
Outbound Modeling for Inventory Management
Riccardo Savorgnan∗
savorgr@amazon.com

Amazon - SCOT Inbound Systems
New York City, NY, USA

Udaya Ghai∗
ughai@amazon.com

Amazon AWS - NeuroSymbolic AI
New York City, NY, USA

Carson Eisenach
ceisen@amazon.com

Amazon - SCOT Inbound Systems
New York City, NY, USA

Dean Foster
foster@amazon.com

Amazon - SCOT Inbound Systems
New York City, NY, USA

Abstract
We study the problem of forecasting the number of units drained
from each inventory warehouse to meet customer demand, along
with the associated outbound shipping costs. The actual drain and
shipping costs are determined by complex production systems that
manage the planning and execution of customer orders fulfillment.
Accurately modeling these processes is critical for regional inven-
tory planning, especially when using Reinforcement Learning (RL)
to develop control policies. For the RL usecase, a drain model is
incorporated into a simulator to produce long rollouts, which may
need to be differentiable. While production systems can be used
to recover this transition, they are non-differentiable and too slow
and costly to run within an RL training environment. Accordingly,
we frame this as a probabilistic forecasting problem, modeling the
joint distribution of outbound drain and shipping costs across all
warehouses at each time period, conditioned on inventory positions
and exogenous customer demand. To ensure robustness in an RL
environment, the model must handle out-of-distribution scenar-
ios that arise from off-policy trajectories. We propose a validation
scheme that leverages production systems to evaluate the drain
model on counterfactual inventory states induced by RL policies.
Preliminary results demonstrate the model’s accuracy within the
in-distribution setting.
ACM Reference Format:
Riccardo Savorgnan, Udaya Ghai, Carson Eisenach, and Dean Foster. 2025.
Outbound Modeling for Inventory Management. In Proceedings of the 1st
Workshop on "AI for Supply Chain: Today and Future" @ 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25), August
3, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/XXXXXX.XXXXXX

1 Introduction
Today, reinforcement learning (RL) is used to optimize inventory
management systems [7] that must decide order quantities to stock
products used to fulfill customer demand. [7] modeled the national
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/25/08
https://doi.org/10.1145/XXXXXX.XXXXXX

buying problem as a periodic review inventory control where at
each review period, a single action is taken for each product and the
state tracks the total inventory, making the dynamics just account-
ing. By assuming exogeneity on demand, product level economics,
lead-times and other relevant covariates (e.g. holiday features), [7]
fit the problem into the framework of an Exogenous Interactive
Decision Process (ExoIDP). Unlike worst-case RL, which suffer from
exponential sample complexities, backtesting an ExoIDP can be
analyzed directly with concentration bounds, and hence reduces to
supervised learning. This allows us to reliably backtest on historical
data in a gym by replaying the historical exogenous data for each
product and tracking the counterfactual trajectories induced by a
new policy.

More recently, RL is being proposed to tackle buying and place-
ment supply chain problems which require finer-grained inventory
state tracking. In particular, RL has been proposed to solve the the
multi-echelon [1] inventory control problem, wherein the action-
space is expanded to be an order quantity for each warehouse
(sometimes we will refer to these as nodes), or at a warehouse up
in the serial line to then be re-routed downstream to warehouses
dedicated to demand fulfillment. In such settings, the distribution of
inventory across different nodes is necessary for optimal decision
making and simulation of the dynamics. While [7] could afford to
represent the state with total inventory, in order to properly capture
the impact of such policies, we must represent the inventory state
of each node1. Understanding the evolution of this state after a
single period is far more complicated since there are exponentially
many ways for demand to be fulfilled. Furthermore, each possible
configuration of inventory drain yields different fulfillment costs.
The way this inventory is fulfilled can be complicated and depen-
dent on many internal systems, along with many other external
factors. To maintain the reduction to supervised learning, we would
be required to be able to execute production systems with perfect
fidelity.

While executing production systems may provide a good back-
test for a regional inventory control policy, in order to learn a policy
we need access to a high-speed, accurate, simulator where we eval-
uate and potentially differentiate through billions of rollouts – a
task for which our production systems are too high-latency and
costly to run. Instead, we propose a Drain Modelwhich will emulate
the drain and shipping cost induced by an inventory configuration
and incoming arrivals over some specified time period. We consider

1Possibly, other coarser granularity might work in some instances.

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

KDD ’25, August 3, 2025, Toronto, ON, Canada. Riccardo Savorgnan, Udaya Ghai, Carson Eisenach, and Dean Foster

this as a forecasting problem and train a deep learning model for
our task using historic, observational data.

One possible challenge with employing observational data is
that it is derived from a distribution induced by historical buying
and placement policies. A new regional inventory control policy
would produce different state-action trajectories than the historical
data distribution. A gym for learning a regional inventory control
policy must reliably track the real-world, necessitating off-policy
coverage, a common requirement in RL. To illustrate this, consider
the following scenarios:
Scenario A (Current Policy): Inventory is placed unevenly, with
10 units in NYC and 0 units in LA. When 4 units of demand arise
in LA, fulfillment must occur from NYC. This results in 6 units
remaining in NYC, 0 units in LA, and high shipping costs due to
cross-regional fulfillment.
Scenario B (Proposed Policy): Inventory is distributed more
evenly, with 5 units in both NYC and LA. When the same 4 units of
demand arise in LA, they can be fulfilled locally. This results in 5
units remaining in NYC, 1 unit in LA, and low shipping costs due
to local fulfillment.
The following table summarizes these two scenarios:

Table 1: Comparison of current and proposed inventory place-
ment policies.

Scenario
Initial Inventory

(NYC/LA)
Demand
(LA)

Fulfillment
(From)

Remaining Inventory
(NYC/LA)

A: Current Policy 10 / 0 4 NYC 6 / 0
B: Proposed Policy 5 / 5 4 LA 5 / 1

The critical observation is that historical data only captures out-
comes from Scenario A, where inventory is concentrated in NYC.
The data distribution lacks examples of how the system would
behave under alternative policies like Scenario B, where inven-
tory is spread across warehouses. Consequently, a model trained
solely on historical data might fail to predict outcomes for policies
that deviate from historical patterns. To address this, our approach
involves evaluating the drain model on distributions induced by
alternative policies. This requires an oracle capable of generating
off-policy validation data. Additionally, fine-tuning the drain model
on data produced by the oracle may be necessary to ensure reliable
simulation performance.

1.1 Paper structure
2 provides some additional background. 3 presents themathematical
formulation of our problem. 4 provides modeling details. 5 proposes
an backtesting oracle for out-of-distribution validation. 6 provides
some preliminary empirical results, evaluated in-distribution.

2 Additional Background
Fulfillment Fulfillment decisions are taken by an internal system
-for brevity F- that optimizes the fulfillment cost of sets of orders,
while respecting the original delivery dates that were shown to
customers. While it would be ideal to use F as part of a learning
framework for inventory control and placement policies, doing so
is impractical due to the high latency of the calls and technical
limitations when generating counterfactual actions. In this paper

we thus set off with the objective of providing an accurate customer
order fulfillment emulator, capable of simulating counterfactual
fulfillment actions of the system F.

Outbound back-testing oracles We need to validate our system
dynamics model on states that are unseen in on-policy data trajec-
tories. The actual system F is the desired instrument for this, as we
can call it to generate counterfactuals on an arbitrary inventory
state and compare it to the output of the model. To do so, two com-
ponents are necessary: a) the ability to track per-product inventory
along a simulated trajectory and b) customer responses to different
products availability. It will thus be possible to validate and col-
lect data for an outbound model with counterfactual state/action
trajectories. What we propose in this paper is an algorithm for
replaying instances of customers viewing product webpages, which
represent potential customer interest in buying an item, simulating
customer responses to the counterfactual inventory availability and
calling the production algorithm to generate counterfactual inven-
tory drain trajectories. This service could be used to validate an
outbound model under “off-policy” state distributions; we discuss
this in detail in 5.1.

Customer Demand Correction Delivery dates are influenced
by local inventory availability. A customer who is offered a faster
delivery has a different probability of buying an item. Furthermore,
the delivery date also impacts the ship options available to a cus-
tomer at checkout, and thus the probability of selecting different
options. When changing local inventory availability, we may wish
to adjust historical demands and ship options selected by the cus-
tomer. We utilize a model for correcting demand under different
local availability inventory configuration, based on modeling con-
versions from customer arrivals (i.e. webpage visits or glance views)
to an order and ship option as distributed according to a multino-
mial distribution. We discuss the model in details in F and provide
an extension in 5.

3 Mathematical Formulation
3.1 Notation
Throughout the rest of this paper, we will denote matrices by bold
uppercase characters. For a set 𝑆 , we denote the cardinality of
that set by |𝑆 |. The notation [𝑁] denotes the sequence of natural
numbers through 𝑁 (i.e. {1, ..., 𝑁 }). For a matrix M, we denote the
element in the 𝑖-th row and 𝑗-th column of the matrix asM𝑖, 𝑗 . We
denote by R≥0 the nonnegative reals and R+ the positive reals.
Similarly we denote Z≥0 and Z+ for the nonnegative and positive
integers, respectively. Denote by (·)+ the positive part operator. We
use Δ𝑑 ⊆ R𝑑+1≥0 to represent the 𝑑 simplex.

3.2 Outbound process
In this section we describe the process of how outbound is deter-
mined, starting from a customer’s interest in a product. Denote
by A the set of products managed by the retailer, F the set of
warehouses from which the retailer can fulfill orders and Z the
set of customer regions (for example a region can be defined by
grouping all addresses sharing the first 2 digits of the zip code, also
called Zip2s).

Outbound Modeling for Inventory Management KDD ’25, August 3, 2025, Toronto, ON, Canada.

First, the customer arrives at the detail page -i.e. the webpage-
for a product 𝑖 ∈ A. They are then shown a promise 𝑝 of how
quickly the product can be delivered to them. There are multiple
possible promises – including one for product is unavailable – and
we denote the set of all promises by S. After viewing the promise,
the customer decides whether or not to purchase the product. When
purchasing the product, the customer selects a shipping speed
option (for example, next-day or two-day) 𝑜 that is no faster than
the original promise shown. The set of all ship speeds is denoted
by O, and by convention we always include a ship-speed option
that corresponds to no order being placed. Once the order is placed,
the fulfillment policy F determines which warehouse to fulfill from.

Exogenous and control processes. Having described how the out-
bound process works, we define the processes that wewish tomodel
and which determine the transition dynamics. We index time series
processes by 𝑡 ∈ Z≥0 and all time series are discretized to the same
granularity (e.g. weekly). The time step 𝑡 corresponds to the time
interval [𝑡, 𝑡 + 1).

Glance Views A glance view consists of the associated product,
the region of the customer, a promise shown, a ship option (SO)
selected at checkout, and a quantity in R≥0 ordered. Formally, a
glance view 𝑣 belongs to V := A × Z × S × O × R≥0. We will
denote by 𝐻𝑍 the mapping from 𝑣 to its region 𝑧 ∈ Z, and 𝐻𝐴 ,
𝐻𝑆 , 𝐻𝑂 analogously, with 𝐻𝑄 (𝑣) producing the order quantity. At
each time period 𝑡 , and for each product 𝑖 , there is a sequence of
glance views 𝐺𝑖

𝑡 = (𝑣𝑖𝑡,𝜏)𝜏∈Z+ ,where each glance view is associated
with item 𝑖 , which are indexed in increasing order of time 𝜏 that
customers arrive at the detail page (each individual glance view
typically corresponds to a different costumer). Next, we denote the
total regional glance views for product 𝑖 at time 𝑡 as 𝑔𝑖𝑡 ∈ R |Z |

where 𝑔𝑖𝑡 := (𝑔𝑖,1𝑡 , . . . , 𝑔
𝑖, |Z |
𝑡) and

𝑔
𝑖,𝑧
𝑡 := |{𝑣 ∈ 𝐺𝑖

𝑡 : 𝐻𝑍 (𝑣) = 𝑧}|.

Active warehouses The set of active warehouses changes over
time, as new ones are built. We denote with F̃𝑡 ⊆ F the set of
warehouses that are active at time 𝑡 .

Inventory We denote the inventory at a warehouse 𝑓 of product
𝑖 at the end of period 𝑡 as 𝐼 𝑖,𝑓𝑡 ∈ R≥0 and the vector of inventory
for a product 𝑖 at time 𝑡 as 𝐼 𝑖𝑡 ∈ R

| F |
≥0 where 𝐼 𝑖𝑡 := (𝐼 𝑖,1𝑡 , . . . , 𝐼

𝑖, | F |
𝑡).

Outbound units We denote the units outbounded of product
𝑖 from a warehouse 𝑓 during time 𝑡 as 𝑜𝑖,𝑓𝑡 ∈ R≥0. The vector of
outbound for a product 𝑖 at time 𝑡 is defined as 𝑜𝑖𝑡 ∈ R

| F |
≥0 where

𝑜𝑖𝑡 := (𝑜𝑖,1𝑡 , . . . , 𝑜
𝑖, | F |
𝑡).

Shipping cost We denote the total shipping cost from a ware-
house 𝑓 for product 𝑖 at time 𝑡 as 𝑐𝑖,𝑓𝑡 , and the vector of shipping
costs for item 𝑖 at time 𝑡 as 𝑐𝑖𝑡 ∈ R

| F |
≥0 where 𝑐𝑖𝑡 := (𝑐𝑖,1𝑡 , . . . , 𝑐

𝑖, | F |
𝑡).

Note that the warehouse-level costs are the sum of the unit level
costs for all units outbounded from that warehouse. We discuss
several ways to perform this unit-level accounting in D.

Stowed units We denote the units stowed (i.e. received and avail-
able for customer fulfillment) of product 𝑖 from a warehouse 𝑓

during time 𝑡 as 𝑎𝑖,𝑓𝑡 ∈ R≥0. The vector of stowed units for a prod-
uct 𝑖 at time 𝑡 is defined as 𝑎𝑖𝑡 ∈ R

| F |
≥0 where 𝑎𝑖𝑡 := (𝑎𝑖,1𝑡 , . . . , 𝑎

𝑖, | F |
𝑡).

Historical covariates Additionally, wemay have other historical
covariates of interest (such as holiday indicators, etc) that we may
wish to include as part of the outbound modeling. We denote these
as 𝑦𝑖𝑡 .

3.3 Formulation as a Forecasting Problem
Outbound quantities and shipping costs depend on glanceviews
(customer arrivals) and inventory position, but the arrivals and
conversions are stochastic. We thus cast this as a probabilistic
forecasting task, seeking

𝑝 (𝑜𝑖𝑡 , 𝑐𝑖𝑡 | 𝐻 𝑖
𝑡 , 𝜃) = 𝑝 (𝑜𝑖𝑡 | 𝐻 𝑖

𝑡 , 𝜃) 𝑝 (𝑐𝑖𝑡 | 𝑜𝑖𝑡 , 𝐻 𝑖
𝑡 , 𝜃),

where 𝜃 are learnable model parameters.

4 Proposed ML-Based Forecasting Approach
4.1 Outbound Distribution
Similarly to [10], because many product-warehouse-time combina-
tions have small or zero outbound, we allocate explicit probability
mass to those values, while accommodating unbounded large out-
bounds via the quantile-based tail. A fully discrete model would
require enormous support, while a pure quantile-based approach
often struggles with calibration when much of the data is zero
or near zero. Consequently, we introduce a hybrid discrete-plus-
quantile model for 𝑝 (𝑜𝑖𝑡 | 𝐻 𝑖

𝑡 , 𝜃). Specifically, we define discrete
probabilities 𝑝disc,𝑘 (𝐻 𝑖

𝑡 , 𝜃) for integer values 𝑘 = 0, 1, . . . , 𝑛𝑑 − 1,
with the remaining probability mass collected in

𝑝disc,𝑛𝑑 (𝐻
𝑖
𝑡 , 𝜃) := 𝑝

(
𝑜𝑖𝑡 ≥ 𝑛𝑑 | 𝐻 𝑖

𝑡 , 𝜃
)
.

A learned quantile-based CDF 𝐹𝑞 (𝑘) := 𝐹quant (𝑘 | 𝐻 𝑖
𝑡 , 𝜃) then

refines how this tail mass is distributed. Formally,

𝑝 (𝑜𝑖𝑡 = 𝑘 | 𝐻 𝑖
𝑡 , 𝜃) =


𝑝𝑑,𝑘

(
𝐻 𝑖
𝑡 , 𝜃

)
, 𝑘 < 𝑛𝑑 ,

𝑝𝑑,𝑛𝑑

(
𝐻 𝑖
𝑡 , 𝜃

) [
𝐹𝑞 (𝑘) − 𝐹𝑞 (𝑘 − 1)

]
, 𝑘 ≥ 𝑛𝑑 .

(1)

4.2 Cost Distribution.
Shipping costs do not exhibit the same degree of sparsity due to
the conditioning on outbound quantities, so we adopt standard
quantile forecasting methods [2, 11], predicting 𝑛𝑞 quantiles of 𝑐𝑖𝑡
conditional on the realized outbound 𝑜𝑖𝑡 . Several techniques exist
for interpolating these quantiles and drawing samples [8].

4.3 Loss function
The model is trained on a linear combination of 5 losses. First,
for the discrete outbound prediction, we use cross entropy loss.
Then for the quantile predictions of the model, both in cost and
in outbound, we use a combination of quantile loss and negative
log-likelihood (NLL) from the quantile-interpolated distribution.
We emphasize NLL here because likelihood is a proper-scoring rule
[4] for sequence generation, while quantile-loss is only proper for
a single prediction. Given the intent to use these models for RL
simulators, this distinction is relevant.

KDD ’25, August 3, 2025, Toronto, ON, Canada. Riccardo Savorgnan, Udaya Ghai, Carson Eisenach, and Dean Foster

4.4 Network architecture
We follow the MQ-Forecaster framework [2, 11], with customized
design to account for sharing of information between different
warehouses for aligning warehouse-level data with location-level
data. The architecture starts by using a wavenet encoder on two
parallel streams of data (glanceview time-series data with location-
granularity and warehouse time-series data). This step acts on
each node/location locally. The next component involves sharing
information between node-level embeddings and location-level em-
bedding via either a bidrectional RNN or a Transformer. These are
chosen such that the model can flexibly adapt to new warehouses.
In [5], [6] the authors utilize graph networks to match supply and
demand at different granularitieis. Similarly, [12] utilizes the cross-
attention mechanism to let demand streams attend to each other,
resulting in information exchange. In the same spirit, we utilize
a cross-attention layer to join the two embedding streams from
nodes and locations, allowing for the supply-demand matching we
aim to capture. Finally, these embeddings are decoded via MLPs to
representations (quantiles and logits) in order to sample outbound.
The Outbound is provided as an input for a decoder for a cost head.
In training, we use teacher forcing, providing the cost decoder the
actual outbound rather than a sample from the model. See Figure 1
for a network schematic.

Cross Attention

Outbound
Decoder

Block

Location Feature Encoder

Node Feature Encoder

Location Feature Encoder

Location Feature Encoder

Cross-Node
Encoder

Cross-Location
Encoder

Cost
Decoder
Block

SamplerNode Feature Encoder

Node Feature Encoder

Sampler

Figure 1: Architecture schema of our proposedmodel. Dashed
Lines between the sampler and Cost Decoder Block represent
teacher-forcing during training.

5 An off-policy backtesting oracle
We describe a methodology to implement an oracle for backtesting
out-of-distribution trajectories. The high level idea is to replay each
historical glance view, get its promise from a production system,
convert it to an order, conditionally on this promise, and then pass
this to system F. With the counterfactual fulfillment plan from F,
we can estimate a shipping cost with a model. This whole process
will be run sequentially through time – not parallelized by product –
in order for the backtest to capture the effect of the counterfactual
inventory placement on “multi-shipments”, i.e. shipments where
two or more items are packed together and their shipment cost is
tied to the cost of shipping the box rather than the individual items
–we give more details in appendix D–. We now define it precisely.

5.1 Conditional Glance View Conversions
In our backtestingmethodology, accuratelymodeling how historical
glance views convert into orders under new promises is crucial.
To achieve this, we introduce a conditional conversion model that
leverages historical data to inform counterfactual scenarios. This

can be viewed as a speed-aware extension of availability correction
used in [7]. This section elucidates the conditional glance view
conversion processs.

Motivation Independent sampling of glance view conversions
can lead to high variance and unrealistic scenarios, especially when
multiple related orders influence each other over time. By condi-
tioning on historical outcomes, we ensure that the simulated con-
versions remain consistent with observed behaviors, which may
potentially produce more reliable backtest results.

Conceptual Framework Consider a glance view 𝑣 that histori-
cally resulted in a specific ship option under a given promise. When
evaluating a new promise 𝑝 , we aim to determine the probabil-
ity of each possible ship option while respecting the historical
decision-making process. This is achieved by conditioning on the
historical promise 𝐻𝑆 (𝑣) and the historical outcome 𝐻𝑂 (𝑣), effec-
tively reusing the underlying randomness that led to the original
conversion.

Cumulative Distribution Function (CDF) For each pproduct 𝑖
at time 𝑡 and promise 𝑝 , we define the cumulative conversion rate
over ship options O as:

𝑅
𝑖,𝑝,𝑜
𝑡 =

∑︁
𝑜 ′≤𝑜

𝑅
𝑖,𝑝,𝑜 ′

𝑡

where 𝑅
𝑖,𝑝,𝑜
𝑡 is the estimated probability that a glance view for

product 𝑖 at time 𝑡 under promise 𝑝 converts to ship option 𝑜 .
𝑅
𝑖,𝑝,𝑜
𝑡 denotes the probability of conversion at speed 𝑜 or faster. As

conversion rates increase with promise, 𝑅𝑖,𝑝,𝑜𝑡 can be assumed to
be monotone increasing as promise speed increases.

This cumulative conversion rate allows us to interpret the conver-
sion process as follows: Imagine that the historical order outcome
was generated by drawing a uniform random variable 𝑈 ∈ [0, 1]
and selecting ship option 𝑜 if

𝑅
𝑖,𝑝,𝑜−1
𝑡 < 𝑈 ≤ 𝑅

𝑖,𝑝,𝑜
𝑡

where 𝑅𝑖,𝑝,𝑜−1
𝑡 is the cumulative conversion rate just faster than

ship option 𝑜 .

Conditioning onHistorical Outcomes Given a historical glance
view with promise 𝐻𝑆 (𝑣) and outcome 𝐻𝑂 (𝑣), we can infer that
the underlying 𝑈 must have fallen within a specific interval that
led to the observed outcome. Specifically, if 𝐻𝑂 (𝑣) = 𝑜hist, then:

𝑅
𝑖,𝐻𝑆 (𝑣),𝑜hist−1
𝑡 < 𝑈 ≤ 𝑅

𝑖,𝐻𝑆 (𝑣),𝑜hist
𝑡

By conditioning on this interval, we restrict 𝑈 to lie within(
𝑅
𝑖,𝐻𝑆 (𝑣),𝑜hist−1
𝑡 , 𝑅

𝑖,𝐻𝑆 (𝑣),𝑜hist
𝑡

]
. This ensures that when evaluating

a new promise 𝑝 , the same 𝑈 is used, maintaining consistency in
the conversion process. Because of the ordering, an increase in the
promise can only increase the probability of converting at faster
speeds and so if promise increases (or stays the same) and an order
converted historically, this sampling process will result in the order
converting again, though potentially at a faster ship option.

Outbound Modeling for Inventory Management KDD ’25, August 3, 2025, Toronto, ON, Canada.

Table 2: Validation quantile loss, nll, along with discrete
cross-entropy (ce). L is for the final combined validation loss.
Closest-node Baseline(Appendix E) represents our model-
ing of a greedy closest-node baseline. RNN and Transformer
represent using transformer blocks or a Bidirectional RNN
for the Cross-X-encoders in Figure 1, while sales indicates
whether a feature for sales is included. These are shaded as
gray since sales cannot be used in an RL dynamics model, as
they are endogenous.

Cost Outbound L
q10 q50 q90 nll q10 q50 q90 nll ce

Closest node - - - - 0.614 0.671 0.700 15.1 8.15 -
RNN 0.052 0.147 0.086 1.442 0.050 0.144 0.081 2.638 0.754 4.394
Transformer 0.052 0.148 0.087 1.442 0.050 0.145 0.082 2.634 0.758 4.355
RNN w sales 0.052 0.145 0.084 1.429 0.052 0.150 0.082 2.653 0.759 4.274
Transformer w sales 0.052 0.144 0.083 1.412 0.049 0.142 0.078 2.621 0.752 4.247

Table 3: Samples are taken from the model and aggregated
at a national and regional level. Multiplicative calibration is
done for empirical quantiles andmean of outbound resulting
in calibration slopes (p10, p50, p90), OLS slope, and CRPS for
each model at Total and Regional granularity.

Model Aggregation p10 slope p50 slope p90 slope OLS slope CRPS

Closest node Total 0.75 0.94 1.11 0.91 48.51
RNN Total 0.90 0.98 1.04 1.07 34.85
Transformer Total 0.94 0.94 0.93 0.94 20.60
Closest node Regional 0.13 0.42 1.30 0.28 26.90
RNN Regional 0.91 0.98 1.00 0.96 6.25
Transformer Regional 0.96 0.96 0.96 0.96 4.11

Conditional Probability Calculation Given the constrained𝑈
from the historical outcome, we compute the conditional probability
of each ship option 𝑜 under a new promise 𝑝 . The conditional
probability is defined as:

Pr[𝑜 | 𝑝,𝐻𝑆 (𝑣), 𝐻𝑂 (𝑣)] =

©­­«
min

(
𝑅
𝑖,𝑝,𝑜
𝑡 , 𝑅

𝑖,𝐻𝑆 (𝑣),𝐻𝑂 (𝑣)
𝑡

)
− max

(
𝑅
𝑖,𝑝,𝑜−1
𝑡 , 𝑅

𝑖,𝐻𝑆 (𝑣),𝐻𝑂 (𝑣)−1
𝑡

)
�̂�
𝑖,𝐻𝑆 (𝑣),𝐻𝑂 (𝑣)
𝑡

ª®®¬
+

For an illustrative example of the conditional glanceview con-
version process, see Appendix B. This glanceview conversion is
integrated into an outbound oracle that loops through glanveviews,
converts them, calls FTP and tracks inventory which is detailed in
Appendix C.

6 Empirical Results
We train our models on 50𝑘 sampled products between July 2022
and December 2023, validating on the same product set between
January 2024 and June 2024. Models are trained using a linear com-
bination quantile loss, negative log-likelihood and cross-entropy
for the discrete outbound prediction, as discussed in Section 4.3. We
train a model that used a bidirectional RNN cross-node and cross-
location encoder and consider a replacement which replaces this
with two transformer blocks, finding fairly negligible difference. To
study the impact of glanceview conversion to the model, we use a

Figure 2: Calibrations for quantiles and the discrete predic-
tions. Discrete calibrations represent probability of 𝑘 given
true outbound is 𝑘 . Final probability 5 represents probability
>= 5.

model that has access to sales instead of just glanceviews, though
this is not available for an RL dynamics model. These models do
not demonstrate significant improvements in outbound prediction,
but do produce improvements in the cost prediction. This could
make sense as the finer grained location of demand could provide
signal for shipping cost. We perform two primary types of analysis
for models. First, we evaluate on the metrics used training, as can
be seen in Table 2. Next, for 5𝑘 products per model we draw 128
samples from the predicted distributions and perform aggregations
at national and regional levels. We observe multiplicative calibra-
tion of the empirical quantiles and mean2 along with Continuous
Ranked Probability Score (CRPS) in Table 3. Finally, we demon-
strate that our model is relatively well calibrated over time in both
quantiles and in it’s discrete predictions in Figure 2.

2We regress the ground truth using the empirical quantiles and mean as feature, where
calibration means 1

KDD ’25, August 3, 2025, Toronto, ON, Canada. Riccardo Savorgnan, Udaya Ghai, Carson Eisenach, and Dean Foster

References
[1] A. J. Clark and H. Scarf. 1960. Optimal policies for a multi-echelon inventory

problem. Management Science 6, 4 (1960), 475–490. doi:10.1287/mnsc.6.4.475
[2] Carson Eisenach, Yagna Patel, and Dhruv Madeka. 2020. MQTransformer: Multi-

Horizon Forecasts with Context Dependent and Feedback-Aware Attention.
arXiv:2009.14799

[3] Marco Geraci and Alessio Farcomeni. 2021. Mid-quantile regression for discrete
responses. arXiv:1907.01945 [stat.ME] https://arxiv.org/abs/1907.01945

[4] Tilmann Gneiting and Adrian E. Raftery. 2007. Strictly Proper Scoring Rules,
Prediction, and Estimation. J. Amer. Statist. Assoc. 102, 477 (2007), 359–378.
doi:10.1198/016214506000001437

[5] Hyung il Ahn, Young Chol Song, Santiago Olivar, Hershel Mehta, and Naveen
Tewari. 2024. GNN-based Probabilistic Supply and Inventory Predictions in
Supply Chain Networks. arXiv:2404.07523 [cs.AI] https://arxiv.org/abs/2404.
07523

[6] Mengjin Liu, Yuxin Zuo, Yang Luo, Daiqiang Wu, Peng Zhen, Jiecheng Guo,
and Xiaofeng Gao. 2024. Weather-Conditioned Multi-graph Network for Ride-
Hailing Demand Forecasting. In Service-Oriented Computing: 22nd International
Conference, ICSOC 2024, Tunis, Tunisia, December 3–6, 2024, Proceedings, Part II
(Tunis, Tunisia). Springer-Verlag, Berlin, Heidelberg, 341–356. doi:10.1007/978-
981-96-0808-9_26

[7] Dhruv Madeka, Kari Torkkola, Carson Eisenach, Anna Luo, and Dean Foster.
2022. Deep Inventory Management. arXiv:2210.03137

[8] Vincent Quenneville-Belair, Malcolm Wolff, Brady Willhelme, Dhruv Madeka,
and Dean Foster. 2023. Distribution-free multi-horizon forecasting and vending
system. In KDD 2023 International Workshop on Mining and Learning from Time
Series (MileTS). https://www.amazon.science/publications/distribution-free-
multi-horizon-forecasting-and-vending-system

[9] Bruno Santos and Heleno Bolfarine. 2015. Bayesian quantile regression analysis
for continuous data with a discrete component at zero. arXiv:1511.05925 [stat.ME]
https://arxiv.org/abs/1511.05925

[10] Zirui Wang and Tianying Wang. 2027. A Semiparametric Quantile Single-Index
Model for Zero-Inflated and Overdispersed Outcomes. Statistica Sinica (2027).
doi:10.5705/ss.202024.0104

[11] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka.
2017. A multi-horizon quantile recurrent forecaster. In NIPS Time Series Work-
shop.

[12] Yiling Wu, Yingping Zhao, Xinfeng Zhang, and Yaowei Wang. 2024. Spa-
tial–Temporal Correlation Learning for Traffic Demand Prediction. IEEE Trans-
actions on Intelligent Transportation Systems PP (11 2024), 1–14. doi:10.1109/TITS.
2024.3443341

A Model Details
A.1 Features used

Table 4: Node Features

Feature Name Description

outbound Fulfilled demand from this node.
shipping_cost Cost or shipping metric for this node.
node_location GPS coordinates for this node.
available_inv Current available inventory at node.
is_warehouse_active Binary indicator if node is active.

Table 5: Location Features

Feature Name Description

total_gv
Aggregate glanceviews (webpage visits)
for this location.

zip_location GPS coordinates for this location.

Table 6: Holiday Features

Feature Name Description

distance_to_event_*
distance measure in days to yearly
seasonal events.

A.2 Loss and optimization details
The loss is configured as a fixed linear combination of cost nll, cost
quantile loss, cross entropy on the discrete outbound predictions,
nll on the outbound for the quantile part of the distribution and
quantile loss for the outbound. Theweights are [0, 4, 2, 0.3, 6], which
were chose to approximately normalize each loss to scale close to 1
during training, though this is quite arbitrary. Understanding how
these losses impact a downstream metric is an interesting area for
improvement.

Models are trained for 200 − 300 epochs or until validation loss
seems steadily increasing, which occured with transformer models.
Losses typically converged much quicker, reaching near final loss
within 20 epochs.

Models were trained with DDP on 8 40 GB A100 GPUs, allowing
for batch sizes on the order of 160 for the models using transformer
encoders and 256 for models using the RNN encodes which required
less memory.

A.3 Model hyperparameters
Output Tensors:
• Outbound distribution: 6 discrete logits plus 9 quantiles.
• Cost distribution: continuous quantiles.

https://doi.org/10.1287/mnsc.6.4.475
https://arxiv.org/abs/2009.14799
https://arxiv.org/abs/1907.01945
https://arxiv.org/abs/1907.01945
https://doi.org/10.1198/016214506000001437
https://arxiv.org/abs/2404.07523
https://arxiv.org/abs/2404.07523
https://arxiv.org/abs/2404.07523
https://doi.org/10.1007/978-981-96-0808-9_26
https://doi.org/10.1007/978-981-96-0808-9_26
https://arxiv.org/abs/2210.03137
https://www.amazon.science/publications/distribution-free-multi-horizon-forecasting-and-vending-system
https://www.amazon.science/publications/distribution-free-multi-horizon-forecasting-and-vending-system
https://arxiv.org/abs/1511.05925
https://arxiv.org/abs/1511.05925
https://doi.org/10.5705/ss.202024.0104
https://doi.org/10.1109/TITS.2024.3443341
https://doi.org/10.1109/TITS.2024.3443341

Outbound Modeling for Inventory Management KDD ’25, August 3, 2025, Toronto, ON, Canada.

Key Hyperparameters:
• hidden_size = 64, attention_heads = 8.
• rnn_layers = 2, or transformer_layers = 2
• mlp_depth = 3, dropout = 0.1.
• atrous_rates = [1, 2, 4] (dilations in CNN).
• quantiles = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
• num_outbound_logits = 6 (6 discrete demand buckets so
outbound >= 5 is predicted using quantiles).

A.4 Architecture Outline
(1) Temporal CNN Encoders Both node_t and location_t are
first concatenated (per time step) with the dist_t features, then
each passes through a stack of 3 dilated convolutions (WaveNet-
style).
• Each convolution has: kernel_size = 2, out_channels =

hidden_size = 64, dilation ∈ {1, 2, 4}.
• Each layer is followed by ELU and a padding step to preserve
sequence length.

This produces node embeddings 𝑥 ∈ R𝐵×𝑇×𝑁×64 and location
embeddings 𝑧 ∈ R𝐵×𝑇×𝐿×64.

(2) Channel RNN Encoding Since transformer_layers = 0,
we use a bidirectional RNN on the channel dimension (𝑁 or 𝐿):
• RNN input_size = 64, hidden_size = 64/2 = 32 per direc-
tion, num_layers = 2.
• The node embeddings (𝐵 × 𝑇 × 𝑁 × 64) are reshaped to
(𝐵 × 𝑇) · 𝑁 mini-batches, passed through the RNN, then
reshaped back. Location embeddings similarly.

We obtain updated node embeddings 𝑥𝑟 and location embeddings
𝑧𝑟 , both of shape (𝐵 ×𝑇 × {𝑁or𝐿} × 64).

(3) Cross-Attention (Nodes← Locations) A multi-head cross-
attention module (attention_heads = 8) allows each node to
attend over location embeddings:

Att(𝑥𝑟 , 𝑧𝑟) ∈ R𝐵×𝑇×𝑁×64 .

This becomes the “outbound head.”

(4) OutboundMLPDecoder Adepth-3MLP (with in_features =

64, out_features = num_outbound_logits + 𝑄 = 10 + 9 = 19)
produces:

𝑜_logits︸ ︷︷ ︸
(10 channels)

, 𝑜_quantiles︸ ︷︷ ︸
(9 channels)

.

The logits model discrete demand buckets; the quantile channels
(via softplus + cumsum) ensure monotonic quantile outputs.

(5) Cost Quantile Transformer We map (𝑥𝑟 , 𝑧𝑟) to cost quan-
tiles similarly:
• Optionally concatenate the outbound draw (if available) to
𝑥𝑟 .
• A second cross-attention with location embeddings.
• A depth-3 MLP outputs cost quantiles, shape (𝐵 ×𝑇 ×𝑁 × 9).

Summary Using the above 5-step pipeline, our model creates
distributional predictions of both outbound demand (discrete +
quantile) and cost (quantile). The default dimensioning follows:

• CNN Layers: 3 dilated convs (𝑘 = 2, dilation = 1,2,4), each output
size = 64.
• RNN: Bidirectional, 2 layers, hidden size = 64 total (32 per direc-
tion).
• Attention: 8 heads.
• MLPs: 3-layer fully connected, from 64 up to final channel count
(19 for outbound, 9 for cost).

B Customer Interest Conversion Example
To concretize the conditional conversion mechanism, consider the
following example involving a single product and a single time
period.
• Ship Option Cateogries: O = {1d, 2d, 3d+,NoOrder}, in-
dexed as 𝑜 ∈ {0, 1, 2, 3}.
• Promise Categories: S = {1d, 2d, 3d+,Out-of-Stock},.
• Historical Data for product 𝑖 at time 𝑡 under historical
promise 𝑝ℎ = 𝐻𝑆 (𝑣):

Table 7: Historical Conversion Probabilities for Product 𝑖 at
Time 𝑡 under Promise 𝑝ℎ = 2d

Ship Option Probability CDF U Range

1d 0.00 0.00 [0.00, 0.00)
2d 0.20 0.20 [0.00, 0.20)
3d+ 0.10 0.30 [0.20, 0.30)

NoOrder 0.70 1.00 [0.30, 1.00]

Suppose the historical outcome was 𝐻𝑂 (𝑣) = 2d, which implies
that the underlying𝑈 fell within the range [0.0, 0.2).

Backtest Scenario:
• New Promise: 𝑝𝑏 = 1d (improved promise).
• Conversion Probabilities under 𝑝𝑏 :

Table 8: Conversion Probabilities for Product 𝑖 at Time 𝑡

under New Promise 𝑝𝑏

Ship Option Probability CDF U Range

1d 0.15 0.15 [0.00, 0.15)
2d 0.15 0.30 [0.15, 0.30)
3d+ 0.10 0.40 [0.30, 0.40)

NoOrder 0.40 1.00 [0.40, 1.00]

Conditional Probability Calculation:
Given that the historical 𝑈 ∈ [0.0, 0.2), we examine how this

interval overlaps with the new CDF under 𝑝𝑏 to determine the
conditional probabilities for each ship option.

Table 9: Overlap of Historical𝑈 with New Promise 𝑝𝑏 CDF

Ship Option New CDF
Range

Overlap with
[0.0, 0.2)

Overlap
Length

Conditional
Probability

1d [0.00, 0.15) [0.00, 0.15) 0.15 0.15
0.20 = 0.75

2d [0.30, 0.40) [0.15, 0.20) 0.05 0.05
0.20 = 0.25

3d+ [0.40, 0.50) None 0.00 0.00
NoOrder [0.50, 1.00] None 0.00 0.00

KDD ’25, August 3, 2025, Toronto, ON, Canada. Riccardo Savorgnan, Udaya Ghai, Carson Eisenach, and Dean Foster

Summary of Conditional Conversion:

Table 10: Conditional Conversion Probabilities under New
Promise 𝑝𝑏

Ship Option Conditional Probability

1d 0.75
2d 0.25
3d+ 0.00

NoOrder 0.00

Interpretation of Results From Tables 9 and 10, we derive the
following conditional probabilities:

• NoOrder: The overlap is zero, resulting in a conditional
probability of 0.00. This means that, under the new promise
𝑝𝑏 , a historical𝑈 that previously led to an order cannot result
in a “NoOrder” outcome under the faster promise.
• 1d: The overlap length of 0.15 divided by the original interval
length of 0.20 yields a conditional probability of 75%. There-
fore, there is an 75% chance that the ship option becomes
“1d” under the new promise.
• 2d: The overlap length of 0.05 divided by the original inter-
val length of 0.20 yields a conditional probability of approxi-
mately 25%. Thus, there is a 25% chance that the ship option
remains “2d” under the new promise.
• 3d+: The overlap is zero, resulting in a conditional probability
of 0.00. This indicates that, under the new promise 𝑝𝑏 , there
is no probability of selecting the “3d+” ship option based on
the historical𝑈 .

This conditional conversion ensures that the historical relation-
ship between promises and outcomes is maintained while adapting
to new promises, thereby producing realistic and coherent order
outcomes in the backtest scenario.

C Oracle
C.1 Outbound estimation - production systems
We will estimate outbound need to define the production systems
we need to call. The Promise system can be viewed as a function
that maps an inventory configuration for an product to a promise
for all |Z| regions of the form 𝐹𝑝𝑟 : R | F |≥0 ×A → S

|Z | . The second
system that we need to call to implement an outbound oracle is F,
which can be viewed as a stateful system that ingests an inventory
configuration 𝐼 ∈ R | F |≥0 , customer region 𝑧 ∈ Z and order and
eventually produces a warehouse for the order to be shipped from.

C.2 Ship cost estimation
Neither of the two production systems described above will give
us a ship cost estimate (the other component of the oracle). For
our purposes, we require the ability to sample from the shipment-
level distributions. We have an estimated distribution for each time,
product, node and region combination, and we denote these as
𝑃
𝑖,𝑓 ,𝑧
𝑡 . See D.1 for more detail.

C.3 Putting it all together
1 describes an oracle that takes an inventory state and sequence of
glance views and returns a vector of outbound quantities for each
product. We use Python-style array indexing for ease of exposition.
Observe that this oracle requires a number of service calls linear in
the number of orders (not glance views). Note that final accounting
of an order is delayed from when it is placed, as is done in practice.
This is purposeful to accurately emulate multi-shipments, though
the control flow will be more complicated in real implementation.

Algorithm 1 Outbound Oracle

Input: 𝐼 𝑖 ∈ R | F |≥0 , G = (𝑣𝑠)𝑠∈Z+ , {𝑅𝑖,𝑝,𝑜 }, {𝑃 𝑓 ,𝑧 }
𝑂𝑖 ← (0, ..., 0)∀𝑖 // Total outbound units per node
𝐶𝑖 ← (0, ..., 0)∀𝑖 // Total ship cost per node
𝑃 ← 𝐹𝑝𝑟 (𝐼)
for 𝑣 ∈ G do

𝑧′ ← 𝐻𝑍 (𝑣) // Get region for current glance view
𝑖′ ← 𝐻𝐴 (𝑣) // Get product for current glance view
𝑝′ ← 𝑃 [𝑧′] // Get promise for current glance view
𝑜′ ∼ Pr[·|𝑝′, 𝐻𝑆 (𝑣), 𝐻𝑂 (𝑣)] // Sample conversion to

order
if 𝑜′ ! = NoOrder then

// Order is placed, F adds to fulfillment set
(𝐼 𝑖′ , 𝑧′, 𝑜′) → F //Send F orders

end if
if F.updated() then // F assigns previous orders

𝑓 ′′, 𝑖′′, 𝑜′′ ← F // Get region for current glance
view

𝑐′ ∼ 𝑃𝑖
′′,𝑓 ′′,𝑧′′ // Sample ship cost

𝑂𝑖′′ [𝑓 ′] ← 𝑂𝑖′′ [𝑓 ′′] + 1
𝐼 𝑖
′′ [𝑓 ′] ← 𝑂𝑖′′ [𝑓 ′′] − 1

𝐶𝑖′′ [𝑓 ′] ← 𝐶𝑖′′ [𝑓 ′′] + 𝑐′
𝑃 ← 𝐹𝑝𝑟 (𝐼 , 𝑖)

end if
end for

Output: 𝑂𝑖 , 𝐶𝑖 for all products 𝑖

D Shipping costs
Here we address two important facts regarding the cost of fulfill-
ment: its definition and the implications of such definition for the
evaluation of an inventory placement policy. In general, the fulfill-
ment cost can be decomposed as a sum of the costs incurred for
packing and delivering a box to a customer. A desirable decom-
position method is one that it is representative of the total costs
incurred at a company level, but also causally attributes certain
costs at a box-unit level. The guarantee on the total costs allows
our simulated evaluation to be consistent with what we would see
in a real environment, while the box-unit level attribution allow us
to attribute a granular reward based on the outcome of inventory
placement actions -i.e. the resulting fulfillment trajectory- that can
be used to learn an inventory placement policy. An example of
this attribution is to start from a “ground truth” cost of shipping a
box of a given weight and size, and split the shipment cost of the

Outbound Modeling for Inventory Management KDD ’25, August 3, 2025, Toronto, ON, Canada.

box’s final delivery to the customer across units within that box,
according to some criteria -i.e. their volume and weight-.

The latter example highlights the implication of such attribution
method: shipment costs may not be independent across ordered
products, as for example in this case packing two items together
significantly modifies the fulfillment cost of both. Changing the
shipment modality thus implies the counterfactual cost has to be
computed conditionally to all shipped units that could have been
packed together, across all products. So while our simulator oper-
ates at a product level, any ground-truth backtesting methodology
must account for counterfactual cross-product effects to correctly
evaluate a policy.

D.1 Estimating the Shipping Cost
We here provide a way to estimate the shipping cost of a box of
items, based on some generic characteristics of a shipment. This
estimate allows us to recreate a cost within the simulator described
in C. In fact, for the purpose of evaluating the results of an inventory
control policy in a simulator, we obviously desire that the simulated
costs are representative of the ones that we’d incur in reality.

Since boxes have clearly attributed costs of shipments, by design,
the cost accounting represents the total cost incurred for shipments.
As such, if we can recreate an unbiased estimate in our simulator,
then the cost that our simulator will output should also be repre-
sentative of the total bill incurred. Naturally, the real costs depend
on characteristics of the shipment (characteristics of the package,
distance traveled and so on), which are influenced by the inventory
control process. We can make our forecast depends on such charac-
teristics, which allows us to forecast costs accurately even when
off-policy.

As an exercise, we regress (OLS) the shipping cost of a box 𝑠𝑐B𝑘
over a set of features that reasonably depend from the inventory
control process and show the results in Table 11. For proprietary
reasons, we mask features and all the regression coefficients. All
of them are statistically significant with 𝑝 < 0.001, and the high
R-squared is indicative of a fairly well performing model, regardless
of its simplicity.

Table 11: OLS regression of the “ground-truth” shipping cost
per box 𝑠𝑐B𝑘 in respect of physical characteristics of the ship-
ment.

Dep. Variable: 𝑠𝑐B𝑘 R-squared: 0.509
Model: OLS Adj. R-squared: 0.509
Method: Least Squares F-statistic: 3993.
No. Observations: 50000 Prob (F-statistic): 0.00
Df Residuals: 49986 Log-Likelihood: -97744.
Df Model: 13 AIC: 1.955e+05
Covariance Type: nonrobust BIC: 1.956e+05

E Baseline Model: Closest-node
In this section we discuss our choice of Closest-node as a baseline,
present its detailed results and discuss its performance. Closest-
node describes an algorithm that, given a sequence of customer
orders, sequentially assigns the closest node with inventory to fulfill

the next order, until all orders have been fulfilled or inventory has
ran out. Closest-node is anecdotally accepted to be a good heuristic
as well as being human interpretable.

Algorithm: We here describe our implementation of this algo-
rithm, specifically how it generates a vector (over warehouses) of
outbound quantities for a given product and time. For every product
and time interval, we call for the regional vectors of glance views
𝑔𝑖 ∈ Z |Z | , national conversion rate 𝑐𝑖 ∈ [0, 1], inventory in each
warehouse 𝐼 𝑖 ∈ Z | F |≥0 and a distance function between regions and
warehouses 𝑑 : Z × F → R≥0.

Algorithm 2 Closest-node

Input: 𝐼 𝑖 ∈ Z | F |≥0 , 𝑔
𝑖 ∈ Z |Z |≥0 , 𝑐𝑖 ∈ [0, 1], 𝑑

𝑂𝑖 ← 0 // Initiate outbound vector at 0
for 𝑧 ∈ Z do

𝑠𝑖𝑧 ∼ Binomial(𝜃 = 𝑐𝑖 , 𝑛 = 𝑔𝑖𝑧) // Sample conversion to
order via Binomials
end for
while

∑
𝑧 𝑠

𝑖
𝑧 > 0 ∧∑𝑓 𝐼

𝑖
𝑓
> 0 do

𝑝𝑖 ← 𝑠𝑖/∑𝑧 𝑠
𝑖
𝑧 // Get share of demand per region

𝑧′ ∼ Multinomial(®𝜃 = 𝑝𝑖 , 𝑛 = 1) // Sample region from
Multinomial
F ′ ← {𝑓 ∈ F : 𝐼 𝑖

𝑓
> 0} // Find set of warehouses

with inventory
for 𝑓 ∈ F ′ do

𝛿 𝑖
𝑓
← 𝑑 (𝑧′, 𝑓) // Get vector of distances

end for
𝑗 ′ ∼ Multinomial(®𝜃 = softmax(−𝛿 𝑖), 𝑛 = 1) // Sample

closest warehouse
𝑂𝑖
𝑗 ′ ← 𝑂𝑖

𝑗 ′ + 1 // Update outbound

𝐼 𝑖
𝑗 ′ ← 𝐼 𝑖

𝑗 ′ − 1 // Update inventory

𝑠𝑖
𝑧′ ← 𝑠𝑖

𝑧′ − 1 // Update orders
end while

Output: 𝑂𝑖

Products, times and samples are considered independent of each
other; in practice we thus vectorized the algorithm across these
dimensions with the appropriate considerations. Note also that this
algorithm relaxes the notion of closest node with a softmax sam-
pling, which allows inventory to be drawn, with probability, from
other nodes in the proximity. This is general enough to represent
the Closest-node notion: as we tune the multiplier hyperparameter,
the softmax sampling acts more and more deterministically, degen-
erating in an argmin function and thus coinciding with the closest
node notion.

Experiment and Results: We ran the algorithm with determin-
istic sampling3 -i.e. actual closest node- to obtain 128 samples for
each product-time combination, and used the empirical distribu-
tions of the samples as predictions for the results in table 2. Model
performance in all metrics is very poor compared to neural-net
3Future work will include ablations on the temperature parameter to see if it improves
performance.

KDD ’25, August 3, 2025, Toronto, ON, Canada. Riccardo Savorgnan, Udaya Ghai, Carson Eisenach, and Dean Foster

0.0 0.2 0.4 0.6 0.8 1.0
Share of outbound by warehouse

lo
g-

fr
eq

ue
nc

ie
s

Distribution of outbound shares

Closest
Drain
Actuals

Figure 3: The log-frequencies of shares of outbound per ware-
house. A share of 1 implies all outbound for a product-week
is performed by a single warehouse. It is visible from the clos-
est node distribution that it tends to concentrate outbound
in few nodes, while the NN based Drain model tends to re-
semble the distribution of actual outbound.

based models. The reason is that the model outputs distributions of
outbound units which are overly concentrated, i.e. all outbound is
performed by a few warehouses, which are usually close to large
cities where clusters of demand are present. Figure 3 is an exempli-
fication of this fact.

Discussion and futurework: We attribute the underperforming
results of this model to a multitude of reasons. For starter, the
data generation process concentrates all customer demand to have
equal GPS coordinates in each region, thus resulting in one node
always taking up all the demand for a particular region. More in
general, closest node is a simplistic algorithm that does not take
into account a multitude of factors that determines the F outbound
decision, such as transportation costs, shipments costs, capacity,
customer shipment consolidation and others. For these reasons
we believe that closest node needs to improve and consider other
variables before reaching the sophistication necessary to mimic F
behavior. We’re currently in the process of expanding the research
on these baseline models, as there is clear value in good models
whose properties and behavior are human interpretable.

F A model for Glance View conversion
We present here a model to sample the conversion of a glance
view into an order. At a high level, the model assumes that glance
views are independent and have conversion probabilities that are
exogenous given a product, time and region combination. If we have

estimates of the conversion probabilities, we can replay historic
glance views with counterfactual promises to simulate orders.

We now define our choice of O and S. Promises are grouped
into three types: one-day (1d), two-day (2d), three or more days
(3d+) and out-of-stock (-). Similarly, we group ship options into four
types: one-day (1d), two-day (2d), three or more days (3d+) and no
order (-). Thus we have S = {1𝑑, 2𝑑, 3𝑑+} and O = {1𝑑, 2𝑑, 3𝑑+,−}.

We model each glance view as an independent sample from a
multinomial distribution where promise 𝑗 ∈ S has probability 𝑝 𝑗,𝑘
of converting to SO 𝑘 ∈ O. The model can be represented as a
|S| × |O| matrix as in 12. Note that there are never ship-options
available that are faster than the promise shown to the customer,
and thus those conversion probabilities are always 0. Similarly,
when the item is out-of-stock, the probability of no order is 1.

Table 12: A simple model for glance views conversions based
on probabilities.

Ship Option
No-Order 1d 2d 3d+

Sp
ee
d Out-of-Stock 1 0 0 0

1d 𝑝1𝑑,− 𝑝1𝑑,1𝑑 𝑝1𝑑,2𝑑 𝑝1𝑑,3𝑑+
2d 𝑝2𝑑,− 0 𝑝2𝑑,2𝑑 𝑝2𝑑,3𝑑+
3d+ 𝑝3𝑑+,− 0 0 𝑝3𝑑+,3𝑑+

We estimate the elements of the matrix using historical data.

	Abstract
	1 Introduction
	1.1 Paper structure

	2 Additional Background
	3 Mathematical Formulation
	3.1 Notation
	3.2 Outbound process
	3.3 Formulation as a Forecasting Problem

	4 Proposed ML-Based Forecasting Approach
	4.1 Outbound Distribution
	4.2 Cost Distribution.
	4.3 Loss function
	4.4 Network architecture

	5 An off-policy backtesting oracle
	5.1 Conditional Glance View Conversions

	6 Empirical Results
	References
	A Model Details
	A.1 Features used
	A.2 Loss and optimization details
	A.3 Model hyperparameters
	A.4 Architecture Outline

	B Customer Interest Conversion Example
	C Oracle
	C.1 Outbound estimation - production systems
	C.2 Ship cost estimation
	C.3 Putting it all together

	D Shipping costs
	D.1 Estimating the Shipping Cost

	E Baseline Model: Closest-node
	F A model for Glance View conversion

