hours, and the DeBERTa-v3-Base models

" Because of the cost, we chose not to run the GPT-
3.5 and GPT-4 evaluators on the RL models. We expect
them to perform poorly based on the other metrics.

(86M parameters) took 2 hours each. The Rein-
forcement Learning models took 24 hours each.
Time for inference on all of them was trivial.
We did multiple experiments on these models,
which brings the total number of hours to the
low hundreds. All models fit entirely in the
GPU VRAM.

We used the OpenAl API to run experiments
on GPT-3.5 and GPT-4. The GPT-3.5 extrac-
tion model took 5 hours to run. The GPT-3.5
evaluator took 2 hours, and the GPT-4 evalua-
tor took 5 hours. These were also run multiple
times, with the total amount of time around
50 hours.

H Licenses

The FCR dataset used is distributed in the Cre-
ative Commons Attribution-NonCommercial-
ShareAlike (CC-BY- NC-SA) license. The De-
BERTa models are covered by the MIT license.
The T5-Base is under the Apache-2.0 license.
The GPT API is a commercial service under
OpenAT’s terms of use. We use the dataset and
tools for an intended use: research only.

I GPT in-context learning examples

Listing 1 shows all ten examples used as part of
the prompt for the GPT-3.5 extraction model
in their raw JSON format. The original file is
available with the code.

L

{
"context"”: "We expect Robert Half
to increase permanent placements by
providing employers access to its
deep bench of highly skilled
professionals.”,
"question”: "What are the events?",
"question_type": "enable",
"answers"”: "Cause: providing
employers access to its deep bench
of highly skilled
professionals\nEffect: Robert Half
to increase permanent
placements\nRelation: enable”,
"id": "57d64189"

}’

{
"context”: "Burlington has faced

inventory flow challenges (despite
ample product availability) as it
and its vendors restart their
supply and distribution networks;
freight costs are also rising

sharply."”,

"question”: "What are the events?",
"question_type": "cause",
"answers"”": "Cause: it and its

vendors restart their supply and
distribution networks; freight
costs are also rising



sharply\nEffect: Burlington has "context”: "In connected care we

faced inventory flow challenges assume slower growth in monitoring
(despite ample product and analytics, offset by higher
availability)\nRelation: cause”, growth in sleep and respiratory
"id": "581af36a” care."”,

3, "question": "What are the events?”,

{ "question_type": "prevent",
"context"”: "The firm owns and "answers"”: "Cause: higher growth in
operates fabrication yards in China sleep and respiratory care\nEffect:
and Mexico, and its fabrication and slower growth in monitoring and
modular construction capabilities analytics\nRelation: prevent”,
allow it to complete parts of large "id": "ff14eb55"
projects off-site and ship them in 3},
modules. This strategy gives Fluor {
flexibility and more control over "context”: "For 2021, we have
costs when working in areas with marginally lifted our sales
scarce and expensive local labor.", estimate (to $18.4 billion from
"question”: "What are the events?”, $18.3 billion) but have
"question_type"”: "enable”, significantly raised our operating
"answers": "Cause: The firm owns margin forecast to 4.8% from 3.9%,
and operates fabrication yards in leading to an adjusted EPS forecast
China and Mexico, and its that improves to $2.85 from our
fabrication and modular prior $2.29 estimate."”,
construction capabilities allow it "question”: "What are the events?"”,
to complete parts of large projects "question_type"”: "cause”,
off-site and ship them in "answers": "Cause: marginally
modules\nEffect: gives Fluor lifted our sales estimate|
flexibility and more control over significantly raised our operating
costs when working in areas with margin forecast to 4.8% from
scarce and expensive local 3.9%,\nEffect: adjusted EPS
labor\nRelation: enable”, forecast that improves to $2.85
"id": "4075835c" from our prior $2.29

3}, estimate.\nRelation: cause”,

{ "id": "f1330f5c"
"context”: "They would not have the 3,
advantage Cogent had 20 years ago, {
when top providers in a more "context": "Its operating income
nascent Internet business were (excluding charges) dropped more
phone and cable companies, and than $1.5 billion between 2014 and
fiber assets could be procured on 2019 (to $1.2 billion from $2.8
the cheap due to the collapse of billion) on store closures,
the tech and telecom bubble.”, declining sales, and increased
"question"”: "What are the events?”, expenses.",
"question_type"”: "cause”, "question”: "What are the events?"”,
"answers"”": "Cause: the collapse of "question_type"”: "prevent”,
the tech and telecom "answers"”: "Cause: on store
bubble\nEffect: fiber assets could closures, declining sales, and
be procured on the cheap\nRelation: increased expenses\nEffect:
cause”, operating income (excluding
"id": "2a64e8dd” charges) dropped more than $1.5

3}, billion\nRelation: prevent”,

{ "id": "59422bb1"
"context”: "Consistent product and 3,
process technological advancement {
enables more favorable pricing "context"”: "Alliance Data Systems
relative to many automotive gathers data on its client’s
industry suppliers that lack the customers, helping to better tailor
capability or the desire to these programs, which can create
innovate.", some switching costs in the
"question”: "What are the events?”, process.",
"question_type"”: "enable”, "question”: "1 What are the
"answers”: "Cause: Consistent events?”,
product and process technological "question_type"”: "cause",
advancement enables more favorable "answers"”: "Cause: Alliance Data
pricing\nEffect: relative to many Systems gathers data on its
automotive industry suppliers that client’s customers\nEffect: create
lack the capability or the desire some switching costs in the
to innovate\nRelation: enable”, process\nRelation: cause”,
"id": "a62b3c49"” "id": "77d6a30b"

}! }’

{ {
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"context"”: "After several years of
mixed results, Merck’s R&D
productivity is improving as the
company shifts more toward areas of
unmet medical need.”,

"question”: "What are the events?”,
"question_type"”: "cause",
"answers": "Cause: the company

shifts more toward areas of unmet
medical need\nEffect: After several
years of mixed results, Merck’s R&D
productivity is
improving\nRelation: cause”,

"id": "47352f8f"

Listing 1: GPT in-context learning examples
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