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ABSTRACT

Advancements in large language models (LLMs) allow them to address a wide set
of questions from diverse topics using human-like text interfaces, but limitations
in their training prevent them from answering accurately in scenarios that could
benefit from multiple perspectives. Multi-agent systems allow the resolution of
questions to enhance result consistency and reliability. Here we create a multi-
perspective (i.e., unstructured text, structured knowledge graph, and Machine
Learning (ML) prediction) multi-agent LLM system. We apply this system to the
biologically inspired problem of predicting drug-target interaction. Our system
uses a coordinator agent to assign and integrate results for tasks given to three
specialized agents: an AI agent for ML predictions, a knowledge graph (KG) agent
for KG retrieval, and a search agent for web-based information retrieval.
We conducted experiments using our LLM-based system for predicting drug-
target interaction constants that reflect binding affinities using the BindingDB
dataset. Our multi-agent LLM method significantly outperformed GPT-4 across
multiple evaluation metrics by a significant margin. An ablation study revealed the
contributions by each agent; ranked in terms of a contribution: the AI agent (i.e.,
ML prediction) was the most important followed by the KG agent then the search
agent. The large contribution by the AI agent highlights the importance of LLM
tool use in addressing questions that may not be part of text corpora. While our
use case was related to biology, our presented architecture is applicable to other
integrative prediction tasks. Code is available https://anonymous.4open.
science/r/DrugAgent-2BB7/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in solving a wide range of
problems using human-friendly inputs (Wei et al., 2022). However, these models still face limitations
when confronted with tasks outside their training scope or those requiring real-time data access
and specialized domain knowledge. To address these challenges, there is a growing interest in
Multi-Agent systems (Du et al., 2023) that incorporate external tools, Knowledge Graphs (KG) (Shu
et al., 2024), and Retrieval-Augmented Generation (RAG) (Lewis et al., 2020). These systems offer
a more robust and reliable approach to problem-solving by leveraging diverse information sources
and specialized capabilities. In this paper, we propose a novel multi-perspective, multi-agent system
that integrates unstructured text, structured knowledge graphs, and machine learning predictions.
This approach is designed to overcome the limitations of single-model systems and provide a more
comprehensive solution to complex problems such as biomedical domain.

Our research focuses on two areas of drug discovery: drug-target interaction (DTI) prediction and
drug repurposing. DTI prediction is a strategy for identifying potential targets for new compounds,
which has the potential to significantly reduce the time, cost, and risk associated with drug develop-
ment (Abbasi Mesrabadi et al., 2023). Drug repurposing, on the other hand, aims to identify new
therapeutic uses for existing drugs, offering a faster path to clinical applications.

Pharmaceutical research is challenged by high failure rates due to the complexity of biological
systems and the diversity of biomedical information sources (Chen et al., 2024; Wu et al., 2022b).
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These challenges create a pressing need for innovative computational strategies that can effectively
integrate and analyze vast, heterogeneous datasets (Huang et al., 2021; Lu, 2018). Recent advances
in artificial intelligence, particularly in machine learning and knowledge graphs (Gyori et al., 2017),
have helped address these challenges (Vamathevan et al., 2019). However, the effective integration of
heterogeneous data sources and the interpretation of their complex interrelations remains a major
research area.

To overcome these obstacles, we propose a multi-agent system framework where each agent spe-
cializes in a specific aspect of the drug discovery process. Our framework includes three primary
agents; the AI agent, the KG Agent, and the Search Agent. The AI agent employs the DeepPurpose
package (Huang et al., 2020) to predict DTIs. The KG Agent utilizes the drug-gene interaction
database (DGIdb) (Cannon et al., 2024), DrugBank (Knox et al., 2024), Comparative Toxicogenomics
Database (CTD) (Davis et al., 2023), and Search Tool for Interactions of Chemicals (STITCH) (Kuhn
et al., 2007) to extract information on DTIs. The Search Agent engages with biomedical literature,
LLMs for automated data labeling and validation. The AI Agent provides data-driven predictions, the
KG Agent offers structured, curated knowledge, and the Search Agent contributes the latest findings.
This multi-perspective approach enables a more comprehensive and accurate analysis of potential
DTIs and drug repurposing opportunities.

The framework we developed, although initially designed for biological applications, can be adapted
to various other fields requiring multi-perspective.

2 RELATED WORKS

The concept of drug target interaction has evolved with the advancements in computational tools,
leading to a growing body of literature that explores various methodologies. Here, we highlight key
developments in the field that align with our multi-agent system approach.

Machine Learning in Drug Target Interaction and Repurposing

Machine learning (ML) techniques have aided drug discovery, with use in various aspects of phar-
maceutical research. Huang et al. (2020) is a deep learning models for DTI prediction that com-
bines several algorithms (i.e., Graph Neural Networks (GNNs) and Convolutional Neural Networks
(CNNs)). This model offers a versatile pre-trained approach applicable to a wide range of drug
discovery tasks such as DTIs and drug property predictions. Similary in drug repurposing, Issa et al.
(2021) demonstrating significant potential in predicting drug-disease interactions.

Knowledge Graphs for Integrative Analysis. Knowledge graphs provide a structured way of inte-
grating diverse biological data. For instance, the DRKG, as employed by our Knowledge Graph Agent,
integrates data from several sources, including DrugBank (Knox et al., 2024), Hetionet (Himmelstein
et al., 2017), and STRING (Szklarczyk et al., 2023), to offer comprehensive insights into possible
drug-disease links (Ioannidis et al., 2020). This structured integration facilitates the systematic
exploration of DTI candidates.

Literature Search using LLMs The automation of literature review and data extraction using AI
tools, particularly LLMs, has become a component of modern drug discovery (Chakraborty et al.,
2023). Recent studies have demonstrated that LLM-based search tools can enhance the efficiency
and complexity of queries compared to traditional search engines (Spatharioti et al., 2023). In our
framework, we also leverage this approach by implementing a Search Agent that utilizes search
engines as a data source.

Multi-Agent Systems in Biomedical Applications. While individual AI applications have shown
promise, the integration of these technologies through a multi-agent system is less explored in the
field of biomedical research though there are notable examples, such as clinical trials (Yue & Fu,
2024). These studies provide a foundation for the application of such multi-agent systems for drug
discovery.
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Figure 1: DrugAgent framework architecture for advanced DTI analysis. This system combines a
user-friendly interface with sophisticated internal decision-making processes. It features a central
“Coordinator” managing specialized agents: a “Knowledge Graph Agent” accessing biomedical
databases (DrugBank, CTD, DGIdb, STITCH), a “Search Agent” utilizing web search engines, and
an “AI Agent” employing deep learning models (trained on Davis, Kiba, BindingDB datasets with
GNN, CNN, Transformers, etc). The system integrates RDKit and UniProt ID for chemical and
protein data processing, culminating in a scoring function that synthesizes multi-source information
to generate comprehensive answers for complex drug-target queries.

3 METHODS

Our DrugAgent framework is designed to mimic the collaborative and multidisciplinary nature
of drug discovery teams with each agent in the system specialized to handle specific tasks. (See
Appendix A.1 for detailed implementations of these agents.)

3.1 OVERVIEW OF DRUGAGENT

Our proposed system is a conversational multi-agent framework analogous to a specialized research
team focused on drug target interaction prediction. Each agent within this system plays a distinct
role, mirroring separate tasks research team members would do: some focus on machine learning
models, others on search-based analysis, and another is dedicated to knowledge graph exploration.

The system comprises the following key agents:

1. A Coordinator Agent that oversees the specialized agents and integrates their findings.

2. An AI Agent specializing in predicting DTI potential using machine learning models.

3. A Search Agent focusing on analyzing existing literature and data for repurposing opportunities.

4. A Knowledge Graph (KG) Agent dedicated to exploring connections between drugs, diseases, and
biological pathways.
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The system employs LLMs for natural language processing and response generation, enhances
reasoning through step-by-step problem-solving methodologies, and performs actions like calculating
scores, analyzing literature, and querying knowledge graphs. It then integrates this information using
a weighted average approach to simulate a knowledgeable DTI research team.

3.2 AGENT ROLES AND RESPONSIBILITIES

The DrugAgent framework integrates a diverse array of specialized agents, each employing the
ReAct (Yao et al., 2022) and LEAST-TO-MOST (Zhou et al., 2022) reasoning methods to plan their
actions. Through the use of advanced search capabilities, access to specialist models, and indexing
in databases, these agents can execute a wide range of tasks effectively. Below, we delve into the
specific roles and responsibilities assigned to each agent within the system.

3.3 AI AGENT

Our approach begins with the AI Agent, which utilizes the MPNN CNN BindingDB model from
DeepPurpose (Huang et al., 2020) to predict potential drug-target. This model combines Message
Passing Neural Networks (MPNN) (Gilmer et al., 2017) for processing molecular structures with
CNN for embedding binding site features. It is trained on the comprehensive BindingDB dataset,
which contains binding affinity data for DTIs. DeepPurpose can predict binding affinity values for
any combination of SMILES and target sequence provided.

The MPNN CNN BindingDB model operates as follows:

1. The MPNN component processes the molecular graph of the drug, capturing its structural features.
2. The CNN component analyzes the binding site information of the target protein.
3. These features are then combined and processed through fully connected layers to predict binding

affinity.

3.4 KNOWLEDGE GRAPH (KG) AGENT

Concurrently, the Knowledge Graph (KG) Agent employs DGIdb (Cannon et al., 2024), Drug-
Bank (Knox et al., 2024), CTD (Davis et al., 2023), and STITCH (Kuhn et al., 2007). From these
datasets, we make use of the DTI table and then create the drug-gene interaction table. This consoli-
dated table contains 3,312 drugs and 23,066 genes. From this, we calculate the number of hops to
reach from the drug to the target using the below formula,

DTIscore(d, t) =


0 if d /∈ G or t /∈ G,

1 if h(d, t) = 1,
1

ln(1+h(d,t)) otherwise,
(1)

where d is a drug, t is a target G is a knowledge graph h(d, t) is a number of hops in the shortest path
between d and t in G and ln(·) is a natural logarithm. The score decreases logarithmically as the path
length between drug and target increases.

3.5 SEARCH AGENT: INFORMATION EXTRACTION FROM BIOMEDICAL LITERATURE

Parallel to these processes, the Search Agent leverages LLMs to automate the extraction of relevant
information from biomedical literature found via search engine hits. This agent applies natural
language processing techniques to extract and annotate data regarding drug efficacy and novel
interactions, which are critical for validating and updating the predictions generated by the other
agents.

The search agent’s core functionality can be summarized as follows:

1. Google Search Query: The agent formulates a search query combining the drug name and target
name, along with the term “interaction”.

2. Web Scraping: It performs a Google search using this query and scrapes the search results,
including titles, links, and snippets.

4
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3. Text Analysis: The agent analyzes the scraped text for the presence of the drug name, target name,
and predefined keywords related to interactions and efficacy.

4. Scoring: Based on the presence of these elements, it assigns a score to each search result.
The scoring system considers: (1) Presence of both drug and target names; (2) Occurrence of
interaction-related keywords; (3) The presence of words indicating strong or significant effects.

5. DTI Score Calculation: Finally, it calculates an overall DTI score by aggregating individual
result scores and normalizing the total.

This simplified approach allows for rapid information gathering from publicly available sources.
However, it is important to note that this method relies on the quality and relevance of Google search
results, and does not analyze full scientific papers or curated databases. As such, it serves as a
preliminary screening tool rather than a comprehensive literature review system.

The DTI score calculation is as follows: Let R = {r1, r2, ..., rn} be the set of search results, where
n is the number of results (default n is 10). For each result ri, we define an individual score function
S(ri): S(ri) = I(d, t, ri) + I(p, ri) + I(s, ri), where

I(d, t, ri) =

{
1 if drug name d and target name t are in ri
0 otherwise,

I(p, ri) =

{
1 if any positive keyword is in ri
0 otherwise,

and

I(s, ri) =

{
1 if any strong keyword is in ri
0 otherwise.

The positive keywords are “interacts”, “binds”, “activates”, “inhibits”, and “modulates”. The strong
keywords are “strong”, “significant”, “potent”, and “effective”.

The total score T is then calculated as T =
∑n

i=1 S(ri). The maximum possible score M is M = 3n.
Finally, the normalized DTI score D is calculated as:

D =

{
round

(
T
M , 2

)
if M > 0

0 if M = 0,
(2)

where round(x, 2) rounds x to 2 decimal places.

3.6 CALLING EXTERNAL TOOLS

OpenAI GPT supports calling external tools (e.g., function, database retrieval) to leverage external
knowledge and enhance its capability. Specifically, suppose we have multiple tools, GPT’s API
can detect which tool to use, which serves as glue to connect LLMs to external tools. Our system
integrates external data sources and predictive AI models. (See AppendixA.3 for detailed external
tool information.)

Data Sources The use of professional datasets is pivotal in ensuring the accuracy and reliability of
our agents’ information retrieval capabilities.

• DrugBank: DrugBank (Knox et al., 2024) offers detailed drug data, including chemical, phar-
macological, and pharmaceutical information, with a focus on comprehensive DTIs. It provides
data for over 13,000 drug entries, including FDA-approved small-molecule drugs, FDA-approved
biopharmaceuticals (proteins, peptides, vaccines, and allergens), and nutraceuticals.

• Comparative Toxicogenomics Database (CTD): The CTD (Davis et al., 2023) is a curated
database that provides information about chemical–gene/protein interactions, chemical–disease,
and gene-disease relationships. It is valuable for understanding how environmental exposures
affect human health, integrating data from various species and linking chemicals, genes, diseases,
phenotypes, and pathways (Chang et al., 2019; Wu et al., 2022a).

5
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• Search Tool for Interactions of Chemicals (STITCH): STITCH (Kuhn et al., 2007) is a database
of known and predicted interactions between chemicals and proteins. It integrates information from
various sources, including experimental data, predictive methods, and text-mining of scientific
literature. STITCH is useful for exploring the complex network of interactions between drugs,
other chemicals, and proteins.

• Drug-Gene Interaction Database (DGIdb): DGIdb (Cannon et al., 2024) is a resource that
consolidates disparate data sources describing drug-gene interactions and gene druggability. It
provides drug-target interaction and information on druggable genes used in cancer informatics,
drug repurposing, and personalized medicine (Chen et al., 2021; Wang et al., 2024; Lu et al., 2024).

Predictive AI Models We utilize DeepPurpose (Huang et al., 2020) for the AI Agent. DeepPurpose
is a comprehensive and extensible deep learning library for DTI prediction. It integrates multiple state-
of-the-art models and datasets, allowing researchers to implement various deep learning approaches
for drug discovery and repurposing. DeepPurpose facilitates the application of AI in drug development
by providing a unified framework for different drug and protein encoding methods.

3.7 SCORING FUNCTION USED BY COORDINATOR AGENT

The Coordinator Agent utilizes a scoring function to synthesize predictions from the AI, KG, and
Search Agents. This function cross-references and enriches AI agent predictions with data from
the KG Agent and validates them against findings from the Search Agent. This integrated approach
enables a dynamic updating mechanism, where feedback from literature and knowledge graph
analyses continually refines the predictions.

The scoring function calculates the final prediction score using this formula:

Smerged = αSAI + βSKG + γSSearch,

where Smerged is the merged DTI score, SAI is the AI-based DTI score, SKG is the knowledge
graph-based DTI score, SSearch is the search-based DTI score, α, β, and γ are the weights assigned
to the AI, knowledge graph, and search-based scores, respectively. (See AppendixA.2 for detailed
implementations of weight optimization.)

3.8 WORKFLOW

The workflow of our DrugAgent is designed to leverage the strengths of multiple specialized agents
to provide comprehensive and accurate DTI scores. The process is structured in several sequential
steps, as described below:

Step 1: Query Initialization and Agent Preparation. The workflow begins with the user input,
specifying the drug name, target name, and weighting parameters (α, β, and γ). The system initializes
four specialized agents: the AI Agent, Search Agent, Knowledge Graph (KG) Agent, and Coordinator
Agent.

Step 2: Task Allocation to Specialist Agents. The Coordinator Agent, acting as the central manager,
allocates specific tasks to each specialist agent:

• The AI Agent is tasked with calculating the DTI score using machine learning models.

• The Search Agent is responsible for analyzing DTI data using search methods and literature
analysis.

• The KG Agent is assigned to analyze DTI data using Knowledge Graph techniques.

Step 3: Independent Agent Processing. Each specialist agent processes its assigned task indepen-
dently, utilizing its specific methodologies and tools:

• The AI Agent applies machine learning models to predict the DTI score.

• The Search Agent conducts literature searches and analyzes the results to derive a DTI score.

• The KG Agent queries and analyzes the knowledge graph to determine the DTI score.

6
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Table 1: Performance comparison between DrugAgent and GPT-4. We report the average results
of 5 independent runs and the corresponding standard deviations (in brackets). For each metric, we
highlight the best method in bold. We marked the metrics where DrugAgent is better than GPT-4
(pass the t-test, i.e., p-value<0.05) using “*”.

Metric DrugAgent GPT-4 w.o. AI Agent w.o. KG Agent w.o. Search Agent

MSE (↓) 1.836*
(0.007)

13.420
(0.042)

52.349
(0.051)

8.119
(0.023)

1.960
(0.000)

MAPE (↓) 0.134*
(0.000)

0.320
(0.000)

0.808
(0.001)

0.312
(0.001)

0.138
(0.000)

MAE (↓) 1.081*
(0.003)

3.350
(0.000)

7.095
(0.005)

2.706
(0.005)

1.124
(0.000)

R2 (↑) 0.431*
(0.002)

-0.460
(0.001)

-15.228
(0.016)

-1.517
(0.007)

0.393
(0.000)

Explained Variance (↑) 0.577*
(0.003)

-0.460
(0.001)

0.378
(0.006)

0.211
(0.002)

0.572
(0.000)

Max Error (↓) 2.809*
(0.014)

6.490
(0.120)

9.639
(0.006)

4.395
(0.014)

2.902
(0.000)

Correlation (↑) 0.761*
(0.002)

0.110
(0.003)

0.708
(0.011)

0.507
(0.001)

0.758
(0.000)

Runtime (↓) ≈5.000s ≈0.297s - - -
# OpenAI API tokens (↓) ≈2000-3000 ≈100 - - -

cost of tokens (↓) ≈$0.006-$0.027 ≈$0.0014-$0.0020 - - -

Step 4: Score Collection and Merging. After each agent completes its task, the individual DTI
scores are reported back to the Coordinator Agent. The Coordinator merges these scores, applying
the provided weighting parameters (α, β, and γ) to the individual scores for a final DTI score.

Step 5: Result Integration and Final Output. The Coordinator Agent integrates all the information,
including the individual scores from each method and produces a merged final score. It formats this
information into a structured output, providing a comprehensive view of the DTI prediction from
multiple perspectives.

Step 6: Delivery of Solution. The final output, which includes the merged DTI score along with the
individual scores from each method, is delivered to the user. This comprehensive result provides not
only the final prediction but also insights into how different methods contribute to the overall score,
enhancing the user’s understanding of the DTI prediction. This structured workflow ensures that our
multi-agent DTI prediction system combines multiple analytical approaches, offering a robust and
multi-faceted assessment of potential DTIs.

4 EXPERIMENT

In this section, we demonstrate the experimental results and case studies. Due to the page limit, the
experimental setups, including dataset description, evaluation metrics, and implementation details,
are elaborated in the Appendix B.

4.1 QUANTITATIVE RESULTS: PERFORMANCE COMPARISON OF DRUGAGENT AND GPT-4

To evaluate the performance of DrugAgent against GPT-4, we predict pKd scores and compere these
to values in BindingDB database using several key statistical metrics. pKd is a measure of the binding
affinity between a drug and its target protein, expressed as the negative logarithm of the dissociation
constant (Kd). Higher pKd values indicate stronger binding affinity. Table 1 summarizes the results
for 10 diverse drug-target combinations not used in parameter tuning.

DrugAgent outperformed GPT-4 across all examined metrics. Regarding prediction accuracy, DrugA-
gent achieved a Mean Squared Error (MSE) of 1.836, lower than GPT-4’s 13.420, indicating superior
overall predictive power. The Mean Absolute Percentage Error (MAPE) and Mean Absolute Error
(MAE) metrics further confirm this superiority, with DrugAgent achieving values of 0.134 and 1.081,
respectively, compared to GPT-4’s 0.320 and 3.350.

DrugAgent demonstrated stronger explanatory power, evidenced by its positive R-squared (R2) value
of 0.431, indicating a moderate fit to the data. In contrast, GPT-4’s R2 value of -0.460 suggests a
poor fit. The Explained Variance metric reinforces this trend, with DrugAgent achieving a positive

7
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value of 0.577, while GPT-4 showed a value of -0.460. These results highlight DrugAgent’s superior
ability to capture and explain the variance in the pKd score data.

DrugAgent also excels in prediction consistency. Its Max Error of 2.809 is less than half of GPT-
4’s 6.490, indicating more reliable predictions across the dataset. Moreover, the strong positive
correlation (0.761) between DrugAgent’s predicted and actual values, compared to GPT-4’s weak
positive correlation (0.110), underscores DrugAgent’s effectiveness in capturing the underlying
relationships in the data.

These results showcase DrugAgent’s improved predictive capabilities for BindingDB pKd scores
compared to GPT-4, which is crucial for accurate binding affinity predictions in drug discovery and
molecular interaction studies.

Our ablation study provides valuable insights into the importance of each component in the Dru-
gAgent architecture. Removing the AI Agent resulted in the most severe performance degradation
across all metrics, with MSE increasing to 52.349 and R2 declining to -15.228. This underscores
the AI Agent’s critical role in understanding complex patterns in molecular structures and their
relationship to binding affinities. The KG Agent also proved essential, as its removal led to significant
performance drops, though less severe than the AI Agent. This indicates the KG Agent’s crucial
contribution of domain knowledge about chemical structures and known interactions. While the
Search Agent had a less dramatic impact on performance, it still contributed to the overall accuracy
of the model, particularly in maintaining high correlation and explained variance.

DrugAgent achieves its superior performance with a runtime of 5.000s, which is efficient considering
the complexity of its multi-agent architecture. In comparison, GPT-4’s runtime of 0.297s is faster, but
at the cost of reduced accuracy.

We also compared the number of OpenAI API tokens used and the associated costs. DrugAgent uses
between 2000-3000 tokens per prediction, with an approximate cost of $0.006-$0.027, while GPT-4
uses around 100 tokens, costing 0.0014−0.0020 per prediction. While DrugAgent has higher token
usage and cost, its superior performance justifies this increased resource utilization for applications
requiring high accuracy.

This comprehensive analysis highlights the contributions between the AI, KG, and Search Agents in
our model architecture for accurate pKd score prediction. The work also provides valuable insights for
future improvements of DrugAgent. They emphasize the potential for enhancing the integration and
capabilities of each component to achieve better score predictions in the context of the BindingDB
database, while considering the balance between performance, computational resources, and cost.

4.2 CASE STUDY

This study presents three case studies analyzing the drug target potential of Topotecan for different
proteins: TOP1, SLFN11, and SLC26A4. These cases represent a spectrum from known strong
interactions to potentially novel connections, allowing for an evaluation of our multi-agent system’s
capabilities.

Case 1 examined the interaction between Topotecan and TOP1, a known strong drug-target interaction.
The system calculated a final score of 11.51, confirming the established relationship. The high AI
Agent score (7.65) and KG Agent score (1.0) aligned with the known mechanism of Topotecan as
a TOP1 inhibitor, while the relatively low Search Agent score (0.27) reflected the well-established
nature of this interaction not requiring extensive new studies. The high scores from the AI and KG
agents further support the strong interaction between Topotecan and TOP1.

Case 2 investigated the less understood but potentially relevant interaction between Topotecan and
SLFN11. The system yielded a final score of 10.30, suggesting a noteworthy relationship. The high
AI Agent score (7.36) indicated structural compatibility, while the moderate Search Agent (0.33) and
KG Agent (0.72) scores reflected some existing evidence and established connections, albeit less
comprehensive than in Case 1.

Case 3 explored an unlikely interaction between Topotecan and SLC26A4, resulting in a final score
of 9.92. Despite a high AI Agent score (7.61) suggesting structural compatibility, the very low
Search Agent score (0.00) indicated minimal literature evidence. The moderate KG Agent score
(0.72) suggested some indirect connections, highlighting the system’s ability to detect potential novel

8
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interactions. However, due to the lack of direct evidence and the complexity of these interactions,
careful interpretation is required.

These case studies demonstrated the multi-agent system’s ability to handle several scenarios related
to DTI. The system integrated various data sources and analytical methods, providing interpretable
results with detailed reasoning processes.

The system offered practical insights for DTI research across different levels of prior knowledge.
In Case 1, it confirmed a well-established interaction. In Case 2, it suggested a potentially relevant
interaction that warrants further investigation. In Case 3, it identified a possible novel interaction
while flagging the low literature evidence, thus highlighting an area requiring careful experimental
validation.

5 DISCUSSION

Our study presents a novel multi-agent system for DTI prediction and drug repurposing that integrates
machine learning, knowledge graphs, and literature search. This approach offers more robust
predictions by leveraging diverse data sources and analytical methods. The system’s strength lies in
its collaborative approach, which combines each agent’s specialized capabilities to evaluate complex
DTIs. The weighted integration method allows for flexible adjustment of different prediction methods,
enhancing overall accuracy.

However, limitations exist. The system still relies on human expertise for initial setup, limiting its
scalability. It also lacks autonomous knowledge updating capabilities to keep pace with evolving
pharmacological research and requires regular database updates to maintain its relevance and accuracy.
Furthermore, the current model would need to be paired with a separate system to make use of
individual patient characteristics.

The system’s applicability to a wider range of research tasks can be done by incorporating more
existing models is essential. This flexibility will facilitate easy adaptation to various drug tasks
without major architectural changes, such as drug synergy prediction (Huang et al., 2022), drug
property prediction (Xu et al., 2024), drug response prediction (Inoue et al., 2024b), adverse drug
reaction prediction (Chen et al., 2024), and drug design (Fu et al., 2021a; 2022).

Multi-agent systems can be effectively applied to automate the preprocessing of other data, such as
single-cell RNA sequencing (scRNA-seq) data. This involves implementing multiple preprocessing
functions including imputation (Inoue et al., 2024a; Inoue, 2024), quality control (McCarthy et al.,
2017; Lu et al., 2023), and batch effect correction (Li et al., 2020; Fu et al., 2024; Haghverdi et al.,
2018). Developing an optimization framework to automatically select and apply the most appropriate
preprocessing methods for given datasets, and integrating these preprocessing capabilities into the
existing multi-agent system, will expand system utility.

In conclusion, our DrugAgent shows promise in accelerating AI-driven drug discovery. Continued
development addressing both computational and pharmacological challenges could lead to more
efficient and cost-effective drug discovery processes(Zhang et al., 2021). Future work should focus
on validating the system in real-world drug discovery projects (Fu et al., 2021b) and evaluating its
performance with larger, more diverse datasets.

9
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A IMPLEMENTATION

A.1 IMPLEMENTATION DETAILS

In this section, we provide detailed descriptions of the implementation processes to enhance the
reproducibility of our study.

Role Assignment to Agents Each agent within our multi-agent framework is designated a specific
role, which is integrated directly into the LLM’s system prompt for clarity and focus. For instance,
the role of the AI Agent is defined as follows:

”””Specialized AI Agent for calculating DTI scores using machine learning models.
Use the get AI score function to obtain the DTI score. Output the score in the
following format: { ”AI score”: 1.0,}”””

This role definition is crucial as it guides the LLM to prioritize responses based on the assigned expert
domain, leveraging the model’s inherent capability to focus more acutely on instructed tasks than on
general information.

Defining External Tools External tools are defined in a structured format to facilitate their inte-
gration and usage within the LLM environment. These definitions are crafted in Python functions,
specifying the function name, parameters, and return types. Key examples include:

1. AI Agent: Utilizes machine learning models for DTI scoring.
2. Search Agent: Performs web-based information retrieval to gather relevant DTI data.
3. KG Agent: Leverages a knowledge graph (KG) for graph-based DTI scoring.

This structured approach allows for the direct execution of function calls within the system, providing
detailed responses, including the function name and arguments. These responses enable the retrieval
of results in a structured manner.

Enhanced Score Integration To improve the model’s prediction capabilities, we incorporate a
weighted integration method within the Coordinator Agent. This method, known as score merging,
aids in synthesizing the outputs from different agents into a comprehensive DTI prediction. The
integration is performed using predefined weights (α, β, and γ) to balance the contributions of each
prediction method:

merged dti score = α ∗ AI score + β ∗ KG score + γ ∗ search score.

Here, AI score, search score, and KG score represent the DTI scores from the AI Agent,
Search Agent, and KG Agent, respectively. The weights α, β γ are adjustable hyperparameters that
determine the relative importance of each score in the final prediction. This approach enhances the
accuracy of the model’s outputs and its ability to leverage diverse prediction methods for more robust
drug repurposing predictions. This parameter and the formula were defined systematically. (See A.2
in detail.)

These implementation strategies collectively ensure that each component of our multi-agent system
operates effectively and that the integration between different agents and external tools is seamless,
fostering an environment conducive to robust, reproducible research in drug repurposing prediction.

Software and Hardware Configuration Our experimental framework was implemented on a
Mac computer equipped with an Apple M1 chip and 16GB unified memory, utilizing the built-in
GPU cores. We used Python 3.10 for scripting, PyAutoGen 0.2.31 (Wu et al., 2023), DeepPurpose
0.1.5 (Huang et al., 2020), and RDKit 2023.9.6 (Landrum et al., 2024). For each experiment, we used
the same seed to ensure reproducibility across different Mac models.

A.2 PATTERN SELECTION AND WEIGHT OPTIMIZATION FOR SCORE INTEGRATION

To determine the optimal integration method for our agent scores, we explored four different mathe-
matical patterns and employed a constrained optimization method. We utilized a dataset comprising
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3,332 drug-target pairs, each containing scores from our three specialized agents (AI, Knowledge
Graph, and Search) along with corresponding ground truth interaction scores (pKd values) from the
BindingDB dataset. We considered the following four patterns for score integration:

f1(α, β, γ,A,B,C) = αA+ βB + γC,

f2(α, β, γ,A,B,C) = αA+ (βB · γC),

f3(α, β, γ,A,B,C) = (αA · βB) + γC,

f4(α, β, γ,A,B,C) = (αA · γC) + βB,

(3)

where A, B, and C represent the scores from the AI, Knowledge Graph, and Search agents respec-
tively, and α, β, and γ are the weights we are optimizing. For each pattern, we formulated the weight
optimization as a constrained minimization problem:

minimize
α,β,γ

∥Y − f(α, β, γ,A,B,C)∥2

subject to α, β, γ ≥ 0,
(4)

where Y is the vector of ground truth pKd values and i ∈ 1, 2, 3, 4 corresponds to the pattern
type. The optimization was performed using Sequential Least Squares Programming (SLSQP) with
non-negative constraints for each pattern. After comparing the results, we found that the linear
combination pattern f1 yielded the best performance:

f1(α, β, γ,A,B,C) = αA+ βB + γC. (5)
The initial optimized weights for this pattern were:

α = 1.24683589

β = 2.23513134

γ = 3.22163745× 10−16

(6)

After obtaining these initial results, we rounded and adjusted the coefficients for practical implemen-
tation and to account for potential overfitting to our specific dataset. The final weights used in our
merged DTI score calculation are:

Smerged = 1.2SAI + 2.2SKG + 0.5SSearch. (7)
While initial optimization suggested a negligible contribution from the Search agent, we assigned it a
small but non-trivial weight of 0.5. This decision maintains model flexibility and acknowledges the
potential value of diverse information sources in future applications or different datasets, even if not
significantly impactful in our current study.

The selection of the linear combination pattern (f1) and the subsequent weight adjustments reflect
several important considerations:

The linear pattern provided the best fit to our data while maintaining simplicity and interpretability.
The Knowledge Graph (KG) agent retains the highest weight, confirming its significant contribution
to the final prediction. The AI agent continues to play a substantial role, with a weight slightly lower
than the KG agent. While the initial optimization suggested a negligible role for the Search agent, we
maintained its contribution at a non-trivial level (0.5) in the final model. This adjustment reflects our
belief in the potential value of diverse information sources, even if not prominently represented in
our current dataset.

It is worth noting that the sum of these weights (3.9) is intentionally not normalized to 1. This allows
for a more flexible scaling of the final score, which can be beneficial in certain applications or when
comparing across different datasets. This approach, combining pattern selection, data-driven weight
optimization, and expert adjustment, ensures that our final predictions leverage the strengths of each
agent while maintaining robustness and generalizability. The results suggest that a linear combination
of structured knowledge from the KG agent, pattern recognition capabilities of the AI agent, and
supplementary information from the Search agent contributes to accurate pKd value prediction, with
the KG and AI agents playing particularly crucial roles.

A.3 DETAILED EXTERNAL TOOL DEFINITIONS

This appendix provides a comprehensive overview of the implementation details for our three key
agents: AI Agent, Search Agent, and KG Agent. Each agent plays a crucial role in our multi-agent
system for drug repurposing prediction.
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A.3.1 AI AGENT IMPLEMENTATION

The AI Agent utilizes machine learning models to predict DTIs. Its core function, get AI score,
takes a drug name and a target name as input and returns a float value representing the predicted
interaction score.

# AI Agent
def get_ml_dti_score(name: str, target_name: str) -> float:

target_sequence = get_target_sequence(target_name)
net = models.model_pretrained(model="MPNN_CNN_BindingDB")

X_repurpose, drug_name, drug_cid = load_broad_repurposing_hub(
SAVE_PATH

)
idx = drug_name == name
if not any(idx):

print(f"Logging: Drug ’{name}’ not found.")
return None

res = models.virtual_screening(
X_repurpose[idx], [target_sequence], net,
drug_name[idx], [target_name]

)
return res[0]

This implementation uses a pre-trained MPNN CNN model from the BindingDB dataset. It first
retrieves the target protein sequence and loads the drug data. If the specified drug is found, it performs
virtual screening to predict the interaction score.

A.3.2 SEARCH AGENT IMPLEMENTATION

The Search Agent leverages web-based information to gather relevant data about DTIs. It consists of
several functions that work together to perform a Google search, parse the results, and calculate a
DTI score based on the search findings.

# Search Agent
def google_search(query: str, num_results: int = 10) -> List[Dict[str, str]]:

# ... [implementation details]

def _parse_search_results(soup: BeautifulSoup) -> List[Dict[str, str]]:
# ... [implementation details]

def calculate_dti_score(search_results: List[Dict[str, str]],
drug_name: str, target_name: str) -> float:

# ... [implementation details]

def _calculate_individual_score(result: Dict[str, str], drug_name: str,
target_name: str, positive_keywords: List[str],
strong_keywords: List[str]) -> int:

# ... [implementation details]

def analyze_dti(name: str, target_name: str) -> float:
search_results = google_search(f"{name} {target_name} interaction")
dti_score = calculate_dti_score(search_results, name, target_name)
return dti_score

The main function, analyze dti, orchestrates the search process and score calculation. It uses
a keyword-based scoring system to evaluate the relevance and strength of the interaction based on
search results.

A.3.3 KG AGENT IMPLEMENTATION

The KG Agent utilizes a knowledge graph to derive DTI scores based on the structural relationships
between drugs and targets in the graph.
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# KG Agent
def calculate_dti_score(kg, drug, target):

if drug not in kg.graph or target not in kg.graph:
return 0 # Return 0 if the drug or target is not in the knowledge graph

hops = kg.shortest_path(drug, target)
if hops == -1:

return 0 # No relationship
elif hops == 1:

return 1 # Direct connection
else:

return 1 / (np.log1p(hops)) # Logarithm-based score

def load_kg(file_path):
with open(file_path, "rb") as f:

kg = pickle.load(f)
return kg

def get_kg_dti_score(name: str, target_name: str) -> float:
kg = load_kg("../data/knowledge_graph.pkl")
score = calculate_dti_score(kg, name, target_name)
return score

The KG Agent loads a pre-constructed knowledge graph and calculates the DTI score based on the
shortest path between the drug and target nodes in the graph. A direct connection yields the highest
score, while more distant connections result in lower scores, calculated using a logarithmic scale.

These detailed implementations demonstrate how each agent contributes unique insights to the overall
DTI prediction task. The AI Agent provides predictions based on learned patterns from large datasets,
the Search Agent incorporates up-to-date information from web sources, and the KG Agent leverages
structured knowledge representations. By combining these diverse approaches, our system aims to
produce more robust and comprehensive drug repurposing predictions.

B EXPERIMENTAL SETUP

B.1 DATASET AND EVALUATION METRICS

In our study, we utilized the Kd (dissociation constant) data from the BindingDB database (Liu et al.,
2007) as our experimental dataset. BindingDB is a public repository of measured binding affinities,
primarily focusing on interactions between proteins considered as drug targets and small, drug-like
molecules.

The Kd dataset comprises 52,284 DTI pairs, involving 10,665 unique drug-like compounds and 1,413
distinct protein targets. Kd values represent the dissociation constant, which quantifies the propensity
of a larger complex to separate (dissociate) into smaller components. A lower Kd value indicates a
higher binding affinity between the drug and the target protein.

Our regression task involved predicting pKd (negative logarithm of the dissociation constant Kd)
values from the BindingDB database, given the target protein’s amino acid sequence and the drug
compound’s SMILES string (Simplified Molecular-Input Line-Entry System, a line notation for
encoding molecular structures) (Weininger, 1988). This task is crucial for understanding Drug-
Target Interactions (DTIs) and has significant implications for drug discovery and development
processes (Huang et al., 2022).

To comprehensively evaluate our model’s performance, we employed a suite of seven complementary
metrics: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), R-squared (R2) Score, Explained Variance, Maximum Error, and Correlation. These
metrics collectively assess various aspects of our predictions: MSE and MAE provide measures
of the average prediction error, with MSE being more sensitive to large errors due to its quadratic
nature. MAPE offers insight into the relative size of prediction errors. The R2 score and Explained
Variance evaluate the model’s capacity to capture the underlying variance in the data. Maximum
Error highlights the worst-case prediction scenario, crucial for understanding the model’s limitations.
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Lastly, Correlation assesses the strength and direction of the relationship between predicted and
actual pKd values.

This comprehensive set of metrics allows us to thoroughly assess the accuracy of our predictions, the
model’s capacity to capture underlying patterns in DTIs, and its consistency across different scenarios.
Such a multi-faceted evaluation is essential for validating the model’s performance and identifying
areas for potential improvement in the context of pKd score prediction for drug-target interactions.
Due to space limitation, implementation details are provided in Appendix (Section A.1).

B.2 BASELINE SETUP

This section describes the baseline setup for predicting pKd values for drug-target interactions using
GPT-4. First, the necessary environment setup is performed to use the OpenAI API. The Python client
for OpenAI is imported, and the API key is retrieved from an environment variable. If the API key is
not set, an error is raised. Next, a list of drug-target combinations for prediction is defined. This list
includes drugs such as Gefitinib, Sumatriptan, and Betaxolol, along with their corresponding target
proteins (e.g., PRKACB, KDR, HTR2C). After initializing the OpenAI client, the code loops through
each drug-target combination. Within the loop, a prompt is sent to the GPT-4 model to predict the
pKd value for the specific drug and target. The request to GPT-4 includes two messages:

A system message: This instructs the AI to take on the role of predicting pKd values for drug-target
interactions and to return only a single numeric value. A user message: This requests a pKd value
prediction for the specific drug and target combination.

After receiving the response from GPT-4, the code verifies that the returned value is a number. If
valid, it outputs the value. Invalid responses (non-numeric) are handled as error messages. This setup
provides a basic framework for using GPT-4 to predict pKd values for drug-target interactions. It
allows for rapid predictions across a large set of drug-target combinations, potentially aiding in the
screening of candidate drugs in the early stages of the drug discovery process.

B.3 PROCEDURE

Each agent in our DrugAgent system was tasked with specific roles, as outlined in the Methods
section. The AI Agent applied machine learning models to calculate the DTI score, the Search
Agent analyzed literature data to derive a DTI score based on published research, and the KG Agent
evaluated DTIs using graph-based techniques. The Coordinator Agent then synthesized these findings
into a comprehensive DTI prediction. We conducted experiments to assess the accuracy of the merged
DTI scores and the consistency of predictions across different methods.
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